5-微波矢量网络分析仪原理详解
矢量网络分析仪的原理及测试方法[专业知识]
![矢量网络分析仪的原理及测试方法[专业知识]](https://img.taocdn.com/s3/m/2442a05b763231126edb11da.png)
入射波 (Ein)
Ein
傳輸波 (Etr)
Eref
器件网絡电路
反射波 (Eref) Etr
行业相关
3
网絡分析仪原理
(Ex.:Network Analyzer with5Hz to 500MHz)
输入功能块 (×n 通道)
处理器功能块
Sampler
820kHz B.P.F
20kHz L.P.F AMP
O
綫圈
O
电容器
O
O
傳輸綫 O
O
O
O
电纜綫 O
O
O
O
分配器 O
O
天綫
OOOO
磁头 O
O
O
放大器 O O O O O
OO
變压器 O
O
頻率轉換器
O
各種功能模块 O O O O O O O O O
行业相关
6
网絡分析仪原理
矢量网絡分析參數
傳輸 * 幅度響應 * 衰減/增益 * 相位響應 * 群延時 * 前向/反向傳輸
矢量网络分析仪的原理及测试方法
深圳市南方行联业合相关实业有限公司
1
什麼是网絡分析仪的分析對象?
通信
多媒体
Communication
Computer
Neo-Audio Visual
集成电路芯片
电子元器件
High-frequency device
行业相关
电池
2
网絡分析仪原理
器件网絡分析方法
通過每個工作頻點的掃描去測量信号傳輸和反射的幅度与相位變化量 值.
高頻器件
RF Filter
RF AMP
RF Filter IF Filter
矢量网络分析仪工作原理矢网(高清版)

矢量网络分析仪工作原理矢网(高清版)矢网分析仪原理目录1.一类独一无二的仪器2.网络分析仪的发展3.网络分析理论4.网络分析仪测量方法5.网络分析仪架构6.误差和不确定度7.校准8.工序要求9.一台仪器,多种应用10.其它资源:1. 一类独一无二的仪器网络分析仪是一类功能强大的仪器,正确使用时,可以达到极高的精度。
它的应用也十分广泛,在很多行业都不可或缺,尤其对测量射频(RF)元件和设备的线性特性方面非常有用。
现代网络分析仪还可用于更具体的应用,例如,信号完整性和材料测量。
随着NI PXIe - 5632的问世,用户可轻松地将网络分析仪应用于设计验证和生产线测试中,完全摆脱传统网络分析仪成本高、占地面积大的束缚。
2. 网络分析仪的发展矢量网络分析仪,比如图1所示的NI PXIe-5632可用于测量设备的幅度、相位和阻抗。
由于网络分析仪是一种封闭的激励-响应系统,因此可在测量RF特性时实现绝佳的精度。
而充分理解网络分析仪的基本原理对于最大限度地受益于网络分析仪至关重要。
图1.NI PXIe-5632矢量网络分析仪在过去的十年中,矢量网络分析仪由于其较低的成本和高效的制造技术受到越来越多业内人士的青睐,其风头已经盖过标量网络分析仪。
虽然网络分析理论已经存在了数十年,但是直到20世纪80年代初期第一台现代独立台式分析仪才诞生。
在此之前,网络分析仪身形庞大复杂,由众多仪器和外部器件组合而成,且功能有限。
NI PXIe-5632的推出标志着网络分析仪发展的又一个里程碑,它将矢量网络分析功能成功地添加到软件定义的灵活PXI模块化仪器平台。
通常我们需要大量的测量实践,才能精确地测量幅值和相位参数,避免重大错误。
在部分射频仪器中,由于测量的不确定性,小误差很可能会被忽略不计,而对于网络分析仪等精确的仪器,这些小误差却是不容忽视的。
3. 网络分析理论网络是一个高频率使用术语,具有很多种现代的定义。
就网络分析而言,网络指一组内部相互关联的电子元器件。
矢量网络分析仪原理和使用方法课件

利用矢量网络分析仪自带的软件或第三方软件, 对采集到的数据进行处理和分析。
结果解读
根据测量结果,解读被测设备的性能指标,评估 其性能优劣。
04
矢量网络分析仪应用实例
通信系统测试
通信系统测试
矢量网络分析仪能够测试通信系统的传输性能,如信号的幅度、相 位和群延迟等,以确保系统性能稳定可靠。
信号完整性分析
微波元件测试
对于微波元件,如滤波器、放大器等,矢量网络 分析仪可以测试其频率响应、增益和群延迟等特 性。
可靠性分析
通过矢量网络分析仪,可以对电子元件进行可靠 性分析,如温度循环、湿度试验等,以评估元件 的寿命和稳定性。
雷达系统测试
雷达散射特性测试
01
矢量网络分析仪可以测试雷达系统的散射特性,如RCS(雷达
校准
根据需要,进行系统校准 ,以确保测量精度。
操作界面与设置
界面介绍
熟悉矢量网络分析仪的各 个功能键和显示窗口,了 解其基本功能。
设置参数
根据测量需求,设置合适 的频率范围、扫描参数等 ,确保测量准确度。
保存设置
完成设置后,保存参数, 以便下次使用。
数据采集与分析
数据采集
按照测量需求,选择合适的测试端口和电缆类型 ,进行数据采集。
高精度测试技术
误差校正和补偿技术
高精度测试技术需要采用误差校正和 补偿技术,如校准件校正、误差模型 拟合等,以减小测试误差和提高测试 精度。
信号处理算法优化
高精度测试技术需要优化信号处理算 法,如滤波、插值、拟合等,以提高 数据处理的速度和准确性。
自动化测试技术
自动化校准和测试流程
自动化测试技术需要实现自动化校准 和测试流程,以提高测试效率和降低 人工操作误差。
矢量网络分析仪学习

