最新北师大版九年级下三角函数应用题练习
北师大版初三数学下册三角函数的应用练习题
1.5三角函数的应用1、已知:岛P 位于岛 Q 的正西方,由岛 P,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,切合条件的示企图是 ()2、如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔 2 海里的点 A 处,假如海轮沿正南方向航行到灯塔的正东方向,那么海轮航行的距离AB 长是 ()A . 2 海里B. 2sin55°海里C. 2cos55°海里 D .2tan55°海里3、如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观察灯塔A位于南偏东75°方向上,轮船航行半小时抵达 C 处,在 C 处观察灯塔 A 位于北偏东 60°方向上,则 C 处与灯塔 A 的距离是多少海里()A . 25 3B .25 2C. 50 D . 254、一轮船由南向北航行到O 处时,发现与轮船相距40 海里的 A 岛在北偏东33°方向.已知 A 岛四周 20 海里水域有暗礁,假如不改变航向,轮船____________(填“有”或“没有”)触礁的危险.(可使用科学计算器)5、如图,一渔船由西往东航行,在A点测得海岛 C 位于北偏东60°的方向,行进 20 海里抵达 B 点,此时,测得海岛 C 位于北偏东30°的方向,则海岛 C 到航线 AB 的距离 CD 等于 ____________ 海里.6、如图,湖中的小岛上有一标记性建筑物,其底部为A,某人在岸边的 B 而后沿岸边直行 4 公里抵达 C 处,再次测得 A 在 C 的北偏西45°的方向上个标记性建筑物的底部 A 到岸边 BC 的最短距离.处测得 A 在 B 的北偏东 30°的方向上,(此中 A 、B、C 在同一个平面上 ).求这7.(荆门中考)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤离,红方在公路上的B处沿南偏西 60°方向行进实行拦截,红方行驶 1 000 米抵达 C 处后,因前面没法通行,红方决定调整方向,再朝南偏西 45°方向行进了同样的距离,恰幸亏 D 处成功拦截蓝方,求拦截点 D 处到公路的距离 (结果保存根号 ).8.(锦州中考)如下图,位于A处的海上营救中心获悉:在其北偏东68°方向的B处有一艘渔船遇险,在原地等候营救.该中心立刻把信息见告在其北偏东 30°相距 20 海里的 C 处救生船,并通知救生船,遇险船在它的正东方向 B 处,现救生船沿着航线 CB 前去 B 处营救,若救生船的速度为 20 海里 /时,请问:救生船抵达 B 处大概需要多长时间? (结果精准到0.1 小时,参照数据: sin38°≈ 0.62,cos38°≈ 0.79,sin22°≈ 0.37,cos22°≈ 0.93,sin37°≈0.60, cos37°≈ 0.80)。
北师大版初三数学9年级下册 第1章(直角三角形的边角关系)1.5三角函数的应用 同步练习题(含解析)
北师大版九年级数学下册《1.5三角函数的应用》同步练习题(附答案)1.如图,已知一商场自动扶梯的长l为13米,高度h为5米,自动扶梯与地面所成的夹角为θ,则tanθ的值等于( )A.B.C.D.2.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(m)与时间t(s)间的关系为s=10t+2t2,若滑到坡底的时间为4s,则此人下降的高度为( )A.72m B.m C.36m D.m3.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是( )A.60°B.45°C.15°D.90°4.小明沿着坡度为1:的坡面向下走了2米,那么他下降高度为( )A.1米B.米C.2米D.米5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是( )A.5米B.6米C.6.5米D.12米6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是( )A.500•sinα米B.米C.500•cosα米D.米7.如图,在坡角为30°的斜坡上要栽两棵树,要求它们之间的水平距离AC为6m,则这两棵树之间的坡面AB的长为( )A.12m B.3m C.4m D.12m8.某水库堤坝的横断面如图所示,迎水坡AB的坡度是1:,堤坝高BC=50m,则AB= m.9.已知一个斜坡的坡度i=1:,那么该斜坡的坡角的度数是 度.10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了 米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)11.如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为 米.12.活动楼梯如图所示,∠B=90°,斜坡AC的坡度为1:1,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为 .13.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).14.如图,放置在水平桌面上的台灯的灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)15.美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)16.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)17.如图1一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin76°≈0.97.cos76°≈0.24,tan76°≈4.00)18.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.(参考数据:≈1.73,≈1.41)19.放风筝是大家喜爱的一种运动,星期天的上午小明在市政府广场上放风筝.如图,他在A处不小心让风筝挂在了一棵树梢上,风筝固定在了D处,此时风筝AD与水平线的夹角为30°,为了便于观察,小明迅速向前边移动,收线到达了离A处10米的B处,此时风筝线BD与水平线的夹角为45°.已知点A,B,C在同一条水平直线上,请你求出小明此时所收回的风筝线的长度是多少米?(风筝线AD,BD均为线段,≈1.414,≈1.732,最后结果精确到1米).20.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)参考答案1.解:∵商场自动扶梯的长l=13米,高度h=5米,∴m===12米,∴tanθ=;故选:A.2.解:当t=4时,s=10t+2t2=72.设此人下降的高度为x米,过斜坡顶点向地面作垂线,∵一人乘雪橇沿坡度为1:的斜坡笔直滑下,∴CA=x,BC=x,在直角△ABC中,由勾股定理得:AB2=BC2+AC2,x2+(x)2=722.解得:x=36.故选:C.3.解:∵sin∠CAB===,∴∠CAB=45°.∵==,∴∠C′AB′=60°.∴∠CAC′=60°﹣45°=15°,鱼竿转过的角度是15°.故选:C.4.解:∵坡度tanα==1:.∴α=30°.∴下降高度=坡长×sin30°=1米.故选:A.5.解:如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5m.故选:A.6.解:如图,∠A=α,AE=500.则EF=500sinα.故选:A.7.解:如图,∵∠BAC=30°,∠ACB=90°,AC=6m,∴AB===4(m).故选:C.8.解:由图可得,BC:AC=1:,∵BC=50m,∴AC=50m,∴AB==100(m).故答案为:100.9.解:∵tanα=1:=,∴坡角=30°.10.解:如图在Rt△ABC中,AC=AB•sin34°=500×0.56≈280米,∴这名滑雪运动员的高度下降了280米.故答案为:280.11.解:因为坡度比为1:,即tanα=,∴α=30°.则其下降的高度=72×sin30°=36(米).12.解:如图.AC=8米,BC:AB=1:1.设BC=x米,则AB=x米.在Rt△ABC中,AC2=BC2+AB2,即x2+x2=82,解得x=4,即BC=4米.故上升高度是4米.故答案为:4.13.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=AC tan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BD cos28°≈4.27×0.88=3.7576≈3.7(m)(这里是去尾法).答:坡道口的限高DF的长是3.7m.14.解:由题意得:CD⊥AE,过点B作BM⊥CE,BF⊥EA.∵灯罩BC长为32cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CM⊥MB,即三角形CMB为直角三角形,∴sin30°==,∴CM=16cm,在直角三角形ABF中,sin60°=,∴=,解得:BF=21,又∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+21+2≈54.4cm.答:此时灯罩顶端C到桌面的高度CE是54.4cm.15.解:过点D作DE⊥AC,垂足为E,设BE=x,在Rt△DEB中,,∵∠DBC=65°,∴DE=x tan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=x tan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.16.解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴=,∵FB=4米,BE=6米,DE=9米,∴=,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=,∴AC===6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.17.解:(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CD sin∠DCP=40×sin76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20cm,EQ=DP=39cm,又∵CP=CD cos∠DCP=40×cos76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54cm.18.解:(1)由题意得,在Rt△ADC中,AD===24≈36.33(米),在Rt△BDC中,BD===8,则AB=AD﹣BD=16;(2)超速.理由:∵汽车从A到B用时2秒,∴速度为16×1.73÷2=13.84米/秒13.84×3.6=49.824千米/时>45千米/小时.∴此校车在AB路段超速.19.解:作DH⊥BC于H,设DH=x米.∵∠ACD=90°,∴在直角△ADH中,∠DAH=30°,AD=2DH=2x,AH=DH÷tan30°=x,在直角△BDH中,∠DBH=45°,BH=DH=x,BD=x,∵AH﹣BH=AB=10米,∴x﹣x=10,∴x=5(+1),∴小明此时所收回的风筝的长度为:AD﹣BD=2x﹣x=(2﹣)×5(+1)≈(2﹣1.414)×5×(1.732+1)≈8米.答:小明此时所收回的风筝线的长度约是8米.20.解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•sin60°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m。
北师大版九年级下册1.5三角函数的应用
北 ME N
60°
B
A
P
东
A
A
练习二.(本小题满分8分)
则tanB的值 则BC的长为(
)。30° 45°
D B C 1、改善后滑梯加长多少米?
3、在△ABC中,∠C=90°,BC=6cm,sinA=
例1 从B点测得D点的仰角为60°从
B
30° 60°
练2
C
解:1)在Rt△ABC中,AC=AB·sin45°=
2、所站地面长度增加多少米?(结果保留根号)
解:1)在Rt△ABC中,AC=AB·sin45°=5 2
A
2
BC =AC = 5 2
2
在Rt△ADC中,AD=
AC sin 30
=
5
2
D
B
C
CD= AC = 5 6
tan 30 2
∴AD-AB= 525米
2)∴CD-BC=
答:改善后滑梯会加长
2、在Rt△ABC中,∠C=90°,BC=
P
北 ME N
60°
B
台风 C
B
A
东
练习三:如图,小唐同学正在操场上放风筝,风筝
从A处起飞,几分钟后便飞达C处,此时,在AQ延长
线上B处的小宋同学,发现自己的位置与风筝和旗杆
PQ的顶点P在同一直线上。
(1)已知旗杆高为10米,若在B处测得旗杆顶点P的
仰角为30°,A处侧得点P的仰角为45°,试求A、B
则BC的长为( ) 则tanB的值 。 解:1)在Rt△ABC中,AC=AB·sin45°= 3、在△ABC中,∠C=90°,BC=6cm,sinA= 解:1)在Rt△ABC中,AC=AB·sin45°= 从B点测得D点的仰角为60°从
2022-2023学年北师大版九年级数学下册《1-5三角函数的应用》题型分类练习题(附答案)
2022-2023学年北师大版九年级数学下册《1.5三角函数的应用》题型分类练习题(附答案)一.测量计算物体高度问题1.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)2.两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部?3.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)4.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B、C、D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.求支撑杆上的点E到水平地面的距离EF是多少?(用四舍五入法对结果取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)6.“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)7.第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图1),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图2是其示意图,已知:助滑坡道AF=50米,弧形跳台的跨度FG=7米,顶端E到BD的距离为40米,HG∥BC,∠AFH=40°,∠EFG=25°,∠ECB=36°.求此大跳台最高点A距地面BD的距离是多少米(结果保留整数).(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)8.如图,信号塔PQ座落在坡度i=1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ落在斜坡上的影子QN长为2米,落在警示牌上的影子MN长为3米,求信号塔PQ的高.(结果不取近似值)9.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).10.图1是太阳能热水器装置的示意图.利用玻璃吸热管可以把太阳能转化为热能,玻璃吸热管与太阳光线垂直时,吸收太阳能的效果最好,假设某用户要求根据本地区冬至正午时刻太阳光线与地面水平线的夹角(θ)确定玻璃吸热管的倾斜角(太阳光线与玻璃吸热管垂直),请完成以下计算:如图2,AB⊥BC,垂足为点B,EA⊥AB,垂足为点A,CD∥AB,CD=10cm,DE=120cm,FG⊥DE,垂足为点G.(1)若∠θ=37°50′,则AB的长约为cm;(参考数据:sin37°50′≈0.61,cos37°50′≈0.79,tan37°50′≈0.78)(2)若FG=30cm,∠θ=60°,求CF的长.11.汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)12.如图1,水坝的横截面是梯形ABCD,∠ABC=37°,坝顶DC=3m,背水坡AD的坡度i(即tan∠DAB)为1:0.5,坝底AB=14m.(1)求坝高;(2)如图2,为了提高堤坝的防洪抗洪能力,防汛指挥部决定在背水坡将坝顶和坝底同时拓宽加固,使得AE=2DF,EF⊥BF,求DF的长.(参考数据:sin37°≈,cos37°≈,tan37°≈)二.实际问题数学抽象13.如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?14.日照间距系数反映了房屋日照情况.如图①,当前后房屋都朝向正南时,日照间距系数=L:(H﹣H1),其中L为楼间水平距离,H为南侧楼房高度,H1为北侧楼房底层窗台至地面高度.如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C 处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F处至少多远?15.图1是某小区入口实景图,图2是该入口抽象成的平面示意图.已知入口BC宽3.9米,门卫室外墙AB上的O点处装有一盏路灯,点O与地面BC的距离为3.3米,灯臂OM长为1.2米(灯罩长度忽略不计),∠AOM=60°.(1)求点M到地面的距离;(2)某搬家公司一辆总宽2.55米,总高3.5米的货车从该入口进入时,货车需与护栏CD保持0.65米的安全距离,此时,货车能否安全通过?若能,请通过计算说明;若不能,请说明理由.(参考数据:≈1.73,结果精确到0.01米)16.如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部.三.三角函数的应用17.如图1是某中学教学楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)18.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)19.随着我国科学技术的不断发展,科学幻想变为现实.如图1是我国自主研发的某型号隐形战斗机模型,全动型后掠翼垂尾是这款战斗机亮点之一.图2是垂尾模型的轴切面,并通过垂尾模型的外围测得如下数据,BC=8,CD=2,∠D=135°,∠C=60°,且AB∥CD,求出垂尾模型ABCD的面积.(结果保留整数,参考数据:≈1.414,≈1.732)20.如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2,已知AD=BE=10cm,CD=CE=5cm,AD⊥CD,BE⊥CE,∠DCE=40°.(1)连结DE,求线段DE的长.(2)求点A,B之间的距离.(结果精确到0.1cm.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)参考答案一.测量计算物体高度问题1.解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,∴∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE﹣DF=20+5﹣10﹣10﹣5=10﹣10≈3.2(cm).2.