数学物理方程习题解答案

合集下载

数学物理方程(谷超豪)课后答案

数学物理方程(谷超豪)课后答案

第一章.波动方程§1方程的导出。

定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。

ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。

现在计算这段杆在时x +x x ∆刻的相对伸长。

在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。

由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。

)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。

数学物理方程第三版答案

数学物理方程第三版答案

数学物理方程第三版答案1. 动量守恒定律:$$ P = mv $$其中,$P$为物体的动量,$m$为物体的质量,$v$为物体的速度。

2. 牛顿第二定律:$$ F = ma $$其中,$F$为物体受力,$m$为物体的质量,$a$为物体的加速度。

3. 热力学第二定律:$$ \Delta S \geq \frac{Q}{T} $$其中,$\Delta S$ 是系统的熵变化,$Q$ 是系统吸收的热量,$T$ 是系统的温度。

4. 拉普拉斯方程:$$ \nabla^2\phi=0 $$其中,$\phi$ 是空间的潜在电势,$\nabla^2$ 表示拉普拉斯算子,即 Laplace operator。

5.理想气体状态方程:$$PV=nRT$$其中,$P$是压强,$V$是体积,$n$是物质量的数量,$R$是气体的其中一特定常数,$T$是温度。

6. 位能定律:$$ E_p = \frac{mv^2}{2} $$其中,$E_p$为位能,$m$为物体的质量,$v$为物体的速度。

7. 伽马射线波动方程:$$ \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2\Psi}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2\Psi}{\partial t^2}$$其中,$\Psi$ 是伽马射线的波函数,$c$ 是光速。

8. 洛伦兹力方程:$$ F = \frac{d^2x}{dt^2} = - \frac{kx}{m} $$其中,$F$ 为力,$x$ 为物体位移,$k$ 为弹性力系数,$m$ 为物体的质量,$dt$ 为时间差。

数学物理方程第二版谷超豪主编的课本的课后答案

数学物理方程第二版谷超豪主编的课本的课后答案

1、一个偏微分方程所含有的未知函数最高阶导数的阶数称为这个偏微分方程的阶。

2、如果方程对未知函数及其各阶导数总体来说是线性的,则称这个方程是线性方程,否则称这个方程是非线性方程。

3、几种不同原因的综合所产生的效果等于这些不同原因单独产生的效果(即假设其他原因不存在时,该原因所产生的效果)的累加。

这个原理称为叠加原理。

4、I 【22222//0u t a u x ∂∂-∂∂=0:(),/()t u x u t x ϕψ==∂∂=】初值问题I 的解为(,)[()()]/2(1/2)()x atx atu x t x at x at a d ϕϕψαα+-=-+-+⎰此公式称为达朗贝尔公式5、依赖区间(x-at,x+at )第一章课后题2.8求解222200{//sin |0,/|sin }t t u t u x t x u u t x ==∂∂-∂∂==∂∂= 解:()0()11(,)sin sin sin 22x t x tt x tx t u x t d d t xττξξτξξ+-+---=+=⎰⎰⎰sin(1,2,...)k k C x k lπ=为常微分方程()()0X x X x λ''+=满足边界条件(0)0,()0X X l ==的固有函数(或特征函数)而222k lπλ=称为相应的固有值。

2222200:(),()0,:0uu atxu t u x x tx x l u ϕψ∂∂-=∂∂∂===∂===初值问题,的解是(,)cos sin sin k k k a k a k a u x t A t B t xl l l πππ⎛⎫=+ ⎪⎝⎭又可以写成(,)c o s ()s ink kk k k u x t N t xlπωθ=+其中,cos sin K K k k K a N lπωθθ====KN 称为波的振幅,Kω称为圆频率,k θ称为波的初位相。

弦上位于m l x k=(m=0,1,..k )处的点在振动过程中保持不动,称为节点。

《数学物理方程》习题参考答案(A)

《数学物理方程》习题参考答案(A)