矢量网络分析仪学习矢量网络分析仪(Vector Network Analyzer,VNA)是一种用来测量网络参数的仪器,主要用于研究和设计微波和射频电路。
它能够精确测量反射系数、传输系数、相位和群延时等参数,为电路设计和信号分析提供重要的工具。
本文将对矢量网络分析仪的原理、应用和使用方法进行详细介绍。
一、矢量网络分析仪的原理矢量网络分析仪的信号源产生高度稳定的射频信号,并通过测试通道将信号发送给被测设备。
测试通道通常由方向耦合器和同轴、微带线等传输线组成,用于控制和分配信号。
接收器接收来自被测设备的反射和透射信号,并将其转换为电压或功率信号。
计算机对接收到的信号进行处理和分析,通过数学算法计算出被测试设备的网络参数。
二、矢量网络分析仪的应用1.网络分析:矢量网络分析仪可以测量和分析被测试设备的频率响应、增益和相位等参数,帮助工程师设计和优化电路。
2.频率响应测试:矢量网络分析仪可以测量被测设备在特定频率范围内的频率响应,帮助工程师分析和解决信号衰减、失真和干扰等问题。
3.滤波器设计:矢量网络分析仪可以通过测量和分析滤波器的传输系数和反射系数,帮助工程师设计和调整滤波器的性能。
4.天线测试:矢量网络分析仪可以测量天线的增益、驻波比和波束宽度等参数,帮助工程师优化天线设计和性能。
5.信号分析:矢量网络分析仪可以测量和分析信号的相位、群延时和频率特性,帮助工程师了解信号的传播和失真情况。
三、矢量网络分析仪的使用方法1.设备连接:将测试端口与被测试设备连接,并确保连接可靠和稳定。
2.仪器校准:在进行测量之前,需要对矢量网络分析仪进行校准。
常见的校准方法包括开路校准、短路校准和负载校准等。
校准操作将确定参考平面和参考电阻等参数,确保测量的准确性。
3.参数设置:根据具体需求,设置待测设备的频率范围、功率级别和测量模式等参数。
4.数据采集:通过控制软件或前面板操作,启动测量并收集数据。
矢量网络分析仪将发送射频信号,并接收被测设备的反射和透射信号。
矢量网络分析仪

矢量网络分析仪矢量网络分析仪是一种广泛应用于通信、无线电设备和电子电路实验的精密测试仪器。
它可以测量电路中各种参数,如反射系数、传输系数和阻抗等,并为分析电路的性能提供数学模型。
本文将对矢量网络分析仪的原理、结构和应用进行详尽介绍。
一、矢量网络分析仪的原理矢量网络分析仪的原理是基于麦克斯韦方程组和电磁场理论。
在基础电磁理论的基础上,矢量网络分析仪将电信号分为正弦波和相位两部分进行测量,通过计算这些部分的幅度和相位差异,可以确定电路中各种参数的值。
这里简单介绍一下矢量网络分析仪的基本工作原理。
1.1 反射系数的测量反射系数是指信号在电路中反射时与源信号之间的关系。
在矢量网络分析仪的测量中,反射系数的测量可以通过向电路输入一个特定频率的正弦信号,并在电路的接收端检测到其反射信号,然后测量两个信号之间的相位和振幅差异,来计算反射系数的值。
1.2 传输系数的测量传输系数是指信号从电路的输入端到输出端的传输效率。
在矢量网络分析仪的测量中,传输系数可以通过在电路的输入端和输出端分别加入正弦信号,并测量两个信号之间的相位和振幅差异,来计算传输系数的值。
1.3 阻抗的测量阻抗是指电路对电流和电势差的响应,其强度和方向受到电路的各种参数的影响。
在矢量网络分析仪的测量中,阻抗可以通过向电路输入一个特定频率的正弦信号,并通过测量电路中的电流和电势差,来计算阻抗的值。
二、矢量网络分析仪的结构矢量网络分析仪的结构主要分为三部分:源信号、接收器和计算机控制系统。
源信号负责向电路中输入正弦信号,接收器负责检测电路中的反射和传输信号,计算机控制系统则负责数据处理和分析。
下面将对这些部分的结构和功能进行详细介绍。
2.1 源信号源信号是矢量网络分析仪的核心部分之一。
它主要通过向电路中输入不同频率和振幅的信号来测量电路的性能。
源信号通常由射频信号发生器(RF signal generator)或特定的示波器(oscilloscope)提供,其输出功率和波形必须具有高度稳定性和可控制性。
矢量网络分析仪的原理及测试方法

矢量网络分析仪在通信测试中的应用
1 2
S参数测量
矢量网络分析仪可以测量散射参数(S参数), 用于描述线性微波网络的反射和传输特性。
阻抗测量
通过测量S参数,可以进一步计算得到设备的阻 抗特性,包括输入阻抗、输出阻抗和特性阻抗等。
3
相位测量
矢量网络分析仪可以测量信号的相位信息,用于 分析信号的传播延迟和相位失真等。
PART 04
矢量网络分析仪在通信领 域的应用
通信系统中的传输线效应
传输线的分布参数特性
传输线具有电阻、电感、电容和电导等分布参数,这些参数会影响 信号的传输性能。
传输线的反射和传输
当信号在传输线上传播时,会遇到反射和传输两种现象,反射系数 和传输系数是描述这两种现象的重要参数。
传输线的阻抗匹配
连接测试设备
将矢量网络分析仪、测试电缆、连接器 等设备和配件按照测试要求连接好,确
保连接稳定可靠。
进行测试
启动矢量网络分析仪,按照设定的测 试参数进行测试,记录测试结果。
设置测试参数
根据测试目标和要求,设置矢量网络 分析仪的测试参数,如频率范围、扫 描点数、中频带宽等。
重复测试
根据需要,对同一测试对象进行多次 重复测试,以获得更准确的测试结果。
接收机对反射信号和传输信号进行幅 度和相位测量,并将测量结果送至处 理器。
DUT对入射信号进行反射和传输,反 射信号和传输信号分别被定向耦合器 接收并送至接收机。
处理器对测量结果进行数字信号处理, 提取幅度和相位信息,并根据需要进 行校准和误差修正,最终输出测试结 果。
关键性能指标解析
频率范围
矢量网络分析仪能够测量的频率范围, 通常覆盖多个频段,如微波、毫米波 等。
5-微波矢量网络分析仪原理详解

