机械制图习题集(第6版)参考答案 (1)
机械制图习题集第六版答案
机械制图习题集第六版答案机械制图习题集第六版是一本广泛用于机械设计和制图课程的教材,它包含了大量的习题和实例,旨在帮助学生掌握机械制图的基本原理和技巧。
以下是该习题集的部分答案,供参考:第一章:制图基础知识1. 线型表示方法:- 粗实线:表示可见轮廓线。
- 细实线:表示尺寸线、剖面线等。
- 虚线:表示不可见轮廓线。
2. 尺寸标注规则:- 尺寸线应平行于所标注的线段。
- 尺寸数字应清晰可读,通常位于尺寸线的中线上。
第二章:几何作图1. 圆的五等分:- 首先确定圆心,然后使用圆规在圆上作四个等分点,最后连接圆心与等分点,完成五等分。
2. 三角形的内切圆:- 首先作三角形的角平分线,然后找到角平分线的交点作为圆心,以该点到三角形任意一边的距离为半径画圆,得到内切圆。
第三章:投影法1. 第一角投影:- 物体的三个视图(正视图、侧视图、俯视图)按照一定的顺序排列,通常为从左到右。
2. 第三角投影:- 与第一角投影不同,物体的视图排列顺序为从右到左。
第四章:组合体视图1. 组合体的视图表示:- 通过多个基本视图的组合来表达一个复杂的三维物体。
2. 组合体的尺寸标注:- 需要在每个视图中清晰地标注出物体的尺寸,以确保准确表达。
第五章:剖视图与断面图1. 剖视图的绘制:- 选择适当的剖面线,沿着剖面线切开物体,然后在视图中表示出内部结构。
2. 断面图的应用:- 当需要特别强调物体的某个截面时,可以使用断面图来详细展示。
第六章:轴测图1. 轴测图的绘制方法:- 使用特定的轴测投影规则,将三维物体投影到二维平面上。
2. 轴测图的尺寸标注:- 确保在轴测图中正确地标注出物体的尺寸,以便于理解和制造。
第七章:标准件与常用件的表示方法1. 螺栓、螺母的表示:- 使用标准的符号和表示方法来绘制螺栓和螺母。
2. 齿轮的表示:- 展示齿轮的齿形和尺寸,包括模数、齿数等参数。
第八章:装配图1. 装配图的绘制:- 展示多个零件如何组合在一起形成完整的机械设备。
机械制图习题集(第6版)参考答案(精心整理)
第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
机械制图习题集(第6版)答案
●利用有积聚性的迹线表示特殊位置平面的投影特性做题。
3、已知处于正垂位置的正方形ABCD的左下边AB,α=60°,补全正方形的两面投影。已知处于正平面位置的等边三角形的上方的顶点E,下方的边FG为侧垂线,边长为18mm,补全这个等边三角形EFG的两面投影。
●经过两次换面将两个平面同时变换成同一投影面的垂直面,即将两平面的交线变换成投影面垂直面,则两平面的有积聚性的同面投影夹角即为所求。
第四章 立体的投影
第12页平面立体及其表面上的点和线
1、作三棱柱的侧面投影,并补全三棱柱表面上诸点的三面投影。
●可利用棱柱表面的积聚性进行作图。
2、作六棱柱的正面投影,并作出表面上的折线ABCDEF的侧面投影和正面投影。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。各点坐标为:
5、作四棱台的水平投影,并补全表面上点A、B、C、D、E和F的三面投影。
●利用棱台的投影特点和其表面取线的方法作出各点的投影。
6、作左端为正垂面的凸字形侧垂柱的水平投影,并已知表面上折线的起点A的正面投影和终点E的侧面投影,折线的水平投影成一直线,作折线的三面投影。
●利用正垂面、正平面、水平面投影特性做题。
6、用直角三角形法求直线AB的真长及其对H面、V面的倾角α、β。
机械制图习题集(第6版)答案
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影