《数学物理方程》习题参考答案(A)习题一1.判断方程的类型,并将其化成标准形式:0212222=∂∂+∂∂+∂∂y uyu y x u . 解:⎪⎩⎪⎨⎧==><<>-=-≡∆.0,0. ,00,.0,02211212时,抛物型当椭圆型时当时,双曲型当y y y y a a a①当0<y 时,所给方程为双曲型,其特征方程为,0)()(22=+dx y dy 即 ,0])([)(22=--dx y dy就是 0))((=---+dx y dy dx y dy .积分之,得 c y x =-±2,此即两族相异的实特征线.作可逆自变量代换⎪⎩⎪⎨⎧--=-+=,2,2y x y x ηξ则.1 ,1 ,1 ,1yy yy x x -=∂∂--=∂∂=∂∂=∂∂ηξηξ,2 ,2222222ηηξξηξηηξξ∂∂+∂∂∂+∂∂=∂∂∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u u x u u u y u x u x u ),(1ηξ∂∂+∂∂--=∂∂u u yyu ).1)(2()(121 ]1)1( 1)1([1)()(12122222222222322y u u u u u y y yu yu yuy u y u u y y u -∂∂+∂∂∂-∂∂+∂∂+∂∂---=-∂∂+--∂∂∂++-∂∂∂---∂∂--+∂∂+∂∂--=∂∂ηηξξηξηξηηξξηξ将这些偏导数代入原方程,得附注:若令⎩⎨⎧=-⇒-==0 ,2,ηηξξηξu u y x 碰巧(双曲型的另一标准形),这是巧合.②当0>y 时,所给方程为椭圆型,其特征方程为0)()(22=+dx y dy即 .0))((=-+dx y i dy dx y i dy 其特征线为 )2 ( 2c ix y c y i x =±=±或.作可逆自变量代换 ⎩⎨⎧==,2,y x ηξ则, 1 , 0 , 0 ,1y y y x x =∂∂=∂∂=∂∂=∂∂ηξηξ, 1 , ηξ∂∂=∂∂∂∂=∂∂u y y u u x u . 1121 , 22222222ηηξ∂∂+∂∂-=∂∂∂∂=∂∂u y u y y yu u x u 将这些偏导数代入原方程,得, 021212222=∂∂+∂∂+∂∂-∂∂ηηηξuy u u y u , 0 2222=∂∂+∂∂∴ηξu u 此即(0>y 时)所求之标准形. ③0=y 时,原方程变为 , 02122=∂∂+∂∂y uxu 已是标准形了(不必再化).2.化标准形:. 0222222222222=∂∂∂+∂∂∂+∂∂∂+∂∂∂+∂∂+∂∂t z ut x u z x u y x u zu x u解: u Lu )2222(434131212321δδδδδδδδδδ+++++≡.这是 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=t z y x4321δδδδδ 的二次型,于是 , u A Lu Tδδ=其中 010*********1111⎪⎪⎪⎪⎪⎭⎫⎝⎛=A 为实对称矩阵.则∃可逆矩阵M ,使 TMAM B = 为对角形. 令 , 'δδT M = 其中 , '4'3'2'1'''''⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂∂∂∂∂∂∂=δδδδδt z y x 则 u B u MAM Lu T T T '''')()(δδδδ==.M 的找法很多,可配方,可从矩阵入手等.取 ,11000110001100011-=⎪⎪⎪⎪⎪⎭⎫⎝⎛---=N M , 1000110011101111)(1⎪⎪⎪⎪⎪⎭⎫⎝⎛==-TT M N . , 1''''''⎪⎪⎪⎪⎪⎭⎫⎝⎛===⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-t zy x M MX X N t z y x X N T δδ则.)( )( 2222'2'2'2'2'''tu z uy u x u u B uMAM u A Lu TT T T ∂∂-∂∂+∂∂-∂∂====δδδδδδ这是超双曲型方程的标准形式.习题二1.决定任意函数法:(1).求解第一问题(0))(0) ( ).(),( , 002ψϕψϕ=⎪⎩⎪⎨⎧======-x ux u u a u at x at x xx tt .解:所给方程为双曲型,其特征线为 c at x =±. 令⎩⎨⎧-=+=,,at x at x ηξ 则可将方程化为 0=ξηu .其一般解为)()(),(21at x f at x f t x u -++= (其中21,f f 为二次连续可微函数). 由定解条件有)0()0()0()0( ).()2()0(),()0()2(212121ψϕψϕ==+⇒⎩⎨⎧=+=+f f x x f f x f x f . 则 ⎪⎩⎪⎨⎧-=-=⇒⎩⎨⎧-=-=).0()2()(),0()2()( ),0()()2(),0()()2(12211221f Y Y f f X X f f x x f f x x f ψϕψϕ 故 )()(),(21at x f at x f t x u -++=).0()2()2()]0()0([)2()2(21ϕψϕψϕ--++=+--++=at x at x f f atx at x (2).求解第二问题 ))0()0( ( ).(),( ,101002ϕϕϕϕ=⎪⎩⎪⎨⎧=====x u x u u a u t at x xx tt解:泛定方程的一般解为)()(),(21at x f at x f t x u -++=由定解条件有 (0))(0)(0)( ).()()(),()0()2(021121021ϕϕϕ=+⎩⎨⎧=+=+f f x x f x f x f x f 则 ),0()2()(201f xx f -=ϕ).0()2()()()()(201112f x x x f x x f +-=-=ϕϕϕ故 )()(),(21at x f at x f t x u -++= ).()2()2(100at x atx at x -+--+=ϕϕϕ (3).证明方程22222)1(])1[(tu h x a x u h x x ∂∂-=∂∂-∂∂ 的解可以写成)]()([1),(21at x f at x f xh t x u -++-=. 由此求该方程满足Cauchy 条件 ⎩⎨⎧====)(),(00x u x u t t t ψϕ 的解.解:令 ),,()(),(t x u x h t x v -= 则 ),(t x v 满足方程 xx tt v a v 2=.)()(),( 21at x f at x f t x v -++=∴.故 )]()([1),(21at x f at x f xh t x u -++-=. 因),(t x v 满足 ⎪⎩⎪⎨⎧≡-=≡-====),()()(),()()( ,10002x x x h vx x x h v v a v t t t xx tt ψϕϕϕ由D'Alembert 公式,得⎰+-+-++=atx atx d a at x at x t x v ααψϕϕ)(21)]()([21),( )]())(()())([(2100at x at x h at x at x h ---+++-=ϕϕ+ααϕαd h a atx at x ⎰+--)()(211 故 ),(1),(t x v xh t x u -=[]⎭⎬⎫⎩⎨⎧-+---+++--=⎰+-atx atx d h a at x at x h at x at x h x h ααϕαϕϕ)()(21)())(()())((211100 即为所求之解.2.Poisson 公式及应用:(1).若),,,(t z y x u u =是初值问题 ⎪⎩⎪⎨⎧+=+=>++===)()( , )()(),0( )(002z y uy g x f u t u u u a u t t t zz yy xx tt ψϕ的解,试求解的表达式.解:IIIIIIu u u u ++=(线性叠加原理),其中IIIIII,,u u u 分别满足如下的初值问题:.0 ),(),0( )(:002I ⎪⎩⎪⎨⎧==>++===t t t zz yy xx tt ux f u t u u u a u u).( ),(),0( )(:002II ⎪⎩⎪⎨⎧==>++===y uy g u t u u u a u u t t t zz yy xx tt ϕ).( ,0),0( )(:002III ⎪⎩⎪⎨⎧==>++===z uu t u u u a u u t t t zz yy xx tt ψ由Poisson 公式,可得⎰⎰∂∂=MatS dS f t a t u ])( 41[2I ξπ)].()([21])(21[at x f at x f d f a t atx atx -++=∂∂=⎰+-ξξ.)(21)( 41.)(21)]()([21 ])( 41[)( 412III22II ⎰⎰⎰⎰⎰⎰⎰⎰+-+-==+-++=∂∂+=Mat M atMat S atz at z aty aty S S d a d t a ud aat y g at y g dS g t a t dS t a u ζζψζζψπηηϕηπηϕπ故IIIII I ),,,(u u u t z y x u ++=.)(21)(2a1)]()([21)]()([21 ⎰⎰+-+-++-+++-++=atz at z aty aty d a d at y g at y g at x f at x f ζζψηηϕ(2).求解初值问题 ⎪⎩⎪⎨⎧+==>-+++=== . ,00),(t )(2)(2002yz x u u z y u u u a u t t t zz yy xx tt解: IIIu u u +=,其中I u : ⎪⎩⎪⎨⎧+==>++=== . ,00),(t )(2002yz x u u u u u a u t t t zz yy xx ttII u : ⎪⎩⎪⎨⎧==>-+++===.0 ,00),(t )(2)(002t t t zz yy xx tt uu z y u u u a u由poisson 公式,得32222I 31)()( 41t a t yz x dS t a u Mat S ++=+=⎰⎰ηζξπ. 由Duhamel 原理,得.)( ])(2)( 41[);,,,(2020II)(t z y d dS t a d t z y x w u M t a S tt-=--==⎰⎰⎰⎰-τζητπτττ故 2322)(31)(),,,(t z y t a t yz x t z y x u -+++= 即为所求. 3.降维法:⎪⎩⎪⎨⎧==>++===.0 ,00),(t ),,()(002t t t yy xx tt uu t y x f u u a u 解:把所给初值问题的解),,(t y x u 看作),,,(t z y x 空间中的函数,即与y x ,平面垂直的直线上的函数值都相等:),,(),,,(*t y x u t z y x u =,则 ),,,(*t z y x u 应形式的满足⎪⎩⎪⎨⎧==>+++=== .0 ,00),(t ),,()(0*0****2*t t t zz yy xx tt u u t y x f u u u a u 由推迟势可得dV ra rt f a t z y x u atr ⎰⎰⎰≤-=),,( 41),,,(2*ηξπττηξτπτττηξπττd dS f t a d dS t f a tS tS M t a M t a ]),,([141]),,([ 410202)()(⎰⎰⎰⎰⎰⎰---=-=τηξτηξττηξτπτd y x t a d d t a f t a ty x M t a ])()()( )(),,(2[141222202),()9------∑-=⎰⎰⎰-τηξτηξτηξπτd y x t a d d f a tx M t a ])()()( ),,([ 212222),()(⎰⎰⎰∑-----=-.此即所求初值问题解的积分表达式.习题三1.求解特征值问题 ⎩⎨⎧=+=<<=+ . 0)()( ,0)0(),(0 0)()("''l X l X X l x x X x X λ 解:该特征值问题要有解0≥⇔λ.0>λ时,记2ωλ=,则 x B x A x X ωωsin cos )(+=.x B x A x X ωωωωcos sin )('+-=. 1(*) 由 0)0('=X ,有 0=B .从而 x A x X A ωcos )(,0=≠. 由 0sin cos ,0)()('=-=+l A l A l X l X ωωω有. ωω=l cot . 此即确定 ω(从而确定λ)的超越方程.由图解法,曲线 ωω==y l y cot 和 有无穷个交点,其横坐标<<<<<n ωωω210,从而 ),2,1( 2==n nn ωλ 便是非0特征值,相应的特征函数为2(*) ,2,1 , cos )( ==n x A x X n n n ω.)( , )( 0'A x XB Ax x X =+==时,λ由0)0('=X ,有0=A .由0)()('=+l X l X , 有 0=B .此时只有平凡解 0)(≡x X . 综上,所求特征值问题的解),2,1( , cos )( ==n x A x X n n n ω.其中n ω为超越方程 ωω=l cot 的正根.附注:下证特征函数系{}∞=1cos n n x ω是],0[l 上的正交系:事实上,设x x X n n ωcos )(=和x x X m m ωcos )(=分别是相应于不同特征值2n n ωλ=和2m m ωλ=的特征函数,即)(x X n 和)(x X m 分别满足).()(,0)0(,0)()(:)(''"⎩⎨⎧+==+l X l X X x X x X x X n n nn n n n λ (1) ⎩⎨⎧=+==+.0)()(,0)0(,0)()(:)(''"l X l X X x X x X x X m m m m m m m λ (2) 则[]0 )()2()()1(0=⋅-⋅⎰dx x X x Xln m,即 []⎰-+-=lm n m n n m m n dx x X x X x X x X x X x X"" )()()())()()()((0λλdx x X x X lm n m n ⎰-=0)()()(λλ若,m n λλ≠则 ),2,1,( 0)()(0==⎰m n dx x X x X lm n .即在],0[l 上,不同特征值所对应的特征函数彼此正交. 2.用分离变量法求波动方程混合问题⎪⎩⎪⎨⎧≤≤==>==><<+=== ),0( , ),0( ),( ,),0(),0 ,0( 20022l x x ux u t t t l u t t u t l x g u a u t t t x xx tt的形式解,其中g 为常数.解:(1).边界条件齐次化:令 ),,(),(),(t x Q t x v t x u +=使⎪⎩⎪⎨⎧====,,20t Q t Q l x x x (这不是定解问题),则取 2)(),(t t l x t x Q +-=即可. 这时),(t x v 满足 ⎪⎩⎪⎨⎧≤≤--==>==><<-+===).0( )( , 0),( 0),( ,0),0(),0 ,0( 2200t 2l x l x x vx v t t l v t v t l x g v a v t t x xx tt(2).“拆”——由线性叠加原理:IIIv v v +=,其中⎪⎩⎪⎨⎧+-====><<=== ., ,0),(),0(),0,0( :2002I l x x vx v t l v t v t l x v a v v t t t x xx tt ⎪⎩⎪⎨⎧====><<-+=== .0,0 ,0),(),0(),0,0( 2:002IIt t t x xx tt vv t l v t v t l x g v a v v (3).用分离变量法求得l x n l at n b l at n a t x v n n n 2 )12(cos 2 )12(sin 2 )12(cos ),(1Iπππ-⎥⎦⎤⎢⎣⎡-+-=∑∞=. 其中⎰⎰--=ll n d ln d ln a 022)12(cos2)12(cos 1ξπξξξπξ,ξπξξξξπξπd ln l d l n l a n b lln 2)12(cos )(2)12(cos 2 )12(122-+---=⎰⎰..,2,1 =n (n n b a ,都可算出来).(4).由Duhamel 原理: ττd t x w t x v t⎰=0II),,(),(,其中),,(τt x w 满足 ⎪⎩⎪⎨⎧-====><<=== . 2 , 0 ,0),( ,0),0( ),,(0 2g ww t l w t w t l x w a w t t t x xx tt τττ用分离变量法求得∑∞=---=12 )12(cos 2)( )12(sin),,(n n l xn l t a n c t x w πτπτ.其中 ξπξξπξπd ln g d l n l a n c lln 2)12(cos)2(2)12(cos 2 )12(12----=⎰⎰. ,3,2,1 =n (n c 可算出).综上: ),(),(),(),(),(),(III t x Q t x v t x v t x Q t x v t x u ++=+=.习题四1.用分离变量法求热方程混合问题⎪⎩⎪⎨⎧===><<-== )( ,0),(),0(),0,0( 022x u t l u t u t l x u b u a u t xx t ϕ 的形式解.解:这是齐次方程、齐次边界条件情形,直接分离变量: 令 )()(),(t T x X t x u =,代入泛定方程,得),( )(22'"λ-=+=a bTa T X X 从而 0)()()( , 0)()(2'"=++=+t T b a t T x X x X λλ. 由边界条件,得 ,0)()0(==l X X 于是,特征值问题为⎩⎨⎧==<<=+0.)((0))(0 , 0)()("l X X l x x X x X λ 特征值 2)(l n n πλ=, 特征函数为 x ln x X n πsin )(=,),2,1( =n . 而 )1,2,(n )(])[(22 ==+-t b lan n n eA t T π.取 11])[((*) . sin),(22x ln eA t x u n t b lan n ππ∑∞=+-=利用 ]0[ sinl x ln ,在⎭⎬⎫⎩⎨⎧π上的正交性,可定出 ⎰==ln n d ln l A 0),2,1( sin)(2 ξπξξϕ. 2(*) 1(*),2(*)给出所求混合问题的形式解.附注:若令 ),( ),,(),(2t x v t x v e t x u t b 则-=满足⎪⎩⎪⎨⎧===><<==== ).( ,0),0,0( 002x v v v t l x v a v t l x x xx t ϕ用分离变量法求得lxn eA t x v t lan n n sin),(2)(1ππ-∞=∑=. 而n A 同2(*),这恰与上面结果一致.习题五用Fourier 变换法求初值问题⎩⎨⎧=>++== .0),0( ),(202t xx t u t t x f tu u a u 的形式解.解:方程和初始条件两端关于x 做Fourier 变换(视t 为参数),并记),(~)],([ , ),(~)],([t f t x f F t u t x u F ξξ==.则原问题化为常微分方程的初值问题:⎪⎩⎪⎨⎧=>++-=)( .0)0,(~),0( ),(~~ 2~~22为参数ξξξξu t t f u t u a dtu d 其解为 ττξξτξτξd e f e e e t u a tt a t 2222220),(~),(~⋅⋅⋅=⎰--. 故 )],(~[),(1t uF t x u ξ-= ττξττξττξτξττξτξτξd e f F ee d ef e F e d e f e e e F ta t t a tt t t a t a t t ⎰⎰⎰-----------⋅⋅⋅=⋅⋅⋅=⎥⎦⎤⎢⎣⎡⋅⋅⋅=01)(0101]),(~[]),(~[),(~)(22222222222222ττπτττd et a F x f F F e e tt a x t]])(21[)],([[0)(412222⎰-----⋅⋅=ττπτττd et a x f F F e e tt a x t]])(21*),([[0)(412222⎰-----⋅=τξττξπτξτd d et f e a ett a x t ]1),([20)(4)(2222⎰⎰---∞∞---=即为所求.习题六1.求边值问题⎪⎪⎩⎪⎪⎨⎧≤≤=≤≤==<≤≤<≤=++=== )(0 )( ),0( 0),20 ,0( 01102αθθρπαθρρρραθθθθρρρf u l u u l u u u l 的形式解.解:用分离变量法:令 )()(θρΘ=R u ,代入泛定方程可得)( "'"2λρρ=ΘΘ-=+RR R ,因而 0)()("=Θ+Θθλθ,0)()()('"2=-+ρλρρρρR R R (Euler 方程).由边界条件 00====αθθu u,得 0)()0(=Θ=Θα.于是特征值问题为,0)()0(),0( 0)()("⎩⎨⎧=Θ=Θ<<=Θ+Θααθθλθ 特征值 2)(απλn n =,特征函数为 )1,2,( sin)( ==Θn n n θαπθ.而 Euler 方程 0'"2=-+R R R λρρ 的解 απαπρρρn n D C R -+=)(.为保证有界性应取 0=D ,从而 ),2,1( )( ==n C R n n n απρρ.取 ∑∑∞=∞==Θ=11sin)()(),(n n n n n n n C R u απθρθρθραπ. 1(*)由边界条件 )(θρf ul ==,应有 ∑∞==1sin )(n n n n lC f απθθαπ.由 ⎭⎬⎫⎩⎨⎧απθn sin在 ],0[α上的正交性,可得),2,1( sin)( 2==⎰n d n f l C n n ϕαπϕϕαααπ. 2(*)1(*) ,2(*)给出所求问题的形式解.2.用Green 函数法求解上半平面Dirichlet 问题⎪⎩⎪⎨⎧∞→+=>=+=. ),( ),0( 0220有界时,u y x x f u y u u y yy xx 解:根据二维Poisson 方程Dirichlet 问题⎩⎨⎧=∈-=+∂ ),(D.),( ),,(2y x f u y x y x u u Dyy xx πρ 解的积分表达式P PDDdl n M P G P f dxdy M M G M y x u M u ∂∂-==⎰⎰⎰∂),()(21),()(),()(00000πρ(其中0M 是D 内任一点,P n是边界D ∂上点P 的外法线方向). 其中 满足而 ),( ),,(1ln),(0000M M g M M g r M M G MM -=⎪⎩⎪⎨⎧∂∈=∈=∆).( 1ln ),g(),( 0),(000D P r M P D M M M g PM M),(0M M G 称为Green 函数,找),(0M M G 的问题归结为“特定装置下”找感应电荷所产生的电势),(0M M g -.对上半平面0>y 而言,若在0M 处放置单位正电荷,它在M 处产生的电势为01lnMM r ,则感应电荷应放在0M 关于0=y 的对称点'0M 处,电量为 -1,它于M 处产生的电势为'1lnMM r -,从而Green 函数为'1ln1ln),(0MM MM r r M M G -=20202020)()(ln )()(ln y y x x y y x x ++-+-+--=.故所求解为⎰⎰⎰⎰∞∞-=∞∞-=∞∞-=∞∞-+-=∂∂=-∂∂-=∂∂-=.)()()(21 )()(21)(21),(22000000dx yx x x f y dx yG x f dxy G x f dx n G x f y x u y y y ππππ。