解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m,∵∠BFH=∠α=30°,在Rt△BFH中,BH=,FC=30﹣17.32=12.68,再用12.68÷3≈4.23,所以在四层的上面,即第五层,答:此刻B楼的影子落在A楼的第5层;(2)连接BC,∵BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.3.解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5米,BH=5≈8.65(米),∴DH=15(米),在Rt△ADH中,AH=≈=20(米),∴AB=AH﹣BH=20﹣8.65≈11.4(米).答:AB的长度约为11.4米.4.解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=(米),在Rt△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.32(米),∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=(米),∴AB=AN+BN=12.32+1.5≈13.8(米).5.解:方法一:如图1,过点D作DM⊥EF于M,过点D作DN⊥BA交BA延长线于N,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×=16(cm),∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),∵∠F=90°,∠DMF=90°,∴DM∥FN,∴∠MDB=∠ABC=60°,在Rt△BDN中,sin∠DBN=sin60°=,∴DN=×100=50(cm),∵∠F=90°,∠N=90°,∠DMF=90°,∴四边形MFND是矩形,∴DN=MF=50,∵∠BDE=75°,∠MDB=60°,∴∠EDM=∠BDE﹣∠MDB=75°﹣60°=15°,∵DE=70(cm),∴ME=DE•sin∠EDM=70×sin15°≈18.2(cm),∴EF=ME+MF=50+18.2≈104.8≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.方法二:如图2,过点D作DH⊥BA交BA延长线于H,过点E作EG⊥HD延长线于G,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×=16(cm),∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),同方法一得,DH=BD•sin60°=50(cm),∵在Rt△BDH中,∠DBH=60°,∴∠BDH=30°,∵∠BDE=75°,∴∠EDG=180°﹣∠BDH﹣∠BDE=180°﹣75°﹣30°=75°,∴∠DEG=90°﹣75°=15°,∴DG=DE•sin15°≈18.2(cm),∴GH=DG+DH=18.2+50≈104.8≈105(cm),∵∠F=90°,∠H=90°,∠G=90°,∴EF=GH≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.6.解:∵BN∥ED,∴∠NBD=∠BDE=37°,∵AE⊥DE,∴∠E=90°,∴BE=DE•tan∠BDE≈18.75(cm),如图,过C作AE的垂线,垂足为F,∵∠FCA=∠CAM=45°,∴AF=FC=25cm,∵CD∥AE,∴四边形CDEF为矩形,∴CD=EF,∵AE=AB+EB=35.75(cm),∴CD=EF=AE﹣AF≈10.8(cm),答:线段BE的长约等于18.8cm,线段CD的长约等于10.8cm.7.解:如图,过点E作EN⊥BC于点N,交HG于点M,则AB=AH﹣EM+EN.根据题意可知,∠AHF=∠EMF=∠EMG=90°,EN=40(米),∵HG∥BC,∴∠EGM=∠ECB=36°,在Rt△AHF中,∠AFH=40°,AF=50,∴AH=AF•sin∠AFH≈50×0.64=32(米),在Rt△FEM和Rt△EMG中,设MG=m米,则FM=(7﹣m)米,∴EM=MG•tan∠EGM=MG•tan36°≈0.73m,EM=FM•tan∠EFM=FM•tan25°≈0.47(7﹣m),∴0.73m=0.47(7﹣m),解得m≈2.7(米),∴EM≈0.47(7﹣m)=2.021(米),∴AB=AH﹣EM+EN≈32﹣2.021+40≈70(米).∴此大跳台最高点A距地面BD的距离约是70米.8.解:如图作MF⊥PQ于F,QE⊥MN于E,则四边形EMFQ是矩形.在Rt△QEN中,设EN=x米,则EQ=2x米,∵QN2=EN2+QE2,∴20=5x2,∵x>0,∴x=2,∴EN=2(米),EQ=MF=4(米),∵MN=3米,∴FQ=EM=1(米),在Rt△PFM中,PF=FM•tan60°=4(米),∴PQ=PF+FQ=(4+1)米.9.解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=AC sin30°=50×=25(cm),∵GD=50﹣30=20(cm),∴CD=CG+GD=25+20=45(cm),连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90(cm),∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290(cm),在Rt△EFH中,EF=EH•tan30°=290×=(cm),答:支撑角钢CD和EF的长度各是45cm,cm.10.解:(1)如图,作EP⊥BC于点P,作DQ⊥EP于点Q,则CD=PQ=10,∠2+∠3=90°,∵∠1+∠θ=90°,且∠1=∠2,∴∠3=∠θ=37°50′,则EQ=DE sin∠3=120×sin37°50′,∴AB=EP=EQ+PQ=120sin37°50′+10=83.2(cm),故答案为:83.2;(2)如图,延长ED、BC交于点K,由(1)知∠θ=∠3=∠K=60°,在Rt△CDK中,CK==(cm),在Rt△KGF中,KF===(cm),则CF=KF﹣KC=﹣==(cm).11.解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH=30×30=900,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=9米,∴AB=9,∴BG=BH﹣HG=7米,∵斜坡EF的坡度i=1:,∴FG=9米,∴BF=FG﹣BG=9﹣7,∴S梯形ABFE=(2+9﹣7)×9=,∴共需土石为×200=100(81﹣45)立方米.12.解:(1)作DM⊥AB于M,CN⊥AN于N.由题意:tan∠DAB==2,设AM=x,则DM=2x,∵四边形DMNC是矩形,∴DM=CN=2x,在Rt△NBC中,tan37°===,∴BN=x,∵x+3+x=14,∴x=3,∴DM=6,答:坝高为6m.(2)作FH⊥AB于H.设DF=y,则AE=2y,EH=3+2y﹣y=3+y,BH=14+2y﹣(3+y)=11+y,由△EFH∽△FBH,可得=,即=,解得y=﹣7+2或﹣7﹣2(舍弃),∴DF=2﹣7,答:DF的长为(2﹣7)m.二.实际问题数学抽象13.解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.14.解:(1)在Rt△EFH中,∵∠H=90°,∴tan∠EFH=i=1:0.75==,设EH=4xm,则FH=3xm,∴EF==5xm,∵EF=15m,∴5x=15m,x=3,∴FH=3x=9m.即山坡EF的水平宽度FH为9m;(2)∵L=CF+FH+EA=CF+9+4=CF+13,H=AB+EH=22.5+12=34.5,H1=0.9,∴日照间距系数=L:(H﹣H1)==,∵该楼的日照间距系数不低于1.25,∴≥1.25,∴CF≥29.答:要使该楼的日照间距系数不低于1.25,底部C距F处29m远.15.解:(1)如图,过M作MN⊥AB于N,交BA的延长线于N,Rt△OMN中,∠NOM=60°,OM=1.2,∴∠M=30°,∴ON=OM=0.6,∴NB=ON+OB=3.3+0.6=3.9;即点M到地面的距离是3.9米;(2)取CE=0.65,EH=2.55,∴HB=3.9﹣2.55﹣0.65=0.7,过H作GH⊥BC,交OM于G,过O作OP⊥GH于P,∵∠GOP=30°,∴tan30°==,∴GP=OP=≈0.404,∴GH=3.3+0.404=3.704≈3.70>3.5,∴货车能安全通过.16.解:∵BH=0.6米,sinα=,∴AB==1米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,BF=AB,∴△EFK∽△FBJ∽△ABH,△FBJ≌△ABH,∴,BJ=BH=0.6米,即,解得,EK=1.28,∴BJ+EK=0.6+1.28=1.88<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.三.三角函数的应用17.解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,∵AB=CD,AB+CD=AD=2,∴AB=CD=1,在Rt△ABE中,∠A=35°,AB=1,∴BE=AB•sin A=1×sin35°≈0.6,∴AE=AB•cos A=1×cos35°≈0.8,在Rt△CDF中,∠D=45°,CD=1,∴CF=CD•sin D=1×sin45°≈0.7,∴DF=CD•cos D=1×cos45°≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC是平行四边形,∴BC=EM,在Rt△MEF中,FM=CF+CM=1.3,EF=AD﹣AE﹣FD=0.5,∴EM==≈1.4,答:B与C之间的距离约为1.4米.18.解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.19.解:如图,过点A作CD的垂线,交CD的延长线于F,过点C作AB的垂线,交AB 的延长线于E,∵AB∥CD,∴四边形AECF是矩形,∵∠BCD=60°,∴∠BCE=90°﹣60°=30°,在Rt△BCE中,∠BCE=30°,BC=8,∴BE=BC=4,CE=BC=4,∵∠ADC=135°,∴∠ADF=180°﹣135°=45°,∴△ADF是等腰直角三角形,∴DF=AF=CE=4,由于FC=AE,即4+2=AB+4,∴AB=4﹣2,∴S梯形ABCD=(2+4﹣2)×4=24,答:垂尾模型ABCD的面积为24.20.解:(1)∵AE=EF=AF=1m,∴△AEF是等边三角形,∴∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵△AEF是等边三角形,∴AK=(m),∴FK==(m),∴FM=2FK=(m),∴BC=4FM=4≈6.92≈6.9(m),答:∠AFE的度数为60°,棚宽BC的长约为6.9m;(2)∵∠AFE=74°,∴∠AFK=37°,∴KF=AF•cos37°≈0.80(m),∴FM=2FK=1.60(m),∴BC=4FM=6.40(m)<6.92(m),6.92﹣6.40=0.52≈0.5(m),答:当∠AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.21.解:(1)如图,过点C作CF⊥DE于点F,∵CD=CE=5cm,∠DCE=40°.∴∠DCF=20°,∴DF=CD•sin20°≈5×0.34≈1.7(cm),∴DE=2DF≈3.4cm,∴线段DE的长约为3.4cm;(2)∵横截面是一个轴对称图形,∴延长CF交AD、BE延长线于点G,连接AB,∴DE∥AB,∴∠A=∠GDE,∵AD⊥CD,BE⊥CE,∴∠GDF+∠FDC=90°,∵∠DCF+∠FDC=90°,∴∠GDF=∠DCF=20°,∴∠A=20°,∴DG=≈≈1.8(cm),∴AG=AD+DG=10+1.8=11.8(cm),∴AB=2AG•cos20°≈2×11.8×0.94≈22.2(cm).∴点A,B之间的距离22.2cm.。
北师大版初三数学9年级下册 第1章 1.5三角函数的应用 解答题专题训练 (含答案)
北师大版九年级数学下册《1.5三角函数的应用》解答题专题训练(附答案)1.如图是矗立在公路边水平地面上的交通警示牌,经测量得到如下数据AM=4米,AB=8米,∠MBC=30°,∠MAD=45°,则警示牌的高CD为多少米?(结果精确到米,参考数据:≈1.41,≈1.73)2.如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i=:2.若新坡角下留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)3.我国南水北调中线工程的起点是丹江水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡CD的坡度为:1.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,≈1.73).4.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A 离地面BD的高度AH为3.5米.当起重臂AC长度为8米,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位)【参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53】5.某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:≈1.414,≈1.732,≈2.449)6.如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)7.如图,宿豫区某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高3米的影子CE,而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有30米的距离(B、F、C在一条直线上).(1)求教学楼AB的高度;(2)若要在A、E之间挂一些彩旗,请你求出A、E之间的距离.(结果精确到1m)(参考数据:sin22°,cos22°≈,tan22°≈)8.如图,某市为方便行人过马路,打算修建一座高为4x(m)的过街天桥.已知天桥的斜面坡度i=1:0.75是指坡面的铅直高度DE(CF)与水平宽度AE(BF)的比,其中DC∥AB,CD=8x(m).(1)请求出天桥总长和马路宽度AB的比;(2)若某人从A地出发,横过马路直行(A→E→F→B)到达B地,平均速度是2.5m/s;返回时从天桥由BC→CD→DA到达A地,平均速度是1.5m/s,结果比去时多用了12.8s,请求出马路宽度AB的长.9.缆车,不仅提高了景点接待游客的能力,而且解决了登山困难者的难题.如图,当缆车经过点A到达点B时,它走过了700米.由B到达山顶D时,它又走过了700米.已知线路AB与水平线的夹角α为16°,线路BD与水平线的夹角β为20°,点A的海拔是126米.求山顶D的海拔高度(画出设计图,写出解题思路即可).10.如图所示是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D、C、G、K在同一直线上).小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应当前进或后退多少?(sin80°≈0.98,cos80°≈0.17,≈1.41,结果精确到0.1)11.一扇窗户如图1所示,窗框和窗扇用“滑块铰链”连接,如图2是图1中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,支点A处装有滑块,滑块可以左右滑动,支点B,C,D在一条直线上,延长DE交MN于点F.已知AC=DE =20cm,AE=CD=10cm,BD=40cm.(1)当∠CAB=35°时,求窗扇与窗框的夹角∠DFB的度数.(2)当窗扇关闭时,图中点E,A,D,C,B都在滑轨MN上,求此时点A与点B之间的距离.(3)在(2)的前提下,将窗户推开至四边形ACDE为矩形时,求点A处的滑块移动的距离.12.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60米,底座BC 与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1米,HF段的长为1.50米,篮板底部支架HE的长为0.75米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板顶端F到地面的距离.(结果精确到0.1米;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)13.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1,如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)14.如图,一辆摩托单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于底面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)15.停车难已成为合肥城市病之一,主要表现在居住停车位不足,停车资源结构性失衡,中心城区供需差距大等等.如图是张老师的车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)16.自行车因其便捷环保深受人们喜爱,成为日常短途代步与健身运动首选.如图1是某品牌自行车的实物图,图2是它的简化示意图.经测量,车轮的直径为66cm,车座B到地面的距离BE为90cm,中轴轴心C到地面的距离CF为33cm,车架中立管BC的长为60cm,后轮切地面L于点D.(参考数据:sin72≈0.95,cos18°≈0.95,tan43.5°≈0.9 5)(1)求∠ACB的大小(精确到1°)(2)如果希望车座B到地面的距离B'E′为96.8cm,车架中立管BC拉长的长度BB′应是多少?(结果取整数)17.为营造“安全出行”的良好交通氛围,实时监控道路交通,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DE∥AB,摄像头EF⊥DE于点E,AC=5.5米,CD=3米,EF=0.4米,∠CDE=162°.(1)求∠MCD的度数;(2)求摄像头下端点F到地面AB的距离.(精确到百分位)(参考数据;sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)18.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)19.图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为2米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米)参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈20.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.如图,在某校图书馆门前一段笔直的内部道路AB上,过往车辆限速3米/秒在点B的正上方距其7米高的C处有一个探测仪.一辆轿车从点A匀速向点B行驶5秒后此轿车到达D点,探测仪测得∠CAB=18°,∠CDB=45°,求AD之间的距离,并判断此轿车是否超速,(结果精确到0.01米)【参考数据:sin l8°=0.309,cos l8°=0.951,tan l8°=0.325】22.