2018年中考数学复习专题—— 等腰三角形、等边三角形和直角三角形
中考数学专题复习:等腰三角形
中考数学专题复习:等腰三角形一、选择题1. 下列命题中,属于假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60∘2. 如图,在△ABC中,∠B=∠C, AB=5,则AC的长为()A.2B.3C.4D.53. 如图:等腰直角△ABC中,若∠ACB=90∘,CD=DE=CE,则∠DAB的度数为()A.60∘B.30∘C.45∘D.15∘4. 等腰三角形的一腰上的高与另一腰的夹角是48∘,它的一个底角的度数是()A.48∘B.21∘或69∘C.21∘D.48∘或69∘5. 已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A.7㎝B.9㎝C.12㎝或者9㎝D.12㎝6. 等腰直角三角形的底边长为5,则它的面积是()A.25B.12.5C.10D.6.257. 如图,△ABC中,∠ABC=90∘,∠C=30∘,AD是角平分线,DE⊥AC于E,AD、BE相交于点F,则图中的等腰三角形有()A.2个B.3个C.4个D.5个8. 一个角是60∘的等腰三角形是()A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确9. 以下关于等边三角形的判定:①三条边相等的三角形是等边三角形;①有一个角是60∘的等腰三角形是等边三角形;①有两个角为60∘的三角形是等边三角形①三个角相等的三角形是等边三角形其中正确的是()A.只有①①①B.只有①①①C.只有①①①D.①①①①10. 如图,在△ABC中,∠B=60∘,AB=9,BP=3,AP=AC,则BC的长为()A.8B.7C.6D.511. 等腰三角形一腰上的高等于该三角形另一边长的一半.则其顶角等于()A.30∘B.30∘或150∘C.120∘或150∘D.120∘、30∘或150∘12. 等腰三角形的一个角比另一个角的2倍少20度,等腰三角形顶角的度数是( )A.140∘B.20∘或80∘C.44∘或80∘D.140∘或44∘或80∘二、填空题13. 等腰三角形一腰的高等于腰长的一半,则其顶角的度数为________.14. 如图,△ABC是边长为8的等边三角形,点D在BC的延长线上,做DF⊥AB,垂足为F,若CD=6,则AF的长等于________.15. 如图所示的图形由4个等腰直角形组成,其中直角三角形(1)的腰长为1cm,则直角三角形(4)的斜边长为________.16. 如图等边三角形ABC中,AB=3,D、E是BC上的两点,AD、AE把△ABC分割成周长相等的三个三角形,则CD=________.17. 如图,在△ABC中,∠ABC=∠C,∠A=100∘,BD平分∠ABC交AC于点D,点E是BC上一个动点.若△DEC是直角三角形,则∠BDE的度数是________.三、解答题18. 从①∠B=∠C;①∠BAD=∠CDA;①AB=DC;①BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).已知:________(只填序号),求证:△AED是等腰三角形.19. 如图,BD//AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.20. 如图所示,在矩形ABCD中,DE⊥CE,∠ADE=30∘,DE=4,求这个矩形的周长.21. 如图,在△ABC中,∠ACB−∠B=90∘,∠BAC的平分线交BC于点E,∠BAC的外角∠CAD 的平分线交BC的延长线于点F,试判断△AEF的形状.22. (1)如图①,△ABC是等边三角形,△ABC所在平面上有一点P,使△PAB,△PBC,△PAC都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来. 25.(2)如图①,正方形ABCD所在的平面上有一点P,使△PAB,△PBC,△PCD,△PDA都是等腰三角形,问:具有这样性质的点P有几个?在图中画出来.参考答案13.【答案】30∘或150∘14.【答案】115.【答案】416.【答案】−3+3√331617.【答案】30∘或70∘18.证明:选择的条件是:①∠B=∠C①∠BAD=∠CDA(或①①,①①,①①);证明:在△BAD和△CDA中,① {∠B=∠C,∠BAD=∠CDA,AD=DA,① △BAD≅△CDA(AAS),① ∠ADB=∠DAC,即在△AED中∠ADE=∠DAE,① AE=DE,△AED为等腰三角形.19.证明:∵BD//AC,① ∠EBD=∠C,BD=BC,BE=AC,① △EDB≅ABC(SAS),① ∠D=∠ABC20.解:① 四边形ABCD是矩形,① ∠A=∠B=90∘,AD=BC.在Rt△ADE中,① ∠A=90∘,∠ADE=30∘,DE=4,① AE=12DE=2,AD=√3AE=2√3.① DE⊥CE,∠A=90∘,① ∠BEC=∠ADE=90∘−∠AED=30∘.在Rt△BEC中,① ∠B=90∘,∠BEC=30∘,BC=AD=2√3, ① BE=√3BC=6,① AB=AE+BE=2+6=8,① 矩形ABCD的周长=2(AB+AD)=2(8+2√3)=16+4√3.21.解:△AEF是等腰直角三角形;理由如下:如图所示:① AE平分∠BAC,AF平分∠CAD,① ∠EAC=12∠BAC,∠FAC=12∠CAD,① ∠BAC+∠CAD=180∘,① ∠EAC+∠FAC=12(∠BAC+∠CAD)=90∘,即∠EAF=90∘,① ∠ACB−∠B=90∘,① ∠ACB=90∘+∠B,① ∠1=90∘−∠B=∠B+∠BAC,① ∠B=12(90∘−∠BAC),① ∠4=∠B+∠AEF,① AE平分∠DAC,① ∠3=∠4=∠B+∠AEF,① ∠BAC+∠3+∠4=180∘,① 2(∠B+∠AEF)+∠BAC=2[12(90∘−∠BAC)+∠AEF]+∠BAC=180∘,① ∠AEF=45∘,① ∠AFE=45∘,① △AEF是等腰直角三角形.22.【解答】(1)10个,如解图①,当点P在△ABC内部时,P是边AB.BC.CA的垂直平分线的交点:当点P在△ABC外部时,P是以三角形各顶点为圆心,边长为半径的圆与三条垂直平分线的交点每条垂直平分线上得3个交点,故具有这样性质的点P共有10个.(2)9个,如解图①.两条对角线的交点是1个,以正方形各顶点为圆心,边长为半径画圆,在正方形里面和外面的交点一共有8个,故具有这样性质的点P共有9个.。
广东省中考数学第17节等腰三角形等边三角形直角三角形课件
角形的判
股定理
边三角形的综
定和性质
合运用,命题
、勾股定
难度中等,题
理
型以填空题为
主.
•★考点梳理★
•垂直平分 线
•三 •60°
•一半
•直角
•一半
•中线
•★课前预习★
•1.(2014•新疆)如图,在△ABC中, AB=AC,∠A=40°,点D在AC上, BD=BC,则∠ABD的度数是 °.
•2.如图,已知△ABC是等边三角形, 点B、C、D、E在同一直线上,且 CG=CD,DF=DE,则∠E= 度
•解析:∵△ABC是等边三角形, ∴∠ACB=60°∠ACD=120°, ∵CG=CD, ∴∠CDG=30°,∠FDE=150°, ∵DF=DE,∴∠E=15°.答案:15.
•3.如图,△ABC为等边三角形,D、E 、F分别在边BC、CA、AB上,且 AE=CD=BF,则△DEF为 三角形.
•解析:∵△ABC为等边三角形, ∴∠A=∠B=∠C=60°, 又AE=CD=BF, ∴AF=BD=CE, ∴△EAF≌△FBD≌△DCE(ASA), ∴EF=FD=DE, 即△DEF为等边三角形. 答案:等边.
•5. (2014•滨州)下列四组线段中, 可以构成直角三角形的是( )
•A.4,5,6 B.1.5,2,2.5 •C.2,3,4 D.1, ,3
•6. (2014•昆明)如图,在Rt△ABC中 ,∠ABC=90°,AC=10cm,点D为AC的 中点,则BD= cm.