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。

定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。

解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。

仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。

x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。

且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。

§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。

数学物理方程习题解答案

数学物理方程习题解答案

数学物理方程习题解答习题一1,验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。

证明:(1)(,)u x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =−⋅⋅=−+++−⋅−=−=++=−⋅⋅=−+++−⋅−=−=++−−+=+=++所以(,)u x y =0xx yy u u +=的解。

(2)(,)sin x u x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=−⋅所以sin sin 0xxxx yy u u e y e y +=−=(,)sin x u x y e y =是方程0xx yy u u +=的解。

2,证明:()()u f x g y =满足方程0xy x y uu u u −=其中f 和g 都是任意的二次可微函数。

证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''−=⋅−⋅⋅=得证。

3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u −+= 的通解。

吴小庆-数学物理方程习题解答案全

吴小庆-数学物理方程习题解答案全

数学物理方程习题解习题一1,验证下面两个函数:(,)(,)sin x u x y u x y e y ==都是方程0xx yy u u +=的解。

证明:(1)(,)lnu x y =因为32222222222222223222222222222222222222222211()22()2()()11()22()2()()0()()x xx y yy xx yy x u x x y x y x y x x x y u x y x y yu y x y x y x y y y y x u x y x y x y y x u u x y x y =−⋅⋅=−+++−⋅−=−=++=−⋅⋅=−+++−⋅−=−=++−−+=+=++所以(,)u x y =0xx yy u u +=的解。

(2)(,)sin xu x y e y = 因为sin ,sin cos ,sin x x x xx xxy yy u y e u y e u e y u e y=⋅=⋅=⋅=−⋅所以sin sin 0xxxx yy u u e y e y +=−=(,)sin x u x y e y =是方程0xx yy u u +=的解。

2,证明:()()u f x g y =满足方程0xy x y uu u u −=其中f 和g 都是任意的二次可微函数。

证明:因为()()u f x g y =所以()(),()()()()()()()()()()()()0x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=⋅=⋅''=⋅''''−=⋅−⋅⋅=得证。

3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u −+= 的通解。

数学物理方程课后习题答案

数学物理方程课后习题答案

, 令 u( x, t ) U ( x, t ) v( x, t ) 代入原定解问题,则
vtt a 2vxx 2 2 A cos 2t x / l , v(0, t ) 0, v(l , t ) 0 v( x, 0) v ( x, 0) 0 t
u u x E t t x x
证 在杆上任取一段,其中两端于静止时的坐标分别为 x 与 x x 。现在计算这段杆在时刻 t 的相对伸长。在时 刻t 这段杆两端的坐标分别为:
x u( x, t ); x x u ( x x, t )
0

4 Al 1 cos 2
2 k
k
2
a
.
t 4 Al 1 1 1 v k 1 sin k l x cos 2 sin k al t d . 2 2 0 k a 2 k
1 cos2 sin k al t 0 d
Bk 4 A k a cos 2 l sin k l d
2 1 l 1 l 1 2 3 3 1 0
计算可得
4 Al k a cos 2 sin d .
2 3 3 1 k 0
4 Al k a cos 2 k l 1 sin k l 1 d k l 1
利用微分中值定理,消去 x ,再令 x 0 得
utt g[(l x)ux ]x .
§2 达朗贝尔公式、波的传播
p.16:3. 8.
3.利用传播波法,求解波动方程的古尔萨(Goursat) 问题
2 u a uxx , tt u x at 0 ( x), u x at 0 ( x), (0) (0).