1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
A(25,15,20)
B(20,10,15)
C(35,30,32)
D(42,12,12)
5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。)
6、已知点A距离W面20;点B距离点A为25;点C与点A是对正面投影的重影点,y坐标为30;点D在A的正下方20。补全诸点的三面投影,并表明可见性。
●图(c)利用平行投影的定比性作图。
6、作直线的两面投影:
(1)AB与PQ平行,且与PQ同向,等长。
(2)AB与PQ平行,且分别与EF、GH交与点A、B。
●利用平行两直线的投影特性做题。
第8页直线的投影(二)
1、用换面法求直线AB的真长及其对H面、V面的倾角α、β。
●利用投影面平行线的投影特性及一次换面可将一般位置直线变换成投影面平行线做题。(具体参见教P74、P80)
第13页曲面面立体及其表面上的点和线
1、作圆柱的正面投影,并补全圆柱表面上的素线AB、曲线BC、圆弧CDE的三面投影。
●利用圆柱的投影特点(积聚性)和其表面取点的方法做题,注意可见性的判断。
2、已知圆柱的轴线的两面投影以及圆柱的正面投影,作出圆柱及其表面上点A和点B的水平投影。
机械制图习题集(第6版)答案
《机械制图》
(第六版)
习题集答案
第3页 图线、比例、制图工具的用法、尺寸注法、斜度和锥度
●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页 椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接
1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●利用侧平圆的投影特性做题。
9、已知圆心位于点B、Ø30的圆处于左前到右后的铅垂面上,作圆的三面投影(投影椭圆用四心圆近似法作出)
●利用铅垂面的投影特性、圆的投影特性;四心圆近似法作椭圆具体见教P23。
第10页平面的投影(二) 直线与平面及两平面的相对位置(一)
1、求∆ABC对V面的倾角β。
●解题要点:利用一次换面可将一般位置平面变换为投影面垂直面。
3、作圆锥的侧面投影,并补全圆锥表面上的点A、B、C以及素线SD、圆弧EF的三面投影。
●利用圆锥表面取点、取线的方法做题(素线法、纬圆法),注意可见性的判断。
4、已知轴线为正垂线的圆台的水平投影,作圆台及其表面上的曲线AB的正面投影。
2、用有积聚性的迹线表示平面:过直线AB的正垂面P;过点C的正平面Q;过直线DE的水平面R。
●利用有积聚性的迹线表示特殊位置平面的投影特性做题。
3、已知处于正垂位置的正方形ABCD的左下边AB,α=60°,补全正方形的两面投影。已知处于正平面位置的等边三角形的上方的顶点E,下方的边FG为侧垂线,边长为18mm,补全这个等边三角形EFG的两面投影。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
机械制图习题集(第6版)答案
●利用棱台的投影特点和其表面取线的方法作出各点的投影。
6、作左端为正垂面的凸字形侧垂柱的水平投影,并已知表面上折线的起点A的正面投影和线的三面投影。
●利用正垂面、正平面、水平面投影特性做题。
及两特殊位置平面互相垂直时,它们
具有积聚性的同面投影互相垂直做题。
4、根据下列诸投影图中直线与平面的相对位置,分别在下面的括号内填写“平
行”、“垂直”或“倾斜”。
●利用直线与平面、平面与平面垂直的几何条件以及直线与平面、平面与平面平行的几何条件进行判断。
5、根据铅垂面的水平投影和反映真形的V1面投影,作出它的真面投影。
简单时可用直观法。
6、作∆EFG与 PQRS的交线,并表明可见性。