•★考点突破★
•考点1 等腰、等边三角形的判定和性 质(★★) •母题集训1. (2010深圳)如图所示, △ABC中,AC=AD=BD,∠DAC=80°, 则∠B的度数是( ) •A.40° B.35° C.25° D.20°
中考数学第二轮复习练习专题5三角形专题(2021年整理)
福建省三明市宁化县2018年中考数学第二轮复习练习专题5 三角形专题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省三明市宁化县2018年中考数学第二轮复习练习专题5 三角形专题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省三明市宁化县2018年中考数学第二轮复习练习专题5 三角形专题的全部内容。
三角形专题班级姓名座号一、选择题1、下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B。
2,2,4 C.1,2,3 D。
2,3,42、若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )A。
直角三角形 B. 锐角三角形 C。
钝角三角形 D。
等边三角形3、一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是() A. 12 B.9 C.13D.12或94、如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=( ).A.3B.2 C.3 D.235、如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1 B。
3+1 C.5-1 D。
5+16、如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )A. 10B. 7 C。
5 D。
47、如图,已知“人字梯"的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60长的绑绳,,则“人字梯”的顶端离地面的高度是( )A. B. C. D.8.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示 cos 的值,错误..的是( ) A .BC BD B .AB BCC.ACADD .ACCD9.如图,在 △ABC 中,AB =AC =5,BC =6,AD ⊥BC 于D ,点E ,F 分别在AD ,AB 是,则BE +EF 的最小值是( )A .4B .4.8C .5D .5。
2018中考数学专题复习 全等三角形压轴题分类解析(无答案)
三角形综合题归类考点:利用角相等证明垂直1. 已知BE ,CF 是△ABC 的高,且BP=AC ,CQ=AB ,试确定AP 与AQ 的数量关系和位置关系2. 如图,在等腰R t△ABC 中,∠ACB =90°,D 为BC 的中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF .(1)求证:CD=BF ;(2)求证:AD ⊥CF ;(3)连接AF ,试判断△ACF 的形状.拓展巩固:如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .3. 如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE ,GC . (1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论;(2)将正方形DEFG 绕点D 按顺时针方向旋转,使E 点落在BC 边上,如图2,连接AE 和GC .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.BAC E FQPD A BCDEF图9ABCDE F4.如图1,ABC ∆的边BC 在直线l 上,,AC BC ⊥且,AC BC =EFP ∆的边FP 也 在直线l 上,边EF 与边AC 重合,且EF FP =(1) 在图1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的 数量关系和位置关系;(2) 将EFP ∆沿直线l 向左平移到图2的位置时,EP 交AC 于点Q ,连接 ,AP BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想; (3)将EFP ∆沿直线l 向左平移到图3的位置时,EP 的延长线交AC 的延长 线于点Q,连结,AP BQ ,你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.等腰三角形(中考重难点之一) 考点1:等腰三角形性质的应用1. 两个全等的含30,60角的三角板ADE 和三角板ABC ,如图所示放置,,,E A C 三点在一条直线上,连结BD ,取BD 的中点M ,连结,ME MC .试判断EMC ∆的形状,并说明理由. MED CBA压轴题拓展:(三线合一性质的应用)已知Rt ABC ∆中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .l(1)A B(F) (E)C PABECFPQ (2) lABEC FP l(3)Q当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S ∆∆∆+=.当EDF ∠绕D 点旋转到DE 和AC 不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,DEF S ∆,CEF S ∆,ABC S ∆又有怎样的数量关系?请写出你的猜想,不需证明.FEDCBA图1AECF BD图2AECFBD图32. 已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。
2018届中考数学复习 专题25 等腰三角形、等边三角形试题(B卷,含解析)
等腰三角形、等边三角形一、选择题 1. .(广东省广州市,13,3分)如图,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E ,F 分别落在边AB ,BC 上,则△EBF 的周长为 cm .【答案】13【逐步提示】利用平移的性质可以求得EF 与FC 的长,进而可得BF 的长;再根据等腰三角形的判定可得BE =EF ,这样求得了△EBF 的三边长,其和即为△EBF 的周长.【详细解答】解:根据平移的性质,将线段DC 沿着CB 的方向平移7cm 得到线段EF ,则EF =DC =4cm ,FC =7cm ,∠EFB =∠C .∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF =4cm .又BF =BC -FC =12-7=5cm ,∴△EBF 的周长=4+4+5=13(cm ).故答案为13.【解后反思】图形平移后,对应线段平行(或在同一条直线上)且相等,这样往往存在平行四边形与全等三角形或等腰三角形,给我解决问题提供了重要途径. 【关键词】平移的性质;等腰三角形的判定2. ( 河北省,16,2分)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上【答案】D【逐步提示】先找出符合要求的特殊点,如点M 与点O 重合,点N 与点O 重合等,不难发现以上特殊情形都满足OM+ON=2,再研究一般情形下△PMN 是否为等边三角形,问题得解. 【详细解答】解:如图,在OA 上截取OC=OP=2,∵∠AOP =60°,∴△OCP 是等边三角形,∴CP=OP ,∠OCP=∠CPO=60°.在线段OC 任取一点M ,在OB 上截取ON ,使ON+OM=2,连接MN ,PM ,PN.∵MC+OM =2,∴CM=ON.在△MCP 和△NOP 中,∵CM=ON,∠MCP =∠NOP =60°,CP=OP ,∴△MCP ≌△NOP (SAS ),∴PM=PN ,∠MPC=∠NPO ,∴∠MPC+∠MPO=∠NPO+∠MPO ,即∠CPO =∠MPN,∴∠MPN =60°,∴△PMN 是等边三角形.故满足条件的△PMN 有无数个,答案为选项D.A B CE D F【解后反思】如图所示,本题是含有60°内角的菱形问题的变式,掌握其中等边三角形和全等三角形的判定有助于我们解决此题.【关键词】等边三角形的判定和性质;全等三角形的判定;存在性问题3.(湖南省怀化市,8,4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A. 16cmB. 17cmC. 20cmD. 16cm或20cm【答案】C.【逐步提示】此题考查等腰三角形的定义和三角形三边的关系.题中给出了等腰三角形的两条边长,而没有明确其腰长或底边长,因此需要分腰为4cm长或腰为8cm长两种情况讨论等腰三角形的周长即可.【详细解答】解:若4cm的边长为腰,8cm的边长为底,4+4=8,由三角形三边的关系知,该等腰三角形不存在;若8cm的边长为腰,4cm的边长为底,则等腰三角形的周长为20cm,故选择C.【解后反思】此题考查等腰三角形的定义和三角形三边的关系,解此题的关键是能根据题意,考虑到需要分类讨论等腰三角形的周长.此题的易错点是审题不认真,忽略分类讨论.【关键词】等腰三角形的定义;三角形三边的关系4.(湖南湘西,14,4分)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是A.13cm B .14cm C. 13 cm或14cm D.以上都不对【答案】C【逐步提示】本题考查了三角形的三边关系及等腰三角形的性质,解题的关键是应用三角形三边关系定理讨论.分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【详细解答】解:①当等腰三角形的腰为4,底为5时,等腰三角形的周长为2×4+5=13;②当等腰三角形的腰为5,底为4时,等腰三角形的周长为2×5+4=14,∴这个等腰三角形的周长是13 cm或14cm,故选择C . 【解后反思】在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的结果若能够组成三角形后,才能继续进行有关的计算.【关键词】三角形三边的关系;等腰三角形的性质5.(山东滨州6,3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE 的度数为()A.50° B.51° C.51.5° D.52.5°【答案】D .【逐步提示】先根据AC =CD ,∠A =50°,计算出∠ADC 的度数,再由CD =BD ,可知∠B=∠BCD ,从而求出∠B 的度数,BD =BE ,∠BDE =∠BED ,求出∠BDE 的度数,最后根据∠ADC +∠CDE +∠BDE =180°,计算出∠CDE 的度数. 【详细解答】解:∵AC =CD ,∴∠ADC=∠A =50°,又∵CD =BD ,∴∠B=∠BCD ,∠ADC=∠B+∠BCD ,∴∠B=25°,∵BD =BE ,∠BDE =∠BED=77.5°,∠ADC +∠CDE +∠BDE =180°,∴∠CDE =52.5°. 【解后反思】根据“等腰三角形两底角相等”得到角的度数,再根据三角形的一个外角等于和它不相邻的2个内角的度数之和.【关键词】等腰三角形 三角形的外角和定理6.(江苏省扬州市,8,3分)如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( )A .6B .3C .2.5D .2(第8题)BC【答案】C【逐步提示】本题考查了操作活动中的估算和大小比较,解题的关键是合理构造等腰直角三角形,使得剩余部分面积的最小,此时每次都要考虑以最大边做斜边才使得剪去的等腰直角三角形面积最大.【详细解答】解:如图所示,剩余三角形的面积为24—1442创—12—1332创=2.5,故选择C .【解后反思】本题属于数学实验的简单类的问题,在构造等腰直角三角形时,学生可能会构造出如图所示的方法,剩余三角形的面积为24—1442创—12创—12创,错选答案B .【关键词】 三角形;等腰三角形与直角三角形;等腰三角形的性质;勾股定理;四边形;特殊的平行四边形;矩形的性质;面积最小化;化归思想二、填空题1. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,17,4分)将一张矩形纸片折叠成如图所示的图形,若AB =6cm ,则AC =_____________cm .第17题图 【答案】6【逐步提示】本题考查轴对称变换的性质,解题的关键是画出折叠之前的矩形纸片,画出折叠之前的矩形纸片之后,一目了然,通过角度之间代换得到△ABC 是等腰三角形,得解.【详细解答】解:由折叠得∠1=∠2,再由矩形纸片对边平行得到∠1=∠3,从而得到∠2=∠3,所以△ABC 是等腰三角形且AB =AC =6cm ,故答案为6.【解后反思】折叠也就是翻折或轴对称,它连同平移、旋转一样是全等变换,即不改变图形的形状和大小,所以看到折叠就要想到全等,进一步得到对应角相等、对应边相等为进一步解题提供条件. 【关键词】 折叠;矩形的性质;等腰三角形的判定;2. ( 河北省,19,4分)如图,已知∠AOB =7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A =90°-7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =_____°. ……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=_______°.【答案】76 6 【逐步提示】本题属于规律探究题,对于(1)先在Rt△A1A2O中根据三角形内角和定理求出∠2的度数,由此得到∠1和∠AA1A2的度数,再在△AA1A2中根据三角形内角和定理求出∠A的度数;(2)由(1)可知当光线垂直于OA时光线会沿原路返回,画出符合题意的图形,分别求出有公共顶点的光线夹角的度数,从而找出夹角变化的规律,问题可解.【详细解答】解:(1)∵A1A2⊥AO,∴∠A1A2A=∠A1A2O=90°.在Rt△A1A2O中,∠O=7°,∴∠2=90°-7°=83°,∴∠1=83°,∴∠AA1A2=180°-2×83°=14°.在Rt△AA1A2中,∴∠A=90°-14°=76°.(2)如图,当A n-1A n ⊥OA时,易求得∠A n A n-1A n-2=14°=1×14°,∠A n-1A n-2A n-3=28°=2×14°,∠A n-2A n-3A n-4=42°=3×14°,……,由此可知当∠A1AC=12×14°=168°时,∠A1AO=12×(180°-168°)=6°,且此时∠A1AO最小.【解后反思】对于规律探究题,解决问题的一般思路是从特殊情形中发现一般规律,进而应用一般规律求解. 【关键词】规律探究题3.(湖北省黄冈市,12,3分)如图,⊙O是ΔABC的外接圆,∠AOB=700,AB=AC,则∠ABC= 。
中考数学总复习第18讲 等腰三角形、等边三角形、直角三角形
第18讲 等腰三角形、等边三角形、直角三角形
目录导航
01 02 03 04
课前预习 考点梳理 课堂精讲 往年 中 考
数学
课前预习
1.(2018 成都)等腰三角形的一个底角为 50° ,则它的顶角的 度数为 80° . 2.(2018 南通)一个等腰三角形的两边长分别为 4 cm 和 9 cm, 则它的周长为 22 cm.
垂直平分线 .
返回
数学
(3)判定:①有两条边相等的三角形是等腰三角形;②有两个 角相等的三角形是等腰三角形,即“等角对等边”.
返回
数学 2.等边三角形
(1)定义:三边相等的三角形是等边三角形. (2)性质:①等边三角形的三边相等,三角相等,都等于 60° ; ②“三线合一”;③等边三角形是轴对称图形,有 三 条对称 轴. (3)判定:①三条边都相等的三角形是等边三角形;②三个角 都相等的三角形是等边三角形;③有一个角是 60° 的等腰三 角形是等边三角形.