数学物理方程(谷超豪) 第三章 调和方程习题解答

数学物理方程(谷超豪) 第三章 调和方程习题解答
(a, b, c 为常数)
4. 证明下列函数都是调和函数 (1) ax + by + c
证:令 u = ax + by + c , 显然
∂ 2u ∂x 2

= 0,
∂ 2u ∂y 2
= 0.
∆u = 0 ,所以 u 为调和函数
(2) x 2 − y 2 和2 xy
∂ 2u ∂ 2u = 2 , = 2, 。所以 ∆u = 0 。u 为调和函数 ∂x 2 ∂y 2
2

∂ 2u ∂θ
2
+
r sin θ ∂ϕ

∂ 2u
2
+
2 ∂u 1 ∂u ⋅ + 2 ctgθ r ∂r r ∂θ

∆u =
1 r2

∂ 2 ∂u 1 ∂ ∂u 1 ∂ 2u (r )+ 2 ⋅ (sin θ )+ 2 ⋅ =0 ∂r ∂r ∂θ r sin θ ∂θ r sin 2 θ ∂ϕ 2
+
+
=
+
∂ 2u ∂z
2
+
ρ
2
+
1 ∂u ⋅ ρ ∂ρ
再用(3)式,变换
∂ 2u ∂ρ 2
+
∂ 2u ∂z 2
。这又可以直接利用(5)式,得
∂ 2u ∂ρ 2
+
∂ 2u ∂z 2
=
∂ 2u ∂r 2
+
1
r 2 ∂θ 2

∂ 2u
1 ∂u + ⋅ r ∂r
再利用(4)式,得
∂u ∂u ∂u cosθ = sin θ + ⋅ ∂ρ ∂r ∂θ r

李明奇主编 数学物理方程全套课后部分习题答案__电子科技大学出版社

李明奇主编  数学物理方程全套课后部分习题答案__电子科技大学出版社

数学物理方程 电子科技大学出版社习题2.14.一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。

试写出其定解问题。

解:由Newton 定律: tt x x Sdxu t x YSu t dx x SYu ρ=-+),(),(,其中,Y 为杨氏模量,S 为均匀细杆的横截面积,x u 为相对伸长率。

化简之后,可以得到定解问题为:⎪⎪⎩⎪⎪⎨⎧-==========)(|,0|0|,0|)/(0002L x Iu u u u u a u Y u t t t L x x x xx xx tt δρρ。

习题2.23.设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定律正比于4u ,即dSdt ku dQ 4=,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数),,,(t z y x ϕ,。

试写出边界条件。

解:由Fourier 热传导实验定律dSdt nuk dQ ∂∂-=1,其中1k 称为热传导系数。

可得dSdt u k dSdt nuk )(441ϕ-=∂∂-,即可得边界条件:)(441ϕ--=∂∂u k k nus。

习题2.34.由静电场Gauss 定理⎰⎰⎰⎰⎰⋅=⋅VsdV dS E ρε01,求证:0ερ=⋅∇E ,并由此导出静电势u 所满足的Poisson 方程。

证明:⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅=⋅VVsdV dV divE dS E ρε01,所以可以得到:0ερ=divE 。

由E divE ⋅∇=与u E -∇=,可得静电势u 所满足的Poisson 方程:2ερ-=∇u 。

习题2.42.求下列方程的通解:(2):;032=-+yy xy xx u u u (5):;031616=++yy xy xx u u u解:(2):特征方程:03)(2)(2=--dx dy dx dy解得:1-=dx dy 和3=dxdy。

数学物理方程课后参考答案第二章

数学物理方程课后参考答案第二章

第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。

解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。

记杆的截面面积42l π为S 。

由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xuk t s x u k t s x u k dQ x x x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。