●铅垂面PQRS与一般平面相交,从铅垂面的水平投影积聚为一条直线入手,先利用公有性得到交线的一个投影,再根据从属关系求出交线的另一个投影。本题可见性判断可用直观法。
7、作正垂面M与 ABCD的交线,并表明可见性。
●正垂面MV与一般平面相交,从正垂面的正面投影积聚为一条直线入手,先利用公有性得到交线的一个投影,再根据从属关系求出交线的另一个投影。本题可见性判断可用直观法。
4、作两交叉直线AB、CD的公垂线EF,分别与AB、CD交于E、F,并表明AB、CD间的
真实距离。
●利用直角投影定理做题。
5、用换面法求两交叉直线AB、CD的最短连接管的真长和两面投影。
●利用两次换面可将一般位置直线转变为投影面垂直线及直角投影定理做题。
步骤:先将两交叉直线AB、CD中的一条直线转换为投影面的垂直线,求出AB、CD的间的真实距离,再逆向返回旧投影面V/H,从而求出最短距离的两面投影。
机械制图习题集(第6版)答案
《机械制图》(第六版)习题集答案第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
机械制图习题集(第6版)标准参考答案
《机械制图》(第六版)习题集答案第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
机械制图习题集(第6版)参考答案
《机械制图》(第六版)习题集答案第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
机械制图习题集(第6版)答案
●利用圆平面为正平圆,∆ABC为铅垂面,此两平面相交的交线在水平投影面积聚为一个点,再根据从属关系求出交线的另一个投影。本题可见性判断可用直观法。
9、作△EFG与 MNPQ的交线,并表明可见性。
●利用∆EFG, MNPQ都为正垂面,此两平面相交的交线在正投影面积聚为一个点,再根据从属关系求出交线的另一个投影。 本题可见性判断可用直观法。
●从铅垂面LMN在水平投影面积聚为一直线入手,先利用公有性得到交点的一个投影,再根据从属关系求出交点的另一个投影。可见性判断可用重影点法进行判断;简单时可用直观法。
5、作出侧垂线AB与 CDEF的交点,并表明可见性。
●从直线AB为侧垂线在侧面投影面积聚为一个点入手,先利用公有性得到交点的一个投影,再根据从属关系求出交点的另一个投影。可见性判断可用重影点法进行判断;
●图(c)利用平行投影的定比性作图。
6、作直线的两面投影:
(1)AB与PQ平行,且与PQ同向,等长。
(2)AB与PQ平行,且分别与EF、GH交与点A、B。
●利用平行两直线的投影特性做题。
第8页直线的投影(二)
1、用换面法求直线AB的真长及其对H面、V面的倾角α、β。
●利用投影面平行线的投影特性及一次换面可将一般位置直线变换成投影面平行线做题。(具体参见教P74、P80)
●利用侧平圆的投影特性做题。
9、已知圆心位于点B、Ø30的圆处于左前到右后的铅垂面上,作圆的三面投影(投影椭圆用四心圆近似法作出)
●利用铅垂面的投影特性、圆的投影特性;四心圆近似法作椭圆具体见教P23。
第10页平面的投影(二) 直线与平面及两平面的相对位置(一)
1、求∆ABC对V面的倾角β。
(完整版)机械制图习题集(第6版)参考答案 (1)
第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
机械制图习题集[第6版]参考题答案
9、已知圆心位于点B、Ø30的圆处于左前到右后的铅垂面上,作圆的三面投影(投影椭圆用四心圆近似法作出)
●利用铅垂面的投影特性、圆的投影特性;四心圆近似法作椭圆具体见教P23。
第10页 平面的投影(二) 直线与平面及两平面的相对位置(一)
1、求∆ABC对V面的倾角β。