第五章矢量网络分析仪的原理5.1 引言微波矢量网络分析仪是对微波网络参数进行全面测量的一种装置。
其早期产品是阻抗图示仪,随着扫频信号源和取样混频器技术上的突破,微波网络分析仪得到了迅速发展。
但其出现初期一段相当长的时间内一直处于手动状态。
直到20世纪60年代,将计算机应用于测量技术,才出现了全自动的网络分析仪---自动网络分析仪。
自动矢量网络分析仪是一种多功能的测量装置,它既能测量反射参数和传输参数,也能自动转换为其他需要的参数;既能测量无源网络,也能测量有源网络;既能点频测量,也能扫频测量;既能手动也能自动;既能荧光屏显示也能保存数据或打印输出。
它是当前较为成熟而全面的一种微波网络参数测量仪器。
微波元器件性能的描述,一般采用散射参数,如双口网络有S11、S21、S12和S22四个参数,它们通常都是复量。
而网络分析仪正是直接测量这些参数的一种仪器,又能方便地转换为其它多种形式的特性参数。
因此网络分析仪大大扩展了微波测量的功能和提高了工作效率。
由于自动网络分析仪采用点频步进式“扫频”测量,因而能逐点修正误差,使扫频测量精确度达到甚至超过手动测量的水平。
因此,自动网络分析仪既能实现高速、宽频带测量,又能达到一般标准计量设备的精确度。
5.2 微波矢量网络分析仪组成与测量原理将微波标量网络分析仪的检波器和比值计改为幅相接收机便组成微波网络分析仪。
其测量原理如下。
5.2-1 幅相接收机框图幅相接收机的方案很多,有外差混频式,取样变频式,单边带式和调制副载波式等。
这里介绍取样变频式幅相接收机的基本原理。
幅相接收机的方框图示于图5.2-1。
由定向耦合器取样的入射波和反射波,分别送入幅相接收机的参考通道和测试通道。
经取样变频器向下变换到恒定不变的中频f IF(20.278MHz),再经过第二混频器,变换到低频(278kHz),得到待显示信号。
要求频率变换过程是线性的,即不能改变原来微波信号的相位信息和振幅信息。
矢量网络分析仪的原理介绍

矢量网络分析仪的原理介绍矢量网络分析仪(Vector Network Analyzer,简称VNA)是用于测量微波电路参数的一种测试仪器。
它可以同时测量幅度和相位,由此可以得到电路的S参数,进而确定电路的电学特性。
原理VNA的核心是一组相互独立的大功率信号源和敏感的接收器,它们分别通过大量的各向异性元件、耦合器以及各种整流器、差分与单端平衡器和放大器等等电路连接起来。
VNA中最基本的组件是频率控制单元,它使用一个可变频率信号源来生成一个宽频信号作为输入信号,并令它经过电路中的传输诸元、非线性元件、各种过渡网络等,从而获得电路的各种参数。
VNA的工作原理可以简单地分为以下几个步骤:1.VNA内置的信号源生成一个可变频率的信号,并将该信号通过耦合器输入待测电路中;2.信号在待测电路中进行传播,经过一些变化,并从待测电路中输出;3.输出信号再通过耦合器进入VNA中的接收器,接收器将输出的信号与输入的信号进行比较,以测量待测电路的各种参数;4.VNA将测量所得的各种参数进行处理,即可确定待测电路的S参数。
优点VNA具有以下几个优点:1.高精度和高灵敏度:VNA的测量精度通常可达到0.1 dB,接近于理论计算值,测试范围也非常宽;2.测量速度快:VNA的测量速度通常可以达到数毫秒,节省了大量的时间;3.大量的参数:VNA可以测量电路的各种参数,如S参数、Y参数、Z参数等等;4.多功能应用:VNA不仅可以测量微波电路,也可以用于其他领域如光学、无线通信等。
应用VNA的主要应用领域有以下几个:1.无线通信:VNA可以测量各种无线通信设备的电学特性,如天线、滤波器、变频器等等;2.微波电路设计和生产:VNA可以帮助设计人员快速准确地了解电路的性能,并帮助改进电路设计;3.光学:VNA可以用于测量光学器件的特性,并对光学器件进行性能评估;4.材料研究:VNA可以帮助研究人员了解各种特性材料的电学特性。
总结矢量网络分析仪是一种常用的微波测试仪器,它可以测量电路的各种参数,具有高精度和高灵敏度等优点,已经成为无线通信、微波电路设计和生产、光学、材料研究等领域必备的测试仪器。
矢网分析仪原理解析

矢网分析仪原理解析目录一、矢网分析仪概述 (2)1. 定义与功能介绍 (2)2. 常见应用场景 (4)3. 发展历程及现状 (5)二、矢网分析仪基本原理 (6)1. 信号传输与接收原理 (8)2. 信号分析与处理技术 (9)3. 矢量调制与解调原理 (10)三、矢网分析仪主要组成部分 (12)1. 信号输入与输出模块 (13)2. 信号处理与分析模块 (14)3. 控制与显示模块 (16)四、矢网分析仪工作流程解析 (17)1. 信号接收与处理流程 (18)2. 数据分析与处理流程 (19)3. 结果展示与输出流程 (20)五、矢网分析仪关键技术探讨 (21)1. 矢量校准技术 (22)2. 动态范围与灵敏度技术 (24)3. 实时分析处理技术 (25)六、矢网分析仪应用实例分析 (26)1. 通信系统测试应用实例 (27)2. 雷达系统测试应用实例 (28)3. 电子对抗应用实例 (30)七、矢网分析仪发展趋势与展望 (31)1. 技术发展趋势分析 (32)2. 市场发展与应用前景展望 (34)八、实验与操作指导 (35)1. 实验环境与设备介绍 (36)2. 实验操作流程介绍 (37)3. 实验数据处理与分析方法介绍 (38)九、常见问题与解决方案 (39)1. 常见故障类型及排查方法介绍 (39)2. 常见误差来源及校正方法介绍 (40)3. 用户操作注意事项及维护保养建议 (41)一、矢网分析仪概述矢网分析仪,又称为网络分析仪或微波网络分析仪,是一种用于测量和模拟复杂电磁波信号的强大工具。
它结合了频谱分析、网络分析和信号分析的功能,广泛应用于雷达、通信、电子对抗、航空航天等领域。
矢网分析仪的基本工作原理是通过发送和接收信号,测量信号的幅度、相位、频率等参数,以及信号在传输过程中的衰减、反射、传输损耗等特性。
通过对这些参数的分析,可以评估系统的性能,优化设计方案,提高系统的可靠性和稳定性。
矢量网络分析仪的原理及测