由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。

解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。

数学物理方程 参考答案

数学物理方程  参考答案

1.求下列波动方程Cauchy 问题的解: (2)2005,tt xx t tt u a u u u x==⎧=⎪⎨==⎪⎩解:根据达朗贝尔公式可得521)55(21),(+=++=⎰+-xt d a t x u at x atx ξξ6.求下列强迫振动的Cauchy 问题的解:(1)⎩⎨⎧==+===2002,5x u u e u a u t t t xxx tt解:令)(),(),(x w t x v t x u +=,代入原方程,得xxx xx tt ew a v a v ++=22令2)(a ex w x-=可得⎪⎩⎪⎨⎧=+====222,5xv ae v v a v t tx t xxtt由达朗贝尔公式可得531)(2121)5()5(21),(3222222++++=+⎥⎦⎤⎢⎣⎡+++=+-+-+-⎰t a tx eead aaea e t x v atx atx atx atx atx at x ξξ所以原问题的解为2232211(,)()523x x atx ate u x t v w eetx a t aa-+=+=++++-7.求解下列定解问题:⎩⎨⎧==>+∞<<-∞=-++==)(),(0,,020022x u x u t x u a u u u t t t xx t tt ψϕεε解:令)0(),,(),(>=-ββt x v et x u t,代入原方程得:)2()(2222=+-+-+-v v v a v t xx tt βεβεβε取εβ=,可得⎩⎨⎧+==>+∞<<-∞=-==)()(),(0,,0002x x v x v t x v a v t t t xx tt εϕψϕ 由达朗贝尔公式得:[][]11(,)()()()()22x at x atv x t x at x at d aϕϕψξεϕξξ+-=++-++⎰所以,原定解问题的解为:[][]11(,)()()()()22x at t tx atu x t x at x at d eaeββϕϕψξεϕξξ+-=++-++⎰习题4.22.求解下列定解问题2000,0,00,0()tt xx t t t x x u a u x t u u u h t ===⎧=<<+∞>⎪==⎨⎪=⎩解:通解为12(,)()()u x t f x at f x at =++-由初始条件1212(,0)()()0(1)(,0)()()0(2)t u x f x f x u x af x af x =+=⎧⎨''=-=⎩对(2)式积分可得121()()f x f x C -=则有1112()2,0()2C f x x C f x ⎧=⎪⎪≥⎨⎪=⎪⎩0x at +≥恒成立,但是x at -可能小于零当0x at -<时1212()()()()()()f at f at h t f f h a ξξξ''+=⎧⎪⎨''+-=⎪⎩令0at ξ=>,积分可得12120()()()(0)(0)f f h d f f aξξξξξ+-=+-⎰令aξη=上式变为12120()()()(0)(0)a f f a h d f f ξξξηη+-=+-⎰21101110()()()()2()2a a a f f a h d C C a h d C C a h d ξξξξξηηηηηη⎡⎤-=-+⎢⎥⎣⎦=--=--⎰⎰⎰所以1210,02()(),02a C f C a h d ξξξηηξ⎧-≥⎪⎪=⎨⎪--<⎪⎩⎰则有1210,2()(),2a C x t a f x at C xa h d t a ξηη⎧-≤⎪⎪-=⎨⎪-->⎪⎩⎰又因为11()2C f x at +=所以00,(,)(),a x t a u x t xa h d t a ξηη⎧≤⎪⎪=⎨⎪->⎪⎩⎰习题4.31.求解下列定解问题200,,,,0,tt t t t u a u x y z t u yz u xz ==⎧=∆-∞<<+∞>⎪⎨==⎪⎩解:对于三维波动方程,其解为1(,,)(,,)(,,,)41(,,)1(,,)44x y z x y z u x y z t dS dS a t atatx y z x y z dS dSa tataatϕψπϕψππ''''''∂⎡⎤=+⎢⎥∂⎣⎦''''''∂⎡⎤=+⎢⎥∂⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰其中2sin cos ,02,0sin sin cos ()sin x x at y y at z z at dS at d d θϕϕπθπθϕθθϕθ'=+≤≤≤≤⎧⎪'=+⎪⎨'=+⎪⎪=⎩在本题目中(,,)x y z yzϕ=,(,,)x y z xz ψ=()()2222222001(,,)41(sin sin )(cos )()sin 41sin sin cos sinsin sin cos sin 412sin 2sin cos 4x y z dS a t aty r z r at d d a tatat yz aty at a t d d a tat yz aty d a t πππππϕπθϕθθϕθπθθθθϕθθϕϕθππθπθθθπ'''∂⎡⎤⎢⎥∂⎣⎦∂++⎡⎤=⎢⎥∂⎣⎦∂⎛⎫=+++ ⎪∂⎝⎭∂=+∂⎰⎰⎰⎰⎰⎰ ()1404at yz a t yzππ⎛⎫ ⎪⎝⎭∂⎛⎫=+⎪∂⎝⎭=⎰1(,,)4x y z dSa atxztψπ'''=⎰⎰则(,,,)u x y z t yz xzt=+3.利用三维泊松公式求解下列问题220,,,,00,tt t t t u a u x y z t u u x yz ==⎧=∆-∞<<+∞>⎪⎨==+⎪⎩ 解:对于三维波动方程,其解为1(,,)(,,)(,,,)41(,,)1(,,)44x y z x y z u x y z t dS dS a tatatx y z x y z dS dSa t ataatϕψπϕψππ''''''∂⎡⎤=+⎢⎥∂⎣⎦''''''∂⎡⎤=+⎢⎥∂⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰在本题目中有(,,,)0x y z t ϕ=,则有()()()()()()()()()222220220021(,,)(,,,)4sin sin sin sin cos 1sin 4sin sin sin sin cos sin 4sin sin sin 4sin 4x y z u x y z t dSaatx at y at z at at d d a at t x at y at z at d d t x at d d yzttx d ππππππψπθϕθϕθθϕθπθϕθϕθθϕθπθϕθϕθπθπ'''=⎛⎫++++ ⎪=⎪⎝⎭=++++=++=⎰⎰⎰⎰⎰⎰⎰⎰ ()()22222322000022223200232sin sin 2sin sin 4sin sin 043d a t d d xat d d yztt x a t d d yzta t x t yztππππππππϕθθϕϕθθϕϕθπθθϕϕπ+++=+++=++⎰⎰⎰⎰⎰⎰⎰⎰习题4.43.导出二维Cauchy 问题解的表达式200(,,),,,00,0tt t t t u a u f x y t x y t u u ==⎧=∆+-∞<<+∞>⎪⎨==⎪⎩ 解:利用齐次化原理求解 如果(,,,)w x y t τ是定解问题20,(,,)tt t tt W a W W W f x y τττ==⎧=∆⎪⎨==⎪⎩的解 则0(,,)(,,,)tu x y t w x y t d ττ=⎰即为定解问题200(,,)0,0tt t t t u a u f x y t u u ==⎧=∆+⎪⎨==⎪⎩的解 对于0(,,)(,,,)tu x y t w x y t d ττ=⎰显然存在如下的关系(,,,)0t uw x y t d ττ===⎰(,,,)t t t u w w w x y t d d tttττττ=∂∂∂=+=∂∂∂⎰⎰此时有00t ut =∂=∂又有222222222000(,,)(,,)t tttu w w w wd f x y t a wd f x y t a d tttx y ττττ=⎛⎫∂∂∂∂∂=+=+∆=++ ⎪∂∂∂∂∂⎝⎭⎰⎰⎰且222222220tuuw wd x y xy τ⎛⎫∂∂∂∂+=+ ⎪∂∂∂∂⎝⎭⎰将上式代入22u t∂∂表达式可得2222222(,,)(,,)u u u f x y t a f x y t a u txy ⎛⎫∂∂∂=++=+∆ ⎪∂∂∂⎝⎭因此齐次化原理得以证明.由齐次方程柯西问题解的泊松公式可得1(,,)(,,,)2Mf w x y t aττπ=⎰⎰所以,原问题的解为()201(cos ,sin ,)(,,)2t a t f x r y r u x y t d aτπθτπ-++=⎰⎰⎰习题5.1 1.若[]()()F g x f ω=,求证[]()2()F f x g πω=-.证明:由傅里叶反变换式1()()2j xg x f ed ωωωπ+∞-∞=⎰,将式中自变量x 换为x -,得1()()2j xg x f ed ωωωπ+∞--∞-=⎰将上式变量x 换为ω,而把ω换为x ,得 1()()2j xg f x e dx ωωπ+∞--∞-=⎰ 即[])(2)(ωπ-=g x f F2.求证 (1)1,0y Fe y ω--⎡⎤>⎣⎦(2)00()()j xF ef x f ωωω⎡⎤=-⎣⎦证明:根据Fourier 变换可得出000++()0()()()()j xj xj xj xF e f x f x e edxf x edxf ωωωωωωω∞--∞∞---∞⎡⎤⎣⎦===-⎰⎰(3)[]()()f aF f at aω=证明:若0>a ,则)(at f 的傅里叶变换为[]+()()j tF f at f at edtω∞--∞=⎰令at x =,则adtdx=代入上式,可得[]+1()()j x adx F f x f x ef aa a ωω-∞-∞⎛⎫==⎪⎝⎭⎰若0<a ,则类似地有[]1()Ff at f aa ω⎛⎫=-⎪⎝⎭综上所述[]()()f aF f at aω=3.求函数的Fourier 变换 (1) ()xf x e -= 证明:2cos sin 22cos 1xxxxj xxF e eedx exdx i exdxexdx ωωωωω+∞+∞+∞------∞-∞-∞+∞-⎡⎤==-⎣⎦==+⎰⎰⎰⎰由于积分区间是关于坐标轴对称,且积分函数是个奇函数故sin 0xexdx ω+∞--∞=⎰因此2022cos 1x xF e e xdx ωω+∞--⎡⎤==⎣⎦+⎰(2) 2()xf x eπ-=证明:直接利用公式[]2222()cos sin 2cos xj xxxxF f x e edxexdx i exdxexdxπωπππωωω+∞---∞+∞+∞---∞-∞+∞-==-=⎰⎰⎰⎰根据公式22240cos xa ba bexd ωωω-+∞-=⎰则[]22441()22Ff x eeωωππ--=⋅=(3)2()cos f x ax = 证明:[]2()cos j xF f x ax edxω+∞--∞=⋅⎰根据cos 2izize ez -+=上式可以变为2222222222222()()2424()42cos 211221122112212j xjaxjaxj xjaxj xjaxj xjax j xjax j xja x jja x jaaa ajja x aaax edxee edxe edx eedxedx edxedx edxeeωωωωωωωωωωωω+∞--∞-+∞--∞+∞+∞----∞-∞+∞+∞----∞-∞--+++∞+∞-∞-∞--⋅+==+=+=+=⎰⎰⎰⎰⎰⎰⎰⎰22()4212jja x aadx eedxωω++∞+∞-∞-∞+⎰⎰令)2x aωξ=-以及)2x aωη=+上式变为222222222222()()4242444401122112211jja x jja x aaaajjj j aajjj j aaeedx eedxeedeede d ed ωωωωωωξηωωξηξη--++∞+∞-∞-∞-+∞+∞-∞-∞-+∞+∞+==+⎰⎰⎰⎰⎰⎰再利用公式2402jj ed πξξ+∞=⎰上式可变为22222222440()()4444()()444422)44jjj j aaj j a a j j a a ed ed ee e e aωωξηωπωπωπωπξηωπ-+∞+∞------+⎤=+⎥⎥⎦⎤+⎥=⎥⎥⎣⎦=-⎰⎰5.求()0axf x ea -=>,,Fourier 正弦与余弦变换.解:由定义,得:2202cos 1cos 11cos cos 1sin 1sin 1sin cos 1cos axaxaxaxaxaxaxaxaxexdxxdeaxe ed xaaexdxa axdea axe xdea a xdeaaωωωωωωωωωωωωωω+∞-+∞-+∞+∞--+∞-+∞-+∞+∞--+∞-=-=-+=-=+⎡⎤=+-⎢⎥⎣⎦=+⎰⎰⎰⎰⎰⎰⎰由此得出222cos axaexdx a ωω+∞-=+⎰即22()c a f a ωω=+同理可得22ˆ()sin axs f exdx a ωωωω+∞-==+⎰习题5.21. 用Fourier 变换法求解定解问题 ⎩⎨⎧==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 解:对于初值问题关于x 作Fourier 变换,得:[]2222d (,)(,),,0d (,0)sin ,(,0)0t u t a u t x R t t u F x uωωωωω⎧+∈>⎪⎨⎪==⎩该方程变为带参数ω的常微分方程的初值问题. 