●解题要点:利用一次换面可将一般位置平面变换为投影面垂直面。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页 点的投影
1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
第13页 曲面面立体及其表面上的点和线
1、作圆柱的正面投影,并补全圆柱表面上的素线AB、曲线BC、圆弧CDE的三面投影。
●利用圆柱的投影特点(积聚性)和其表面取点的方法做题,注意可见性的判断。
2、已知圆柱的轴线的两面投影以及圆柱的正面投影,作出圆柱及其表面上点A和点B的水平投影。
●先用近似法把圆柱的水平投影作出,再利用圆柱形成的特点,采用素线法做题,并注意各点的可见性判断。
5、作四棱台的水平投影,并补全表面上点A、B、C、D、E和F的三面投影。
●利用棱台的投影特点和其表面取线的方法作出各点的投影。
6、作左端为正垂面的凸字形侧垂柱的水平投影,并已知表面上折线的起点A的正面投影和终点E的侧面投影,折线的水平投影成一直线,作折线的三面投影。
●利用正垂面、正平面、水平面投影特性做题。
机械制图习题集(第6版)答案
《机械制图》(第六版)习题集答案1.参照立体示意图和已选定的主视图,该零件的形状前后对称,确定表达方案(比例1:1),并标注尺寸(尺寸从图中量取,取整数;主视图中未能显示的尺寸,从立体图示意图中读取)。
●习题集中该题的主视图的底板中心孔的尺寸与示意图中标注底板中心孔的尺寸冲突。
2.读支架零件图,并回答下列问题:(1)分别用指引线和文字指出支架的长、宽、高三个方向的主要尺寸基准。
(见图示△)(2)零件上2× 孔的定位尺寸是20 ;45 。
(3)M6-7H螺纹的含义是普通粗牙螺纹;公称直径为6mm;单线;右旋;螺纹公差带:中径、小径均为7H;旋合长度属中等的一组。
(4)零件图上各表面粗糙度的最高要求是,最低要求是。
(5)表达该支架采用的一组图形分别为局部剖视的主视图,局部剖视的左视图,断面图。
第50页表面粗糙度、极限与配合、形状和位置公差的代(符)号及其标注1.根据给定的Ra值,用代号标注在图上。
●注意沉孔的标注。
2.标注轴和孔的基本尺寸及上、下偏差值,并填空。
滚动轴承与座孔的配合为基孔制,座孔的基本偏差代号为H类级,公差等级为IT7 级。
滚动轴承与轴的配合为基孔制,轴的基本偏差代号为k类级,公差等级为IT6 级。
3.解释配合代号的含义。
查表得上、下偏差值后标注在零件上,然后填空。
(1)轴套与泵体配合基本尺寸φ30 ,基 孔 制。
公差等级:轴IT 6 级,孔IT 7 级,过渡配合。
轴套:上偏差+0.015 ,下偏差+0.002 。
泵体孔:上偏差+0.021,下偏差0 。
(2)轴套与轴配合基本尺寸φ20 ,基 孔 制。
公差等级:轴IT 7 级,孔IT 8级,间隙配合。
轴套:上偏差+0.033,下偏差0 。
泵体孔:上偏差-0.02 ,下偏差-0.041。
4.用文字解释图中的形状和位置公差(按编号1、2、3填写)。
1) φ40的左端面对φ10圆柱孔轴线的圆跳动公差为0.05mm。
2) φ40圆柱面的圆柱度公差为0.025mm。
机械制图习题集[第6版]参考题答案
9、已知圆心位于点B、Ø30的圆处于左前到右后的铅垂面上,作圆的三面投影(投影椭圆用四心圆近似法作出)
●利用铅垂面的投影特性、圆的投影特性;四心圆近似法作椭圆具体见教P23。
第10页 平面的投影(二) 直线与平面及两平面的相对位置(一)
1、求∆ABC对V面的倾角β。
●解题要点:利用一次换面可将一般位置平面变换为投影面垂直面。
●从铅垂面LMN在水平投影面积聚为一直线入手,先利用公有性得到交点的一个投影,再根据从属关系求出交点的另一个投影。可见性判断可用重影点法进行判断;简单时可用直观法。