如图1是儿童写字支架示意图,由一面黑板,一面白板和一块固定支架的托盘组成,图2是它的一个左侧截面图,该支架是个轴对称图形,∠BAC是可以转动的角,B,C、D,E和F,G是支架腰上的三对对称点,是用来卡住托盘以固定支架的.已知AB=AC=60cm,BD=CE=DF=EG=10cm.(1)当托盘固定在BC处时,∠BAC=32°,求托盘BC的长;(精确到0.1)(2)当托盘固定在DE处时,这是儿童看支架的最佳角度,求此时∠BAC的度数.(参考数据:sin32°=0.53,cos32°=0.85,sin16°=0.28,sin20°=0.34,sin25°=0.42.)23.如图是在写字台上放置一本摊开的数学书和一个折叠式台灯时的截面示意图,已知摊开的数学书AB长20cm,台灯上半节DE长40cm,下半节DC长50cm.当台灯灯泡E恰好在数学书AB的中点O的正上方时,台灯上、下半节的夹角即∠EDC=120°,下半节DC与写字台FG的夹角即∠DCG=75°,求BC的长.(书的厚度和台灯底座的宽度、高度都忽略不计,F、A、O、B、C、G在同一条直线上.参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41,结果精确到0.1)24.如图,一架梯子底端放在一处斜坡上,顶端靠在墙上,已知梯子与坡面的夹角α=75°,斜坡CD与地面的夹角β=30°,BC=1米,CD=2米,求梯子顶端到地面的距离AB.25.据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.【参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25】26.如图是菏泽银座地下停车场入口的设计图,请根据图中数据计算CE的长度.(结果精确到0.01m,参考数据:sin22°≈0.3746,cos22°≈0.9272,tan22°≈0.4040)27.如图是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小红身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.参考答案1.解:在Rt△AMD中,∠MAD=45°,∴DM=AM⋅tan45°=4(m),在Rt△BMC中,∠MBC=30°,∴CM=BM⋅tan30°,∵BM=AM+AB=4+8=12(m),∴CM=12×≈6.92(m),∴CD=CM﹣DM=6.92﹣4≈3(米),答:警示牌的高CD为3米.2.解:在Rt△ABC中,∵∠CAB=45°,∴AB=BC=10,∵坡面DC的坡度为i=:2,∴tan∠CDB=,在Rt△BCD中,=,∴BD=×10=14.14,∵10+10﹣14.14=5.86>3,∴离原坡角(A点处)10米的建筑物不需要拆除.3.解:在Rt△BAE中,tan∠BAE=,即=2.5,解得,AE=64.8,在Rt△DCE中,tan∠DCE=,即=,解得,CE=102.08,AC=CE﹣AE=102.08﹣64.8≈37.3(米),答:工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.4.解:作CE⊥BD于E,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.5m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=8sin28°=8×0.47=3.76,∴CE=CF+EF=3.76+3.5≈7.3(m),答:操作平台C离地面的高度为7.3m.5.解答:在Rt△ABC中,AC=AB•sin45°=4×=2,∵∠ABC=45°,∴AC=BC=2,在Rt△ADC中,AD=2AC=4,AD﹣AB=4﹣4≈1.66.答:改善后滑板会加长1.66米.6.解:(1)过点C作CE⊥PB,垂足为E,过点D作DF⊥PB,垂足为F,则∠CEP=∠PFD=90°,由题意可知:设AB=x,在Rt△PCE中,tan32.3°=,∴PE=x•tan32.3°,同理可得:在Rt△PDF中,tan55.7°=,∴PF=x•tan55.7°,由PF﹣PE=EF=CD=42,可得x•tan55.7°﹣x•tan32.3°=42,解得:x=50∴楼间距AB=50m,(2)由(1)可得:PE=50•tan32.3°=31.5m,∴CA=EB=90﹣31.5=58.5m由于2号楼每层3米,可知点C位于20层.7.解:(1)过点EE作EM⊥AB于点M,设AB=x,在Rt△ABF中,∵∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+30,在Rt△AEM中,∵∠AEM=22°,AM=AB﹣CE=x﹣3,,∴,解得x=25,∴办公楼AB的高度为25m.(2)在Rt△AEM中,∵,∴=≈59m,答:A,E之间的距离约为59m.8.解:(1)∵DE⊥AB,CF⊥AB,∴∠DEF=∠CFE=90°,∴DE∥CF,∵DC∥AB,∴四边形CDEF是矩形,∴EF=DC=8x,∵==,∴EA=BF=3x,∴AD=BC=5x,∴AB=AE+EF+BF=14x,∴天桥总长和马路宽度AB的比=18x:14x=9:7.(2)由(1)可知,AB=14x,AD+CD+BC=18x,由题意:=﹣12.8,解得x=2,∴14x=28,答:马路宽度AB的长为28m,9.解:如图,作DH⊥水平线于H,AG⊥水平线于G,BE⊥DH于E,AC⊥DH于F.在Rt△ABC中,∠ACB=90°,∠α=16°,AB=700,由sinα=,可求BC的长.即BC=AB•sinα=700sin16°,在Rt△BDE中,∠DBE=90°,∠β=16°,BD=AB=700,由sinβ,可求DE的长.即DE=BD•sinβ=700sin20°,由矩形性质,可知EF=BC=700sin16°,FH=AG=126.从而,可求得DH的长.即DH=DE+EF+FH=700sin20°+700sin16°+126.10.解:过点F作FH⊥DK于H,过点E作EL⊥FH于L,在Rt△FGH中,cos∠FGH=.∴GH=GF•cos∠FGH=100×0.17=17,在Rt△EFL中,∠EFL=180°﹣125°﹣10°=45°,EF=166﹣100=66cm,∴EL=≈46.5cm,DH=DC+CG+GH=48+15+17=80,∴小强的头距墙:80﹣46.5=33.5,而洗漱盆的中心距墙48÷2=24,小强应该向前移动:33.5﹣24≈9.5(cm).11.解:(1)∵AC=DE=20cm,AE=CD=10cm,∴四边形DEAC是平行四边形,∴DF∥AC,∴∠DFB=∠CAB=35°.(2)由题意AB=AC+BC=20+30=50(cm),(3)当四边形DEAC是矩形时,AB==10(cm),∴点A处的滑块移动的距离=(50﹣10)cm.12.解:(1)由题意可得:cos∠FHE==,则∠FHE=60°;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端F到地面的距离是4.4米.13.解:设BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈==x,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+x,解得x=12,即BC=12,答:水坝原来的高度为12米.14.解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CH cot68°=0.4x,由AB=49 知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BE sin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.15.过点A作OB的垂线AC,垂足是C,在Rt△ACO,AO=1.2,∠AOC=40°∵sin40°=,∴AE=OA sin40°≈0.64×1.2=0.768<0.8,∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,∴车门不会碰到墙.16.解:(1)∵AD⊥l,CF⊥l,HE⊥l∴AD∥CF∥HE,∵AD=33cm,CF=33cm,∴AD=CF,∴四边形ADFC是平行四边形,∵∠ADF=90°,∴四边形ADFC是矩形,∴HE=AD=33cm,∵BE=90cm,∴BH=57cm,在Rt△HCB中,sin∠BCH====0.95,∴∠ACB=72°.(2)如图所示,B'E'=96.8cm,设B'E'与AC交于点H',则有B'H'∥BH,∴△B'H'C∽△BHC,得=.即=,∴B'C=67cm.故BB'=B'C﹣BC=67﹣60=7(cm).∴车架中立管BC拉长的长度BB'应是7cm.17.(1)如图,延长ED,AM交于点P,∵DE∥AB,MA⊥AB∴EP⊥MA,即∠MPD=90°∵∠CDE=162°∴∠MCD=162°﹣90°=72°;(2)如图,在Rt△PCD中,CD=3米,∠MCD=72°,∴PC=CD•cos∠MCD=3×cos72°≈3×0.31=﹣0.93米∵AC=5.5米,EF=0.4米,∴PC+AC﹣EF=0.93+5.5﹣0.4=6.03米答:摄像头下端点F到地面AB的距离为6.03米.18.解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).19.解:(1)过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=AB sin∠BAF=2sin37°≈=1.2.∴真空管上端B到AD的距离约为1.2米.(2)在Rt△ABF中,∵cos∠BAF=,∴AF=AB cos∠BAF=2cos37°≈1.6,∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD,∵EC=0.5米,∴DE=CD﹣CE=0.7米,在Rt△EAD中,∵tan∠EAD=,∴=,∴AD=1.75米,∴BC=DF=AD﹣AF=1.75﹣1.6=0.15≈0.2∴安装热水器的铁架水平横管BC的长度约为0.2米.20.解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5米,BH=5≈8.65(米),∴DH=15(米),在Rt△ADH中,AH=≈=20(米),∴AB=AH﹣BH=20﹣8.65≈11.4(米).答:AB的长度约为11.4米.21.解:由题意可得:在Rt△BCD中,∠CBD=90°,∠CDB=45°,∴∠DCB=∠CDB=45°,∴BC=BD=7,在Rt△ABC中,∠BAC=18°,BC=7,tan∠BAC=,∴,∴AD=21.538﹣7=14.538≈14.54,14.54÷5≈2.91<3,答:AD之间的距离约为14.54米,此轿车没有超速.22.解:(1)如图,过A作AH⊥BC于H,∵AB=AC=60cm,∴∠CAH=∠BAC=16°,∴Rt△ACH中,CH=sin16°×AC,∴BC=2CH=2×sin16°×60≈33.6cm;(2)如图,连接DE,过A作AP⊥DE于P,∵AD=AE=60﹣10=50,∴PE=DE=×33.6=16.8,∠BAC=2∠CAP,∴Rt△APE中,sin∠PAG==≈0.34,又∵sin20°=0.34,∴∠PAE=20°,∴∠BAC=40°.23.解:如图作DM⊥OE于M,DN⊥FG于N.则四边形DMON是矩形.∴DM∥ON,∴∠DCN=∠CDM=75°,∴∠EDM=120°﹣75°=45°,∵DE=40cm,∴EM=DM=ON=20≈28.2(cm),在Rt△DCN中,CN=CD•cos75°≈13(cm),∵OB=10,∴BC=ON﹣OB﹣CN=28.2﹣10﹣13=5.2(cm).24.解:作DE⊥AB于E,DF⊥BC于F.则四边形DEBF是矩形.在Rt△DCF中,DF=EB=CD•sin30°=1,CF=CD•cos30°=,∴DE=BF=1+,在Rt△ADE中,∠ADE=75°﹣30°=45°,∴AE=DE=1+,∴AB=AE+EB=2+.25.解:∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=,∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.47.∵限高杆顶端到桥面的距离DF为2.47米,小于客车高2.5米,∴客车不能通过限高杆.26.解:由已知有:∠BAE=22°,∠ABC=90°,∠CED=∠AEC=90°∴∠BCE=158°,∴∠DCE=22°,又∵tan∠BAE=,∴BD=AB•tan∠BAE,又∵cos∠BAE=cos∠DCE=,∴CE=CD•cos∠BAE=(BD﹣BC)•cos∠BAE=(AB•tan∠BAE﹣BC)•cos∠BAE=(10×0.4040﹣0.5)×0.9272≈3.28(m),答:CE的长度为3.28m.27.解:(1)∵在Rt△ACD中,cos∠CAD=,AC=18、∠CAD=30°,∴AD====12(米),答:此时风筝线AD的长度为12米;(2)设AF=x米,则BF=AB+AF=9+x(米),在Rt△BEF中,BE===18+x(米),由题意知AD=BE=18+x(米),∵CF=10,∴AC=AF+CF=10+x,由cos∠CAD=可得=,解得:x=3+2,则AD=18+(3+2)=24+2,∴CD=AD sin∠CAD=(24+2)×=12+,则C1D=CD+C1C=12++=+;方法二:设CD=x,∵∠CAD=30°,∴BE=AD=2CD=2x,AC===x,∵CF=10,∴AF=AC﹣CF=x﹣10,∵AB=9,∴BF=AB+AF=9+x﹣10,∵∠EBF=45°,∴由cos∠EBF=可得=,解得:x=12+,即CD=12+,则C1D=CD+C1C=12++=+.答:风筝原来的高度C1D为(+)米。
北师大版数学九年级下册:三角函数应用题练习
三角函数应用练习1.如图:6-5-8,一铁路路基的横断面为等腰梯形,根据图示数据计算路基的下底宽AB=____。
2.如图6-5-9,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要 _______米(精确到0.1米)图6-5-8 图6-5-93.如图6-5-10,在高离铁塔150米的A 处,用测角仪测得塔顶的仰角为30°,已知测角仪高AD=1.52米,则塔高 BE=_______(精确到0.1米)图6-5-10 图6-5-114.某防洪堤坝的横断面是梯形,已知背水坡的坡长为60米,坡角为30°,则坝高为_______ 米。
5.升国旗时,某同学站地离旗杆底部24米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若双眼离地面1.5米,则旗杆高度为_______ 米,(用含根号的式子表示)6.在地面上一点,测得一电视塔尖的仰角为45°,沿水平方面再向塔底前进a 米,又测得塔尖的仰角为60°,那么电视塔高为_______。
7.若太阳光线与地面成37°角,一棵树的影长为10m ,则树高h 的取值范围是( )A .3<h≤5 B、5<h<10 C.10<h<15 D.h>158.河堤的横断面如图6-5-11所示。
堤高BC 是5米,迎水坡AB 的长是13米。
那么斜坡AB 的坡宽I 是( ) A .1:3 B 、1:2.6 C.1:2.4 D.1:29.某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成80°角。
房屋朝南的窗子高AB=1.8m,要在窗子外面上方安装一个水平挡光板AC ,使午间光线不能直接射入室内(如图:6-5-12),那么挡光板AC 的宽度至少应为( )图6-5-12 图6-5-13A.1.8tan80°m B.1.8cos80°m C.m D.1.8cot80°m10.如图6-5-13,水库大坝的横断面为梯形,坝顶宽6米,坝高24米,斜坡AB 的坡角为45°,斜坡CD 的坡度 I=1:2,则坝底AD 的长为( )A .42米B 、(30+24)米C 、78米D 、(30+8)米80sin 8.13311、如图6-5-14,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为a,则它们重叠部分(图中阴影部分)的面积为( )A .B. C.sina D.1 12、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定13、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、614、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<90015、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、016、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:2217、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 18.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=3219.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12)D .(-12,-32)20.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米21.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m(B )100 m (C )150m (D )3100mαsin 1αcos 121、如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米22、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里23、甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.24、从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.25、九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.45︒30︒BAD C 300450DC B A300450ArE DBCEF26、如图所示,一条渔船某时刻在位置A 观测灯塔B 、C(灯塔B 距离A 处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?28、公路MN 和公路PQ 在点P 处交汇,且∠=︒QPN 30,点A 处有一所中学,AP=160m ,一辆拖拉机以3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NP A Q M.EAC BD北东。
北师大版初三数学9年级下册 第1章 1.5 三角函数的应用 同步练习卷(含答案)