返回
数学
3.(2018 湖州)如图,AD,CE 分别是△ABC 的中线和角平分 线.若 AB=AC,∠CAD=20° ,则∠ACE 的度数是( B )
A.20° B.35° C.40° D.70°
返回
数学
4.(2018 永定模拟)等边△ABC 的边长是 2 cm,则等边△ABC 的高是( C ) A.0.5 m C. 3 cm B.1 cm D.2 cm
例1 例2 在等腰三角形 ABC 中,∠A=110° ,求∠B 的度数.(答 在等腰三角形 ABC 中,∠A=40° ,求∠B 的度数.(答 案:35° ) 案:40° 或 70° 或 100° ) 张老师启发同学们进行变式,小敏编了如下一题: 变式 在等腰三角形 ABC 中,∠A=80° ,求∠B 的度数.(答 案: 50°或20°或80° )
中考数学专题复习全攻略第三节 等腰、等边及直角三角形
第三节 等腰、等边及直角三角形知识点一:等腰和等边三角形1.等腰三角形定义:有两条边相等的三角形叫等腰三角形(1)性质①等边对等角:两腰相等,底角相等,即AB =AC ∠B =∠C ;②三线合一:顶角的平分线、底边上的中线和底边上的高互相重合;③对称性:等腰三角形是轴对称图形,直线AD 是对称轴.(2)判定①定义:有两边相等的三角形是等腰三角形;②等角对等边:即若∠B =∠C ,则△ABC 是等腰三角形.变式练习3:一个等腰三角形的两边长分别为3和7,则它的周长为( )A. 17B. 15C. 13D. 13或17【解析】A ①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17,故这个等腰三角形的周长是17.变式练习4:如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为.变式练习5: 一个等腰三角形的两边长分别为4,8,则它的周长为( C ) A .12 B .16 C .20 D .16或20 当等腰三角形的腰和底不明确时,需分类讨论°,则另外两个角的度数三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其的中点,则三角形的形状是等腰三2.等边三角形(1)性质①边角关系:三边相等,三角都相等且都等于60°.即AB =BC =AC ,∠BAC =∠B =∠C =60°;②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴.(2)判定①定义:三边都相等的三角形是等边三角形;②三个角都相等(均为60°)的三角形是等边三角形;③任一内角 为60°的等腰三角形是等边三角形.即若AB =AC ,且∠B =60°,则△ABC 是等边三角形.C 9.变式练习2: 在等边△ABC 中,点D ,E 分别在边BC ,AC 上,若CD =2,过点D 作DE ∥AB ,过点E 作EF ⊥DE ,交BC 的延长线于点F ,求EF 的长.解:∵△ABC 是等边三角形,∴∠B =∠ACB =60°,∵DE ∥AB ,∴∠EDC =∠B =60°,∴△EDC 是等边三角形,∴DE =DC =2,在Rt △DEF ,∵∠DEF =90°,DE =2,∴DF =2DE =4,∴EF =DF 2-DE 2=42-22=2 3.变式练习3: 如图,△ABC 是等边三角形,BD 平分∠ABC ,点E 在BC 的延长线上,且CE =1,∠E =30°,则BC =__2__.知识点二 :角平分线和垂直平分线1.角平分线(1)性质:角平分线上的点到角的两边的距离相等.即若∠1 =∠2,PA ⊥OA ,PB ⊥OB ,则PA =PB.(2)判定:角的内部到角的两边的距离相等的点在角的角平分线上.4.垂直平分线图形(1)性质:线段的垂直平分线上的点到这条线段的 两端点距离相等.即若OP 垂直且平分AB ,则PA =PB.(2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上.B)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线°,所以当等边三角形出现高时,°角的性质,即变式练习:如图,△ABC 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=6.知识点三:直角三角形的判定与性质1.直角三角形的性质 (1)两锐角互余.即∠A +∠B =90°;(2) 30°角所对的直角边等于斜边的一半.即若∠B =30°则AC =12AB ; (3)斜边上的中线长等于斜边长的一半.即若CD 是中线,则CD =12AB.(4)勾股定理:两直角边a 、b 的平方和等于斜边c 的平方.即 a 2+b 2=c 2 .2.直角三角形的判定(1) 有一个角是直角的三角形是直角三角形.即若∠C =90°,则△ABC 是Rt △;(2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD =BD =CD ,则△ ABC 是Rt △(3) 勾股定理的逆定理:若a 2+b 2 =c 2, 则△ABC 是Rt △.3.直角三角形相似判定定理1).斜边与一条直角边对应成比例的两直角三角形相似。
各地2018年中考数学试卷等腰三角形(word,含解析)
等腰三角形一、选择题1.(2018•ft东枣庄•3 分)如图是由 8 个全等的矩形组成的大正方形,线段 AB 的端点都在小矩形的顶点上,如果点 P 是某个小矩形的顶点,连接 PA、PB,那么使△ABP 为等腰直角三角形的点 P 的个数是()A.2 个 B.3 个 C.4 个 D.5 个【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP 为等腰直角三角形的点 P 的个数是 3,故选:B.【点评】本题考查了等腰直角三角形的判定,正确的找出符合条件的点 P 是解题的关键. 2 (2018•ft东枣庄•3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF 平分∠CAB,交CD 于点E,交CB 于点F.若AC=3,AB=5,则CE 的长为()A.B.C.D.【分析】根据三角形的内角和定理得出∠CAF+∠C FA=90°,∠FAD+∠AE D=90°,根据角平分线和对顶角相等得出∠CE F=∠CFE,即可得出 EC=FC,再利用相似三角形的判定与性质得出答案.【解答】解:过点F 作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴=,∵FC=FG,∴=,解得:FC=,即CE 的长为.故选:A.【点评】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠C EF=∠CF E.3.(2018•ft东淄博•4 分)如图,P 为等边三角形 ABC 内的一点,且 P 到三个顶点 A,B,C的距离分别为3,4,5,则△ABC的面积为()A. B.D.【考点】R2:旋转的性质;KK:等边三角形的性质;KS:勾股定理的逆定理.【分析】将△BPC绕点B 逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE 为等边三角形,得到 PE=PB=4,∠BPE=60°,在△AEP 中,AE=5,延长 BP,作AF⊥BP 于点 FAP=3,PE=4,根据勾股定理的逆定理可得到△APE 为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得 AF 和 PF 的长,则在直角△ABF 中利用勾股定理求得 AB 的长,进而求得三角形 ABC 的面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B 逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF AP=,PF=AP=.∴在直角△ABF)2+()2=25+12 .则△ABC •AB2=•(25+12 .故选:A.【点评】本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.4.(2018•江苏扬州•3 分)如图,点 A 在线段 BD 上,在 BD 的同侧做等腰Rt△ABC 和等腰Rt△ADE,CD 与BE、AE 分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③ B.① C.①② D.②③【分析】(1)由等腰Rt△ABC 和等腰Rt△ADE 三边份数关系可证;(2)通过等积式倒推可知,证明△PAM∽△EMD即可;(3)2CB2 转化为A C2,证明△ACP∽△MCA,问题可证.【解答】解:由已知:AC=AB,AD=AE∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确∵∠BEA=∠CDA∠PME=∠AMD∴P、E、D、A 四点共圆∴∠APD=∠EAD=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.【点评】本题考查了相似三角形的性质和判断.在等积式和比例式的证明中应注意应用倒推的方法寻找相似三角形进行证明,进而得到答案.5.(2018·湖南省常德·3 分)如图,已知BD 是△A BC 的角平分线,ED 是BC 的垂直平分线,∠BAC=90°,AD=3,则CE 的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠A BD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6. (2018·台湾·分)如图,锐角三角形 ABC 中,BC>AB>AC,甲、乙两人想找一点 P,使得∠BPC与∠A互补,其作法分别如下:(甲)以A 为圆心,AC 长为半径画弧交AB 于P 点,则P 即为所求;(乙)作过 B 点且与AB 垂直的直线l,作过C 点且与 AC 垂直的直线,交l 于 P 点,则 P 即为所求对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】甲:根据作图可得 AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断;乙:根据四边形的内角和可得:∠BPC+∠A=180°.【解答】解:甲:如图1,∵AC=AP,∴∠APC=∠ACP,∵∠BPC+∠APC=180°∴∠BPC+∠ACP=180°,∴甲错误;乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.【点评】本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确的理解题意是解题的关键.7.(2018•湖北荆门•3 分)如图,等腰Rt△ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ⊥OP交BC 于点Q,M 为PQ 的中点,当点P 从点A 运动到点 C 时,点M所经过的路线长为()A.B.C.1 D.2【分析】连接 OC,作PE⊥AB 于 E,MH⊥AB 于 H,QF⊥AB 于 F,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC⊥AB,OC=OA=OB=1,∠OCB=45°,再证明Rt△AOP≌△COQ得到AP=CQ,接着利用△APE和△BFQ都为等腰直角三角形得到AP=CQ,QF=BQ,所以BC=1,然后证明MH 为梯形PEFQ 的中位线得到,即可判定点M 到AB 的距离为,从而得到点 M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点 M 所经过的路线长.【解答】解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC=AB= ,∠A=∠B=45°,∵O为AB 的中点,∴OC⊥AB,OC 平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC=×=1,∵M点为PQ 的中点,∴MH为梯形PEFQ 的中位线,∴MH=(PE+QF)=,即点M到AB ,而 CO=1,∴点M 的运动路线为△ABC的中位线,∴当点P 从点A 运动到点C 时,点M AB=1.故选:C.【点评】本题考查了轨迹:通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹.也考查了等腰直角三角形的性质.8.(2018•河北•3分)已知:如图 4,点P在线段AB外,且PA =PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC ⊥AB于点C且AC =BCC.取AB中点C,连接PCD.过点P作PC ⊥AB,垂足为C9.(2018 四川省绵阳市)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB 的顶点 A 在△ECD 的斜边 DE 上,若 AE= ,AD= ,则两个三角形重叠部分的面积为()A.B.C.D.【答案】D【考点】三角形的面积,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质,等腰直角三角形【解析】【解答】解:连接BD,作C H⊥DE,∵△ACB和△ECD都是等腰直角三角形,∴∠ACB=∠ECD=90°,∠ADC=∠C AB=45°,即∠A CD+∠DCB=∠A CD+∠A CE=90°,∴∠DCB=∠ACE,在△DCB和△ECA中,,∴△DCB≌△ECA,∴DB=EA=,∠CDB=∠E=45°,∴∠CDB+∠ADC=∠ADB=90°,在Rt△ABD中,∴AB= =2 ,在Rt△ABC中,∴2AC2=AB2=8,∴AC=BC=2,在Rt△ECD中,∴2CD2=DE2= ,∴CD=CE=+1,∵∠ACO=∠DCA,∠CAO=∠CDA,∴△CAO∽△CDA,∴:= = =4-2 ,又∵= CE = DE·CH,∴CH== ,∴= AD·CH=×× = ,∴=(4-2 )×=3- .即两个三角形重叠部分的面积为3- .故答案为:D.【分析】解:连接 BD,作CH⊥DE,根据等腰直角三角形的性质可得∠ACB=∠ECD=90°,∠ADC=∠CAB=45°,再由同角的余角相等可得∠DCB=∠ACE;由 SAS 得△DCB≌△ECA,根据全等三角形的性质知 DB=EA= ,∠CDB=∠E=45°,从而得∠ADB=90°,在Rt△ABD中,根据勾股定理得AB=2 ,同理可得AC=BC=2,CD=CE= +1;由相似三角形的判定得△CAO∽△CDA,根据相似三角形的性质:面积比等于相似比的平方从而得出两个三角形重叠部分的面积.二.填空题1.(2018 四川省泸州市 3 分)如图,等腰△A BC 的底边 BC=20,面积为 120,点 F 在边BC上,且 BF=3FC,EG 是腰 AC 的垂直平分线,若点 D 在 EG 上运动,则△CDF 周长的最小值为 18 .【分析】如图作A H⊥BC 于H,连接AD.由EG 垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长;【解答】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F 共线时,DF+DC 的值最小,最小值就是线段AF 的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.∴△CDF 周长的最小值为 13+5=18;故答案为18.