5、作出侧垂线AB与CDEF的交点,并表明可见性。
●从直线AB为侧垂线在侧面投影面积聚为一个点入手,先利用公有性得到交点的一个投影,再根据从属关系求出交点的另一个投影。可见性判断可用重影点法进行判断;
及两特殊位置平面互相垂直时,它们
具有积聚性的同面投影互相垂直做题。
4、根据下列诸投影图中直线与平面的相对位置,分别在下面的括号填写“平
行”、“垂直”或“倾斜”。
●利用直线与平面、平面与平面垂直的几何条件以及直线与平面、平面与平面平行的几何条件进行判断。
5、根据铅垂面的水平投影和反映真形的V1面投影,作出它的真面投影。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页 点的投影
1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
机械制图习题集(第6版)答案
第四章 立体的投影
第12页平面立体及其表面上的点和线
1、作三棱柱的侧面投影,并补全三棱柱表面上诸点的三面投影。
●可利用棱柱表面的积聚性进行作图。
2、作六棱柱的正面投影,并作出表面上的折线ABCDEF的侧面投影和正面投影。
●利用正垂面和正平面的投影特性做题。
4、判断点K和直线MS是否在∆MNT平面上?填写“在”或“不在”。
●若点位于平面内的任一直线,则点在该平面内。
●若一直线通过平面内的两点,则该直线在该平面内。
点K不在∆MNT平面上。
直线MS不在∆MNT平面上。
5、判断点A、B、C、D是否在同一平面上?填写“在”或“不在”。
第13页曲面面立体及其表面上的点和线
1、作圆柱的正面投影,并补全圆柱表面上的素线AB、曲线BC、圆弧CDE的三面投影。
●利用圆柱的投影特点(积聚性)和其表面取点的方法做题,注意可见性的判断。
2、已知圆柱的轴线的两面投影以及圆柱的正面投影,作出圆柱及其表面上点A和点B的水平投影。
●先用近似法把圆柱的水平投影作出,再利用圆柱形成的特点,采用素线法做题,并注意各点的可见性判断。
AB、CD是相交线;PQ、MN是相交线;
AB、EF是平行线;PQ、ST是平行线;
CD、EF是交叉线;MN、ST是交叉线;
4、在AB、CD上作对正面投影的重影点E、F和对侧面投影的重影点M、N的三面投影,并表明可见性。
●交叉直线的重影点的判断,可利用重影点的概念、重影点的可见性判断进行做题。
5、分别在图(a)、(b)、(c)中,由点A作直线AB与CD相交,交点B距离H面20。
机械制图习题集(第6版)参考答案
精心整理《机械制图》3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)CD5625;点C 与点A直角坐标影点判断C(1、判断下列直线对投影面的相对位置,并填写名称。
●该题主要应用各种位置直线的投影特性进行判断。
(具体参见教P73~77)AB是一般位置直线;EF是侧垂线;CD是侧平线;KL是铅垂线。
2、作下列直线的三面投影:(1)水平线AB,从点A向左、向前,β=30°,长18。
(2)正垂线CD,从点C向后,长15。
●该题主要应用各种位置直线的投影特性进行做题。
(具体参见教P73~77)3、判断并填写两直线的相对位置。
●该题主要利用两直线的相对位置的投影特性进行判断。
(具体参见教P77)AB、CD是相交线;PQ、MN是相交线;AB、EF是平行线;PQ、ST是平行线;CD、EF是交叉线;MN、ST是交叉线;4、在AB、CD上作对正面投影的重影点E、F和对侧面投影的重影点M、N的三面投影,并表明可见性。
●交叉直线的重影点的判断,可利用重影点的概念、重影点的可见性判断进行做题。
机械制图习题集第6版答案(供参考)