矢量网络分析仪是一种电子测量设备, 用于测量电子元件和系统的网络参数, 如阻抗、导纳、增益、相位等。
矢量网络分析仪具有测量精度高、动 态范围大、频率范围宽等优点,广泛 应用于电子、通信、雷达、航空航天 等领域。
它通过向被测件发送激励信号,并测 量激励信号和反射信号或传输信号之 间的相位和幅度关系,来获取被测件 的网络参数。
智能化
随着人工智能和机器学习技 术的发展,矢量网络分析仪 将实现智能化,能够自动进 行故障诊断和预测性维护。
云服务和远程测量
未来矢量网络分析仪将与云 服务结合,实现远程测量和 控制,进一步拓展应用领域 和市场。
THANKS FOR WATCHING
感谢您的观看
矢量网络分析仪的原理及测量
contents
目录
• 引言 • 矢量网络分析仪的原理 • 矢量网络分析仪的主要技术指标 • 矢量网络分析仪的应用 • 矢量网络分析仪的发展趋势和挑战 • 结论
01 引言
目的和背景
研究矢量网络分析仪 的基本原理和应用。
分析矢量网络分析仪 的发展趋势和未来展 望。
探讨矢量网络分析仪 在电子工程和通信领 域的重要性。
矢量网络分析仪简介
矢量网络分析仪是一种用于测 量电子设备和系统的频率响应、 增益、相位等参数的仪器。
它能够同时测量幅度和相位响 应,因此被称为矢量网络分析 仪。
矢量网络分析仪广泛应用于电 子工程、通信、雷达、导航等 领域,是现代电子系统测试的 重要工具之一。
02 矢量网络分析仪的原理
矢量网络分析仪的基本原理
测试速度
总结词
测试速度是矢量网络分析仪的一个重要技术指标,它决定了 仪器的测量效率。
详细描述
测试速度是指矢量网络分析仪完成一次测量所需要的时间。 测试速度越快,表明仪器的测量效率越高,能够更快地完成 测量任务。对于需要大量测量的应用场景,高测试速度的矢 量网络分析仪能够大大提高工作效率。
矢量网络分析仪