解得12(,)ja t ja t ut C e C e ωωω-=+ 于是1212(,0)(sin ),(,0)()0t uF x C C u ja C C ωωω==+=-= 则由[]121sin 2C C F x ==可得[]1(,)sin ()2ja tja tut F x eeωωω-=+作像函数(,)ut ω 的Fourier 逆变换 [][][]11111(,)[(,)]1sin ()21sin (sin )211sin (sin )221[sin()sin()]2sin cos ja t ja t ja t ja t ja t ja t u x t F u t F F x e e F F x e F x e FF x e F F x e x at x at x atωωωωωωω--------=⎡⎤=+⎣⎦⎡⎤=+⎣⎦⎡⎤⎡⎤=+⎣⎦⎣⎦=-++=2.求解下列定解问题2cos ,0,0(,0)0,(,0)0,lim (,)0(0,)0tt xx t x x u a u t x t u x u x u x t u t →+∞⎧=+<<+∞>⎪===⎨⎪=⎩ 解:对自变量t 取Laplace 变换可得⎪⎩⎪⎨⎧=+∞=+=-0),(~,0),0(~1~~22222s u s us s dx ud a u s x求解常微分方程,得)(1~22s s Be Ae u xa sx as+++=-ω于是)1(1,02s s B A +-==所以]1[)1(1~2xas es s u --+=且111222()22211L (1)L L (1)(1)(1)R e s ,R e s ,(1)(1)s x sa x a xs t sta k k kke e s s s s s s e e s s s s s s ------⎡⎤⎡⎤⎡⎤⎢⎥-=-⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥++⎣⎦⎢⎥⎣⎦∑∑其中k s 是u ~的极点 由于01=s ,js =2,j s -=3都是一级极点,所以222202R e s ,lim lim ()lim ()(1)(1)(1)(1)11()2(1cos )12sin2st st st stk s s j s j kjtjte e e e s s s j s j s s s s s s s s eet t→→→--⎡⎤=⋅+-++⎢⎥++++⎣⎦=-+=-=∑2()2()2sin ,2R e s ,(1)0,x s t a k kat x x t e a a s x s s t a --⎧⎡⎤>⎪⎪⎢⎥=⎨⎢⎥+⎪≤⎢⎥⎣⎦⎪⎩∑所以,最后定解问题为22122sin 2sin ,22[]2sin ,2t at x x t aau L ut x t a--⎧->⎪⎪==⎨⎪≤⎪⎩4.求解定解问题(,),,0(,0)(),(,0)()tt xx t u u f x t x t u x x u x x ϕψ=+-∞<<+∞>⎧⎨==⎩解:首先使用分离变量法,令u VW=+,则可将原定解问题分解为200()(1)()tt xx t t t V a V V x V x ϕψ==⎧=⎪⎪=⎨⎪=⎪⎩200(,)0(2)0tt xx t t t W a W f x t W W ==⎧=+⎪⎪=⎨⎪=⎪⎩对于方程(1).对初值问题关于x 做Fourier 变化,得2222(,)(,)0(,0)(),(,0)()t d v t a v t dt v v ωωωωϕωωψω⎧+=⎪⎨⎪==⎩该方程变为带参数ω的常微分方程的初值问题.解得12(,)j at j at vt C e C e ωωω-=+ 于是1212()(,0)()(,0)()t v C C vj a C C ϕωωψωωω==+==-即有1111(,)()()()()22j at j at vt e ej a j a ωωωϕωψωϕωψωωω-⎡⎤⎡⎤=++-⎢⎥⎢⎥⎣⎦⎣⎦做像函数的Fourier 逆变换[]11111(,)(,)1111()()()()22j at j at j at j at W x t Fut Fe F e F e F e aj a j ωωωωωϕωϕωψωψωωω-------=⎡⎤⎡⎤⎡⎤⎡⎤=++-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦因为[][]()()()j atj atF x at eF x eωωϕϕϕω±±±== 做逆变换可得 1()()j at Fe x at ωϕωϕ-±⎡⎤=±⎣⎦又因为1()()()x at x j atj at F s ds e F s ds e j ωωψψψωω±±±-∞-∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ 做逆变换可得11()()x at j at Fe s dsj ωψωψω±-±-∞⎡⎤=⎢⎥⎣⎦⎰因此[][]11(,)()()()()2211()()()22x atx at x at x atV x t x at x at s ds s ds a x at x at s dsaϕϕψψϕϕψ+--∞-∞+-⎡⎤=++-+-⎢⎥⎣⎦=++-+⎰⎰⎰对于方程(2).根据齐次化原理,如果(,,)w x t τ是齐次方程Cauchy 问题的解20(,)tt xx t t t w a ww w f x τττ==⎧=⎪⎪=⎨⎪=⎪⎩则0(,)(,,)tW x t w x t d ττ=⎰是原问题的解.利用变换t t τ'=-则2000(,)t t xx t t t w a w w w f x τ'''=''=⎧=⎪⎪=⎨⎪=⎪⎩ 利用达朗贝尔公式有1(,,)(,)2x at x at w x t f d a τατα'+'-'=⎰ ()()1(,,)(,)2x a t x a t w x t f d aτττατα+---=⎰可求得()0()1(,)(,)2t x a t x a t W x t f d d aττατατ+---=⎰⎰最后,[]()0()111()()()(,)222x at t x a t x atx a t u V W x at x at s ds f d d aaττϕϕψατατ++----=+=++-++⎰⎰⎰习题5.31.求证Laplace 变换的位移定理. 证明: Laplace 变换的位移定理为L ()(),Re()axef x f s a s a σ⎡⎤=-->⎣⎦ 根据Laplace 变换的定义可以求得()00L ()()()(),Re()axaxsxs a xef x ef x edx f x edx f s a s a σ+∞+∞---⎡⎤===-->⎣⎦⎰⎰3.用留数计算1221L (1)()sx ae s s ω--⎡⎤-⎢⎥+⎣⎦解:1122222211L (1)L ()()()sx sa x a e e s s s s s s ωωω----⎡⎤⎡⎤⎢⎥-=-⎢⎥⎢⎥+++⎣⎦⎢⎥⎣⎦根据L 变换的线性性质11122222211L (1)L L ()()()sx sa x ae e s s s s s s ωωω-----⎡⎤⎡⎤⎡⎤⎢⎥-=-⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎢⎥⎣⎦根据留数定理可得出()12222221L (1)R e s ,R e s ,()()()xs t ssta x a k k kk eee s s s s s s s s ωωω---⎡⎤⎡⎤⎡⎤⎢⎥-=-⎢⎥⎢⎥⎢⎥+++⎣⎦⎣⎦⎢⎥⎣⎦∑∑其中k s 是极点.由于01=s ,ωj s =2,ωj s -=3都是一级极点,所以22222222022222R e s ,lim lim ()lim ()()()()()11()21(1cos )2sin2st st st stk s s j s j kj tj te e e e s s s j s j s s s s s s s s eet tωωωωωωωωωωωωωωωω→→→--⎡⎤=⋅+-++⎢⎥++++⎣⎦=-+=-=∑对于()22R e s ,()xs t a k kes s s ω-⎡⎤⎢⎥⎢⎥+⎢⎥⎣⎦∑需要分情况讨论当xt a >时,()()()()222222220()()22222R e s ,lim lim ()lim ()()()()()1121()1cos 2()sin2x x x x s t s t s t s t a a a a k s s j s j kx xj t j t aae e e e s s s j s j s s s s s s s s e e at x a at x aωωωωωωωωωωωωωωωω----→→→----⎡⎤⎢⎥=⋅+-++⎢⎥++++⎢⎥⎣⎦⎡⎤=-+⎢⎥⎣⎦-⎡⎤=-⎢⎥⎣⎦-=∑当x t a≤时,()22R e s ,0()xs t a k kes s s ω-⎡⎤⎢⎥=⎢⎥+⎢⎥⎣⎦∑综上所述,可以得出2()2222()sin ,2R e s ,()0,x s t a k kat x x t e a a s x s s t a ωωω--⎧⎡⎤>⎪⎪⎢⎥=⎨⎢⎥+⎪≤⎢⎥⎣⎦⎪⎩∑所以,最后结果为22221222222()sin sin ,122L (1)2()sin ,2s x at at x x t a a e t xs s t a ωωωωωωω---⎧->⎪⎡⎤⎪-=⎨⎢⎥+⎣⎦⎪≤⎪⎩7.求下列函数的Laplace 逆变换 (1) 5482+++s ss (2) )0(,)(222>+a a s s解:(1)对原式进行分解,得1)2(61)2(2548222++++++=+++s s s s s s则)sin 6(cos 1)2(61)2(25482212121t t e s L s s L s s s L t+=⎥⎦⎤⎢⎣⎡+++⎥⎦⎤⎢⎣⎡+++=⎥⎦⎤⎢⎣⎡+++----[查表可得](2)对原式进行分解,得22222)(14)(14)(ja s a j ja s a j a s s--+=+由于[]2)(1a s te L at+=-,得:1112222211()4()4()()41sin 2jatjats j jL L L s a a s ja a s ja j t eea t ata ----⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥++-⎣⎦⎣⎦⎣⎦=-=[查表可得] 习题5.41.用Laplace 变换法解下列定解问题:(2)2000,0,00,00tt xx t t t x u a u c x t u u u ===⎧=+<<∞>⎪⎪==⎨⎪=⎪⎩解:对时间变量t 坐拉普拉斯变换222200,x x d u c a s u u dx s u =→∞⎡⎤=⎧-=-⎪⎪⎩⎣⎨⎦=求解微分方程上述微分方程. 对应的特征方程为220s a λ⎛⎫-= ⎪⎝⎭特征根为s aλ=±对应齐次方程的通解为s sxxaauAe Be-=+由于00λ=不是特征方程对应的特征根,故非齐次方程的一个特解为*uC =将特解代入原方程可得3c C s=因此原问题的解为*3s sxxa ac uu u Ae Bes-=+=++根据边界条件可得出30c A s B ⎧=-⎪⎨⎪=⎩则33s xac c uess-=-+对其做逆变换可得[]1133(,)sx a c c u x t L u L e ss ---⎡⎤==-+⎢⎥⎣⎦ 根据线性定理可将其变为1133(,)sx ac c u x t L e L s s ---⎡⎤⎡⎤=-+⎢⎥⎢⎥⎣⎦⎣⎦其中,2132c ctL s -⎡⎤=⎢⎥⎣⎦133Re s ,ssx x staa k kc c L e e e s s s ---⎡⎤⎡⎤-=-⋅⎢⎥⎢⎥⎣⎦⎣⎦∑其中,0s =是三阶极点故有()332()32302R e s ,R e s ,1lim (0),(31)!0,(),20,,s xx t s sta a k k kkxt s as c c e e s e s s s d c x s e t ds s a x t a c x x t t a a x t a ---→⎡⎤⎡⎤-⋅=⎢⎥⎢⎥⎣⎦⎣⎦⎧⎡⎤->⎪⎢⎥⎪-⎣⎦=⎨⎪≤⎪⎩⎧->⎪⎪=⎨⎪≤⎪⎩∑∑因此222(),22(,),2ct c x xt t a au x t ct x t a ⎧-->⎪⎪=⎨⎪≤⎪⎩4.用Laplace 变换求解⎪⎩⎪⎨⎧===+∞=>+∞<<=0)0,(,0)0,(0),(),(),0(0,0,2x u x u t u t f t u t x u a u t x xx tt 解:对自变量t 取Laplace 变换22220(0,)(),(,)0x d u s u a dx u s f s us ⎧-=⎪⎨⎪=+∞=⎩微分方程的解为x a sx a sBe Ae u-+=~ 再由(0,)(),(,)0x u s f s us =+∞= 所以()s xa a uef s s-=-由 Laplace 变换的卷积定理,得[][][]()*()()()L g x f x L g x L f x =⋅令xa s es a x g --=)(,对其求逆,得:()()0R e s ,lim (0)0,xxs t s t a a k s kx a t a a a e s s e xs s t a --→⎧->⎪⎡⎤⎡⎤⎪-=--=⎨⎢⎥⎢⎥⎣⎦⎣⎦⎪≤⎪⎩∑,最后定解问题的解是)(*)(x f x g 则最后的解为0()(,)0,xt ax a f d t au x t x t a ττ-⎧->⎪⎪=⎨⎪≤⎪⎩⎰,6.有一根均匀弹性细杆,长为l ,一端固定,另一端受外力sin F A tω=作用.杆的初始位移与速度都为0,求杆的纵向振动规律.解:设Y 与S 分别是细杆杨氏模量与截面积,则定解问题为2,0,0sin (0,)0,(,)(,0)0,(,0)0tt xx xx u a u x l t A t u t u l t SY u x u x ω⎧=<<>⎪⎪==⎨⎪==⎪⎩对自变量t 取Laplace 变换2222220(,)(0,)0,x ld u a s u dx du x s Au s dx SY s ωω=⎧-=⎪⎪⎨⎪==⎪+⎩求解常微分方程可得ss xxaauC eD e-=+代入边界条件可得出2201()l l s s aaC D A C SY s s e e ωω-+=⎧⎪⎪=⎨+⎛⎫⎪+ ⎪⎪⎝⎭⎩所以221()ssx x x x s s a a a a l ls s a a u C e D e e e s s e eωω---⎛⎫=+=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭对上式取Laplace 逆变换可求得。