《机械制图》(第六版)习题集答案第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
机械制图习题集(第6版)答案
6、补全等腰三角形CDE的两面投影,边CD=CE,顶点C在直线AB上。
●利用一次换面将三角形的底边DE变换为
正平线,顶点在反映实长的垂直平分线上,
求出C点的投影,再根据点的投影变换规律
求出等腰三角形的两投影。
7、求作飞行员挡风屏ABCD和玻璃CDEF的夹角θ的真实大小。
3、作圆锥的侧面投影,并补全圆锥表面上的点A、B、C以及素线SD、圆弧EF的三面投影。
●利用圆锥表面取点、取线的方法做题(素线法、纬圆法),注意可见性的判断。
4、已知轴线为正垂线的圆台的水平投影,作圆台及其表面上的曲线AB的正面投影。
●经过两次换面将两个平面同时变换成同一投影面的垂直面,即将两平面的交线变换成投影面垂直面,则两平面的有积聚性的同面投影夹角即为所求。
第四章 立体的投影
第12页平面立体及其表面上的点和线
1、作三棱柱的侧面投影,并补全三棱柱表面上诸点的三面投影。
●可利用棱柱表面的积聚性进行作图。
2、作六棱柱的正面投影,并作出表面上的折线ABCDEF的侧面投影和正面投影。
5、作四棱台的水平投影,并补全表面上点A、B、C、D、E和F的三面投影。
●利用棱台的投影特点和其表面取线的方法作出各点的投影。
6、作左端为正垂面的凸字形侧垂柱的水平投影,并已知表面上折线的起点A的正面投影和终点E的侧面投影,折线的水平投影成一直线,作折线的三面投影。
●利用正垂面、正平面、水平面投影特性做题。
2、求 ABCD的真形。
●利用两次换面可将一般位置平面变换为投影面平行面。
3、正平线AB是正方形ABCD的边,点C在点B的前上方,正方形对V面的倾角β=45°,补全正方形的两面投影。
●利用正平线AB反映实长,再根据直角投影定理以及经一次换面将可将一般位置平面投影面垂直面。
机械制图习题集(第6版)答案
B(20,10,15)
C(35,30,32)
D(42,12,12)
5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。)
6、已知点A距离W面20;点B距离点A为25;点C与点A是对正面投影的重影点,y坐标为30;点D在A的正下方20。补全诸点的三面投影,并表明可见性。
●根据点的投影变换规律作图。
6、补全等腰三角形CDE的两面投影,边CD=CE,顶点C在直线AB上。
●利用一次换面将三角形的底边DE变换为
正平线,顶点在反映实长的垂直平分线上,
求出C点的投影,再根据点的投影变换规律
求出等腰三角形的两面投影。
7、求作飞行员挡风屏ABCD和玻璃CDEF的夹角θ的真实大小。
及两特殊位置平面互相垂直时,它们
具有积聚性的同面投影互相垂直做题。
4、根据下列诸投影图中直线与平面的相对位置,分别在下面的括号内填写“平
行”、“垂直”或“倾斜”。
●利用直线与平面、平面与平面垂直的几何条件以及直线与平面、平面与平面平行的几何条件进行判断。
5、根据铅垂面的水平投影和反映真形的V1面投影,作出它的真面投影。
2、求 ABCD的真形。
●利用两次换面可将一般位置平面变换为投影面平行面。
3、正平线AB是正方形ABCD的边,点C在点B的前上方,正方形对V面的倾角β=45°,补全正方形的两面投影。
●利用正平线AB反映实长,再根据直角投影定理以及经一次换面将可将一般位置平面投影面垂直面。
4、作直线CD与∆LMN的交点,并表明可见性。
第13页曲面面立体及其表面上的点和线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3页图线、比例、制图工具的用法、尺寸注法、斜度和锥度●要掌握和理解比例、斜度、锥度的定义;各种图线的画法要规范。