矢量网络分析仪知识一、概述〔一〕用途矢量网络分析仪是微波毫米波测试仪器领域中最为重要、应用最为广泛的一种高精度智能化测试仪器,在业界享有“微波/毫米波测试仪器之王〞的美誉,主要用于被测网络散射参量双向S参数的幅频、相频及群时延等特性信息的测量,广泛应用于以相控阵雷达为代表的新一代军用电子装备研制、生产、维修和计量等领域,还可以应用于精确制导、隐身及反隐身、航空航天、卫星通信、雷达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领域.〔二〕分类与特点矢量网络分析仪可以分为分体式矢量网络分析仪、一体化矢量网络分析仪、高性能矢量网络分析仪、脉冲矢量网络分析仪、毫米波矢量网络分析仪、多端口矢量网络分析仪、非线性矢量网络分析仪、便携式矢量网络分析仪、矢量网络分析仪模块〔目前只有VXI总线形式〕等类型产品.分体式矢量网络分析仪特点采用积木式结构,以主机、信号源、S参数测试装置、限制机等独立设备系统集成,配置灵活,技术指标较高,系列化产品工作频段覆盖45MHz〜170GHz,但体积庞大、连接复杂、对操作要求高,已逐渐被一体化、高性能矢量网络分析仪替代.一体化矢量网络分析仪特点采用集成式结构,将信号源、S参数测试装置、幅相接收机等集成在一个机箱内,体积小、测试方便,代表着矢量网络分析仪体系结构的开展方向.早期的一体化矢量网络分析仪工作频率主要为20GHz以内,目前正向高性能的新一代产品线全面过渡.高性能矢量网络分析仪特点采用基于多处理器的嵌入式计算机平台、基于模块化的多级倍频稳幅和宽带混频接收架构以及基于Windows操作系统的多线程实时测量软件平台,操作方便,扩展灵活,技术指标较之以往产品有质的提升,工作频段覆盖300kHz〜67GHz,突破基于平台式体系架构设计的自主产品开展理论,代表着矢量网络分析仪的主要开展方向.脉冲矢量网络分析仪特点以微波脉冲调制信号作为鼓励信号,在继承连续波矢量网络分析仪宽频带、高精度和高速测量特点的根底上,能够在实时测量状态下获得被测电子元器件和电子装备在脉冲调制鼓励信号状态下的幅频、相频和群时延特性信息,满足新体制军用电子装备的测试需求,目前可实现100ns脉冲窄带信号测量,工作频率上限可达40GHz.毫米波矢量网络分析仪特点毫米波矢量网络分析仪是矢量网络分析仪在毫米波乃至更高频段的重要分支,适用于毫米波/亚毫米波甚至更高频段器部件的幅频、相频和群时延特性的测量,目前工作频率上限可达170GHz多端口矢量网络分析仪特点采用基于多源模式和多端口网络矢量误差修正的体系结构,有效扩展矢量网络分析仪的端口测试水平,能够满足集成化程度高的多端口、平衡器件/组件的S参数精确测试要求,目前四端口产品工作频率上限可达40GHz非线性矢量网络分析仪特点采用宽带谐波取样变频结合宽带四通道幅相接收机模式,综合矢量网络分析仪矢量误差修正以及绝对功率校准和谐波相位校准,能够实现被测器件在连续波或周期调制鼓励下的非线性特性测试并可用于非线性建模验证,目前工作频率上限达20GHz.便携式矢量网络分析仪特点采用便携、手持式小型化设计,融合精密合成源、高灵敏度接收机和电池供电系统,能够快速对室外电子系统进行现场安装和调试测试与故障定位,适合野外现场作业,目前工作频率可达18GHz矢量网络分析仪模块特点矢量网络分析仪模块具有体积小重量轻等特点,主要用于组建测试系统,例如,用于武器装备的维护测试,目前工作频率可达20GHz〔三〕产品国内外现状国内生产矢量网络分析仪的厂家主要有:中国电子科技集团41所、天津德之成都城大仪器等单位.国产矢量网络分析仪中,仅41所有与国外同类先进产品相对应的频率上限覆盖至170GHz的系列化产品.在世界范围内矢量网络分析仪生产厂商主要有美国安捷伦、日本安立和德国罗德施瓦茨等,其中以美国安捷伦代表着最高水平,具推出产品最高频率上限已达500GHz.〔四〕技术开展趋势分体式矢量网络分析仪将趋于淘汰;集成化、小体积、多功能、远程交互已经成为未来矢量网络分析仪产品主要的开展趋势;更高的频率上限、更宽的频段覆盖、更大的测试功率、更快的测试速度、更高的测试精度与稳定度仍是矢量网络分析仪产品开展的目标;平台架构体系技术、高速数字信号处理技术、计算机软硬件技术、微波毫米波设计与集成化技术、网络化技术等在矢量网络分析仪中将会不断得到提升、推广与应用.二、根本工作原理矢量网络分析仪主要由:本振信号源、信号源、频率基准、混频接收机、S参数测试、中频处理、数字信号处理、嵌入式计算机、显示、I/O、系统软件、电源等局部电路构成.矢量网络分析仪的原理框图如图1所示.当对被测件〔DUT进行测试时,信号源模块产生的宽带鼓励信号经S参数测试模块别离出被测件的正向入射信号R1、反射信号A和传输信号B或者反向入射彳S号R2、反射信号B和传输信号A,在四通道混频接收机模块中进行混频产生中频信号,中频信号经过调理后进入中频处理模块进行取样、保持,直接进行高速数据采集A/D量化转换变为数字信号,最后在嵌入式计算机的限制下经宽带数字中频处理滤波得到信号的幅度与相位信息,进而通过比值运算得出被测件的双向S参数并显示出测试曲线.三、主要技术指标矢量网络分析仪的主要技术指标:频率范围是指矢量网络分析仪所能产生和分析的载波频率范围.频率分辨力在有效频率范围内可得到并可重复产生的最小频率增量.频率准确度矢量网络分析仪频率指示值和真实值的接近程度.功率准确度在规定功率范围上输出信号提供应额定阻抗负载的实际功率偏离指示值的误差.动态范围为接收机噪声电平与测试端口最大输出电平和接收机最大平安电平之间较小者之差,是表征矢量网络分析仪进行传输测量水平的重要指标.系统幅度迹线噪声指矢量网络分析仪显示器上迹线的幅度稳定度,主要取决于矢量网络分析仪的信号源和接收机的稳定度.系统相位迹线噪声指矢量网络分析仪显示器上迹线的相位稳定度,主要取决于矢量网络分析仪的信号源和接收机的稳定度.四、选购考前须知在矢量网络分析仪选购时将要考虑的因素逐一排序〔如图选择最适合您2所示〕,就不难图1 矢量网络分析仪整机原理框图测量要求的矢量网络分析仪.价格>架构 f 工作频率功能选件 f 测试附件图2矢量网络分析仪选择排序选购矢量网络分析仪应考虑因素:价格选购矢量网络分析仪首先需要考虑产品价格范围, 矢量网络分析仪的价格取决于许多因素,包括架构、工作频率、功能等,一般情况下,相同指标的矢量网络分析仪,国产比进口产品价格廉价很多.产品架构对于矢量网络分析仪,产品架构是很重要的因素,与矢量网络分析仪的价格关系最大,如是选择分体式产品还是一体化产品,是选择第一代一体化产品还是新一代高性能产品.工作频率对于矢量网络分析仪,工作频率是最重要的指标,它不但决定着要测试信号的最高频率,而且与矢量网络分析仪的价格关系很大.功能选件是否具备脉冲或其它功能选件,是否需要特殊功能也影响选购价格.测试附件配置校准件、测试电缆,国产和进口产品之间的价格差异也很大.。
矢量网络分析仪原理

矢量网络分析仪原理矢量网络分析仪是一种用于测量和分析微波网络参数的仪器,其原理基于电磁波在网络中的传播和反射特性。
在现代通信系统和雷达系统中,矢量网络分析仪被广泛应用于网络性能的评估和优化。
本文将介绍矢量网络分析仪的原理及其工作过程。
首先,矢量网络分析仪通过向被测网络中注入测试信号,并测量其在网络中的传播和反射情况来获取网络参数。
其工作原理基于电磁波在网络中的传播和反射特性。
当测试信号进入网络后,部分信号会被网络中的各种元器件反射回来,而另一部分信号则会继续向前传播。
通过测量这些传播和反射信号的幅度和相位,矢量网络分析仪可以计算出网络中各种参数,如传输损耗、驻波比、相位延迟等。
其次,矢量网络分析仪的工作过程可以分为两个主要步骤,校准和测量。
在进行测量之前,矢量网络分析仪需要进行校准以确保测量结果的准确性。
校准过程包括对矢量网络分析仪的各种内部参数进行调整,以消除系统误差和衰减。
一旦完成校准,矢量网络分析仪就可以进行网络参数的测量。
通过向网络中注入测试信号,并测量其在网络中的传播和反射情况,矢量网络分析仪可以计算出网络的各种参数,并将其显示在屏幕上供用户分析和评估。
在实际应用中,矢量网络分析仪可以用于多种场景,如天线测试、滤波器设计、无线通信系统性能评估等。
其高精度和灵活性使其成为微波领域中不可或缺的工具。
通过对网络参数的准确测量和分析,矢量网络分析仪可以帮助工程师们优化系统性能,提高系统的可靠性和稳定性。
总之,矢量网络分析仪是一种用于测量和分析微波网络参数的重要工具,其原理基于电磁波在网络中的传播和反射特性。
通过对网络中的传播和反射信号进行测量和分析,矢量网络分析仪可以准确地计算出网络的各种参数,并帮助工程师们优化系统性能。
在未来的发展中,矢量网络分析仪将继续发挥重要作用,推动微波技术的发展和创新。
矢量网络分析仪的原理及测试方法ppt课件