【点评】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.2.(2018•广西桂林•3 分)如图,在Δ ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是【答案】3详解:∵AB=AC,∴△ABC是等腰三角形.∵∠A=36°,∴∠C=∠ABC=72°.BD 平分∠ABC交AC 于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴△ABD是等腰三角形.∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形.∴共有3 个等腰三角形.故答案为:3.点睛:本题考查了等腰三角形的判定与性质及三角形内角和定理;求得角的度数是正确解答本题的关键.3.(2018·新疆生产建设兵团·5分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部的面积是.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算即可.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.4.(2018·四川宜宾·3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,则S= 2 .(结果保留根号)【考点】MM:正多边形和圆;1O:数学常识.【分析】根据正多边形的定义可得出△ABO 为等边三角形,根据等边三角形的性质结合 OM 的长度可求出AB 的长度,再利用三角形的面积公式即可求出S 的值.【解答】解:依照题意画出图象,如图所示.∵六边形ABCDEF 为正六边形,∴△ABO为等边三角形,∵⊙O的半径为1,∴OM=1,∴BM=AM=,∴AB=,∴S=6S△ABO=6× × ×1=2 ., ,故答案为:2.【点评】本题考查了正多边形和圆、三角形的面积以及数学常识,根据等边三角形的性质求出正六边形的边长是解题的关键.5. (2018·天津·3 分)如图,在边长为 4 中,,分别为的中点 于点,为的中点,连接,则的长为.【答案】【解析】分析:连接 DE ,根据题意可得 Δ DEG 是直角三角形,然后根据勾股定理即可求解 DG 的长. 详解:连接 DE ,∵D、E 分别是 AB 、BC 的中点, ∴DE∥AC,DE=AC∵Δ ABC 是等边三角形,且 BC=4 ∴∠DEB=60°,DE=2 ∵EF⊥AC,∠C=60°,EC=2 ∴∠FEC=30°,EF=∴∠DEG=180°-60°-30°=90°∵G是EF 的中点,∴EG=.在RtΔ DEG 中,DG=故答案为:.点睛:本题主要考查了等边三角形的性质,勾股定理以及三角形中位线性质定理,记住和熟练运用性质是解题的关键.6.(2018·湖北省武汉· 3 分)如图.在△A BC 中,∠ACB=60°,AC=1,D 是边AB 的中点,E 是边BC 上一点.若DE 平分△ABC的周长,则DE 的长是.【分析】延长 BC 至 M,使 CM=CA,连接 AM,作CN⊥AM 于 N,根据题意得到 ME=EB,根据三角形中位线定理得到AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出 AN,计算即可.【解答】解:延长BC 至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=A C•s in∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.7.(2018•北京•2 分) 右图所示的网格是正方形网格,∠BAC∠DAE .(填“ >”,“ =”或“ <”) 【答案】>【解析】如下图所示,△AFG 是等腰直角三角形,∴ ∠FAG = ∠BAC = 45︒,∴ ∠BAC >∠DAE .另:此题也可直接测量得到结果.【考点】等腰直角三角形8. (2018•江苏盐城•3 分)如图,在直角 中,,,,、分别为边 、上的两个动点,若要使 是等腰三角形且是直角三角形,则.16.【答案】 或G EBD FCAEBDCA【考点】等腰三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:当△BPQ 是直角三角形时,有两种情况:∠B PQ=90 度,∠BQP=90 度。
初中数学难点之八:等腰三角形、等边三角形、直角三角形
初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。
一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。
两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。
2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。
(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。
2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。
3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。
三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。
(2)一边的中线等于这条边的一半,这个三角形是直角三角形。
(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。
中考数学专题复习第4章三角形第14讲等腰三角形和直角三角形含答案
第14讲 等腰三角形和直角三角形☞【基础知识归纳】☜☞归纳 一、等腰三角形1.等腰三角形的定义: 有两条边相等 的三角形是等腰三角形.2.等腰三角形的性质①等腰三角形两个底角 相等 ;②等腰三角形 顶角的平分线 、 底边上的中线 、 底边上的高 互相重合, 简称:“三线合一”③等腰三角形是轴对称图形,有 1 条对称轴. 3.等腰三角形的判定方法①定义判定:一个三角形中,如果有两条边 相等 ,那么这个三角形是等腰三角形. ②判定定理:等角对等边;即一个三角形中,如果有两个角相等,那么这两个角所对的边 相等 .4.等边三角形的性质①等边三角形的各角都 相等 ,并且每—个角都等于 60 度; ②等边三角形是轴对称图形,有 3 条对称轴. 5.等边三角形的判定①三边都 相等 的三角形是等边三角形; ②三个角都 相等 的三角形是等边三角形; ③有一个角等于 60 度的等腰三角形是等边三角形.☞归纳二、直角三角形 1.直角三角形的定义 有一个角是 直角 的三角形叫做直角三角形 2.直角三角形的性质①直角三角形的两个锐角 互余 ;②在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的 一半 ; ③在直角三角形中,斜边上的中线等于斜边的 一半 3.直角三角形的判定①两个内角和为 90° 的三角形是直角三角形;②一边上的中线等于这条边的 一半 的三角形是直角三角形 4.勾股定理及逆定理【勾股定理】如果直角三角形两条直角边分别为,a b ,斜边为c ,那么222a b c += 【逆定理】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形☞【常考题型剖析】☜☺ 题型一、等腰三角形【例1】(2016贺州) 一个等腰三角形的两边长分别为4,8,则它的周长为( )A. 12B. 16C. 20D. 16或20【答案】C【分析】当等腰三角形的三边为4, 4, 8时,因为4+4=8,不符合题意,舍去;当等腰三角形的三边为4, 8, 8时,因为4+8>8符合题意,此时它的周长为4+8+8=20【例2】(2016邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A. AC>BCB. AC=BCC.∠A>∠ABCD. ∠A=∠ABC 【答案】A【解答】∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.【举一反三】1. (2016湘西州) 一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A. 13cmB. 14cmC. 13cm或14cmD. 以上都不对【答案】c【分析】当等腰三角形的三边为4, 4, 5时,因为4+4>5,符合题意,此时它的周长为4+4+5=13cm;当等腰三角形的三边为4, 5, 5时,因为4+5>5符合题意,此时它的周长为4+5+5=142. (2016通辽) 等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为【答案】69°或21°【解答】分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=21°;综上所述:等腰三角形底角的度数为69°或21°.3. (2016淮安) 已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的 周长是 【答案】10【分析】当等腰三角形的三边为2,2,4时,因为2+2=4,不符合题意,舍去;当等腰三角形的三边为2,4,4时,因为2+4>4符合题意, 此时它的周长为2+4+4=104. (2016随州) 已知等腰三角形的一边长为9,另一边长为方程28150x x -+=的根, 则该等腰三角形的周长为 【答案】19或21或23【解答】解方程28150x x -+=得x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21; 当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去; 当等腰三角形的三边长为9、5、5时,其周长为19; 综上,该等腰三角形的周长为19或21或23,5. (2016安顺) 已知实数,x y 满足480x y --=,则以,x y 的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对 【答案】B【分析】根据非负数的意义列出关于x 、y 的方程并求出x 、y 的值,再根据x 是腰长和底边长两种情况讨论求解.【解答】解:根据题意得4080x y -=⎧⎨-=⎩,解得48x y =⎧⎨=⎩, (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.6. (2016荆门) 已知3是关于x 的方程2(1)20x m x m -++=的一个实数根,并且这个 方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 【答案】D【分析】把x=3代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为27120x x -+=,解得123,4x x ==,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11; ②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10. 综上所述,该△ABC 的周长为10或11.7. (2016荆门) 如图,△ABC 中,AB=AC ,AD 是∠BAC 的平分线.已知AB=5,AD=3, 则BC 的长为( )A. 5B. 6C. 8D. 10 【答案】C【分析】根据等腰三角形的性质得到AD ⊥BC ,BD=CD ,根据勾股定理即可得到结论. 【解答】解:∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD=CD ,∵AB=5,AD=3,∴22AB AD -,∴BC=2BD=8,☺ 题型二、直角三角形【例3】(2015毕节) 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )3,4,523【答案】B【分析】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形;因为 22212)3)+=,所以能够组成直角三角形【例4】(2016南充) 如图,在Rt△ABC 中,∠A=30°,BC=1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为( )A. 1B. 2C. 3D. 1+3 【答案】A【解析】如图,∵在Rt△ABC 中,∠C=90°,∠A=30°,∴BC=12AB, 又∵BC=1 ∴AB=2BC=2.又∵点D 、E 分别是AC 和BC 的中点, ∴DE 是△ACB 的中位线,∴DE=12AB=1.故选A .【举一反三】1. (2015来宾) 下列各组线段中,能够组成直角三角形的一组是( )A. 1, 2, 3B. 2, 3, 4C. 4, 5, 6D. 1,2,3 【答案】D【分析】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形;因为 2221(2)(3)+=,所以能够组成直角三角形2. (2016甘孜州) 直角三角形斜边长是5,一直角边的长是3, 则此直角三角形的面积为 . 【答案】6【分析】∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为4.该直角三角形的面积S =12×3×4=63. (2016泉州) 如图3,在Rt △ABC 中,E 是斜边AB 的中点,若AB=10,则CE= .图3 图4 【答案】5【分析】根据直角三角形斜边上的中线等于斜边的一半,可得CE= 12AB=1102⨯=5.4. (2016百色) 如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=( ) A. 6 B. 62 C. 63 D.12 【答案】A【解答】∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×12=6,5. (2016深圳龙岭期中) 如图,在△ABC 中,AB=AC ,DE∥BC, 则下列结论中不正确的是( )A. AD=AEB. DB=ECC. ∠ADE=∠CD. DE=12BC 【答案】D【分析】由DE 与BC 平行,得到△ADE ∽△ABC ,由相似得比例,根据AB=AC ,得到AD=AE ,进而确定出DB=EC ,再由两直线平行同位角相等,以及等腰三角形的底角相等,等量代换得到∠ADE=∠C, 而DE 不一定为中位线,即DE 不一定为BC 的一半,即可得到正确选项.☞【巩固提升自我】☜1. (2014广东) 一个等腰三角形的两边长分别是3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17 【答案】A【分析】①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.2. (2015广州) 已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的 两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A. 10 B. 14 C. 10或14 D. 8或10 【答案】B【分析】解:将x=2代入方程,得:4﹣4m+3m=0,解得:m=4.