第4页椭圆画法、曲线板用法、平面图形的尺寸注法、圆弧连接1、已知正六边形和正五边形的外接圆,试用几何作图方法作出正六边形,用试分法作出正五边形,它们的底边都是水平线。
●注意多边形的底边都是水平线;要规范画对称轴线。
●正五边形的画法:①求作水平半径ON的中点M;②以M为圆心,MA为半径作弧,交水平中心线于H。
③AH为五边形的边长,等分圆周得顶点B、C、D、E④连接五个顶点即为所求正五边形。
2、用四心圆法画椭圆(已知椭圆长、短轴分别为70mm、45mm)。
●参教P23四心圆法画椭圆的方法做题。
注意椭圆的对称轴线要规范画。
3~4、在平面图形上按1:1度量后,标注尺寸(取整数)。
5、参照左下方所示图形的尺寸,按1:1在指定位置处画全图形。
第6页点的投影1、按立体图作诸点的两面投影。
●根据点的两面投影的投影规律做题。
2、已知点A在V面之前36,点B在H面之上,点D在H面上,点E在投影轴上,补全诸的两面投影。
●根据点的两面投影的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
3、按立体图作诸点的两面投影。
●根据点的三面投影的投影规律做题。
4、作出诸点的三面投影:点A(25,15,20);点B距离投影面W、V、H分别为20、10、15;点C在A之左,A之前15,A之上12;点D在A之下8,与投影面V、H等距离,与投影面W的距离是与H面距离的3.5倍。
●根据点的投影规律、空间点的直角坐标与其三个投影的关系及两点的相对位置做题。
各点坐标为:A(25,15,20)B(20,10,15)C(35,30,32)D(42,12,12)5、按照立体图作诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律做题,利用坐标差进行可见性的判断。
(由不为0的坐标差决定,坐标值大者为可见;小者为不可见。
)6、已知点A距离W面20;点B距离点A为25;点C与点A是对正面投影的重影点,y 坐标为30;点D在A的正下方20。
补全诸点的三面投影,并表明可见性。
●根据点的三面投影的投影规律、空间点的直角坐标与其三个投影的关系、两点的相对位置及重影点判断做题。
各点坐标为:A(20,15,15)B(45,15,30)C(20,30,30)D(20,15,10)第7页直线的投影(一)1、判断下列直线对投影面的相对位置,并填写名称。
●该题主要应用各种位置直线的投影特性进行判断。
(具体参见教P73~77)AB是一般位置直线; EF是侧垂线;CD是侧平线; KL是铅垂线。
2、作下列直线的三面投影:(1)水平线AB,从点A向左、向前,β=30°,长18。
(2)正垂线CD,从点C向后,长15。
●该题主要应用各种位置直线的投影特性进行做题。
(具体参见教P73~77)3、判断并填写两直线的相对位置。
●该题主要利用两直线的相对位置的投影特性进行判断。
(具体参见教P77)AB、CD是相交线; PQ、MN是相交线;AB、EF是平行线; PQ、ST是平行线;CD、EF是交叉线; MN、ST是交叉线;4、在AB、CD上作对正面投影的重影点E、F和对侧面投影的重影点M、N的三面投影,并表明可见性。
●交叉直线的重影点的判断,可利用重影点的概念、重影点的可见性判断进行做题。
5、分别在图(a)、(b)、(c)中,由点A作直线AB与CD相交,交点B距离H面20。
●图(c)利用平行投影的定比性作图。
6、作直线的两面投影:(1)AB与PQ平行,且与PQ同向,等长。
(2)AB与PQ平行,且分别与EF、GH交与点A、B。
●利用平行两直线的投影特性做题。
第8页直线的投影(二)1、用换面法求直线AB的真长及其对H面、V面的倾角α、β。
●利用投影面平行线的投影特性及一次换面可将一般位置直线变换成投影面平行线做题。