RF Filter
RF AMP
RF Filter IF Filter
RF AMP
VHF NA RF NA (R3765/R3767CG)
DEM
MAIN CPU
SPEAKER
DPX
Duplexer
RX SYNTHE
RX SYNTHE
RF Filter VCO
TCXO
VCO
VCO
DATA CONT.
MEMORY
DFr1
DFl2
Spurious
level
DFr2
Band width DLF DHF
Pass Reject Spurious
P0le x1
m1 DLF2 DHF2 m2
p0
p1
Nominal Frequency fcent
P0le stim1 P0le x2
P0le stim2
: Insertion loss : Constant loss : x1dB bandwidth : Center frequency : Lower frequency at the point
傳輸特性: 用直通標准器連接並做直通短路校正.
13
Advantest 网絡分析仪的應用範圍
應用 元器件
通信
車用电子
IT 設备
VHA N/A RF NA
游戲机
TV/DVD
晶体諧振器 晶体濾波器 陶瓷振盪器 陶瓷濾波器
SAW 濾波器 介貭濾波器
14
蜂巢式手机的电路框图与使用的主要元器件
ANT
高頻器件
0.02dB (傳統型仪器)
RBW 10kHz
0.01dB (R3754) RBW 10kHz
矢量网络分析仪的工作原理研究

矢量网络分析仪的工作原理研究矢量网络分析仪(Vector Network Analyzer,简称VNA)是一种用于测量电信号的物理特性的仪器。
它主要用于分析电路中的信号传输和反射特性,可以帮助工程师评估电路的性能以及找出潜在的问题。
本文将介绍矢量网络分析仪的工作原理及其在电子领域的应用。
一、概述矢量网络分析仪是一种精确测量电路中微小信号的仪器,通过发送和接收电磁波来测量电路中的反射和传输特性。
它可以测量的参数包括:幅度响应、相位响应、频率响应和群延迟等,这些参数对于分析和优化电路设计至关重要。
二、工作原理矢量网络分析仪的工作原理基于电磁波的传输和反射。
它通过电磁波与待测电路交互后的特性来分析电路的性能。
1. 电磁波的发送与接收矢量网络分析仪首先会通过一根耦合线将电磁波引导至待测电路。
在引导线的一个端口通过发射器发出电磁波,而另一个端口通过接收器接收反射回来的电磁波。
2. S参数测量S参数是指待测电路对应于入射波势和出射波势的幅度和相位之间的关系。
矢量网络分析仪通过测量S参数来分析电路特性。
2.1 反射系数的测量当电磁波传输至待测电路时,部分电磁波会被电路反射回来。
矢量网络分析仪通过测量反射系数(Reflection Coefficient)来评估电路对入射波的反射情况。
2.2 传输系数的测量除了反射系数,矢量网络分析仪还可以测量电路对电磁波传输的影响。
传输系数(Transmission Coefficient)用于表示电路中电磁波的传输效果。
3. 参数计算和结果显示通过测量反射系数和传输系数,矢量网络分析仪可以计算得到其他参数,如增益、驻波比、相位差等。
这些参数可用于评估电路的性能,并可通过显示器或计算机界面进行实时显示。
三、应用领域矢量网络分析仪广泛应用于电子领域的多个方面。
以下是几个常见的应用领域:1. 无线通信矢量网络分析仪在无线通信系统中起到了至关重要的作用。
它可以用于测量天线的电气特性、射频功率放大器的增益、射频滤波器的频率响应等。
矢量网络分析仪的基本原理

矢量网络分析仪的基本原理目录一、内容概览 (2)1.1 矢量网络分析仪的重要性 (3)1.2 矢量网络分析仪的应用领域 (4)二、矢量网络分析仪的基本原理概述 (5)2.1 矢量信号与标量信号的差异 (6)2.2 矢量网络分析仪的工作原理 (7)三、矢量网络分析仪的主要组成部分 (8)3.1 射频模块 (10)3.2 混频器模块 (11)3.3 功率计模块 (12)3.4 天线与开关模块 (13)3.5 控制与显示模块 (14)四、矢量网络分析仪的工作流程 (15)4.1 开启仪器 (17)4.2 连接测试夹具 (17)4.3 设置测试参数 (18)4.4 执行测试 (20)4.5 分析测试结果 (21)五、矢量网络分析仪的测量原理 (22)5.1 矢量电压与电流的计算 (23)5.2 矢量信号的幅度与相位测量 (24)5.3 矢量网络的阻抗与导纳计算 (25)六、矢量网络分析仪的性能指标 (27)6.1 测量范围 (28)6.2 分辨率 (29)七、矢量网络分析仪的选择与使用注意事项 (30)7.1 根据需求选择合适的矢量网络分析仪 (32)7.2 使用前的准备工作 (33)7.3 测试过程中的注意事项 (34)7.4 测试后的数据处理与结果分析 (35)八、结论 (37)8.1 矢量网络分析仪在现代无线通信领域的应用价值 (37)8.2 对矢量网络分析仪未来发展的展望 (38)一、内容概览矢量网络分析仪(Vector Network Analyzer,VNA)是一种先进的微波测量设备,用于评估射频(RF)和微波系统的性能。
它通过精确测量和计算传输功率、反射功率以及其它关键参数,帮助工程师设计和优化无线通信系统、雷达系统和卫星通信系统等。
VNA的工作原理基于电磁波的叠加和干涉。
当一束电磁波通过一个同相位、同频率的平面波信号与一个反射波信号叠加时,会产生一个矢量信号。
这个矢量信号包含了关于系统性能的有用信息,如回波损耗、插入损耗、传输系数等。
矢量网络分析仪基本原理