数学物理方程习题答案

数学物理方程习题答案

习题一1. 略2. 略3. 在河道上取微元x Δ,在任一点x 处和x x +Δ有两个截面。

从t 到这段时间内从x 面流出的水的质量为:()(),,S v x t x t t ρ⋅⋅Δ,从x x +Δ面流出的水质量为()(),,S v x x t x x t t ρ⋅+Δ⋅+ΔΔ,所以这微元中水的质量为()()()()[,,,,]x S v x x t x x t x t v x t t ρρΔ=⋅+Δ⋅+Δ−Δ。

由在时刻t 的流体质量为(),x S x t ρΔ⋅。

在时刻t t +Δ的流体质量为(),x S x t t ρΔ⋅+Δ,在时间t Δ内这微元x Δ内的流体净增量为()(),,t x S x t t x S x t υρΔ=Δ⋅⋅+Δ−Δ⋅⋅。

由于连续性,有x t Δ=Δ,令0,0x t Δ→Δ→得0v t xρρ∂∂+=∂∂ 用微分法建立微分形式的连续性方程:设在流场中取一固定微平行六面体(控制体),在直角坐标xyz O 中边长取为,,x y z ΔΔΔ。

流体运动时,流体将流入、流出该控制体时控制体内的流体质量发生变化下面计算这些流入、流出量及控制体流体质量的变化,并根据质量守恒定律建立连续性方程。

t 时刻点(),,A x y z 的流体密度为(),,,x y z t ρ Z Y C G速度为(),,,U x y z t其分量为,,u v w , 0 X 考虑六面体元每个面上质量的流入或流出,由 于每个面只与一个坐标轴垂直,故每个面上只有一个速度分量使相应的质量流入或流出该六 面体,先计算与x 垂直的两个面ABCD 和 EFGH 上的质量流量。

在ABCD 面上,t Δ时间内将有udydz t ρΔ的流体质量流入六面体,在EFGH 面上,再t Δ时间内将有(),,,x x y z t y z t ρ+ΔΔΔΔ=()(),,,u x y z t y z t x y z t xρρ∂ΔΔΔ+ΔΔΔΔ∂ 的质量流出该六面体,这样,通过这两个面t Δ时间内就有()u x y z t xρ∂ΔΔΔΔ∂的流体质量(净)流出该六面体。

数学物理方程 习题 答案

数学物理方程 习题 答案

数学物理方程习题答案数学物理方程是科学领域中的重要组成部分,通过解答习题可以加深对这些方程的理解。

本文将探讨一些常见的数学物理方程习题,并给出相应的答案。

第一节:一元二次方程一元二次方程是数学中经常遇到的一类方程。

考虑以下习题:1. 解方程:x^2 - 5x + 6 = 0解答:可以通过因式分解或者求根公式来解这个方程。

因式分解得到:(x - 2)(x - 3) = 0,因此x的解为x = 2或x = 3。

2. 解方程:2x^2 + 3x - 2 = 0解答:可以使用求根公式来解这个方程。

根据求根公式,x的解为x = (-3 ±√(3^2 - 4*2*(-2))) / (2*2) = (-3 ± √(9 + 16)) / 4 = (-3 ± √25) / 4 = (-3 ± 5) / 4。

因此x的解为x = -2或x = 1/2。

第二节:牛顿第二定律牛顿第二定律描述了物体受力情况下的加速度。

考虑以下习题:1. 一个物体质量为2kg,受到一个力F = 10N,求物体的加速度。

解答:根据牛顿第二定律,力等于质量乘以加速度,即F = ma。

代入已知值,可得10 = 2a,解得加速度a = 5m/s^2。

2. 一个物体质量为3kg,受到一个力F = 15N,已知物体的加速度为2m/s^2,求摩擦力的大小。

解答:根据牛顿第二定律,力等于质量乘以加速度,即F = ma。

已知F = 15N,m = 3kg,a = 2m/s^2,代入公式可得15 = 3 * 2 + Ff,解得Ff = 9N,其中Ff为摩擦力。

第三节:电路中的欧姆定律欧姆定律描述了电流、电压和电阻之间的关系。

考虑以下习题:1. 一个电阻为10Ω的电路中,通过的电流为5A,求电压。

解答:根据欧姆定律,电压等于电流乘以电阻,即V = IR。

代入已知值,可得V = 5 * 10 = 50V。

2. 一个电路中,通过的电流为2A,电压为6V,求电阻的大小。

数学物理方程习题答案(李明齐 田太心)

数学物理方程习题答案(李明齐 田太心)

282数学物理方程习题选做习题 1.11. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,横向拉它一下,使之作微小的横振动。

试导出振动方程。

解:考虑垂直悬挂的细弦线上一段微元ds ,该微元在坐标轴上投影为区间[x ,x+d x ],在微元的上端点处有张力:)(1x L g T -=ρ,在下端点处有张力:)(2dx x L g T --=ρ考虑张力在位移方向的分解,应用牛顿第三定律,有tt u m T T =-1122sin sin αα 由于细弦作微小振动,所以有近似)(tan sin 22dx x u x +=≈αα )(tan sin 11x u x =≈αα代入牛顿第三定律的表达式,有tt x x u ds t x u x L g t dx x u dx x L g ρρρ≈--+--),()(),()(上式两端同除以ds ρ,得tt x x u dsx u x L dx x u dx x L g≈--++-)()()())((由于dx ds ≈,而x x x x x u x L dxx u x L dx x u dx x L )]()[()()()())((-≈--++-所以,细弦振动的方程为tt x x u u x L g =-])[(4. 一根长为L 、截面面积为1的均匀细杆,其x =0端固定,以槌水平击其x =L 端,使之获得冲量I 。

试写出定解问题。

解:由牛顿定律tt x x Sdxu t x YSu t dx x YSu ρ=-+),(),(其中,x u S Y ,,的意义与3题定义一样283∴ 20000,0,()0,0,(0)tt xx xxx x x L t t t Y u u a uu u I L x L u u x L ρεερε====⎧⎪⎪==⎪⎪==⎨⎪⎧⎪-<<⎪⎪==⎨⎪⎪<<-⎩⎩5. 定解问题:2000,(0,0),011(),()tt xx x x L t t t x u a u x L t u E u u x u i x c c ψϕ====⎧⎪=<<>⎪==⎨⎪⎪'==-=-⎩其中,u 为电压函数,i 为电流函数,c 为分布电容。

数学物理方程第5章习题及答案

数学物理方程第5章习题及答案

11.设 {(x, y) | x2 y2 R2, y 0}, 考虑半圆域狄利克雷问题
u 0, x
u(x, y) (x, y),(x, y)
应用对称法求区域 上的格林函数。
解:该问题所求格林函数应满足
G (P, P0 ), P
G(P, P0 ) 0, P B(圆周) G(P, P0 ) 0, P L(x轴上的边界)
C1
1
4
解为 u 1
4 r
方法二: 本题中u只与r有关,则
所以
uxx
u yy
+uzz
=
1 r
(2ur
rurr )
2ur rurr 0 2rur r 2urr 0 (r 2ur )r 0 r 2ur C
ur
C r2
u
C1
1 r
C2
随后求解过程与方法一相同。
注:在球面坐标系中
uxx
记 G \ B ,则 G B ,在格林第二公式
(uv vu)d
(u
v n
v
u )ds n
中,令 v (P, P0 ),注意到 0 ,则有
ud
G
(u
G
n
u )ds n

ud (u u )ds (u u )ds
G
n n
B n n
在圆周B 上有
( 1
随后求解过程与方法一相同。
(3)uxx uyy +uzz =0,r 0
解:方法一: 三维拉普拉斯方程的基本解表示通解
1 u C1 r C2
lim u(r)=0
r
C2
0
u n |B(0, )
u n
B(0, )

数学物理方程全部答案

数学物理方程全部答案

2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。

解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力xu x E t l T ∂∂=)(),(|l x =等于零,因此相应的边界条件为xu ∂∂|l x ==0同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x(3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。

由虎克定律有xuE ∂∂∣)](),([t v t l u k l x --==其中k 为支承的刚度系数。

由此得边界条件)(u x u σ+∂∂∣)(t f l x == 其中Ek =σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件)(u xu σ+∂∂∣0==l x 。

同理,若0=x 端固定在弹性支承上,则得边界条件 x uE ∂∂∣)](),0([0t v t u k x -==即 )(u xu σ-∂∂∣).(0t f x -=8.求解波动方程的初值问题⎪⎪⎩⎪⎪⎨⎧=∂∂==∂∂-∂∂==xt u u x t x ut u t t s i n |,0s i n 002222 解:由非齐次方程初值问题解的公式得 τξξτααττd d d t x u t t x t x tx tx ⎰⎰⎰-+--+-+=0)()(s i n 21s i n 21),(=⎰----+---+-td t x t x t x t x 0))](cos())([cos(21)]cos()[cos(21ττττ=⎰-+td t x t x 0)sin(sin sin sin τττ=t t t x t x 0)]sin()cos([sin sin sin τττ-+-+ =x t sin 即 x t t x u sin ),(= 为所求的解。