当m=4时,原方程为28120x x -+=, 解得:122,6x x ==,∵2+2=4<6,∴此等腰三角形的三边为6、6、2, ∴此等腰三角形的周长C=6+6+2=14.3. (2016广州) 如图3,已知△ABC 中,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线, DE 交AB 于点D ,连接CD ,则CD=( )图3 图4A. 3B. 4C. 4.8D. 5【答案】D【解答】∵AB=10,AC=8,BC=6, ∴222BC AC AB +=,∴△ABC 是直角三角形, ∵DE 是AC 的垂直平分线,∴AE=EC=4,DE ∥BC ,且线段DE 是△ABC 的中位线,∴DE=3, ∴AD=DC=22AE DE +=5.4. (2015南宁) 如图4,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( ) A. 35° B. 40° C . 45° D . 50° 【答案】A若测得AM 的长为1.2km ,则M ,C 两点间的距离为( )图5 图6A. 0.5kmB. 0.6kmC. 0.9kmD. 1.2km【答案】D解:∵△ABD 中,AB=AD ,∠B=70°, ∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°, ∵AD=CD ,∴∠C=(180°﹣∠ADC )÷2=(180°﹣110°)÷2=35°【分析】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12AB=AM=1.2km6. (2015丹东) 如图6,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°【答案】A解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=12∠A=12×30°=15°7. (2016海南) 如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD 对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A. 6B. 62332【答案】D解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴×3=。
中考数学复习考点知识专题讲解10---三角形的综合问题
中考数学复习考点知识专题讲解中考数学复习考点知识专题讲解三角形的综合问题专题10三角形的综合问题】方法指导】【方法指导1.全等三角形解决问题的常见技巧:(1)全等三角形的判定方法有SSS、SAS、ASA、AAS、HL(适用于直角三角形).(2)作辅助线构造全等三角形①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.2.等腰三角形解题技巧:(1)等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.(2)在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3.等边三角形常用方法与思路:(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.【题型剖析题型剖析】】【类型1】三角形有关角的综合计算三角形有关角的综合计算【例1】(2019•泉山区模拟)如图,点A 、B 分别在射线OM 、ON 上运动(不与点O 重合).(1)如图1,若90MON ∠=°,OBA ∠、OAB ∠的平分线交于点C ,则ACB ∠= °;(2)如图2,若MON n ∠=°,OBA ∠、OAB ∠的平分线交于点C ,求ACB ∠的度数;(3)如图2,若MON n ∠=°,AOB ∆的外角ABN ∠、BAM ∠的平分线交于点D ,求ACB ∠与ADB ∠之间的数量关系,并求出ADB ∠的度数;(4)如图3,若80MON ∠=°,BC 是ABN ∠的平分线,BC 的反向延长线与OAB ∠的平分线交于点E .试问:随着点A 、B 的运动,E ∠的大小会变吗?如果不会,求E ∠的度数;如果会,请说明理由.【变式1-1】(2019•沭阳县模拟)探究与发现: 如图1所示的图形,像我们常见的学习用品−−圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究BDC ∠与A ∠、B ∠、C ∠之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在ABC ∆上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若50A ∠=°,则ABX ACX ∠+∠= 40 °;②如图3,DC 平分ADB ∠,EC 平分AEB ∠,若50DAE ∠=°,130DBE ∠=°,求DCE ∠的度数; ③如图4,ABD ∠,ACD ∠的10等分线相交于点1G 、2G …、9G ,若140BDC ∠=°,177BG C ∠=°,求A ∠的度数.【变式1-2】(2019春•海安市期末)如图,已知BE 是ABC ∆的角平分线,CP 是ABC ∆的外角ACD ∠的平分线.延长BE ,BA 分别交CP 于点F ,P(1)求证:12BFC BAC ∠=∠;(2)小智同学探究后提出等式:BAC ABC P ∠=∠+∠.请通过推理演算判断“小智发现”是否正确?(3)若2180BEC P ∠−∠=°,求ACB ∠的度数.【变式1-3】(2019春•高淳区校级模拟)ABC ∆中,三个内角的平分线交于点O ,过点O 作OD OB ⊥,交边AB 于点D .(1)如图1,①若40ABC ∠=°,则AOC ∠= ,ADO ∠= ;②猜想AOC ∠与ADO ∠的关系,并说明你的理由;(2)如图2,作ABC ∠外角ABE ∠的平分线交CO 的延长线于点F .若105AOC ∠=°,32F ∠=°,则AOD ∠= _______°.【类型2】全等三角形的判定与性质全等三角形的判定与性质【例2】(2019•如皋市一模)如图,A 、B 、C 是直线l 上的三个点,DAB DBE ECB a ∠=∠=∠=,且BD BE =.(1)求证:AC AD CE =+;(2)若120a =°,点F 在直线l 的上方,BEF ∆为等边三角形,补全图形,请判断ACF ∆的形状,并说明理由.【变式2-1】(2019•碑林区校级模拟)如图,四边形ABCD 中,//AD BC ,90A ∠=°,CE BD ⊥,垂足为E ,BE DA =.(1)求证:ABD ECB ∆≅∆;(2)若45DBC ∠=°,1BE =,求DE 的长(结果精确到0.01, 1.414≈ 1.732)≈【变式2-2】(2019•灌南县校级模拟)如图,在四边形ABCD 中,//AD BC ,AD BC =,点F 是AB 的中点,点E 是BC 边上的点,DE AD BE =+,DEF ∆的周长为l .(1)求证:DF 平分ADE ∠;(2)若FD FC =,2AB =,3AD =,求l 的值.【类型3】等腰三角形的有关计算与证明等腰三角形的有关计算与证明【例3】(2018秋•灌云县期末)如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,(1)若BDA BAD ∠=∠,60B ∠=°,求C ∠的大小;(2)若AE 既是ABD ∆的高又是角平分线,54B ∠=°,求C ∠的大小.【变式3-1】(2018秋•泗阳县期末)已知,在ABC ∆中,点D 在BC 上,点E 在BC 的延长线上,且BD BA =,CE CA =.(1)如图1,若90BAC ∠=°,45B ∠=°,试求DAE ∠的度数;(2)若90BAC ∠=°,60B ∠=°,则DAE ∠的度数为 (直接写出结果);(3)如图2,若90BAC ∠>°,其余条件不变,探究DAE ∠与BAC ∠之间有怎样的数量关系?【变式3-2】(2018秋•秦淮区期末)如图,在ABC ∆中,AB AD =,CB CE =.(1)当90ABC ∠=°时(如图①),EBD ∠= °;(2)当(90)ABC n n ∠=°≠时(如图②),求EBD ∠的度数(用含n 的式子表示).【类型4】等边三角形的有关计算与证明等边三角形的有关计算与证明【例4】(2019春•鼓楼区校级模拟)已知,ABC ∆为等边三角形,点D 为AC 上的一个动点,点E 为BC 延长线上一点,且BD DE =.(1)如图1,若点D 在边AC 上,猜想线段AD 与CE 之间的关系,并说明理由;(2)如图2,若点D 在AC 的延长线上,(1)中的结论是否成立,请说明理由.【变式4-1】(2018秋•泰兴市月考)如图,ABC ∆是等边三角形,BD 是中线,延长BC 至点E ,使CE CD =.取BE 中点F ,连接DF .(1)求证:BD DE =;(2)延长ED 交边AB 于点G ,试说明:DG DF =.【变式4-2】(2019•淮阴区模拟)如图,ABC ∆中,90ACB ∠=°,以AC 为边在ABC ∆外作等边三角形ACD ,过点D 作AC 的垂线,垂足为F ,与AB 相交于点E ,连接CE .(1)说明:AE CE BE ==;(2)若15AB cm =,P 是直线DE 上的一点.则当P 在何处时,PB PC +最小,并求出此时PB PC +的值.【类型5】直角三角形的综合问题直角三角形的综合问题【例5】(2019 •溧水校级模拟)已知ABC ∆中,90A ∠=°,AB AC =,D 为BC 的中点. (1)如图,若E 、F 分别是AB 、AC 上的点,且BE AF =.求证:DEF ∆为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE AF =,其他条件不变,那么DEF ∆是否仍为等腰直角三角形?证明你的结论.【变式5-1】(2018秋•常熟市期末)如图,在Rt ABC ∆中,90ACB ∠=°,AC BC =.点D 是边AC 上一点,DE AB ⊥,垂足为E .点F 是BD 的中点,连接CF ,EF .(1)求证:CF EF =;(2)判断CF 与EF 的位置关系,并说明理由;(3)若30DBE ∠=°,连接AF ,求AFE ∠的度数.【变式5-2】(2019•江都区校级模拟)如图所示,已知ABC ∆是等腰直角三角形,90ABC ∠=°,10AB =,D 为ABC ∆外的一点,连结AD 、BD ,过D 作DH AB ⊥,垂足为H ,DH 的延长线交AC 于E .(1)如图1,若BD AB =,且34HB HD =,求AD 的长; (2)如图2,若ABD ∆是等边三角形,求DE 的长.【达标检测达标检测】】一.选择题选择题((共4小题小题))1.(2019•徐州)下列长度的三条线段,能组成三角形的是( )A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,102.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )A.4个B.5个C.6个D.7个3.(2019•盐城)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为( )A.2 B.C.3 D.4.(2018•南通)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:步骤1:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A.B.C.D.)小题)二.填空题(共4小题填空题(5.(2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E 在BC上,且AE=CF,若∠BAE=25°,则∠ACF= 度.6.(2019•苏州)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为 .7.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 .8.(2019•南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm.)小题)(共8小题三.解答题解答题(9.(2019•南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC 并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?10.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由.11.(2019•无锡)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.12.(2018•无锡)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.13.(2018•徐州)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B 折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.14.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l 2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.请依据上述定义解决如下问题:=3,则T(BC,AB)= ;(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=4,T(BC,AB)═9,求△ABC的面(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=6,求T(BC,CD),=2,T(BC,AB)。
2018中考数学专题复习 第十七讲 等腰三角形和直角三角形(共83张PPT)
此时PA=PC,
则AD=CD1 = AC=1,∠PAC=∠ACP=30°,
2
∠ABD=1 ∠ABC=30°,
2
∴PD=AD·tan30°=3
3
AD=3ቤተ መጻሕፍቲ ባይዱ
3
,BD=3
AD=3
,
∴PB=BD-PD=3 - 3 =2 3 .
33
答案: 2 3
3
2.(2017·黄冈中考)已知:如图,在正方形ABCD的外侧, 作等边三角形ADE,则∠BED=________度.
考点二 等边三角形的性质与判定 【示范题2】(2017·淄博中考)在边长为4的等边三角 形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB, DF⊥AC,垂足分别为E,F,则DE+DF=________.
【思路点拨】作AG⊥BC于点G,根据等边三角形的性 质得出∠B=60°,解直角三角形求得AG=2 ,3 根据 S△ABD+S△ACD=S△ABC即可得出DE+DF=AG=2 .3
第十七讲 等腰三角形和直角三角形
一、等腰三角形
定义
有_两__边__相等的三角形
轴对 称性
等腰三角形是轴对称图形,_底__边__上__的__中__线__ _(_或__底__边__上__的__高__或__顶__角__平__分__线__)_所__在__的__直__ _线__是它的对称轴
性质
1.等腰三角形的两个底角_相__等__(简称:_等__ _边__对__等__角__)
【变式训练】 1.(2017·威海中考)如图,△ABC为等边三角形,AB=2. 若P为△ABC内的一动点,且满足∠PAB=∠ACP.则线段 PB长度的最小值为________.