北师大版数学九年级下册1.5《三角函数的应用》同步练习卷一、选择题1.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7m,则树高BC为(用含α的代数式表示)()A.7sinαB.7cosαC.7tanαD.2.如图,梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sinA的值越大,梯子越陡B.cosA的值越大,梯子越陡C.tanA的值越小,梯子越陡D.陡缓程度与∠A的函数值无关3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为()A.10海里/小时B.30海里/小时C.20海里/小时D.30海里/小时4.如图,有一轮船在A处测得南偏东30°方向上有一小岛P,轮船沿正南方向航行至B处,测得小岛P在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛P在正东方向上,则A,B之间的距离是( )A.10海里B.(10-10)海里C.10海里D.(10-10)海里5.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二踩档与第三踩档的正中间处有一条60 cm长的绑绳EF,tanα=2.5,则“人字梯”的顶端离地面的高度AD是( )A.144 cm B.180 cm C.240 cm D.360 cm6.一座楼梯的示意图如图,BC是铅垂线,CA是水平线,BA与CA的夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米27.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于( )A.100sin 35°米B.100sin 55°米C.100tan 35°米D.100tan 55°米8.如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米9.如图,将一个 Rt△ABC 形状的楔子从木桩的底端点 P 沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为 15°,若楔子沿水平方向前进 6cm(如箭头所示),则木桩上升了()A.6sin15°cmB.6cos15°cmC.6tan15°cmD.cm10.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A. B. C. D.二、填空题11.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为米(结果保留整数,测角仪忽略不计)12.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为__________米.13.如图,河坝横断面迎水坡AB的坡比是1:,堤高BC=5米,则坝底AC的长度是米.14.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是海里(结果保留根号).15.如图,为测量某塔AB的高度,在离塔底部10米处目测其塔顶A,仰角为60°,目高1.5米,则求该塔的高度为米.(参考数据:≈1.41,≈1.73)16.如图,在5×5的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则cos∠BAC的值为 .三、解答题17.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)18.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?19.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.20.为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm~300mm含(300mm),高度的范围是120mm~150mm(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm,参考数据:sin65°≈0.906,cos65°≈0.423)参考答案1.C2.A3.D4.D5.B6.D7.C;8.C;9.C;10.A11.答案为:137.12.答案为:160.13.答案为:.14.答案为:。
北师大版初三数学9年级下册 第1章 1.5三角函数的应用 同步达标测评 (含答案)
北师大版九年级数学下册《1.5三角函数的应用》同步达标测评(附答案)一.选择题(共4小题,满分20分)1.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为( )A.24m B.22m C.20m D.18m2.如图,矩形草坪ABCD中,AD=10m,AB=10m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B、D.若便道的宽为1m,则这条便道的面积大约是( )(精确到0.1m2)A.9.5m2B.10.0m2C.10.5m2D.11.0m23.如图所示,CD是平面镜,光线从A点出发经CD上的E点反射后到达B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6,CD=11,则tanα的值是( )A.B.C.D.4.如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时梯子的倾斜角为75°,如果梯子的底端不动,顶端靠在对面墙上,此时梯子的顶端距地面的垂直距离NB为b米,梯子的倾斜角为45°,则这间房子的宽AB为( )A.米B.米C.b米D.a米二.填空题(共8小题,满分32分)5.如图是一山谷的横断面示意图,宽AA′为15m,用曲尺(两直尺相交成直角)从山谷两侧测量出OA=1m,OB=3m,O′A′=0.5m,O′B′=3m(点A,O,O′A′在同一条水平线上),则该山谷的深h为 m.6.小敏想知道校园内一棵大树的高(如图),她测得CB=10米,∠ACB=50°,请你帮她算出树高AB约为 米.(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)7.如图,我校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30°,∠BCA=90°,台阶的高BC为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶.(结果精确到0.1m,取=1.414,=1.732).8.为美化小区环境,某小区有一块面积为30m2的等腰三角形草地,测得其一边长为10m,现要给这块三角形草地围上白色的低矮栅栏,则其长度为 m.9.如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA为a米,此时,梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面墙上N,此时梯子顶端距地面的垂直距离NB为b米,梯子的倾斜角45°,则这间房子的宽AB是 米.10.如图,青岛位于北纬36°4′,通过计算可以求得:在冬至日正午时分的太阳入射角为30°30′.因此,在规划建设楼高为20米的小区时,两楼间的距离最小为 米,才能保证不挡光(结果保留四个有效数字)(提示:sin30°30′=0.5075,tan30°30′=0.5890).11.如图梯子AB靠在墙上,梯子的底端A到墙根C的距离为2米,梯子的顶端B到地面的距离为7米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根C的距离等于3米,同时梯子的顶端B下降至B′,那么BB′①等于1米②大于1米③小于1米.其中正确结论序号是 .12.如图,一束光线从y轴上点A(0,1)出发,经过x轴上点C反射后经过点B(3,3),则光线从A点到B点经过的路线长是 .三.解答题(共10小题,满分68分)13.如图1、2,图1是一个小朋友玩“滚铁环”的游戏,铁环是圆形的,铁环向前滚动时,铁环钩保持与铁环相切.将这个游戏抽象为数学问题,如图2.已知铁环的半径为5个单位(每个单位为5cm),设铁环中心为O,铁环钩与铁环相切点为M,铁环与地面接触点为A,∠MOA=α,且sinα=.(1)求点M离地面AC的高度BM(单位:厘米);(2)设人站立点C与点A的水平距离AC等于11个单位,求铁环钩MF的长度(单位:厘米).14.如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行,请你根据图中数据计算回答:小敏身高1.78米,她乘电梯会有碰头危险吗?姚明身高2.29米,他乘电梯会有碰头危险吗?(可能用到的参考数值:sin27°=0.45,cos27°=0.89,tan27°=0.51)15.去年夏季山洪暴发,几所学校被山体滑坡推倒教学楼,为防止滑坡,经过地质人员勘测,当坡角不超过45°时,可以确保山体不滑坡.某小学紧挨一座山坡,如图所示,已知AF ∥BC,斜坡AB长30米,坡角∠ABC=60°.改造后斜坡BE与地面成45°角,求AE 至少是多少米?(精确到0.1米)16.太阳光线与水平线的夹角在新疆地区的变化较大,夏至时夹角最大,冬至时夹角最小,最小夹角约为28度.现有两幢居民住宅楼高为15米,两楼相距20米,如图所示.(1)在冬至时,甲楼的影子在乙楼上有多高?(2)若在本小区内继续兴建同样高的住宅楼,楼距至少应该多少米,才不影响楼房的采光?(前一幢楼房的影子不能落在后一幢楼房上)(计算结果精确到0.1米)17.某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD 和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l.(即AD+AB+BC,结果精确到0.1米)(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)18.如图所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河流,且CD 与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案:方案一:E⇒D⇒A⇒B;方案二:E⇒C⇒B⇒A.经测量得AB=4千米,BC=10千米,CE=6千米,∠BDC=45°,∠ABD=15度.已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.(1)求出河宽AD(结果保留根号);(2)求出公路CD的长;(3)哪种方案铺设电缆的费用低?请说明你的理由.19.如图是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30°,若新坡角下需留3米的人行道,问离原坡角10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732.)20.已知:如图,A、B、C三个村庄在一条东西走向的公路沿线上,AB=2km.在B村的正北方向有一个D村,测得∠DAB=45°,∠DCB=28°.今将△ACD区域进行规划,除其中面积为0.5km2的水塘外,准备把剩余的一半作为绿化用地,试求绿化用地的面积.(结果精确到0.1km2,sin28°=0.4695,cos28°=0.8829,tan28°=0.5317,cot28°=1.88.8)21.如图,在一次龙卷风中,一棵大树在离地面若干千米处折断倒下,B为折断处最高点,树顶A落在离树根C的12米处,测得∠BAC=48°,求BC的长.(借助计算器,精确到0.1米)22.苏州的虎丘塔塔身倾斜,却历经千年而不倒,被誉为“中国第一斜塔”.如图,BC是过塔底中心B的铅垂线.AC是塔顶A偏离BC的距离.据测量,约为2.34米,倾角约为2°48′,求虎丘塔塔身AB的长度.(精确到0.1米)参考答案一.选择题(共4小题,满分20分)1.解:过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.由题意得:.∴DF=DE×1.6÷2=14.4(m).∴GF=BD=CD=6m.又∵.∴AG=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.故选:A.2.解:∵四边形ABCD为矩形,∴△ADB为直角三角形,又∵AD=10,AB=10,∴BD==20,又∵cos∠ADB==,∴∠ADB=60°.又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°,且外环半径为10.5,内环半径为9.5.∴每个扇环的面积为=.∴当π取3.14时整条便道面积为=10.4666≈10.5m2.便道面积约为10.5m2.故选:C.3.解:因为AC、BD、法线均和镜面垂直,所以∠A=∠B=α,而由已知得△ACE∽△BDE,所以=即=∴,在三角形ACE中tan A====tanα.故选:D.4.解:过N点作MA垂线,垂足点D,连接NM.设梯子底端为C点,AB=x,且AB=ND=x.∴△BNC为等腰直角三角形,∴180°﹣45°﹣75°=60°∴△CNM为等边三角形,梯子长度相同∵∠NCB=45°,∴∠DNC=45°,∴∠MND=60°﹣45°=15°,∴cos15°=,又∵∠MCA=75°,∴∠AMC=15°,∴cos15°=,故可得:=.∵△CNM为等边三角形,∴NM=CM.∴x=MA=a.故选:D.二.填空题(共8小题,满分32分)5.解:设A、A′到谷底的水平距离为AC=m,A′C=n.∴m+n=15.根据题意知,OB∥CD∥O′B′.∵OA=1,OB=3,O′A′=0.5,O′B′=3.∴==3,==6.∴(+)×h=15.解得h=30(m).6.解:由题可知,在Rt△ABC中,tan50°=AB:BC,∴AB=tan50°×BC≈1.2×10=12(米).7.解:在Rt△ABC中,∠A=30°,BC=2,∠C=90°.∵tan A=,∴=2.∴AC+BC=2+2≈2×1.73+2=5.46≈5.5(m).即地毯的长度至少需5.5m.8.解:(1)如图1,当底边BC=10m时,由于S=30m2,所以高AD=6m,此时AB=AC==(m),所以周长=(2+10)m;(2)①当△ABC是锐角三角形时,如图2,当AB=AC=10m时,高CE=6,此时AE=8m,BE=2m,在Rt△BEC中,BC=2m,此时周长=(20+2)m.②当△ABC是钝角三角形时,如图3,设BD=xm,AD=hm,则在Rt△ABD中,×2x×h=30,xh=30,,解得或(舍去),故△ABC是钝角三角形时,△ABC的周长=2×10+3=(20+6)(m),故填空答案:2+10或20+2或20+6.9.解:过N点作MA垂线,垂足点D,连接NM.由题意得AB=ND,△CNM为等边三角形(180﹣45﹣75=60°,梯子长度相同),∵∠ACM=75°,∴∠AMC=15°.∴∠AMN=75°,在△MND中,ND=MN×sin75°,在△MAC中,AM=MC×sin75°,∵MN=MC,∴ND=MA=a.故答案为a.10.解:由题意可知,光线,楼和地面构成一个直角三角形.∴tan30°30′=,所以楼间距=,即楼间距=≈33.96(米).11.解:由勾股定理得:梯子AB=,CB′=.∴BB′=7﹣<1,故选③.12.解:A关于x轴的对称点A′坐标是(0,﹣1)连接A′B,交x轴于点C,作DB∥A′A,A′D∥OC,交DB于D,故光线从点A到点B所经过的路程A′B===5.三.解答题(共10小题,满分68分)13.解:过M作与AC平行的直线,与OA、FC分别相交于H、N.(1)在Rt△OHM中,∠OHM=90°,OM=5,HM=OM×sinα=3,所以OH=4,MB=HA=5﹣4=1,1×5=5cm.所以铁环钩离地面的高度为5cm;(2)∵铁环钩与铁环相切,∴∠MOH+∠OMH=∠OMH+∠FMN=90°,∠FMN=∠MOH=α,∴=sinα=,∴FN=FM,在Rt△FMN中,∠FNM=90°,MN=BC=AC﹣AB=11﹣3=8.∵FM2=FN2+MN2,即FM2=(FM)2+82,解得:FM=10,10×5=50(cm).∴铁环钩的长度FM为50cm.14.解:姚明乘此电梯会有碰头危险.(1分)理由:由题意可知:AC∥BD,∴∠CAB=∠ABD=27°.(2分)过点C作CE⊥AC交AB于点E,(3分)在Rt△ACE中,tan∠CAE=,(4分)∴CE=AC•tan∠CAE=4×tan27°≈4×0.51=2.04(米)<2.29(米).∴姚明乘此电梯会有碰头危险.∵2.04>1.78,∴小敏乘此电梯不会有碰头危险.15.解:在Rt△ADB中,AB=30米∠ABC=60°AD=AB•sin∠ABC=30×sin60°=15≈25.98≈26.0(米),DB=AB•cos∠ABC=30×cos60°=15米.连接BE,过E作EN⊥BC于N∵AE∥BC∴四边形AEND是矩形NE=AD≈26米在Rt△ENB中,由已知∠EBN≤45°,当∠EBN=45°时,BN=EN=26.0米∴AE=DN=BN﹣BD=26.0﹣15=11米答:AE至少是11.0米.16.解:(1)如图所示,作DE⊥AB,垂足为E,由题意可知∠ADE=28°,DE=BC=20,在Rt△ADE中,tan∠ADE=,AE=DE•tan∠ADE=20•tan28°≈10.6,则DC=EB=AB﹣AE=15﹣10.6=4.4.即冬至时甲楼的影子在乙楼上约4.4米高.(2)若要不影响要房间的采光,如图所示在Rt△ABC中,AB=15,∠C=28°,BC=≈28.2.答:楼距至少28.2米,才不影响楼房的采光.17.解:(1)DH=1.6×=1.2(m);(2)过B作BM⊥AH于M,则四边形BCHM是矩形.∴MH=BC=1(m),∴AM=AH﹣MH=1+1.2﹣1=1.2(m).在Rt△AMB中,∠A=66.5°.∴AB=(m).∴l=AD+AB+BC≈1+3.0+1=5.0(m).答:点D与点C的高度差DH为1.2m;所用不锈钢材料的总长度约为5.0m.18.解:(1)过点B作BF⊥AD,交DA的延长线于点F.由题意得:∠BAF=∠ABD+∠ADB=15°+45°=60°,在Rt△BFA中,BF=AB sin60°=4×=6(千米),AF=AB cos60°=4×=2(千米).∵CD⊥AD,∠BDC=45°,∴∠BDF=45°,在Rt△BFD中,∵∠BDF=45°,∴DF=BF=6千米.∴AD=DF﹣AF=(6﹣2)(千米).即河宽AD为(6﹣2)千米;(2)过点B作BG⊥CD于G,易证四边形BFDG是正方形,∴BG=BF=6千米.在Rt△BGC中,=8(千米),∴CD=CG+GD=14千米.即公路CD的长为14千米;(3)方案一的铺设电缆费用低.由(2)得DE=CD﹣CE=8千米.∴方案一的铺设费用为:2(DE+AB)+4AD=40万元,方案二的铺设费用为:2(CE+BC+AB)=(32+8)万元.∵40<32+8,∴方案一的铺设电缆费用低.19.解:∵∠CAB=45°.∴AB=BC=10.∵∠CDB=30°.∴BD=10.∴AD=10﹣10≈7.32.(7分)∵7.32+3>10.答:离原坡角10米的建筑物需要拆除.(10分)20.解:在Rt△ABD中,∵∠ABD=90°,∠BAD=45°,∠ADB=45°,∴BD=AB=2km,在Rt△BCD中,∵cot∠BCD=,∠DCB=28°,∴BC=BD•cot∠BCD=2cot28°(km),∴S△ACD=AC•BD=(2+2cot28°)(km2).∴S绿地=(2+2cot28°)≈2.6(km2).答:绿化用地的面积为2.6km2.21.解:在直角△ABC中,tan∠BAC=∴BC=AC•tan48°=12tan48°≈13.3米.22.解:在Rt△ABC中,∵sin∠ABC=∴=≈47.9.答:虎丘塔塔身AB长约为47.9m。
北师大版九年级数学下册《1.5三角函数的应用》单元检测卷带答案