数学物理方程课后作业答案

数学物理方程课后作业答案
16h
L
L
=
( nπ )
3
⎡ ⎣1 − cos ( nπ ) ⎤ ⎦ 16h ⎡ nπ a nπ x n ⎤ 1 − − 1 ⋅ cos t ⋅ sin ( ) 3 ⎣ ⎦ L L n =0 ( nπ )
+∞
∴ u ( x, t ) = ∑
+∞
=∑
32h 1 ( 2n + 1) π a t ⋅ sin ( 2n + 1) π x ⋅ ⋅ cos 3 3 L L n =0 π ( 2n + 1)
8
X ( x ) T / ( t ) = a 2 X // ( x ) T ( t ) − bX ( x ) T ( t ) T / ( t ) a 2 X // ( x ) = − b = −λ T (t ) X ( x)
由上式得到 T 与 X 所满足的常微分方程:
T / ( t ) + λT ( t ) = 0 X // ( x ) +
∴ (5)
b′2 = Lη − cη = 0
c′ = f ′ = 0
16u εη = 0,, ⇒ ,, u = f (ε ) + g (η ) = f (3 x − y ) + g ( x + y )
16u xx + 16u xy + 3u yy = 0
解:由题意可知: △=16 -4×16×3=64﹥0
′ a12 ′ ⎤ ⎡a11 ⎡a11 a12 ⎤ T ⎡3 − 1⎤ ⎡1 1⎤ ⎡3 1⎤ ⎡0 ⎢a′ a′ ⎥ = Q ⎢a a ⎥Q = ⎢1 1⎥ ⎢1 − 3⎥ ⎢− 1 1⎥ = ⎢8 ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎣ 12 22 ⎦ ⎣ 12 22 ⎦ 8⎤ 0⎥ ⎦

数理方程课后习题(带答案)

数理方程课后习题(带答案)

第2章习题选讲
nn2
n2,n1,2,3,
l
n
Xn
Bn
sin l
x
Ta2T0
Tn
a2n22
l2
Tn
0
a2n22 t
Tn Ane l2
un XnTn
A nB nea2n l2 22tsinn l xC nea2n l2 22tsinn l x
数学物理方程与特殊函数
第2章习题选讲
a2n22
t
u un Cne l2
0 x l,t 0
t 0 0 x l
对于(II)用分离变量法可得
W
Ce
na22l22
n
n1
t
sinn l
x
代入初始条件可得
T
Cn
n1
sin
n
l
x
由此可得
C n2 l 0 lTsinn lxd xn 2 T[1 ( 1 )n]
数学物理方程与特殊函数
第2章习题选讲
对于(I)可用固有函数法
令Ae-x
v(x,t)
vea2nl222t n
n1
sinnx
l
其 中 v n2 l 0 l[g (x) w (x)]sinn lxd x
原 问 题 得 解 为 u ( x ,t) v ( x ,t) w ( x )
数学物理方程与特殊函数
第2章习题选讲
习题2第12题: 求下列定解问题:
u(x20u2,y)y2u2u(l10,,y)0,
数学物理方程与特殊函数
第2章习题选讲
习题2 第1题
设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为 零,又没有外力作用,求弦作横向振动时的位移函数u(x,t)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理方程习题解
习题一
1,验证下面两个函数:
都是方程
的解。
证明:(1)
因为
所以 是方程 的解。
(2)
因为
所以
是方程 的解。
2,证明: 满足方程
其中 和 都是任意的二次可微函数。
证明:因为
所以
得证。
3,已知解的形式为 ,其中 是一个待定的常数,求方程
的通解。
解:令 则
所以
将上式带入原方程得
因为 是一个具有二阶连续可导的任意函数,所以 从而 ,
11,设函数 和 分别是定解问题
(Ⅰ)和 (Ⅱ)
的解,试证明函数 是定解问题
(Ⅲ)
的解。
证明:利用叠加原理得 ,其中(Ⅰ)式 =0,(Ⅱ)式的 为 。
因为 是定解问题一得解, 是定解问题二的解。所以它们的线性组合 必满足方程 ,即 是方程 的解。
又因为对定解问题(Ⅰ)有 , ;对定解问题(Ⅱ)有 , 。所以 ,同理可得 与 的边界条件与初始条件累加均满足定解问题三。得证。
且合力的正向与坐标轴相同,设 为微元质心的坐标,则质心处的加速度为 ,
由牛顿第二定律有:
约去 ,并对右端应用中值定理,得
约去 ,并令 ,即得:
由于弹性杆是均匀的, (常数), (常数)
从而 ,其中 ( 是杨氏模量, 是体密度)。
5,一均匀细杆直径为 ,假设它的同一横截面上温度是相同的,杆的表面和周围介质发生热交换,服从规律
解:由Nernst定律得
上式中 表示扩散物质浓度, 为在 时间内经过面 扩散物质的量, 为扩散系数。
在 时段内通过边界曲面S流入区域 的质量为
从时刻 到 ,ห้องสมุดไป่ตู้中该物质质量的增加为:
从而,由质量守恒定律有
交换积分次序可得:
由于 , 在区域 都是任意的,可以得到
7,一根均匀杆原长 ,一段固定,另一端拉长 而静止,然后突然放手任其振动,试写出其定解问题。
习题二
1,用分离变量法解齐次弦振动方程
, ,
的下述混合问题:
(1)
(2)
(3)
解:(1)第一,求 与 所满足的常微分方程
设满足方程和齐次边界条件的特解形式为 ,代入方程得

所以得到 与 所满足的两个常微分方程:
第二,解特征值问题
为了要特解形式满足边界条件,必须有
因为 不能恒为零,所以
这样就得到决定 的如下常微分方程边值问题:
记杆的体密度为 ,比热为 ,热传导系数为 .试导出此时温度 满足的微分方程。
解:取杆轴为 ,考察杆位于 段在 时间区间上的热平衡,在 时间内, 段的侧面流入的热量为:
在点 , 处截面流入该段的热量为:
所以
温度升高所吸收的热量:
由能量守恒定律得:
由 的任意性,有

6,设某溶质在溶液中扩散,它在时刻 溶液中点 处的浓度用函数 表示,试导出 所满足的微分方程。
5,求解定解问题
解:因为 , 是所对应的其次方程在其次边界条件下的特征函数系。
所以设定解问题有如下形式的解:
将上式代入方程和初始条件得:
于是,得到 的常微分方程的初值问题
解之得:
(1)当 时,通解 ,代入初值条件得
(2)当 ,通解 ,则
代入初值条件得:
所以 , ;
综上: ,
所以
6,求解定解问题
解:因为 是所对应的齐次方程在齐次边界条件的特征函数系,所以定解问题有如下形式的解:
故 都是原方程的解, 为任意的二阶可微函数,根据迭加原理有
为通解。
4,试导出均匀等截面的弹性杆作微小纵振动的运动方程(略去空气的阻力和杆的重量)。
解:弹性杆的假设,垂直于杆的每一个截面上的每一点受力与位移的情形都是相同的,取杆的左端截面的形心为原点,杆轴为 轴。在杆上任意截取位于 的一段微元,杆的截面积为 ,由材料力学可知,微元两端处的相对伸长(应变)分别是 与 ,又由胡克定律,微元两端面受杆的截去部分的拉力分别为 与 ,因此微元受杆的截去部分的作用力的合力为:
代入边界条件得:
所以特征值为
特征函数为
再将特征值代入 得
通解:
所以 ,
③迭加 ,则
④确定系数 ,使上式满足初始条件,则
所以
(2)特征值为 , ;
特征函数为
所以 l改为l/2,级数钱负号-
3,求解下述定解问题:
解:
其中 满足
满足
用分离变量法解得(1)得
4,求解定解问题
解:令特解 满足齐次方程和齐次边界条件,则
所以
(2)特征值为
特征函数
确定系数 , 。
(3)
2/l改为2/ka*pi
所以
2,用分离变量法求解下述热传导方程的混合问题:
解:(1)①分离变量,令形式特解 满足方程和齐次边界条件
代入边界条件得:
从而得决定 的如下常微分方程边值问题
②求解特征值问题
因为当 时,该问题只有零解,无非零解
只有当 时,方程有非零解:
通解为
满足边界条件: 即
(关于 , 的齐次线性方程组)
因为系数行列式
所以 ,即 ,无非零解。
② ,通解 ,带入边界条件得
即 ,无非零解。
③ ,通解 ,代入边界条件得
所以 特征函数为
再将 代入方程 得
特征方程:
通解:
综上:
第三:迭加
第四:确定系数 , 使上式满足初始条件。
因为
由正交性:
在 上积分
从而
同理
解:设点在 处固定,在 处拉长 而静止,然后突然放手任其振动,则方程为 。
边界条件为: ;
初始条件为: 。
8,长为 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为 ,杆的初始温度分布是 ,试写出其定解问题。
解:侧面绝热,方程为
边界条件为
初始条件为
9,长度为 的均匀细杆,初始温度为0℃,端点 处保持常温 ,而在 处和杆的侧面热量可以散发到周围介质中去,设周围介质的温度为0℃。试列出杆上的温度分布函数 所满足的定解问题。
代入方程有:
所以
代入初始条件有:
用比较系数法得
从而
7,求解定解问题
解:类似第5题,可得方程 。其中

边界条件为:
初始条件为:
10,设函数 和 分别是定解问题

的解,试证明函数 是定解问题
的解。
证明:
利用叠加原理Ⅰ得 ,其中 。因为 是定解问题一得解, 是定解问题二的解。所以 必满足 。
又因为对定解问题一有 ,
对定解问题二有
所以 ;同理可得 与 的边界条件与初始条件累加均满足定解问题三。得证。
,代入边界条件得 从而得到决定 的如下常微分方程边值问题
① , ,通解 带入边界条件有
因为系数行列式 所以 即 ,无非零解。
② ,通解 带入边界条件有
即 ,无非零解。
③ , ,通解
所以 带入边界条件有
所以
特征函数为
再代入初始条件得:
由正交性知
所以,得到 的常微分方程初值问题 解得
代入初始条件得
所以
因此
相关文档
最新文档