【解析】∵△ABC是等边三角形, ∴∠ABC=∠BAC=60°,AC=AB=2, ∵∠PAB=∠ACP, ∴∠PAC+∠ACP=60°, ∴∠APC=120°, 当PB⊥AC时,PB长度最小,设垂足为点D,
第四单元 第十九讲 等腰三角形与直角三角形++++课件+2025年九年级中考数学总复习人教版(山东)
过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是 ( C )
①△BDF,△CEF都是等腰三角形;②DE=BD+CE;
③△ADE的周长为AB+AC;④BD=CE.
A.③④
B.①②
C.①②③
D.②③④
(2)已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为________.
股定理求解.
(4)折叠问题中求解线段长度问题,常常将某些条件汇集到一个直角三角形中,再
根据勾股定理列方程求解.
山东3年真题
38
1.(2023·菏泽中考)△ABC的三边长a,b,c满足(a-b)2+ 2 − − 3+|c-3 2|=0,
(4)在直角三角形中,若有斜边中点,可考虑直角三角形斜边上的中线等于斜边的
一半.
37
2.勾股定理常见应用与技巧:
(1)已知直角三角形的任意两个边长,可直接利用勾股定理求得第三条边长.
(2)已知三角形的三边长,可运用勾股定理的逆定理确定此三角形是否为直角三角
形.
(3)立体图形表面的最短路径问题,可将立体图形展开,构造直角三角形后利用勾
交AC于点D,如果DE垂直平分BC,那么∠A的度数为
A.31° B.62° C.87° D.93°
(C)
8
ቤተ መጻሕፍቲ ባይዱ
知识要点
3.直角三角形的性质与判定
互余
直角三角形的两个锐角__________
性
斜边
30°角所对的直角边等于______的一半
质
斜边
直角三角形斜边上的中线等于__________的一半
平方和
勾股定理:直角三角形中两直角边的____________等于斜边的平方
中考数学专题复习试题分类汇编三等腰三角形和直角三角形
中考数学专题复习试题分类汇编三等腰三角形和直角三角形学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.已知线段AB,按如下步骤作图:①作射线AC,使AC AB⊥;①作BAC∠的平分线AD;①以点A为圆心,AB长为半径作弧,交AD于点E;①过点E作EP AB⊥于点P,则:AP AB=()A.1:5B.1:2C.1:3D.1:22.如图,在ABC中,45,60,B C AD BC∠=︒∠=︒⊥于点D,3BD=.若E,F分别为AB,BC的中点,则EF的长为()A.33B.32C.1D.623.如图,在Rt ABC△纸片中,90,4,3ACB AC BC∠=︒==,点,D E分别在,AB AC 上,连结DE,将ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD 平分EFB∠,则AD的长为()252515204.如图,正三角形ABC的边长为3,将①ABC绕它的外心O逆时针旋转60°得到①A'B'C',则它们重叠部分的面积是()A.23B.334C.332D.35.如图,在Rt①ABC中,①ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.46.①BDE和①FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道()A.①ABC的周长B.①AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长7.如图,等腰直角三角形ABC中,①ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH①CP交CP的延长线于点H,连结AP,则①P AH的度数()B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小8.已知直线m n,将一块含45︒角的直角三角板ABC按如图方式放置,其中斜边BC 与直线n交于点D.若125∠=︒,则2∠的度数为()A.60︒B.65︒C.70︒D.75︒9.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC CD DE==,点D,E可在槽中滑动,若75BDE∠=︒,则CDE∠的度数是()A.60°B.65°C.75°D.80°10.在ABC中,若一个内角等于另外两个角的差,则()A.必有一个角等于30B.必有一个角等于45︒C.必有一个角等于60︒D.必有一个角等于90︒评卷人得分二、填空题11.如图,在①ABC中,①ACB=90°,AC<BC.分别以点A,B为圆心,大于12AB的长为半径画弧,两弧交于D,E两点,直线DE交BC于点F,连接AF.以点A为圆心,AF为半径画弧,交BC延长线于点H,连接AH.若BC=3,则①AFH的周长为_____.12.如图,在ABC中,AB AC=,70B∠=︒,以点C为圆心,CA长为半径作弧,交直线BC于点P,连结AP,则BAP∠的度数是_______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是_____ .评卷人得分三、解答题14.如图,在四边形ABCD中,AB=AD=20,BC=DC=102(1)求证:①ABC①①ADC;(2)当①BCA=45°时,求①BAD的度数.15.问题:如图,在①ABD中,BA=BD.在BD的延长线上取点E,C,作①AEC,使EA=EC,若①BAE=90°,①B=45°,求①DAC的度数.答案:①DAC=45°思考:(1)如果把以上“问题”中的条件“①B=45°”去掉,其余条件不变,那么①DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“①B=45°”去掉,再将“①BAE=90°”改为“①BAE=n°”,其余条件不变,求①DAC的度数.16.如图,在△ABC和△DCE中,AC=DE,①B=①DCE=90°,点A,C,D依次在同一直线上,且AB①DE.(1)求证:△ABC①①DCE;(2)连结AE,当BC=5,AC=12时,求AE的长.17.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂长AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD =,10DM =.(1)在旋转过程中:①当,,A D M 三点在同一直线上时,求AM 的长;②当,,A D M 三点在同一直角三角形的顶点时,求AM 的长.(2)若摆动臂AD 顺时针旋转90︒,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠=︒,260CD =,求2BD 的长.18.如图,在76⨯的方格中,ABC 的顶点均在格点上,试按要求画出线段EF (E ,F 均为格点),各画出一条即可.19.如图,在ABC中,AC AB BC.①已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:2APC B;①以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若B,求B的度数.3AQC参考答案:1.D【解析】【分析】由题意易得①BAD =45°,AB =AE ,进而可得①APE 是等腰直角三角形,然后根据等腰直角三角形的性质可求解.【详解】解:①AC AB ⊥,①90CAB ∠=︒,①AD 平分BAC ∠,①①BAD =45°,①EP AB ⊥,①①APE 是等腰直角三角形,①AP =PE ,①222AE AP PE AP =+=,①AB =AE ,①2AB AP =,①:1:2AP AB =;故选D .【点睛】本题主要考查等腰直角三角形的性质与判定、勾股定理及角平分线的定义,熟练掌握等腰直角三角形的性质与判定、勾股定理及角平分线的定义是解题的关键.2.C【解析】【分析】根据条件可知①ABD 为等腰直角三角形,则BD =AD ,①ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。
中考数学第19讲 等腰三角形与等边三角形
课堂精讲
例 8 下面是有关三角形内外角平分线的探究,阅读后按要求作答: 探究 1:如图 1,在△ABC 中,点 O 是∠ABC 与∠ACB 的平分线 BO 和 CO 的交点,通过分析发现:∠BOC=90°+12∠A.理由如下: ∵BO 和 CO 分别是∠ABC 和∠ACB 的平分线, ∴∠1=12∠ABC,∠2=12∠ACB. ∴∠1+∠2=12(∠ABC+∠ACB). 又∵∠ABC+∠ACB=180°-∠A, ∴∠1+∠2=12(180°-∠A)=90°-12∠A. ∴∠BOC=180°-(∠1+∠2)=180°-90°-12∠A=90°+12∠A.
A.16 cm
B.17 cm
C.20 cm
D.16 cm 或 20 cm
【分析】根据等腰三角形的性质,本题要分情况讨
论.分腰长为4 cm或8 cm两种情况,同时注意能否
构成三角形.
【答案】C
课堂精讲
考点二 几何变换中的等腰三角形 例 3 (2018·玉林)如图,∠AOB=60°,OA=OB,动点 C 从 点 O 出发,沿射线 OB 方向移动,以 AC 为边在右侧作等边△ACD, 连接 BD,则 BD 所在直线与 OA 所在直线的位置关系是( )
课堂精讲
考点一 等腰三角形的性质和判定 例1 (1)(2018·成都)等腰三角形的一个底角为50°, 则它的顶角的度数为________. 【答案】80°
课堂精讲
(2)(2018·湖州)如图,AD,CE 分别是△ABC 的中线和角平分线.若 AB= AC,∠CAD=20°,则∠ACE 的度数是( )
中考数学专项复习、中考真题分类解析:专题4.2 三角形(第01期)(解析版)
C. D.浙江省温州市2018年中考数学试卷C..如图,已知,添加以下条件,不能判定的是(A. B. C. D.)作线段,分别以为圆心以长为半径作弧两弧的交点为;)以为圆心仍以长为半径作弧交的延长线于点;)连接A. B.点是的外心 D.BD=AB=ABAC=CD,=AB、C.如图,点,分别在线段,上,与相交于点,已知,现添加以下哪个条件仍不能判定(A. B. C. D..已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹A. B.C. D.∴弦为.在中,,于,平分交于,则下列结论一定成立的是(A. B. C. D.如图,,且.、是上两点,,.若,,,则A. B. C. D..如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大A. C. D.【来源】陕西省2018【答案】证明见解析..如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.)线段,,之间的数量关系是)若,求的度数);(ADB=,年中考数学试卷BC=,cos ADB= cos∠ABE=cos ADB==AC=AB=3BC=CD= AB=3本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三.如图,在四边形中,∥,=2,为的中点,请仅用无刻度的直尺分别按下列要求画图.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化,当点在菱形内部或边上时,连接,与的数量关系是,与的位置)当点在菱形外部时,,当点在线段的延长线上时,连接,若,求四边形的面积) .,,∴,是等边三角形,∴,∵,∴,===,的面积是 .在中,,为的中点,,垂足分别为点,且.求证:是CE=∴,FC==,CE==.MC=BD EM=BDCM=ME=BD=DM DE=EM=DM,等腰三角形中,,求的度数(答案:)等腰三角形中,,求的度数(答案:或或)等腰三角形中,,求的度数)后,小敏发现,的度数不同,得到的度数的个数也可能不同如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围)或或;()当且,有三个不同的度数)分为顶角和为底角,两种情况进行讨论)分①当时,②当时,两种情况进行讨论.在中,,平分,平分,相交于点,且,则__________【答案】EF=,∴AE=,即+2-aa=,CH=FH=,AC=AE+EH+HC=,故答案为:.是正方形,和都是直角,且点三点共线,,则阴影部分的.等腰三角形的一个底角为,则它的顶角的度数为【答案】的网格中,的顶点,,均在格点上)的大小为)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于,把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求;)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求AC=,BC=,AB=,的等边中,,分别为,的中点,于点,为的中点,连接,则的长为【答案】分析:连接.如图,在中,用直尺和圆规作、的垂直平分线,分别交、于点、,连接.,则__________.【答案】.如图,五边形是正五边形,若,则__________交于点,根据得到∠根据五边形是正五边形得到∠交于点∵,∵五边形是正五边形,.如图,为的平分线.,..则点到射线的距离为.等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度【答案】或,此时正方形的边长为时,正方形。
数学中考复习专题直角三角形