北师大版九年级数学下册《1.5三角函数的应用》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1.如图,下列说法:①B在A的东北方向上,A在B的西南方向;②C在A的东偏北15°方向上;③C 在B的东偏南60°方向上;④B在C的北偏西30°方向上.其中正确的个数为()A.1B.2C.3D.42.如图,从热气球C上测定建筑物A、B底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A、D、B在同一直线上,那么建筑物A、B间的距离为()A.150√3米B.180√3米C.200√3米D.220√3米的山坡上植树,要想保证水平株距为5 m,则相邻两株树植树地点的高度差应3.小明要在坡度为35为m.4.有一拦水坝的横断面是等腰梯形,它的上底长为6米,下底长为10米,高为2√3米,那么此拦水坝斜坡的坡度为√3,坡角为.【能力巩固】5.在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000 m的C地去,先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了500 m到达目的地C,此时小霞在营地A的()A.北偏东20°方向上B.北偏东30°方向上C.北偏东40°方向上D.北偏西30°方向上6.如图,自建筑物AB的顶部A测量铁塔CD的高度,若测得塔顶C的仰角为α,塔底D的俯角为β,建筑物与铁塔的距离BD=m(测量仪器的高度忽略不计),则铁塔的高度可表示为()A.mtan(α+β)B.m(tan α+tan β)C.mtanα+tanβD.m·tan(α+β)7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1∶0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin 24°≈0.41,cos 24°≈0.91,tan 24°≈0.45)()A.21.7米B.22.4米C.27.4米D.28.8米8.小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:√2≈1.414,√3≈1.732)【素养拓展】9.如图,小山顶上有一电视塔,在山脚C处测得塔顶A、塔底B的仰角分别为45°和30°,若塔高AB=40 m,则山高BD≈m.(精确到1 m)10.我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图,BC∥AD,斜坡AB=40米,坡角∠BAD=60°.为防夏季因暴雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号)参考答案【基础达标】1.D2.C3.34.√360°【能力巩固】5.C6.B7.A8.解:∵∠EAB=60°,∠EAC=30°,∴∠CAD=60°,∠BAD=30°∴CD=AD·tan∠CAD=√3AD,BD=AD·tan∠BAD=√3AD3∴BC=CD-BD=2√3AD=30米3∴AD=15√3≈25.98米.∴无人机飞行的高度AD为25.98米.【素养拓展】9.5510.解:如图,作BG⊥AD于点G,作EF⊥AD于点F,连接AE,则在Rt△ABG中,∠BAD=60°,AB=40 所以就有BG=AB·sin 60°=20√3,AG=AB·cos 60°=20同理,在Rt△AEF中,∠EAD=45°则AF=EF=BG=20√3所以BE=FG=AF-AG=20(√3-1)米.。
北师大版九年级下册数学-三角函数的应用巩固练习(Word版含答案)
九年级下册数学巩固练习(北师大版)1.4 三角函数的应用学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,有一斜坡AB ,坡顶B 离地面的高度BC 为30 m,斜坡的倾斜角是BAC ∠,若2tan 5BAC ∠=,则此斜坡的水平距离AC 为( )A.75 mB.50 mC.30 mD.12 m2.如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37°,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75︒≈)( )A.7.5米B.8米C.9米D.10米 3.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直(A ,D ,B 在同一条直线上),设CAB α∠=,则拉线BC 的长度为( )A.sin h αB.cos h αC.tan h αD.cos h α⋅ 4.如图,长4 m 的楼梯AB 的倾斜角ABD ∠为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角ACD ∠为45°,则调整后的楼梯AC 的长为( )A.23mB.26mC.(232m )-D.(262m )-5.如图,一艘潜水艇在海面下300 m 的点A 处发现其正前方的海底C 处有黑匣子,同时测得黑匣子C 的俯角为30°,潜水艇继续在同一深度直线航行960 m 到点B 处,测得黑匣子C 的俯角为60°,则黑匣子所在的C 处距离海面的深度是( )A.(4803300)m +B.3300)mC.780 mD.1260 m6.如图是拦水坝的横断面,堤高BC 为6米,斜面的坡度为1:2,则斜坡AB 的长为( )A.43B.5C.125D.24米7.如图,一艘船由A 港沿北偏东65°方向航行302至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为( )A.(30303)+kmB.(30103)+kmC.(10303)+kmD.303km8.如图,在一个20米高的楼顶上有一信号塔DC ,某同学为了测量信号塔的高度,在地面上A 处测得信号塔下端D 的仰角为30°,然后他正对塔的方向前进了8米到达地面上B 处,又测得信号塔顶端C 的仰角为45°,直线CD AB ⊥交直线AB 于点E ,E 、B 、A 三点在条直线上,则信号塔CD 的高度为( )A.203B.(2038)米C.(20328)米D.(20320)米9.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得ABC α∠=,ADC β∠=,则竹竿AB 与AD 的长度之比为( )A.tan tan αβB.sin sin βαC.sin sin αβD.cos cos βα10.小明在学完《解直角三角形》一章后,利用测角仪和校园旗杆的拉绳测量校园旗杆的高度,如图,旗杆PA 的高度与拉绳PB 的长度相等,小明先将PB 拉到PB '的位置,测得PB C α'∠=(B C '为水平线),测角仪B D '的高度为1米,则旗杆PA 的高度为( )A.11sin α+米B.11cos α-米C.11sin α-米D.11cos α+米 二、填空题11.如图,在量角器的圆心O 处下挂一铅锤,制作了一个简易测倾仪.量角器的0刻度线AB 对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是__________.12.数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为__________米(结果精确到1米,2 1.41≈3 1.73).α=时,人字梯顶端离地面的高度AD约是13.如图人字梯AB,AC的长都为2 m,当50____________米.(结果精确到0.1 m,参考数据:︒≈)︒≈,tan50 1.19sin500.77︒≈,cos500.6414.如图,我市在建高铁的某段路基横断面为梯形ABCD,//DC AB,BC长6 m,坡角β为45°,AD的坡角α为30°,则AD长为______________m(结果保留根号).15.如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为_______________米(结果保留根号).三、解答题16.如图,建筑物BC上有一旗杆AB,从与BC相距20 m的D处观测旗杆顶部A的仰角为52°,观测旗杆底部B的仰角为45°,求旗杆AB的高度(结果保留小数点后一位,参考数据:sin520.79≈).︒≈,cos520.62︒≈2 1.41︒≈,tan52 1.2817.某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2 m,为了解自己的有效测温区间,身高1.6 m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A的仰角为60°.求小聪在地面的有效测温区间MN的长度(额头到地面的距离以身高计,计算精确到0.1m,sin180.31︒≈).︒≈,cos180.95︒≈,tan180.3218.小明想利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选取了一点D,并在点D处安装了测倾器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使5mDG=,并在点G处的地面上水平放置了一个小平面镜,小明沿BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得2mEF=,测倾器的高FG=,小明眼睛与地面的距离 1.6mCD=.已知点F,G,D,B在同一水平直线上,且EF,CD,AB均垂直于FB,求这棵古树的高0.5mAB(小平面镜的大小忽略不计).19.拓展小组研制的智能操作机器人,如图①,水平操作台为l,底座AB固定,高AB为50 cm,连杆BC长度为70 cm,手臂CD长度为60 cm.点B,C是转动点,且AB,BC与CD始终在同一平面内.(1)转动连杆BC,手臂CD,使143CD l,如图②,求手臂端点D离操作台l的高度∠=︒,//ABCDE的长(精确到1 cm.参考数据:sin530.8︒≈).︒≈,cos530.6(2)物品在操作台l上,距离底座A端110 cm的点M处,转动连杆BC,手臂CD,手臂端点D 能否碰到点M?请说明理由.20.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1,2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1米)(参考数据:︒≈,tan67 2.36︒≈)︒≈,cos670.39︒≈,tan400.84sin400.64︒≈,cos400.77︒≈,sin670.92参考答案1.答案:A解析:90C ∠=︒,2tan 5BAC ∠=,30m BC =,302tan 5BC BAC AC AC ∴∠===. 75m AC ∴=.故选A. 2.答案:D解析:由题意知BC AC ⊥,在Rt ABC △中,sin BC BAC AB ∠=,所以610sin370.6BC AB =≈=︒(米),故选D.3.答案:B解析:因为CD AB ⊥,AC BC ⊥,所以90CAB ACD ∠+∠=︒,90ACD BCD ∠+∠=︒,所以CAB BCD a ∠=∠=.在Rt BCD △中,cos BCD ∠cos h BC α==,故 cos h BC α=.故选B. 4.答案:B5.答案:A解析:如图,过点C 向AB 作垂线,交AB 的延长线于点E ,延长CE 交海面于点F ,易知CF DF ⊥.960m AB ∴=,30BAC ∠=︒,60EBC ∠=︒,30BCA EBC BAC ∴∠=∠-∠=︒.BAC BCA ∴∠=∠.960m BC BA ∴==.在Rt BEC △中,sin CE EBC BC ∠=, 3sin 609604803(m)CE BC ∴=⋅==°. (4803300)m CF CE EF ∴=+=.6.答案:B 解析:斜面的坡度为1:2,6BC =米,212AC BC ∴==(米),222212665AB AC BC ∴=+=+=.故选B.7.答案:B解析:根据题意,得652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,302AB =如图,过B 作BE AC ⊥于E ,90AEB CEB ∴∠=∠=︒.在Rt ABE 中,45EAB ∠=︒,302AB =230AE BE ∴==km. 在Rt CBE中,60ECB ∠=︒,103tan 60BE CE ∴==︒(303)AC AE CE ∴=+=+km.∴A ,C 两港之间的距离为(303)+km,故选B.8.答案:C解析:根据题意,得8AB =米,20DE =米,30DAE ∠=︒,45EBC ∠=︒. 在Rt ADE △中,3203tan DE AE DE DAE==∠, (2038)BE AE AB ∴=-=米.在Rt BCE △中,tan 45(2038)CE BE =⋅=︒米, 203820(20328)CD CE DE ∴=-=-=米.9.答案:B解析:在Rt ABC 中,sin AC AB α=,在Rt ACD 中,sin AC AD β=,sin ::sin sin sin AC AC AB AD βαβα∴==. 10.答案:C解析:设旗杆PA 的高度为x 米,则PB x '=米,在Rt PB C '中,sin PC PB α=',则1sin x x α-=⋅.解得11sin x α=-.故选C. 11.答案:40°解析:如图,过A 点作AC ⊥铅垂线于C ,50AOC ∠=︒,40OAC ∴∠=︒,故此时观察楼顶的仰角度数是40°.12.答案:1413.答案:1.5解析:在Rt ADC △中,sin AD ACα=,sin 2sin5020.77 1.5AD AC α∴=⋅=⋅︒≈⨯≈(米). 14.答案:62解析:如图,过点D 作DE AB ⊥于E ,过点C 作CF AB ⊥于F .CD AB ,DE AB ⊥,CF AB ⊥,DE CF ∴=.在Rt CFB 中,sin 6sin 4532CF BC β=⋅=⨯︒=.32DE CF ∴==(米).在Rt ADE 中,30A ∠=︒,90AED ∠=︒,262AD DE ∴==.15.答案:(303)-解析:由题意可知,45ACB ∠=︒,60ADB ∠=︒,30BC AB ∴==,3103BD AB ==(30103)CD BC BD ∴=-=-米. 16.答案:旗杆AB 的高度约为5.6 m解析:在Rt BCD △中,tan BC BDC CD∠=, tan 20tan 4520(m)BC CD BDC ∴=⋅∠=⨯=︒. 在Rt ACD △中,tan AC ADC CD∠=, tan 20tan5220 1.2825.6(m)AC CD ADC ∴=⋅∠=⨯≈⨯=︒. 25.620 5.6(m)AB AC BC ∴=-≈-=.答:旗杆AB 的高度约为5.6 m.17.答案:小聪在地面的有效测温区间MN 的长度约为1.5 m 解析:如图,延长BC 交AD 于E .由题意得四边形DEBN 、四边形MCBN 都为矩形,BE DN ∴=, 1.6m DE NB MC ===,BC MN =,90AEB ∠=︒. 2.2m AD =,2.2 1.60.6(m)AE AD DE ∴=-=-=.tan AE ABE BE ∠=, 0.6 1.88(m)tan 0.32AE BE ABE ∴=≈≈∠. tan AE ACE CE∠=, 0.35(m)3CE ∴=≈.1.880.35 1.5(m)BC ∴≈-≈.1.5m MN ∴≈.答:小聪在地面的有效测温区间MN 的长度约为1.5 m.18.答案:这棵古树的高AB 为18 m解析:如图,过点C 作CH AB ⊥于点H ,则CH BD =,0.5m BH CD ==.在Rt ACH △中,45ACH ∠=︒,AH CH BD ∴==.0.5AB AH BH BD ∴=+=+.EF FB ⊥,AB FB ⊥,90EFG ABG ∴∠=∠=︒.由题意知EGF AGB ∠=∠,EFG ABG ∴△△.EF FG AB BG ∴=,即 1.620.55BD BD=++, 解得17.5m BD =.17.50.518(m)AB ∴=+=.答:这棵古树的高AB 为18 m.19.答案:(1)手臂端点D 离操作台l 的高度DE 的长约为106 cm(2)手臂端点D 能碰到点M .理由见解析解析:(1)过点C 作CP AE ⊥于点P ,过点B 作BQ CP ⊥于点Q ,如图所示.143ABC ∠=︒,53CBQ ∴∠=︒,在Rt BCQ △中,sin53700.856(cm)CQ BC =⋅︒≈⨯=.//CD l ,5650106(cm)DE CP CQ PQ ∴==+=+=.(2)手臂端点D 能碰到点M .理由如下:当B ,C ,D 共线时,如图所示.在Rt ABD △中,7060130(cm)BD BC CD =+=+=,50cm AB =, 222213050120(cm)AD BD AB ∴=-=-.120cm 110cm AD =>,∴手臂端点D 能碰到点M .20.答案:如图,过点E ,F 分别作EM AB ⊥,FN AB ⊥,垂足分别为M ,N .由题意得,20EC =米,67AEM ∠=︒,40AFN ∠=︒,CB DB EM FN ===,60AB =米, 602040AM AB MB ∴=-=-=米.在Rt AEM 中,tan AM AEM EM ∠=, 40tan tan 67AM EM AEM ∴==∠︒米. 在Rt AFN 中,tan AN AFN FN ∠=, 40tan 4014.2tan67AN ∴=︒⨯≈︒米. 6014.245.8FD NB AB AN ∴==-=-=米.答:2号楼的高度约为45.8米.。
1.1 锐角三角函数(1)北师大版数学九年级下册练习(含答案)
14..如图,在 Rt△ABC 中,∠C=90°,tanA= ,BC=2,求 AB 的长.
参考答案
1.
.
2.6.
3.>
12
4. 13
5. D
6.A
7.C
8.A
9.B
10.C.
11. 解: ∵AB=2BC,
∴AC=
∴sinB=
故答案为
12. 解: = = 20, = 20,
∴设 AC=3x,BC=4x,故 AB=5x,
则 cosA=
故答案为:
14.解:∵在 Rt△ABC 中,∠C=90°,
∴tanA=
= .
∵BC=2,
∴
= ,AC=6.
∵AB2=AC2+BC2=40,
∴AB=
.
A.
B.
C.
D.
7. 在 Rt△ABC 中,∠C=90°,AB=13,AC=12,则 cosA=( )
A.
B.
C.
D.
8.在 Rt△ABC 中,各边都扩大 5 倍,则∠A 的三角函数值( )
A.不变
B.扩大 5 倍
C.缩小 5 倍
D.不能确定
9. 如图,梯子跟地面的夹角为∠A,关于∠A 的三角函数值与梯子的倾斜程度之
1.1 锐角三角函数(1)
一、填空题
1. 如图,在 Rt△ABC 中,∠C=90°,AB=13,AC=7,则 sinB=____________
2 . 在 Rt △ ABC 中 , ∠ C = 90° , 如 果 cosB =
, BC = 4 , 那 么 AB 的 长
为 .
3. 比较下列三角函数值的大小:sin40°___________sin50°
北师大版九年级数学下册 1.5 三角函数的应用-方向角问题(含答案)
在直角△AQP中,∠PAQ=45°,则AQ=PQ=60×1.5+BQ=90+BQ(海里),
所以BQ=PQ﹣90.
在直角△BPQ中,∠BPQ=30°,则BQ=PQ•tan30°= PQ(海里),
所以PQ﹣90= PQ,
所以PQ=45(3+ )(海里),
20.为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.
(1)求∠APB的度数;
(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?
在Rt△AEF中,CE=AE•tan74°≈20.9km.
故这艘轮船的航行路程CE的长度是20.9km.
点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.
6.A处与灯塔B相距109海里.
【解析】
【分析】直接过点C作CM⊥AB求出AM,CM的长,再利用锐角三角函数关系得出BM的长即可得出答案.
北师大版九年级下册三角函数的应用-方向角问题(含答案)
一、单选题
1.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是( )
A.6千米B.8千米C.10千米D.14千米
∴∠CAB=∠ACB,
∴BC=AB=2km,
在Rt△CBD中,CD=BC•sin60°=2× = (km).