矢量网络分析仪基本原理
矢量网络分析仪(Vector Network Analyzer,VNA)是一种用
来测量电路参数的仪器。
它基于矢量信号的特性,可以测量和分析电路的传输、反射和衰减等参数。
矢量网络分析仪的基本原理是通过将被测电路与信号源和接收器相连,发送一系列频率和幅度可调的信号,并通过接收器测量被测电路的响应。
通过在发送和接收信号之间引入相位测量,可以得到复数形式的传输函数,进而得到电路的各种参数。
具体来说,在测量过程中,矢量网络分析仪会通过输入端口向待测电路发送信号,并通过输出端口接收到反射信号和传输信号。
反射信号是由待测电路中的反射和反射损耗引起的,而传输信号是通过电路中传输的信号。
测量过程中,矢量网络分析仪会比较输入信号和输出信号之间的相位和振幅差异。
从而,可以得到待测电路的反射系数和传输系数。
反射系数用于描述信号从待测电路反射回来的程度,传输系数用于描述信号从待测电路传输的程度。
通过测量反射系数和传输系数,矢量网络分析仪可以得到待测电路的S参数(Scattering Parameters),即反射系数和传输系
数与输入和输出端口之间的关系。
S参数可以用于描述电路的
功率传输、阻抗匹配和波导特性等。
总之,矢量网络分析仪通过测量反射和传输信号的相位和振幅差异来分析待测电路的特性。
它可以实时测量电路的S参数,
并提供精确的电路分析结果。
在电子设计、射频工程和通信系统等领域中,矢量网络分析仪被广泛应用于电路设计和性能分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章矢量网络分析仪的原理5.1 引言微波矢量网络分析仪是对微波网络参数进行全面测量的一种装置。
其早期产品是阻抗图示仪,随着扫频信号源和取样混频器技术上的突破,微波网络分析仪得到了迅速发展。
但其出现初期一段相当长的时间内一直处于手动状态。
直到20世纪60年代,将计算机应用于测量技术,才出现了全自动的网络分析仪---自动网络分析仪。
自动矢量网络分析仪是一种多功能的测量装置,它既能测量反射参数和传输参数,也能自动转换为其他需要的参数;既能测量无源网络,也能测量有源网络;既能点频测量,也能扫频测量;既能手动也能自动;既能荧光屏显示也能保存数据或打印输出。
它是当前较为成熟而全面的一种微波网络参数测量仪器。
微波元器件性能的描述,一般采用散射参数,如双口网络有S11、S21、S12和S22四个参数,它们通常都是复量。
而网络分析仪正是直接测量这些参数的一种仪器,又能方便地转换为其它多种形式的特性参数。
因此网络分析仪大大扩展了微波测量的功能和提高了工作效率。
由于自动网络分析仪采用点频步进式“扫频”测量,因而能逐点修正误差,使扫频测量精确度达到甚至超过手动测量的水平。
因此,自动网络分析仪既能实现高速、宽频带测量,又能达到一般标准计量设备的精确度。
5.2 微波矢量网络分析仪组成与测量原理将微波标量网络分析仪的检波器和比值计改为幅相接收机便组成微波网络分析仪。
其测量原理如下。
5.2-1 幅相接收机框图幅相接收机的方案很多,有外差混频式,取样变频式,单边带式和调制副载波式等。
这里介绍取样变频式幅相接收机的基本原理。
幅相接收机的方框图示于图5.2-1。
由定向耦合器取样的入射波和反射波,分别送入幅相接收机的参考通道和测试通道。
经取样变频器向下变换到恒定不变的中频f IF(20.278MHz),再经过第二混频器,变换到低频(278kHz),得到待显示信号。
要求频率变换过程是线性的,即不能改变原来微波信号的相位信息和振幅信息。
为了扩展频段,用窄脉冲发生器代替常规本振,用取样门代替常规混频器(取样变频器)。
窄脉冲发生器产生一系列宽度很窄的脉冲。
如果每个窄脉冲的宽度窄到与所用信号的周期可以比较,则取样门就等效为谐波混频器。
因此,一个单独系统就能工作在110MHz 到l2.4GHz 的信号带宽以上。
一般谐波混频器有较低的噪声系数和较大的动态范围。
扫频工作中,锁相环路使本振频率同步地调谐到参考通道的信号频率上。
当未被锁定时,它前后调谐可以跨越倍频程。
当nf 本振-f 参考=20.278MHz 时,锁相环停止搜索处锁定状态(约用20μs),保持中频恒定不变。
锁相环维持锁定的扫描速率可高达220GHz/s(在8~12.4GHz 的范围,每秒可扫30次)。
由于频率的变换过程是线性的,所以两条通道的中频 (20.278MHz)保持着测试信号与参考信号之间的振幅和相位的相对关系。
自动增益控制(AGC)放大器使参考通道电平稳定,并能防止两条通道电平共模变化时,所引起测试通道的改变,而使测试通道电平归一到参考通道电平上。
变换到第二中频的待测信号经过相位检波和幅度检波,分别指示出测试通道与参考通道之间的相位差和振幅比值,并显示出相位-频率和幅度-频率特性。
5.2-2 反射参数测量原理一、校准与测量图5.2-2a 、b 示出双定向耦合器式和单定向耦合器式两种测量反射参数电路。
测量之前先要校准。
校准方法是在端口T1接短路板(πj L e Γ⋅=1),记录扫频范围内每个频点幅相接收机的幅度和相位输出,以此作为幅度1=L Γ和相位πϕ=的基准。
直到扫完整个频段,校准结束。
测试时,换接待测负载,测出扫频范围内每个频点幅相接收机的幅度和相位输出,并图5.2-1 取样变频式幅相接收机方框图模值输出与校准阶段所得对应频率上的幅度和相位比较,即可得)(2211s s L 、Γ的测量结果。
二、反射参数的误差模型及其校正方法测量单口网络反射系数的误差源主要有三项:(1) 如果在端口T1接上全匹配负载(L Γ=0),仍能测出反射。
其原因是:(a) 在接收机中参考通道的信号泄漏到测试通道中去;(b) 测试通道定向耦合器的有限方向性。
这两种误差称为串话误差(E DF )。
一般的泄漏项总在80dB 以上,而同轴定向耦合器的方向性一般不优于40dB ,所以测试通道定向耦合器对串话误差贡献最大,它的方向性越差,这个误差的数值越大。
(2) 如果定向耦合器耦合臂的振幅和相位的频率响应不跟踪或接收机的两个通道不跟踪,则频率改变时测量数据会出现明显的起伏。