"2017-2018中考数学复习专题-直角三角形"一.选择题〔每题3分,共计36分〕1.直角三角形的两个锐角平分线的夹角是〔〕A.45°B.135°C.45°或135°D.由两个锐角的大小决定2.直角三角形三边的长分别为3、4、*,则*可能取的值为〔〕A.5 B.C.5或D.不能确定3.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4,则以下结论中不正确的选项是〔〕A.BC=2 B.BD=1 C.AD=3 D.CD=24.将一副三角板按如下图方式放置,则∠1与∠2的和是〔〕A.60°B.45°C.30°D.25°第3题图第4题图第5题图5.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,假设∠A=25°,则∠BDC等于〔〕A.44°B.60°C.67°D.70°6.如图,在△ABC中,BD⊥AC于点D,点E为AB的中点,AD=6,DE=5,则线段BD的长为〔〕A.5 B.6 C.8 D.107.如图,△ABC是等腰直角三角形,点D是斜边AB上一点,DE⊥AC于点E,DF⊥BC于点F,AC=4,则EF的最小值是〔〕A.4B.4 C.2 D.2第6题图第7题图第8题图8.如图,△ABC中,AB=AC,∠BAC=90°,P为BC中点,∠EPF=90°,给出四个结论:①∠B=∠BAP;②AE=CF;③PE=PF;④S四边形AEPF=S△ABC,其中成立的有〔〕A.4个B.3个 C.2个 D.1个9.以下条件:〔1〕∠A+∠B=∠C,〔2〕∠A:∠B:∠C=1:2:3,〔3〕∠A=90°﹣∠B,〔4〕∠A=∠B=∠C中,其中能确定△ABC是直角三角形的条件有〔〕个.A.1 B.2 C.3 D.410.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有〔〕A.1 B.2 C.3 D.411.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2017=A.B.C.D.12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为〔〕A.〔〕2013B.〔〕2014C.〔〕2013D.〔〕2014第11题图第12题图"2017-2018中考数学复习专题-直角三角形"题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.填空题〔每题4分,共计24分〕13.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,假设EC=2,则EF=.14.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,假设DE=5,AE=8,则BC的长度为.第13题图第14题图第15题图15.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则BD的长为.16.如下图的一块地,∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为m2.17.如图,长方体的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点B,徐亚爬行的最短距离是cm.第16题图第17题图18.观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:,第n〔n为正整数〕组勾股数:.三.解答题〔共7小题,共计60分〕19.〔8分〕如图,在△ABCC中,∠ACB=90°,CD⊥AB,AF是角平分线,交CD于点E.求证:∠1=∠2.20.〔8分〕:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.21.〔8分〕如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD 的中点,求证:〔1〕MD=MB;〔2〕MN平分∠DMB.22.〔8分〕如图,长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.23.〔8分〕如图,△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.24.〔10分〕如图:△ABC中,∠BAC=90°,AB=AC,点D是斜边BC的中点.〔1〕如图1,假设E、F分别是AB、AC上的点,且AE=CF.求证:①△AED≌△CFD;②△DEF为等腰直角三角形.〔2〕如图2,点F、E分别D在CA、AB的延长线上,且AE=CF,猜测△DEF是否为等腰直角三角形?如果是请给出证明.25.〔10分〕∠MAN,AC平分∠MAN.〔1〕在图1中,假设∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;〔2〕在图2中,假设∠MAN=120°,∠ABC+∠ADC=180°,则〔1〕中的结论是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由."中考专题---直角三角形"参考答案与试题解析一.选择题〔共12小题〕1.直角三角形的两个锐角平分线的夹角是〔〕A.45°B.135°C.45°或135°D.由两个锐角的大小决定【解答】解:如图,∠ACB=90°,OA、OB分别平分∠BAC和∠ABC,∵OA、OB分别平分∠BAC和∠ABC,∴∠OAB=BAC,∠OBA=∠ABC,∴∠OAB+∠OBA=〔∠BAC+∠ABC〕,∵∠C=90°,∴∠BAC+∠ABC=90°,∴∠OAB+∠OBA=45°,∴∠AOB=180°﹣45°=135°,∴直角三角形的两个锐角平分线的夹角是135°或45°.应选C.2.直角三角形三边的长分别为3、4、*,则*可能取的值为〔〕A.5 B.C.5或 D.不能确定【解答】解:当*为斜边时,*==5;当4为斜边时,*==.∴*的值为5或;应选:C.3.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4,则以下结论中不正确的选项是〔〕A.BC=2 B.BD=1 C.AD=3 D.CD=2【解答】解:∵∠ACB=90°,∠A=30°,∴BC=AB=2,∵CD⊥AB,∴CD<AB,即CD<2,则CD=2错误,应选:D.4.将一副三角板按如下图方式放置,则∠1与∠2的和是〔〕A.60°B.45°C.30°D.25°【解答】解:∵图中是一副直角三角板,∴∠B=∠ACB=45°,∠BAC=∠EDF=90°,∠E=30°,∠F=60°,∴∠BCA+∠BAC=45°+90°=135°.∵∠EDF=90°,∴∠DCA+∠DAC=90°,∴∠1+∠2=〔∠BCA+∠BAC〕﹣〔∠DCA+∠DAC〕=135°﹣90°=45°.应选B.5.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC 边上的点E处,假设∠A=25°,则∠BDC等于〔〕A.44°B.60°C.67°D.70°【解答】解:∵△ABC中,∠ACB=90°,∠A=25°,∴∠B=90°﹣∠A=65°,由折叠的性质可得:∠CED=∠B=65°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=40°,∴∠BDC=〔180°﹣∠ADE〕=70°.应选D.6.如图,在△ABC中,BD⊥AC于点D,点E为AB的中点,AD=6,DE=5,则线段BD的长为〔〕A.5 B.6 C.8 D.10【解答】解:∵BD⊥AC于D,点E为AB的中点,∴AB=2DE=2×5=10,∴在Rt△ABD中,BD==8.应选C.7.如图,△ABC是等腰直角三角形,点D是斜边AB上一点,DE⊥AC于点E,DF⊥BC于点F,AC=4,则EF的最小值是〔〕A.4B.4 C.2D.2【解答】解:连接DC.∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFD是矩形,∴EF=DC,∴当DC最小时,EF也最小,即当CD⊥AB时,PC最小,∵AC=BC=4,∴AB=4,∴AC•BC=AB•DC,∴DC=2.∴线段EF长的最小值为2;应选C.8.如图,△ABC中,AB=AC,∠BAC=90°,P为BC中点,∠EPF=90°,给出四个结论:①∠B=∠BAP;②AE=CF;③PE=PF;④S四边形AEPF=S△ABC,其中成立的有〔〕A.4个B.3个C.2个D.1个【解答】解:∵AB=AC,∠BAC=90°,P为BC中点,∴①正确;∠B=∠PAC=45°∵∠BPE+∠EPA=90°,∠EPA+∠APF=90°∴∠BPE=∠APF,又AP为公共边,∴△PBE≌△PAF,∴BE=AF,又AB=AC,∴AE=CF,∴②正确;②中,△PBE≌△PAF,∴PE=PF,∴③正确,∵△PFC≌△PEA,△PBE≌△PAF,∴④也正确所以①②③④都正确,应选A.9.以下条件:〔1〕∠A+∠B=∠C,〔2〕∠A:∠B:∠C=1:2:3,〔3〕∠A=90°﹣∠B,〔4〕∠A=∠B=∠C中,其中能确定△ABC是直角三角形的条件有〔〕个.A.1 B.2 C.3 D.4【解答】解:A是,因为根据三角形角和定理可求出∠C=90°,所以是直角三角形;B是,因为根据三角形角和定理可求出三个角分别为30°,60°,90°,所以是直角三角形;C是,因为由题意得∠C=90°,所以是直角三角形;D是,因为根据三角形角和定理可求出∠C=90°,所以是直角三角形.应选D.10.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有〔〕A.1 B.2 C.3 D.4【解答】解:〔1〕S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.〔2〕S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.〔3〕S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.〔4〕S1=a2,S2=b2,S3=c2,∵a2+b2=c2,123综上,可得面积关系满足S1+S2=S3图形有4个.应选:D.11.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2017=〔〕A.B.C.D.【解答】解:∵OP=1,OP1=,OP2=,OP3==2,∴OP4==,…,OP2017=.应选:D.12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为〔〕A.〔〕2013B.〔〕2014C.〔〕2013D.〔〕2014【解答】解:在图中标上字母E,如下图.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,n当n=2016时,S2016==.应选C.二.填空题〔共6小题〕13.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,假设EC=2,则EF= 4 .【解答】解:作EG⊥OA于G,如下图:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.故答案为:4.14.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,假设DE=5,AE=8,则BC的长度为2.【解答】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=2DE=2×5=10,∵AE=8,∴BE==6.∴BC===2,故答案为:2.15.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则BD的长为9.6 .【解答】解:设AD=*,由勾股定理得,AB2﹣AD2=BC2﹣CD2,即102﹣*2=122﹣〔10﹣*〕2,解得,*=2.8,BD==9.6,故答案为:9.6.16.如下图的一块地,∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为96 m2.【解答】解:如图,连接AC.在△ACD中,∵AD=12m,CD=9m,∠ADC=90°,∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×15×20﹣×9×12=96〔平方米〕.故答案为:96.17.如图,长方体的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点B,徐亚爬行的最短距离是25 cm.【解答】解:只要把长方体的右侧外表剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的右侧外表剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的上外表剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB=;∵25<5,∴蚂蚁爬行的最短距离是25.故答案为:2518.观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:11,60,61 ,第n〔n为正整数〕组勾股数:2n+1,2n〔n+1〕,2n〔n+1〕+1 .【解答】解:∵①3=2×1+1,4=2×1×〔1+1〕,5=2×1×〔1+1〕+1,②5=2×2+1,12=2×2×〔2+1〕,13=2×2×〔2+1〕+1,③7=2×3+1,24=2×3×〔3+1〕,25=2×3×〔3+1〕+1,…,∴第n组勾股数为:2n+1,2n〔n+1〕,2n〔n+1〕+1,∴第⑤组勾股数为2×5+1=11,2×5×〔5+1〕=60,2×5×〔5+1〕+1=61,即11,60,61.故答案为:11,60,61;2n+1,2n〔n+1〕,2n〔n+1〕+1.三.解答题〔共7小题〕19.如图,在△ABCC中,∠ACB=90°,CD⊥AB,AF是角平分线,交CD 于点E.求证:∠1=∠2.【解答】证明:∵AF是角平分线,∴∠CAF=∠BAF,∵∠ACB=90°,CD⊥AB,∴∠CAF+∠2=90°,∠BAF+∠AED=90°,∴∠2=∠AED,∵∠1=∠AED,∴∠1=∠2.20.:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.【解答】解:连接AD,∵ED是AB的垂直平分线,∴DB=DA=4cm,∵∠B=30°,∴∠ADC=2∠B=60°,∴∠DAC=30°,∴DC=2,∵在△ABC中,∠C=90°∴由勾股定理得:AC=2cm.21.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:〔1〕MD=MB;〔2〕MN平分∠DMB.【解答】证明:〔1〕∵,∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴MD=MB;〔2〕∵MD=MB,N是BD的中点,∴MN平分∠DMB〔等腰三角形三线合一〕.22.如图,长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴∠AFE=90°,AF=10cm,EF=DE,设CE=*cm,则DE=EF=CD﹣CE=8﹣*,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4〔cm〕,在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即〔8﹣*〕2=*2+42,∴64﹣16*+*2=*2+16,∴*=3〔cm〕,即CE=3cm.23.如图,△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ 的形状.【解答】解:△APQ是等腰直角三角形.∵BE、CF都是△ABC的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°〔同角〔可等角〕的余角相等〕∴∠1=∠2又∵AC=BP,CQ=AB,在△ACQ和△PBA中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ是等腰直角三角形24.