北师大版九年级数学下册第一章训练题1.5 三角函数的应用
5. 三角函数的应用1.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 km B.()2+2 km C .2 2 km D.()4-2 km2. 如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆底端B 的俯角为 45°,测得旗杆顶端A 的仰角为30°.若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是___ _ (结果保留根号)3.如图,海中一小岛上有一个观测点A ,某天上午9:00观测到某渔船在观测点A 的西南方向上的B 处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A 的北偏西60°方向上的C 处.若该渔船的速度为每小时30海里,在此航行过程中,问该渔船从B 处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)4.为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港,某日在观测点A 处发现在其北偏西36.9°的C 处有一艘渔船正在作业,同时监测到在渔船的正西B 处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D 处进行躲避.已知避风港D 在观测点A 的正北方向,台风中心B 在观测点A 的北偏西67.5°的方向,渔船C 与观测点A 相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(参考数据:sin 36.9°≈0.6,tan 36.9°≈0.75,sin 67.5°≈0.92,tan 67.5°≈2.4)5.如图,小明从点A 处出发,沿着坡角为α的斜坡向上走了0.65千米到达点B ,sin α=513,然后又沿着坡度为i =1∶4的斜坡向上走了1千米到点C.问小明从点A 到点C 上升的高度CD 是多少千米?(结果保留根号)参考答案【知识管理】 1.2.仰角 俯角 【归类探究】【例1】 从B 处到达C 岛需要1小时.【例2】 (1)两建筑物底部之间的水平距离BD 的长度为60 m .(2)建筑物CD 的高度为(60-203) m .【当堂测评】 1.C 2.16 【分层作业】1.B 2.(9+33) 3.渔船从B 点开始行驶3-34小时离观测点A 距离最近.4.解:由题意可知∠BAD =67.5°,∠CAD =36.9°,AC =350海里.在Rt △ADC 中,∵∠ADC =90°,∠DAC =36.9°,AC =350海里,∴CD =AC •sin ∠DAC ≈350×0.6=210(海里),AD =AC 2-CD 2≈280(海里).∴渔船到达避风港D 处所用时间:210÷18=1123(小时).在Rt △ADB 中,∵∠ADB =90°,∠BAD =67.5°,∴BD =AD •tan ∠BAD ≈280×2.4=672(海里),∴BC =BD -CD ≈672-210=462(海里).设强台风移动到渔船C 后面200海里时所需时间为x 小时.根据题意得(40-18)x =462-200,解得x =111011.∵1123<111011,∴渔船能顺利躲避本次台风的影响.5.解:如答图所示,过点B 作BF ⊥AD 于点F ,过点B 作BE ⊥CD 于点E .由题意得AB =0.65千米,BC =1千米,∴sin α=513=BF AB =BF 0.65,∴BF =0.65×513=0.25(千米).∵斜坡BC 的坡度为1∶4,∴CE ∶BE =1∶4.设CE =x 千米,则BE =4x 千米.由勾股定理得x 2+(4x )2=12,解得x =1717,∴CD =CE +DE =CE +BF =14+1717(千米).即小明从点A 到点C 上升的高度CD 是⎝⎛⎭⎫14+1717千米.。
九年级数学下册1.5《三角函数的应用》专项练习1(选择、填空)北师大版(new)
三角函数的应用一、选择题 A 组1。
从小明家到学校有两条路。
一条沿北偏东45度方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走200米,到学校后门。
若两条路的路程相等,学校南北走向。
学校的后门在小明家北偏东67。
5度处。
学校从前门到后门的距离是( )米.A 。
2002米;B.2003米;C.2005米;D 。
200米 答案:B2.如图4,市政府准备修建一座高AB =6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的余弦值为45,则坡面AC 的长度为( )A 。
152m B.10 mC 。
10 m D.30m 答案:B3. 如图,小亮同学在晚上由路灯A 走向路灯B,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1。
6米,那么路灯高度为 ( ▲ )A.6.4米 B 。
8米 C 。
9.6米 D 。
11.2米 答案:C 4.如图所示,平地上一棵树高为6米,两次观察地面上的影子,•第一次是当阳光与地面成60°第2题图FEDABMC时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长( ) A. 633- B. 43 C. 63 D. 323- 答案:B5。
石家庄市在“三年大变样”城中村改造建设中,计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 。
450a 元 B.225a 元 C.150a 元 D.300a 元 答案:CB 组1。
Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A 。
cos sin a A b B + B 。
acosB+bcosA C 。
sin sin a b A B+ D.cos sin a b AB+答案:B2.如图,小明发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( )A 。
北师大版九年级数学下册三角函数的应用同步练习题
1.5 三角函数的应用1.某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). A.450a 元 B.225a 元C.150a元 D.300a 元第1题图 第2题图2.某校自行车棚的人字架棚顶为等腰三角形,D 是AB 的中点,中柱CD = 1米,∠A=27°,则跨度AB 的长为 (精确到0.01米).3.如图,从A 地到B 地的公路需经过C 地,图中AC=10km,∠CAB=250,∠CBA=370,因城市规划的需要,将在A 、B 两地之间修建一条笔直的公路.(1)求改直的公路AB 的长;15020米30米(2)问公路改直后比原来缩短了多少千米?(sin250≈0.42,cos250≈0.91,sin370≈0.60,tan370≈0.75)4.中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=300,∠CBD=600.(1)求AB的长;(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成300角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离.6.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为120,支架AC长为0.8m,∠ACD为800,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin120=cos780≈0.21,sin680=cos220≈0.93,tan680≈2.48)构建数学的知识网络学习数学,重要的是要构建一个数学的知识网络,将单一的知识都串联起来,这样有助于对综合型题目的解答。
北师大版九年级数学下册《1.5三角函数的应用》同步测试题(附答案)
北师大版九年级数学下册《1.5三角函数的应用》同步测试题(附答案)一、解答题1.(1)sin230°+2sin60°+tan45°−tan60°+cos230°;(2)√1−2tan60°+tan260°−tan60°.2.计算tan1°•tan2°•tan3°•…•tan88°•tan89°的值.3.(1)计算:2sin230°−6tan260°⋅4cos2150°2tan845°+4sin245°⋅3tan230°2sin120°⋅6tan230°;(参考公式:sinα=sin(180°−α))(2)已知a、b是一元二次方程x2+2x−3=0的两个实根,求2√2bcos260°−√2的S值.4.如图,在▱ABCD中AE⊥BC,垂足为E,AF⊥CD,垂足为F,BD与AE,AF分别相交于点G H AG=AH.(1)求证:四边形ABCD是菱形;(2)若AG=2EG=1.①求sin∠BAE;②求▱ABCD的面积.5.如图在Rt△ABC中∠ACB=90°D是BC上一点过点C作CE⊥AD垂足为E.连接BE并延长交AC于点F.(1)求证:CD2=ED⋅AD;(2)若D为BC的中点ACBC =23求sin∠CEF的值.6.如图一座古塔坐落在小山上(塔顶记作点A其正下方水平面上的点记作点B) 小李站在附近的水平地面上他想知道自己到古塔的水平距离便利用无人机进行测量但由于某些原因无人机无法直接飞到塔顶进行测量因此他先控制无人机从脚底(记为点C)出发向右上方(与地面成45°点A B C O在同一平面)的方向匀速飞行4秒到达空中O点处再调整飞行方向继续匀速飞行8秒到达塔顶已知无人机的速度为5米/秒∠AOC=75°求小李到古塔的水平距离即BC的长.7.在综合实践课中小明同学利用无人机测量小山AB的高度.如图CD是小明同学无人机飞到小山AB的右上方时测得山顶A的俯角为37°,AP=10米测得小明同学头顶C的俯角为53.5°,PC=80米.已知小明的身高CD为1.8米求小山AB的高度.(已知AB,CD分别与水平线BD垂直且在同一平面内参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75sin53.5°≈0.80cos53.5°≈0.59tan53.5°≈1.35)8.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间小刚站在雕像前自C处测得雕像顶A的仰角为53°小强站凤栖堂门前的台阶上自D处测得雕像顶A的仰角为45°此时两人的水平距离EC为0.45m已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45cos53°≈35tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.9.如图甲、乙两艘货轮同时从A港出发分别向B D两港运送物资最后到达A港正东方向的C港装运新的物资甲货轮沿A港的东北方向航行40海里到达D港再沿东南方向航行一定距离到达C港.乙货轮沿A港的南偏东60°方向航行后到达B港再沿北偏西15°方向航行一定距离到达C港.(参考数据:√2≈1.41√3≈1.73√6≈2.45)(1)求B C两港之间的距离;(2)若甲货轮的速度为20海里/小时乙货轮的速度为30海里/小时(停靠B D两港的时间相同)哪艘货轮先到达C港?请通过计算说明.10.冬季是滑雪的最佳时节亚布力滑雪场有初、中、高级各类滑雪道.如图其中的两条初级滑雪道的线路为:①A→B→C→D;②A→E→D.点A是雪道起点点D是雪道终点点B、C、E是三个休息区.经勘测点B在点A的南偏东30°方向1800米处点C 在点B的正南方向2000米处点D在C的西南方向点E在点A的西南方向1300米处点E在点D的正北方向.(参考数据:√2≈1.414√3≈1.732)(1)求CD的长度;(精确到1米)(2)小外一家周末去亚布力滑雪小外沿滑雪道线路①全程以5米/秒的速度滑雪且在途经的每个休息区都各休息了5分钟;小外的爸爸比小外晚出发2分钟以3米/秒的速度沿滑雪道线路②滑完全程且中途没有休息.请计算说明小外和爸爸谁先到达终点D.11.某数学兴趣小组自制测角仪到公园进行实地测量活动过程如下:(1)探究原理:制作测角仪时将细线一端固定在量角器圆心O处另一端系小重物G测量时使支杆OM、量角器90∘刻度线ON与铅垂线OG相互重合(如图①)绕点O转动量角器使观测目标P与直径两端点A、B共线(如图②)此时目标P的仰角是图②中的∠_____.目标P的仰角与图②中的∠_____相等请写出这两个角相等的证明过程.(2)拓展应用:公园高台上有一凉亭为测量凉亭顶端P距地面的高度PH(如图④)同学们经过讨论决定先在水平地面上选取观测点E、F E、F、H在同一直线上分别测得点P的仰角a=45∘、β=30∘测得E、F间的距离2米点O1、O2到地面的距离O1E、O2F均为1.5米.求PH的长(结果保留根号)12.如图Rt△ABO中∠ABO=90°AB=2反比例函数y=−8x的图象经过点A.(1)求点A的坐标.(2)直线CD垂直平分AO交AO于点C交y轴于点D交x轴于点E求线段OE的长.13.随着南海局势的升级中国政府决定在黄岩岛填海造陆修建机场设立雷达塔.某日在雷达塔A 处侦测到东北方向上的点B 处有一艘菲律宾渔船进入我方侦测区域且以30 海里/时的速度往正南方向航行我方与其进行多次无线电沟通无果后这艘渔船行驶了1 小时10 分到达点A 南偏东53°方向的C 处与此同时我方立即通知(通知时间忽略不计)与A 、C 在一条直线上的中国海警船往正西方向对该渔船进行侦测拦截其中海警船位于与A 相距100 海里的D 处.(1)求AC的距离和点D 到直线BC的距离;(2)若海警船航行速度为40 海里/时可侦测半径为25 海里当海警船航行1 小时时是否可以侦测到菲律宾渔船为什么?(参考数据:sin53°≈45cos53°≈35tan53°≈43)14.综合实践活动中某小组利用直角尺和皮尺测量建筑物AB和CD的高因为这两栋建筑物高度相同于是这个小组设计出一种简捷的方案如图所示:(1)把直角尺的顶点E放在两栋建筑物之间的地面上调整位置使直角尺的两边EM EN所在直线分别经过建筑物外立面的的顶部A和C;(2)用皮尺度量BE和DE的长度;(3)通过计算得到建筑物的高度.若示意图中点A B C D E M N均在同一平面内.测得BE=9m DE=36m.请求出这两栋建筑的高度.15.图1所示是屹立在于都县纪念广场的中央红军长征出发纪念碑它是由呈双帆造型的碑身与方形底座两部分组成的底座下方是台阶台阶的横截面如图2所示.已知台阶的坡面DE的坡度i=1:√3坡面DE的长为2.4m.(1)计算坡面DE的铅直高度;(2)如图3 为了测量纪念碑的高度亮亮站在纪念碑正前方广场上的点G处用高1.64m的测角仪GH测得纪念碑碑身顶端A的仰角是35°继续向纪念碑前进8.1m到达点K处此时测得纪念碑顶端45°求纪念碑的实际高度AC.(结果精确到0.01参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)16.如图1是超市的手推车如图2是其侧面示意图已知前后车轮半径均为5cm两个车轮的圆心的连线AB与地面平行测得支架AC=BC=60cm AC、CD所在直线与地面的夹角分别为30°、60°CD=50cm.(1)求扶手前端D 到地面的距离;(2)手推车内装有简易宝宝椅 EF 为小坐板 打开后 椅子的支点H 到点C 的距离为10cm DF =20cm EF∥AB ∠EHD =45° 求坐板EF 的宽度.(本题答案均保留根号) 17.千厮门大桥是重庆最具特色的斜拉桥之一 也是重庆的“网红打卡地”之一 某校数学兴趣小组的同学们欲测量千厮门大桥桥塔的高度 如图2 他们在桥下水平地面上架设测角仪CM (测角仪垂直于地面放置) 此时测得桥塔最高点A 的∠ACE =30∘ 然后将测角仪沿MB 向前水平移动132米达到点N 处 并测得桥塔最高点A 的∠ADE =45∘ 测角仪高度CM =DN =1.6米.(点M N B 在同一水平线上 AB ⊥BM )(结果保留整数 参考数据:√2≈1.41 √3≈1.73)(1)求桥塔的高度AB 约为多少米?(2)如图3 在(1)的条件下 小语同学在洪崖洞的某地Q 处测得千厮门大桥桥塔最高点A 的∠AQG =30∘ 最低点B 的∠BQG =60∘ 则小语同学所在地Q 与AB 的水平距离约为多少米? 18.嘉嘉在某次作业中得到如下结果: sin 27°+sin 283°≈0.122+0.992=0.9945 sin 222°+sin 268°≈0.372+0.932=1.0018 sin29°+sin 261°≈0.482+0.872=0.9873 sin37°+sin 253°≈0.602+0.802=1.0000 sin 245°+sin 245=(√22)2+(√22)2=1.据此 嘉嘉猜想:对于任意锐角α β 若α+β=90° 均有sin 2α+sin 2β=1.(1)当α=30°β=60°时验证sin2α+sin2β=1是否成立?(2)嘉嘉的猜想是否成立?若成立请结合如图所示Rt△ABC给予证明其中∠A所对的边为a∠B所对的边为b斜边为c;若不成立请举出一个反例;(3)利用上面的证明方法直接写出tanα与sinαcosα之间的关系.19.阅读与思考阅读下列材料并解决后面的问题.在锐角△ABC中∠A∠B∠C的对边分别是a b c过C作CE⊥AB于E(如图1)则sinB=CEa sinA=CEb即CE=asinB CE=bsinA于是asinB=bsinA即bsinB=asinA.同理有csinC =asinAcsinC=bsinB所以asinA=bsinB=csinC.