由这个起伏引起的误差称为跟踪误差(E RF )。
(3) 等效源失配误差(E SF )。
它是由于测试装置的端口T 1不完全匹配(含信号源失配)而多次反射引起的误差。
综上得出:E DF ≈测试通道定向耦合器的有限方向性; E RF ≈定向耦合器、接收器的频率跟踪误差; E SF ≈等效源失配误差。
把这三项误差用信号流图的形式表示出来称为误差模型(图5.2-3)。
由信号流图解出反射系数的测量值为LSF L RF DF MΓE ΓE E a b Γ-+==100 (5.2-1) 上式说明,如果待测元件的反射系数L Γ很大,E DF 产生的影响小,E RP 和E SF 产生的影响大;反之,E SF 产生一定的百分比误差,而E DF 成为主要的。
在测量中,这些误差项可以通过多次校准的方法校正。
(a)双定向耦合器式 (b)单定向耦合器式图5.2-2 网络分析仪反射参数测量线路串话误差E DF 可以用一个匹配负载分离出来。
方法是:把匹配负载接在测试装置的输出口T 1,这时式(5.2-1)近似为ΓM ≈E DF ,故此时测出的反射系数就是E DF 。
关于E SF 和E RF 的求法,可采用在T 1面分别接以短路器和开路器的方法求出。
即短路时,测量值为SFRFDF M E E E Γ)1(1)1(2---+= (5.2-2)开路时,测量值为SFRFDF M E E E Γ)1(1)1(2+-++= (5.2-3)由式(5.2-2)和(5.2-3)解出E RF 和E SF 。
把求出的E DF ,E RF 和E SF 代入式(5.2-1),求出待测反射系数的校正值为RFDF M SF DFM L E E ΓE E ΓΓ+--=)( (5.2-4a)测量双口网络反射参数S 11(或S 22)的误差源,除上述三项之外,还有匹配负载的剩余反射一项,称为失配误差(E LF )。
其误差模型于图5.2-3b 。
由信号流图求出S 11(或S 22)的测量值S 11M 为LFSF LF SF RFLF LF RF DF M E E S S E S E S E E S S E S E S E S 122122111221221111)1)(1()1(---+-+= (5.2-4b)当1221S S 很小时,匹配负载失配误差是个小量,可以忽略,则式(5.2-4b )简化为SFRF DFM E S E S E S 1111111-+≈ (5.2-4b) 如果1221S S 接近于1,E LF 的影响较大。
点频测量时,可接入调配器减小之。
若已知E LF ,则可按式(5.2-4b )进行校正。
(a)测量的误差模型 (b)测量S 11(S 22)的误差模型图5.2-3 测量反射参数时的误差模型 (端口T 0是虚设的)LΓLM T 0a 0b 0入射信号S 11MLF125.2-3 传输参数测量原理一、校准与测量测量电路示于图5.2-4。
校准时,把测试通道接待测网络的两个端口对接。
记录扫频范围内每个频点幅相接收机的幅度和相位输出,以此作为幅度121=s 和相位o 210=ϕ的基准。
直到扫完整个频段,校准结束。
测量时,在测试通道中插入待测元件,记录扫频范围内每个频点幅相接收机的幅度和相位输出,并与校准阶段所得对应频率上的幅度和相位比较,即可得21s 的测量结果。
二、传输参数的误差模型测量传输参数的误差源有三项:(1) 隔离误差(串话误差)E XF :如果在测试装置的端口T 1和T 2分别接入匹配负载,而在接收机上仍测出某一传输信号,称为该系统的隔离误差(串话误差)E XF 。
(2) 跟踪误差E TF :如果输出振幅和两条通道的电长度随频率变化,而又不能跟踪,在传输测量中将出现明显波纹,称为跟踪误差E TF 。
(3) 失配误差E SF 、E LF :分别是测量装置的端口T 1、T 2不匹配引起的测量误差。
传输参数误差模型的信流图示于5.2-5。
(a) 单定向耦合器式 (b) 功分器式图5.2-4 用网络分析仪测量传输参数S 21(或S 12)的连接线路图5.2-5 传输参数的误差模型 (端口T 0和T 3是虚设的)a 1T 1T 203求出传输参数的测量值为LFSF LF SF LF SF TFXF M E E S S E E S S E S E S E S E a b S 2211122121112103211+---+==(5.2-8) 隔离误差E XF 通常是很小的,一般小于-80dB ,约如系统噪声一样的低电平,所以只有在测量高衰减时才产生大的影响。
跟踪误差E TF 在传输测量中产生百分比误差。
关于失配误差E SF 、E LF ,如果待测器件的S 11和S 22都很小。
由E SF 、E LE 引入的误差也小。
反之,失配误差就大。
上述误差在点频测量时可以减小或校正,方法是:首先在端口T 1、T 2分别接匹配负载,使S 12=S 21=0代入式(5.2-8),有S 21M =E XF ,测出隔离误差E XF (有时它和噪声混在一起难于分辨)。
然后校准跟踪误差E TF ,把T 1和T 2对接,S 12=S 21=1,由(5.2-8)得S 21M ≈E XF +E TF ,即可解出E TF 。
5.2-4 四个S 参数的测量装置及误差模型图5.2-12示出四个S 参数(S 11、S 21、S 12、和S 22)的测量装置,通过转换开关SW 1和SW 2来选择欲测之量。
图5.2-12所示测量装置是由三个定向耦合器、两个匹配负载和两个衰减器组成的。
中间的定向耦合器作为功分器之用。
在测量S 11时,双口网络的端口T 2经过开关SW 2接匹配负载。
微波信号经过左面定向耦合器送到待测网络,同时经过中间定向耦合器送到参考通道,待测网络的反射信号经由开关SW 2送入测试通道。
当测量S 12时,微波信号经过开关SW 1和右面的定向耦合器送到待测网络的端口T 2,通过待测网络的传输信号再经过SW 2图5.2-12 测量S 11、S 12、S 21、S 22的测量装置送到测试通道。
衰减器是用来减小系统失配误差的。
依同理可测量S 22和S 21。
测量四个S 参数的另一种装置示于图5.2-13。