如图:△ABC中,∠BAC=90°,AB=AC,点D是斜边BC的中点.〔1〕如图1,假设E、F分别是AB、AC上的点,且AE=CF.求证:①△AED ≌△CFD;②△DEF为等腰直角三角形.〔2〕如图2,点F、E分别D在CA、AB的延长线上,且AE=CF,猜测△DEF 是否为等腰直角三角形?如果是请给出证明.【解答】〔1〕证明:①∵∠BAC=90°,AB=AC,D为BC中点,∴∠BAD=∠DAC=∠B=∠C=45°,∴AD=BD=DC,∵在△AED和△CFD中,,∴△AED≌△CFD〔SAS〕;②∵△AED≌△CFD,∴DE=DF,∠ADE=∠CDF,又∵∠CDF+∠ADF=90°,∴△DEF为等腰直角三角形;〔2〕△DEF为等腰直角三角形,理由:∵∠BAC=90° AB=AC,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45°,∴AD=BD=DC,∵在△AED和△CFD中,,∴△AED≌△CFD〔SAS〕;∴DE=DF∠ADE=∠CDF,又∵∠CDF﹣∠ADF=90°,∴△DEF为等腰直角三角形.25.∠MAN,AC平分∠MAN.〔1〕在图1中,假设∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;〔2〕在图2中,假设∠MAN=120°,∠ABC+∠ADC=180°,则〔1〕中的结论是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.【解答】〔1〕证明:∵∠MAN=120°,AC平分∠MAN,∴∠CAD=∠CAB=60°.又∠ABC=∠ADC=90°,∴AD=AC,AB=AC,∴AB+AD=AC.〔2〕解:结论仍成立.理由如下:作CE⊥AM、CF⊥AN于E、F.则∠CED=∠CFB=90°,∵AC平分∠MAN,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC,在△CDE和△CBF中,,∴△CDE≌△CBF〔AAS〕,∴DE=BF.∵∠MAN=120°,AC平分∠MAN,∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,在Rt△ACE与Rt△ACF中,则有AE=AC,AF=AC,则AD+AB=AD+AF+BF=AD+AF+DE=AE+AF=AC+AC=AC.∴AD+AB=AC.。
中考数学复习专题25等腰三角形、等边三角形试题(A卷,含解析)(2021年整理)
2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届中考数学复习专题25 等腰三角形、等边三角形试题(A卷,含解析)的全部内容。
等腰三角形、等边三角形一、选择题1.(山东临沂,12,3分)如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连接AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形。
其中正确的个数是()(A)0 (B)1 (C)2 (D)3【答案】D【逐步提示】本题考查等边三角形的判定与性质,菱形的判定与性质,先由等边三角形的性质得出∠ACB=∠DCE=60°,AC=CD,从而得出△ACD是等边三角形,得出①正确;再判断四边形ABCD是菱形,得出②正确;然后根据①结论得出四边形ACED是菱形,得出③正确.【详细解答】解:∵△ABC、△EDC是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°-∠ACB-∠DCE=60°,∴△ACD是等边三角形,∴AD=AC,故①正确;由①可得AD=BC=AB=CD,∴四边形ABCD是菱形,∴BD⊥AC,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D.【解后反思】解答本题需掌握以下知识:(1)等边三角形的性质:等边三角形的三个内角都相等,并且每一个内角都等于60°;(2)等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形;(3)菱形的判定:①一组邻边相等的平行四边形是菱形;②对角线互相垂直的四边形是菱形;③四条边都相等的四边形是菱形;(4)菱形的性质:①菱形是四条边都相等;②菱形的对角线互相垂直且平分;③菱形的每一条对角线平分一组对角.【关键词】 等边三角形的判定;等边三角形的性质;菱形的判定;菱形的性质2。
中考数学课件:第18课时 等腰三角形与等边三角形
∴此时△ABC底角的度数为15°.
综上,△ABC底角的度数为45°或75°或15°.
拓展 等腰三角形的一个内角为120°,则其 余两个内角的度数分别为__3_0_°_,_3_0_°_.
【解析】∵120°为三角形的顶角,∴底角为 (180°-120°)÷2=30°,即其余两个内角的度数 分别为30°,30°.
3 21 AB=7× 2 = 2 ································第四步
上述解法是从第__一__步开始出现错误的,请写
出本题的正确解题过程.
解:当AB为底边时,则有 3 AC+2AC=28,
解得AC=8,则AB=8×23
当AB为腰时,则有AC+
2
=12;
3 AC+
3
第一部分 教材知识梳理
第四单元 三角形
第18课时 等腰三角形与等边三角形
中考考点清单
考点1 等腰三角形(高频考点) 考点2 等边三角形
考点1 等腰三角形(高频考点)
(1)是轴对称图形,对称轴是顶角平分线所在的直线; 性 (2)底边上的高、中线及顶角平分线重合(简称“三线 质 合一”);
(3)两底角相等(简称“等边对①__等_角___”)
1 BC,AD⊥BC可求出顶角的度数,进而求得底角度 2
数;③AC=BC且为钝角等腰三角形,根据已知条件可
求得与顶角相邻的三角形的外角的度数,进而求解.
【解析】本题应分情况讨论:如解图①,
AB=AC,∵AD⊥BC,∴BD=CD= 1 BC,
∠ADB=90°,∵AD=
1
2
BC,∴AD=BD,
2
∴∠B=45°,即此时△ABC底角的度数为45°;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考数学复习专题——等腰三角形、等边三角形和直角三角形一.选择题(共5小题)1.(2018•湖州)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.2.(2018•宿迁)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8 D.6【分析】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【解答】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:B.3.(2018•扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.4.(2018•淄博)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M 作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4 B.6 C.D.8【分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.5.(2018•黄冈)如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=()A.2 B.3 C.4 D.2【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=3,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=2,∴DE=3,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故选:C.二.填空题(共12小题)6.(2018•成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.7.(2018•长春)如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为37度.【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=37°.【解答】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.8.(2018•哈尔滨)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为130°或90°.【分析】根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.【解答】解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.9.(2018•吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为36度.【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【解答】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=36°,故答案为:36.10.(2018•淮安)若一个等腰三角形的顶角等于50°,则它的底角等于65°.【分析】利用等腰三角形的性质及三角形内角和定理直接求得答案.【解答】解:∵等腰三角形的顶角等于50°,又∵等腰三角形的底角相等,∴底角等于(180°﹣50°)×=65°.故答案为:65.11.(2018•娄底)如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=6cm.=2S△ABD=2×【分析】先利用HL证明Rt△ADB≌Rt△ADC,得出S△ABCAB•DE=AB•DE=3AB,又S△ABC=AC•BF,将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中,,∴Rt△ADB≌Rt△ADC,=2S△ABD=2×AB•DE=AB•DE=3AB,∴S△ABC=AC•BF,∵S△ABC∴AC•BF=3AB,∵AC=AB,∴BF=3,∴BF=6.故答案为6.12.(2018•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是3.【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:313.(2018•徐州)边长为a的正三角形的面积等于.【分析】根据正三角形的性质求解.【解答】解:过点A作AD⊥BC于点D,∵AD⊥BC∴BD=CD=a,∴AD==a,面积则是:a•a=a2.14.(2018•黑龙江)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=()n.【分析】由AB1为边长为2的等边三角形ABC的高,利用三线合一得到B1为BC 的中点,求出BB1的长,利用勾股定理求出AB1的长,进而求出第一个等边三角形AB1C1的面积,同理求出第二个等边三角形AB2C2的面积,依此类推,得到第n个等边三角形AB n C n的面积.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=1,AB=2,根据勾股定理得:AB1=,∴第一个等边三角形AB1C1的面积为×()2=()1;∵等边三角形AB1C1的边长为,AB2⊥B1C1,∴B1B2=,AB1=,根据勾股定理得:AB2=,∴第二个等边三角形AB2C2的面积为×()2=()2;依此类推,第n个等边三角形AB n C n的面积为()n.故答案为:()n.15.(2018•湘潭)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD= 30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.16.(2018•天津)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.【分析】直接利用三角形中位线定理进而得出DE=2,且DE∥AC,再利用勾股定理以及直角三角形的性质得出EG以及DG的长.【解答】解:连接DE,∵在边长为4的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=2,且DE∥AC,BD=BE=EC=2,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=1,故EF==,∵G为EF的中点,∴EG=,∴DG==.故答案为:.17.(2018•福建)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=3.【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.三.解答题(共2小题)18.(2018•绍兴)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数,(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题.(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.【分析】(1)由于等腰三角形的顶角和底角没有明确,因此要分类讨论;(2)分两种情况:①90≤x<180;②0<x<90,结合三角形内角和定理求解即可.【解答】解:(1)若∠A为顶角,则∠B=(180°﹣∠A)÷2=50°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×80°=20°;若∠A为底角,∠B为底角,则∠B=80°;故∠B=50°或20°或80°;(2)分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.19.(2018•徐州)(A类)已知如图,四边形ABCD中,AB=BC,AD=CD,求证:∠A=∠C.(B类)已知如图,四边形ABCD中,AB=BC,∠A=∠C,求证:AD=CD.【分析】(A类)连接AC,由AB=AC、AD=CD知∠BAC=∠BCA、∠DAC=∠DCA,两等式相加即可得;(B类)由以上过程反之即可得.【解答】证明:(A类)连接AC,∵AB=AC,AD=CD,∴∠BAC=∠BCA,∠DAC=∠DCA,∴∠BAC+∠DAC=∠BCA+∠DCA,即∠A=∠C;(B类)∵AB=AC,∴∠BAC=∠BCA,又∵∠A=∠C,即∠BAC+∠DAC=∠BCA+∠DCA,∴∠DAC=∠DCA,∴AD=CD.。