即:在一个锐角三角形中各边和它所对角的正弦的比相等.运用上述结论和有关定理在锐角三角形中已知三个元素(至少有一条边)就可以求出其余三个未知元素.根据上述材料完成下列各题:(1)如图1 在△ABC中∠A=60°∠C=45°BC=30则AB=______;(2)如图2 一艘轮船位于灯塔P的南偏东60°方向距离灯塔50海里的A处它沿正北方向航行一段时间后到达位于灯塔北偏东45°方向上的B处此时B处与灯塔的距离为______海里;(结果保留根号)(3)在(2)的条件下试求75°的正弦值.(结果保留根号)20.如图1 正方形ABCD中P是边AD上任意一点Q是对角线AC上的点且满足∠PBQ=45°.(1)①求证:△PDB∽△QCB;②DPCQ=;(2)如图2 矩形ABCD中AB=12AD=5P、Q分别是边AD和对角线AC上的点∠PBQ=∠ACB DP=3求CQ的长;(3)如图3 菱形ABCD中DH⊥BA交BA的延长线于点H.若DC=5对角线AC=6P、Q分别是线段DH和AC上的点tan∠PBQ=34PH=85求CQ的长.参考答案:1.解:(1)sin230°+2sin60°+tan45°−tan60°+cos230°=(sin230°+cos230°)+2sin60°+tan45°−tan60°=1+2×√32+1−√3=2+√3−√3=2;(2)√1−2tan60°+tan260°−tan60°=√(1−tan60°)2−√3=√(1−√3)2−√3=√3−1−√3=−1.2.解:tan1°•tan2°•tan3°•…•tan88°•tan89°=(tan1°•tan89°)(tan2°•tan88°)…(tan44°•tan46°)•tan45°=1.3.(1)解:2sin230°−6tan260°⋅4cos2150°2tan845°+4sin245°⋅3tan230°2sin120°⋅6tan230°=2sin230°−6tan260°⋅4×(1−sin2150°)2tan845°+4sin245°⋅12sin60°⋅2=2sin230°−6tan260°⋅4×(1−sin230°)2tan845°+4sin245°⋅12sin60°⋅2 =2×(12)2−6×(√3)2×4×[1−(12)2]2×1+4×(√22)214×√32=−107√348;(2)解:∵a、b是一元二次方程x2+2x−3=0的两个实根∴(x+3)(x−1)=0解得a=−3b=1或b=−3a=1当a=−3b=1时则2√2bcos260°−√2=12×(−3)+√2 14×1−√2=−26+20√231;当b=−3a=1时则2√2bcos260°−√2=12×1+√2 14×(−3)−√2=−26+4√223;4.(1)证明:∠AE⊥BC AF⊥CD∠∠AEB=∠AFD=90°∠∠BAG=90°−∠ABE∠DAH=90°−∠ADF ∠四边形ABCD是平行四边形∠∠ABE=∠ADF∠∠BAG=∠DAH∠AG=AH∠∠AGH=∠AHG∠∠AGB=∠AHD∠在△ABG 和△ADH 中{∠AGB =∠AHD∠BAG =∠DAH AG =AH∠△ABG≌△ADH∠AB =AD∠▱ABCD 是菱形;(2)①解:∠AD∥BC∠△ADG ∽△EBG∠AD BE =AG EG∠AG =2,GE =1∠AD BE =AG EG =2∠在菱形ABCD 中 AB =AD∠BE AB =12 ∠AE ⊥BC∠sin∠BAE =BE AB =12; ②∠sin∠BAE =12∠∠BAE =30°∠cos∠BAE =cos30°=AE AB =√32∠AB =2√3=BC∠S ▱ABCD =BC ×AE =2√3×3=6√3.5.(1)证明:∵ CE ⊥AD ∠ACB =90°∴∠CED =∠ACB =90°∵∠CDE +∠DCE =90°,∠DCE +∠ACE =90°∴∠ACE =∠CDE∴△CDE∽△ADC∴CD AD =DE CD∴ CD 2=ED ⋅AD ;(2)解:∵D为BC的中点∴BD=CD∵CD2=ED⋅AD∴BD2=ED⋅AD∴BDAD =DEBD∵∠ADB=∠ADB∴△ABD∽△BED∴∠ABD=∠BED∴∠AEF=∠BED=∠ABD ∵∠AEF+∠CEF=90°∴sin∠CEF=cos∠ABD∵∠ACB=90°ACBC =23设AC=2k,BC=3k∴AB=√AC2+BC2=√13k∴cos∠ABD=BCAB =√13k=3√1313∴sin∠CEF=3√1313.6.解:过点O作OD⊥BC交BC的延长线于点D过点O作OE⊥AB垂足为E如图所示:由题意得:AO=8×5=40米OC=4×5=20米OE=BD OE∥BD∴∠EOC=∠OCD=45°∵∠AOC=75°∴∠AOE=∠AOC−∠EOC=30°在Rt△OCD中CD=OC⋅cos45°=20×√22=10√2米在Rt△AOE中OE=AO⋅cos30°=40×√32=20√3米∴OE=BD=20√3米∴BC=BD−CD=20√3−10√2米∴小李到古塔的水平距离即BC的长为20√3−10√2米.7.解:如图过点C作CE⊥AB于点E过点P作PF⊥CE于点F过点A作AG⊥PF于点G则四边形BECD和四边形AEFG都是矩形∴AE=FG BE=CD.在Rt△APG中由题意知∠PAG=37°,AP=10米∠PG=sin∠PAG⋅AP=sin37°×10≈0.60×10=6(米)在Rt△PCF中由题意知∠PCF=53.5°,PC=80米∠PF=sin∠PCF⋅PC=sin53.5°×80≈0.80×80=64(米)∴AB=AE+BE=FG+CD=PF−PG+CD=64−6+1.8=59.8(米).答:小山AB的高度约为59.8米.8.(1)解:∠凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∠DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∠由题意得四边形NFDE是矩形∠FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∠FD=MF=(x−0.15)m∠NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∠tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.9.(1)解:过点C作CM⊥AB于点M∠甲货轮沿A港的东北方向航行40海里到达D港再沿东南方向航行一定距离到达C港∠∠ADC=90°∠DAC=∠DCA=45°AD=40海里∠AD=CD=40海里∠AC=√AD2+DC2=40√2海里∠乙货轮沿A港的南偏东60°方向航行后到达B港再沿北偏西15°方向航行一定距离到达C港.∠∠CAM=∠ABN=30°∠CBN=90°−15°=75°∠∠ABC=∠CBN−∠ABN=45°在Rt△ACM中∠CAM=30°∴CM=12AC=40√2×12=20√2(海里)AM=AC⋅cos30°=20√6(海里)在Rt△BCM中∠ABC=45°∴CB=CMsin45°=40(海里)BM=CM=20√2海里∴B C两港之间的距离约为40海里;(2)解:乙货轮先到达C港理由如下:∠甲货轮航行的路程=AD+DC=40+40=80(海里)∠甲货轮航行的时间=8020=4(小时)∠乙货轮航行的路程=AB+BC=20√6+20√2+40(海里)∠乙货轮航行的时间=20√6+20√2+4030=2√6+2√2+43≈3.91(小时)∵3.91<4∴乙货轮先到达C港.10.(1)解:过B作BL⊥DE于L交AN于N过作EK⊥AN于K过C作CM⊥DE于M∵点E在点A的西南方向∴∠EAK=45°∴△AEK是等腰直角三角形∴EK=AK=√22AE=√22×1300≈919.38(米)∵∠BAN=30°∠ANB=90°∴BN=12AB=12×1800=900(米)∵DE∥BC CM⊥DE BL⊥DE EK⊥AN NL⊥DE ∴四边形ELNK BCML是矩形∴BC=BL NL=EK EL=KN ML=BC∵BL=NB+NL=900+919.38=1819.38(米)∴MC=1819.38米∵∠MCD=45°∴△MCD是等腰直角三角形∴CD=√2MC≈2573(米);(2)解:滑雪道线路①全程=AB+BC+CD=1800+2000+2572.6=6372.6(米)∴小外滑行的时间是6572.6÷5≈1274.5(秒)≈21.2(分钟)∵小外途经的每个休息区都各休息了5分钟∴小外在滑雪道线路①共用时21.2+5×2=31.2(分钟)∵AN=√3NB≈1558.8(米)∴NK=AN−AK=1558.8−919.38=639.42(米)∴EL=KN=639.42米∴ME=ML+EL=2000+639.42=2639.42(米)∵△CDM是等腰直角三角形∴MD=MC=1819.9米∴滑雪道线路②全程=AE+ME+MD=1300+2639.42+1819.9=5759.32(米)∴小外的爸爸滑行的时间是5759.32÷3≈1919.8(秒)≈32.0(分钟)∵小外的把爸爸比小外又晚出发2分钟∴小外先到达终点D.11.解:(1)目标P的仰角是图②中的∠POC目标P的仰角与图②中的∠NOG相等证明∵∠COG=90∘∠AON=90∘∴∠POC+∠CON=∠GON+∠CON∴∠POC=∠GON;(2)解:由题意可得O1O2=2O1E=O2F=DH=1.5米由图可得tanβ=PDO2D tanα=PDO1D∴O2D=PDtanβO1D=PDtanα∵O1O2=O2D−O1D=2∴2=PDtanβ−PDtanα∴PD=2tanαtanβtanα−tanβ∴PH=PD+DH=2tan45∘tan30∘tan45∘−tan30∘+1.5=(52+√3)米.故PH的值为(52+√3)米.12.(1)解:∵AB=2∴点A的横坐标为−2∵A点在反比例函数y=−8x的图象上∴y=−8−2=4∴A(−2,4).(2)解:∵A(−2,4)∠AB=2BO=4∠AO=√22+42=2√5∠CD垂直平分AO∠OC=12AO=√5CD⊥AO∠∠DOE=90°∠∠1+∠3=90°=∠2+∠3∠∠1=∠2∠sin∠1=sin∠2∠OC OE =ABOA即:√5OE=2√5解得:OE=5.13.(1)解:作DE⊥BC于E AF⊥BC于F=35设AF=x海里由题意得BC=30×76∠∠BAF=45°,∠ACF=53°x∠BF=AF=x,FC=AF÷tan53°=34x=35∠x+34解得x=20x=15∠34∠AC=√AF2+CF2=25∠CD=AD−AC=75∠DE=CD⋅sin∠ECD=CD⋅sin53°=60答:AC的距离为25海里点D到直线BC的距离为60海里;(2)能理由如下:设1小时后海警船到达点G菲律宾渔船到达点H则DG=40CH=30由(1)知CE=CD⋅cos53°=45∠HE=CE−CH=15GE=DE−DG=20由勾股定理得:GH=√HE2+GE2=25故可以侦测到菲律宾渔船.14.解:如图由题意得AB⊥BD CD⊥BD∴∠BEA+∠BAE=90°∠ECD+∠DEC=90°∵∠MEN=90°∴∠BEA+∠DEC=90°∴∠BAE=∠DEC∴tan∠BAE=tan∠DEC即BEAB =CDED设AB=CD=x可得9x =x36解得x=18经检验x=18是原方程的解答:两栋楼的高度为18m.15.(1)解:如图所示:过点D作DH⊥FE于点H∠i=DHEH =√3∠设DH=xm EH=√3xm∠∠DHE=90°,DE=2.4m∠DH2+HE2=DE2∠x2+(√3x)2=2.42解得:x=±1.2(负值舍去)∠CF=DH=1.2m∠坡面DE的铅直高度为1.2m;(2)设AM=ym∠∠AMI=90°,∠AIM=45°∠∠MAI=45°∠∠MAI=∠AIM∠MI=AM=ym∠∠AHM=35°,∠AMH=90°∠tan35°=AMMH≈0.700∠yMH∠MH≈y0.7∠MH−MI=8.1−y=8.1∠y0.7∠y=18.9∠AM=18.9m∠AF=AM+MF=18.9+1.64=20.54(m)∠AC=AF−CF=20.54−1.2=19.34(m).∠纪念碑的实际高度AC为19.34m.16.(1)解:如图2 过C作CM⊥AB垂足为M又过D作DN⊥AB垂足为N过C作CG⊥DN垂足为G则∠DCG=60°.则四边形CMNG为矩形CM=NG∵AC=BC=60cm AC、CD所在直线与地面的夹角分别为30°、60°∴∠A=∠B=30°AC=30cm.则在Rt△AMC中CM=12∵在Rt△CGD中sin∠DCG=DGCD=50cmCD=25√3(cm).∴DG=CD⋅sin∠DCG=50⋅sin60°=50×√32又GN=CM=30cm前后车轮半径均为5cm∴扶手前端D到地面的距离为DG+GN+5=25√3+30+5=(35+25√3)(cm);(2)解:∵EF∥CG∥AB∴∠EFH=∠DCG=60°∵CD=50cm椅子的支点H到点C的距离为10cm DF=20cm∴FH=20cm如图2 过E作EQ⊥FH垂足为Q设FQ=x在Rt△EQF中∠EFH=60°∴EF=2FQ=2x EQ=√3x在Rt△EQH中∠EHD=45°∴HQ=EQ=√3x∵HQ+FQ=FH=20cm∴√3x+x=20解得x=10√3−10.∴EF=2(10√3−10)=20√3−20(cm).答:坐板EF的宽度为(20√3−20)cm.17.(1)解:如图所示延长CD交AB于点F由题意得:CD=MN=132DF=BN∠AFD=90°CM=DN=BF=1.6设DF=x则CF=x+132在Rt△ADF中∠ADF=45°∴AF=x在Rt△ACF中∠ACE=30°tan30°=AFCF =xx+132≈0.58∴x≈182经检验x≈182是原方程的解且符合题意∴AB=AF+BF=182+1.6≈184米∴桥塔的高度约为184米(2)解:延长QG交AB于点M由题意可知QM⊥AB AB=184∵∠AQG=30°∠BQG=60°∠A=60°∠B=30°设AM=y则BM=184−ytan∠A=tan60°=QMAM≈1.73tan∠B=tan30°=QMBM≈0.58tan30°tan60°=AMBM=y184−y=0.581.73解得:y≈46.2∴QM=AM·tan60°=46.2×√3=80故Q处与AB的水平距离约为80米18.(1)解:∠sin30°=12sin60°=√32∠sin2α+sin2β=(12)2+(√32)2=1结论成立;(2)解:成立.理由如下:在Rt△ABC中sinα=ac sinβ=bc且a2+b2=c2∠sin2α+sin2β=(ac )2+(bc)2=a2+b2c2=c2c2=1故结论成立;(3)解:tanα=sinαcosα理由如下:在Rt△ABC中sinα=ac cosα=bctanα=ab∠tanα=acbc=sinαcosα∠tanα=sinαcosα.19.(1)解:由题意可知:asinA =bsinB=csinC∠∠A=60°∠C=45°BC=30∠BC sin60°=ABsin45°即√32=√22∠AB=10√6故答案为:10√6.(2)解:如图:由题意可知∠APE=60°,∠BPF=45°AB∥EF AP=50海里asinA =bsinB=csinC∠∠A=∠APE=60°,∠B=∠BPF=45°∠BP sin60°=APsin45°即√32=√22∠BP=25√6∠B处与灯塔的距离为25√6海里故答案为:25√6.(3)解:如图:由题可知PA=50海里PC⊥AB∠∠EPC=∠FPC=90°∠∠APE=60°∠BPF=45°∠∠APC=30°∠bPC=45°∠∠APB=∠APC+∠BPC=75°在Rt△APC中AC=12PA=25海里PC=√32PA=25√3海里在Rt△BPC中BC=PC=25√3海里∠AB=AC+BC=(25+25√3)海里由前面定理可知:ABsin∠APB =PAsin∠B则25+25√3sin75°=50sin45°∠sin75°=25+25√350×√22=√2+√64∠75°的正弦值√2+√64.20.(1)解:①∵四边形ABCD为正方形BD AC是对角线∴∠PDB=∠QCB=∠DBC=45°∴∠QBC+∠DBQ=45°∵∠PBQ=45°∴∠PBD+∠DBQ=45°∴∠QBC=∠PBD∴△PDB∽△QCB;②∵四边形ABCD为正方形∴BC=DC∠BCD=90°∴BD=√BC2+DC2=√2BC∵△PDB∽△QCB∴DPCQ =BDBC=√2BCBC=√2;故答案为:√2;(2)解:连接BD交AC于点O∵四边形ABCD为矩形∴AD∥BC OA=OD∠DAB=90°∴∠ACB=∠OAD=∠ODA=∠OBC∵∠PBQ=∠ACB∴∠PBQ=∠OBC∴∠PBD+∠DBQ=∠QBC+∠DBQ∴∠PBD=∠QBC ∴△PDB∽△QCB∴QCPD =BCBD∵AB=12AD=5∴BD=√AB2+AD2=13∵BC=AD=5DP=3∴QC3=513∴QC=1513;(3)解:连接BD交AC于点O∵四边形ABCD为菱形AC BD是对角线∴AC⊥BD∴AO=OC=12AC=3∴BO=√BC2−OC2=√52−32=4∴tan∠DBC=OCOB =34∵tan∠PBQ=34∴∠DBC=∠PBQ∴∠DBQ+∠PBD=∠DBQ+∠QBC ∴∠PBD=∠QBC∵DH⊥BH AC⊥BD∴∠DBC+∠ACB=90°∵四边形ABCD为菱形BD是对角线∴∠ABD=∠CBD∴∠HDB=∠ACB∴△PDB∽△QCB∴QCPD =BCBD∵AC=6∴OC=OA=12AC=3∵AB=BC=DC=5∴OB=OD=4即BD=8∵12AC⋅BD=AB⋅DH∴5DH=12×6×8∴DH=245∵PH=85∴DP=DH−PH=245−85=165∴165QC=85∴QC=2.。
北师大版九年级下册1.5三角函数的应用-方向角问题(包含答案)
6.如图,一艘游轮在A处测得北偏东45。的方向上有一灯塔 方向航行2小时到达C处,此时测得灯塔B在C处北偏东
海里?(结果精确到1海里,参考数据:J2X1.41 J3 Q 1.73
7.如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚
的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现, 在C处的南偏 西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考
数据:很L41,<3 1.73,462.45结果精确到0.1小时)
北师大版九年级下册三角函数的应用-方向角问题(含答案)
一、Байду номын сангаас选题
1.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48 °, A , B两地 同时开工,若干大后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走 向是北偏西42°,则A地到公路BC的距离是()
不计,参考数据:72 * 1.41 J3 * 1.73
9.知识改变世界,科技改变生活 .导航装备的不断更新极大方便了人们的出行如图,某校组织学生
乘车到黑龙滩(用C表示)开展社会实践活动, 车到达A地后,发现C地恰好在A地的正北方向,
3 / 27
且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37。方向行驶一段
的速度继续航行 小时即可到达.(结果保留根号)
三、解答题
5.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自 东向西航行至观测点A的正南方向E处•求这艘轮船的航行路程CE的长度.(结果精确到0.1km)
北师大版九年级数学下册《1.3三角函数的计算》同步练习题带答案
北师大版九年级数学下册《1.3三角函数的计算》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________用科学计算器求锐角三角函数值1.(2024东营期中)用科学计算器求sin 9°7'的值,按键顺序正确的是()A. SHIFT sin 9 7 =B. sin 9 ° ' ″ 7 ° ' ″ =C. SHIFT sin 9 ° ' ″ 7 =D. ° ' ″ sin 9 SHIFT 7 =2.如果3sin α=√3+1,则α=.(精确到0.1°)3.在Rt△ABC中,∠C=90°,∠A=42°,BC=3√6,则AC的长为.(用科学计算器计算,结果精确到0.01)4.用计算器求下列各式的值(结果精确到0.000 1):(1)sin 47°;(2)sin 12°30';(3)cos 25°18';(4)tan 44°59'59″;(5)sin 18°+cos 55°-tan 59°.知三角函数值求角度5.锐角A满足cos A=1,利用计算器求∠A时,依次按键SHIFT cos ( 1 ÷ 2 ) =,∠A的度数2为.6.在Rt△ABC中,∠C=90°,AC=8,AB=2√19,则∠A的大小为.(精确到0.1°)三角函数的实际应用7.如图是一辆自行车车架的部分示意图,现测得∠A=70°,∠C=45°,AB=60,则点A到BC的距离为()A.60sin 65°B.60sin65°C.60cos 65°D.60tan 65°8.乐乐骑自行车去爸爸的工厂参观,如图是这辆自行车的车架图,车架档AC与CD的长分别为42.0 cm,42.0 cm,且它们互相垂直,∠CAB=76°,AD∥BC,求车链横档AB的长.(结果保留整数.参考数据:sin 76°≈0.97,cos 76°≈0.24,tan 76°≈4.00)1.如图,某小区的一块草坪旁边有一条直角小路,社区为了方便群众,沿AC修了一条近路,已知AB=80 m,新修小路与AB的夹角∠CAB为40°,则走这条近路AC的长可以表示为()A.80sin 40° mB.80cos 40° mC.80sin40°m D.80cos40°m2.如图,在Rt△ABC中,∠C=90°,BC=2,AC=3,若用科学计算器求∠A的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是()A.tan 2 ÷ =B.tan 2 ÷ ° ' ″ =C.SHIFT tan ( 2 ÷ 3 ) =D.SHIFT tan ( 2 ÷ 3 ) = ° ' ″3.(2024广州越秀区一模)如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB=AC ,∠ABC =27°,BC=40 cm,则高AD 为 cm .(参考数据:sin 27°≈0.45,cos 27°≈0.89,tan 27°≈0.51)4.图1是某型号挖掘机,该挖掘机是由基座、主臂和伸展臂构成.图2是某种工作状态下的侧面结构示意图(MN 是基座的高,MP 是主臂,PQ 是伸展臂,EM ∥QN ).已知基座高度MN 为1 m,主臂MP 长为5 m,测得主臂伸展角∠PME=37°.(参考数据:sin 37°≈35,tan 37°≈34,sin 53°≈45,tan 53°≈43) (1)求点P 到地面的高度;(2)当挖掘机挖到地面上的点时,∠MPQ=113°,求QN 的长.图1图25.(应用意识)如图1,一种手机支架可抽象成如图2的几何图形,伸缩臂AB 长度可调节(10 cm≤AB≤15 cm),并且可绕点A上下转动,转动角α变动范围是0°<α≤90°,手机支撑片EC可绕点B上下转动,BC=10 cm,转动角β变动范围是0°<β≤90°.小明使用该支架进行线上学习,当β≥30°,且点C离底座的高度不小于7 cm时,他才感觉舒适.(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75,√3≈1.73) (1)如图2,当α=90°,β=37°,AB=12 cm时,求托片底部点C离底座的高度,并判断是否符合小明使用的舒适要求;(2)如图3,当α=60°,β=90°的情况下,AB要伸缩到多少厘米时才能满足点C离底座的最低高度舒适要求?(精确到1 cm)图1图2图3参考答案课堂达标1.B解析:根据科学计算器的按键顺序可知,正确的按键顺序是B选项.故选B.2.65.6°解析:∵3sin α=√3+1∴sin α=√3+13解得α≈65.6°.3.8.16解析:∵tan 42°≈0.900 4=0.900 4∴3√6AC∴AC≈8.16.4.解:根据题意用计算器求出:(1)sin 47°≈0.731 4.(2)sin 12°30'≈0.216 4.(3)cos 25°18'≈0.904 1.(4)tan 44°59'59″≈1.000 0.(5)sin 18°+cos 55°-tan 59°≈-0.781 7.5.60°解析:依次按键SHIFT cos ( 1 ÷ 2 ) =,显示的是∠A的度数为60°.6.23.4°解析:在Rt△ABC中,∠C=90°,AC=8,AB=2√19∵cos A=ACAB =2√19≈0.918∴∠A的大小为23.4°.7.A解析:如图,过点A作AD⊥BC,垂足为D.∵∠BAC=70°,∠C=45°∴∠B=180°-∠BAC-∠C=65°.在Rt△ABD中,AB=60∴AD=AB·sin 65°=60sin 65°∴点A到BC的距离为60sin 65°故选A.8.解:如图,过点B作BH⊥AC,垂足为H则tan∠BAH=BHAH.∵AC=42.0 cm,CD=42.0 cmAC⊥CD∴∠CAD=∠ADC=45°.∵AD∥BC∴∠ACB=∠CAD=45°∴tan ∠ACB=1.设BH=CH=x cm,AH=(42.0-x)cm则tan 76°=x42.0-x≈4.00解得x=33.6经检验,x=33.6是所列分式方程的解.∴BH=33.6 cm,AH=8.4 cm∴AB=√AH2+BH2=√33.62+8.42≈35(cm).答:车链横档AB的长为35 cm.课后提升1.D解析:在Rt△ABC中∵AB=80 m,∠CAB=40°=cos 40°∴ABAC∴AC=80(m)cos40°故选D.2.D解析:由tan A=BC,得ACtan A=2.3再根据科学计算器的按键顺序可知,正确的按键顺序是D选项.故选D.3.10.2解析:∵AB=AC,AD⊥BC,BC=40 cmBC=20 cm.∴BD=12在Rt△ABD中,∠ABC=27°∴AD=BD·tan 27°≈20×0.51=10.2(cm)∴高AD约为10.2 cm.4.解:(1)如图,过点P作PG⊥QN,垂足为G,延长ME交PG于点F.由题意,得MF⊥PG,MF=GN,FG=MN=1 m.在Rt△PFM中,∠PMF=37°,PM=5 m=3(m)∴PF=PM·sin 37°≈5×35∴PG=PF+FG=3+1=4(m)∴点P到地面的高度约为4 m.(2)∵∠PMF=37°,∠PFM=90°∴∠MPF=53°.∵∠MPQ=113°∴∠QPG=113°-53°=60°.∵PG=4 m∴QG=√3PG=√3×4=4√3(m).∵PM=5 m,PF=3 m∴FM=√PM2-PF2=√52-32=4(m)∴QN=QG+NG=(4√3+4)m.5.解:(1)过点C作CF⊥AB于点F,如图1.图1在Rt△BCF中BF=BC·cos β=10×cos 37°≈8(cm)∴AF=AB-BF=12-8=4(cm).∵4<7∴托片底部点C离底座的高度为4 cm,不符合小明使用的舒适要求.(2)过点B作BH⊥AD于点H,过点C作CM⊥BH于点M,如图2.图2在Rt△ABH中,α=60°∴∠ABH=90°-60°=30°∴∠CBM=90°-30°=60°.在Rt△BCM中=5(cm).BM=BC·cos 60°=10×12∵要满足点C离底座的最低舒适要求∴MH=7 cm则BH=BM+MH=12 cm∴AB=BH=8√3≈14(cm)sin60°∴至少要将AB伸缩至14 cm时才能符合小明的舒适要求.。
1.5 三角函数的应用 北师大版数学九年级下册习题课件
A. AC =52 cos 64°
°
C. AC =52 sin 64°
D. AC =52tan 64°
(第1题)
2. 如图,海中有个小岛 A ,一艘轮船由西向东航行,在
点 B 处测得小岛 A 位于它的东北方向,此时轮船与小岛
相距20海里,继续航行至点 D 处,测得小岛 A 在它的北
第一章 直角三角形的边角关系
5 三角函数的应用
1. 方位角:是从正北或正南方向到目标方向所形成的
大于或等于0度且小于或等于90度的角.通常表达成北
(南)偏东(西)××度,若正好为45度,则表示为东
北(或东南、西北、西南)方向;若正好为0度,则表
示正南(北)方向;若正好为90度,则表示正西(东)
方向.
向,点 D 在点 E 的东北方向.(参考数据:
≈1.414, ≈1.732)
(1)求步道 DE 的长度(精确到个位);
解:(1)如答案图,过点 D 作 DF ⊥ AE 于点 F ,
由已知,得四边形 ACDF 是矩形,
∴ DF = AC =200 m.
∵∠ DEF =45°,
∴△DEF 是等腰直角三角形.
解:(2)在Rt△ABE 中,
BE = AB ·cos ∠ ABE =400·cos
30°=200 (米),
在Rt△ACE 中, CE =
=
=200(米),
°
∠
∴ BC = CE + BE = + 米.
在Rt△BCD 中, BD = BC ·tan∠ BCD =(200+
的喜爱.如图所示,成都市某公园的秋千,秋千链子的
长度为3.2 m;当摆角∠ AOC 为30°时,座板离地面的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重叠部分(图中阴影部分)的面积为(
)
1
A.
sin
1
B.
cos
C.sina D.1
a, 则它们
12、在直角三角形中,各边都扩大 2 倍,则锐角 A 的正弦值与余弦值都(
)
A 、缩小 2 倍 B 、扩大 2 倍
C 、不变
D 、不能确定
4
13、在 Rt△ ABC中,∠ C=900, BC=4,sinA= 5 ,则 AC=(
BE=_______(精确到 0.1 米)
图 6-5-9 30°,已知测角仪高 AD=1.52 米,则塔高
图 6-5-10
图 6-5-11
4.某防洪堤坝的横断面是梯形,已知背水坡的坡长为
60 米,坡角为 30°,则坝高为 _______
米。
5.升国旗时,某同学站地离旗杆底部 24 米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为
31
31
31
13
A.( 2 , 2 ) B .( - 2 , 2 ) C .(- 2 , - 2 ) D .( - 2 , - 2 )
20.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.
?某同学站在离旗杆 12 米远的地方,当
国旗升起到旗杆顶时,他测得视线的仰角为
30°, ?若这位同学的目高 1.6 米,则旗杆的高度约为(
)
A. 6.9 米 B . 8.5 米 C .10.3 米 D . 12.0 米
21.王英同学从 A 地沿北偏西 60o 方向走 100m到 B 地,再从 B 地向正南方向走 200m到 C 地,此时王英同学离 A 地
( )( A) 50 3 m
( B)100 m
( C) 150m
( D) 100 3 m
地向北偏西 10o 的方向行驶 40 海里到达 C 地,则 A、 C 两地相距(
).
( A) 30 海里
( B) 40 海里
( C)50 海里
( D)60 海里
23、甲、乙两楼相距 45 米 , 从甲楼顶部观测乙楼顶部的俯角为
30° , 观测乙楼的底部的俯角为 45°, 试求两楼的高 .
A
300 450
30°,若
双眼离地面 1.5 米,则旗杆高度为 _______ 米,(用含根号的式子表示)
6.在地面上一点,测得一电视塔尖的仰角为
45°,沿水平方面再向塔底前进 a 米,又测得塔尖的仰角为 60°,那
么电视塔高为 _______。
7.若太阳光线与地面成 37°角,一棵树的影长为 10m,则树高 h 的取值范围是(
)
A.3<h≤5 B 、 5<h<10 C.10<h<15 D.h>15
8.河堤的横断面如图 6-5-11 所示。堤高 BC是 5 米,迎水坡 AB 的长是 13 米。那么斜坡 AB的坡宽 I 是( )
A. 1: 3 B 、 1: 2.6 C.1:2.4 D.1:2
9. 某地夏季中午,当太阳移到屋顶上方偏南时,光线与地面成
4 A、7
1
B
、3
1
C
、2
D
、0
16、在△ ABC中,∠ A:∠ B:∠ C=1: 1: 2,则 a: b: c=(
)
A 、 1: 1: 2 B 、1: 1: 2
C 、1:1: 3
2 D 、 1: 1: 2
17、在 Rt△ ABC中,∠ C=900,则下列式子成立的是(
)
A 、 sinA=sinB B
)
A 、3 B 、4
C
、5
D
、6
1
14、若∠ A 是锐角,且 sinA= 3 ,则(
)
A 、 00<∠ A<300 B 、 300<∠ A<450 C 、 450<∠A<600 D 、600<∠ A<900
1
3sin A tan A
15、若 cosA= 3 ,则 4sin A 2 tan =(
)
、 sinA=cosB C 、tanA=tanB D
18.已知 Rt△ ABC中,∠ C=90°, AC=2, BC=3,那么下列各式中,正确的是(
、 cosA=tanB )
2 A . sinB= 3
2 B . cosB= 3
2 C . tanB= 3
3
D
. tanB= 2
19.点( -sin60 °, cos60 °)关于 y 轴对称的点的坐标是( )
图
1. 8
m D.1.8cot80 °m
sin 80
6 米,坝高 24 米,斜坡 AB的坡角为 45°,斜坡 CD的坡度
精品文档
A. 42 米 B 、( 30+24 3 )米 C 、 78 米 D 、( 30+8 3 )米
11、如图 6-5-14 ,两条宽度都为 1 的纸条,交叉重叠放在一起,且它们的交角为
精品文档
三角函数应用练习
1.如图: 6-5-8 ,一铁路路基的横断面为等腰梯形,根据图示数据计算路基的下底宽 2.如图 6-5-9 ,在高 2 米,坡角为 30°的楼梯表面铺地毯,地毯的长度至少需要
AB=____。 _______ 米(精确到 0.1 米)
图 6-5-8 3.如图 6-5-10 ,在高离铁塔 150 米的 A 处,用测角仪测得塔顶的仰角为
80°角。房屋朝南的窗子高 AB=1.8m, 要在窗子外面
上方安装一个水平挡光板 AC,使午间光线不能直接射入室内 (如图:6-5-12 ),那么挡光板 AC的宽度至少应为 ( )
图 6-5-13
6-5-12
A.1.8tan80 °m B.1.8cos80 °m C.
10. 如图 6-5-13 ,水库大坝的横断面为梯形,坝顶宽 I=1 : 2,则坝底 AD的长为( ) 精品文档
A
精品文档
C
E
H
FD
B
精品文档 26、如图所示,一条渔船某时刻在位置
Er
D
24、从 A 处观测铁塔顶部的仰角是
B 30° , 向前走 100 米到达 B 处 , 观测铁塔的顶部的仰角是
C 45 ° , 求铁塔高 .
D
25、九年级( 1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度
300
450
A
B
C
CD 3m ,标杆与旗杆的水平距离
BD 15m ,人的眼睛与地面的高度 EF 1.6m ,人与标杆 CD 的水平距离 DF 2m ,求旗杆 AB 的高度.
精品文档
精品文档
21、如图,在高楼前 D 点测得楼顶的仰角为 30 ,向高楼前进 60 米
A
到 C 点,又测得仰角为 45 ,则该高楼的高度大约为(
)
A.82 米 B.163 米 C.52 米 D.70 米
30
45
D
C
B
22、一艘轮船由海平面上 A 地出发向南偏西 40o 的方向行驶 40 海里到达 B 地,再由 B