(具体参见教P74、P80)2、已知直线DE的端点E比D高,DE=50,用换面法作d’e’。
●利用投影面平行线反映实长的投影特性及一次换面可将一般位置直线变换成投影面平行线做题。
3、由点A作直线CD的垂线AB,并用换面法求出点A与直线CD间的真实距离。
●利用直角投影定理及一次换面可将一般位置直线变换成投影面平行线做题。
(见教P83、P80)4、作两交叉直线AB、CD的公垂线EF,分别与AB、CD交于E、F,并表明AB、CD间的真实距离。
●利用直角投影定理做题。
5、用换面法求两交叉直线AB、CD的最短连接管的真长和两面投影。
●利用两次换面可将一般位置直线转变为投影面垂直线及直角投影定理做题。
步骤:先将两交叉直线AB、CD中的一条直线转换为投影面的垂直线,求出AB、CD的间的真实距离,再逆向返回旧投影面V/H,从而求出最短距离的两面投影。
6、用直角三角形法求直线AB的真长及其对H面、V面的倾角α、β。
●用直角三角形求一般位置直线的实长及其对投影面的倾角。
第9页平面的投影(一)1、按各平面对投影面的相对位置,填写它们的名称和倾角(0°、30°、45°、60°、90°)。
●解题要点:利用各种位置平面的投影特性及有积聚性的迹线表示特殊位置平面的投影特性做题。
2、用有积聚性的迹线表示平面:过直线AB的正垂面P;过点C的正平面Q;过直线DE 的水平面R。
●利用有积聚性的迹线表示特殊位置平面的投影特性做题。
3、已知处于正垂位置的正方形ABCD的左下边AB,α=60°,补全正方形的两面投影。
已知处于正平面位置的等边三角形的上方的顶点E,下方的边FG为侧垂线,边长为18mm,补全这个等边三角形EFG的两面投影。
●利用正垂面和正平面的投影特性做题。
4、判断点K和直线MS是否在∆MNT平面上?填写“在”或“不在”。
●若点位于平面内的任一直线,则点在该平面内。
●若一直线通过平面内的两点,则该直线在该平面内。
点K不在∆MNT平面上。
直线MS不在∆MNT平面上。
5、判断点A、B、C、D是否在同一平面上?填写“在”或“不在”。
●不在同一直线的三个可确定一个平面,再看另外一个点是否在此平面上即可判断。
四点不在同一平面上。
6、作出ABCD的∆EFG的正面投影。
●利用点和直线在平面上的几何条件来作图。
7、补全平面图形PQRST的两面投影。
●解题要点:利用点和直线在平面上的几何条件来作图。
8、已知圆心位于点A、30的圆为侧平面,作圆的三面投影。
●利用侧平圆的投影特性做题。
9、已知圆心位于点B、Ø30的圆处于左前到右后的铅垂面上,作圆的三面投影(投影椭圆用四心圆近似法作出)●利用铅垂面的投影特性、圆的投影特性;四心圆近似法作椭圆具体见教P23。
第10页平面的投影(二)直线与平面及两平面的相对位置(一)1、求∆ABC对V面的倾角β。
●解题要点:利用一次换面可将一般位置平面变换为投影面垂直面。
2、求ABCD的真形。
●利用两次换面可将一般位置平面变换为投影面平行面。
3、正平线AB是正方形ABCD的边,点C在点B的前上方,正方形对V面的倾角β=45°,补全正方形的两面投影。
●利用正平线AB反映实长,再根据直角投影定理以及经一次换面将可将一般位置平面投影面垂直面。
4、作直线CD与∆LMN的交点,并表明可见性。
●从铅垂面LMN在水平投影面积聚为一直线入手,先利用公有性得到交点的一个投影,再根据从属关系求出交点的另一个投影。
可见性判断可用重影点法进行判断;简单时可用直观法。
5、作出侧垂线AB与CDEF的交点,并表明可见性。
●从直线AB为侧垂线在侧面投影面积聚为一个点入手,先利用公有性得到交点的一个投影,再根据从属关系求出交点的另一个投影。
可见性判断可用重影点法进行判断;简单时可用直观法。
6、作∆EFG与PQRS的交线,并表明可见性。
●铅垂面PQRS与一般平面相交,从铅垂面的水平投影积聚为一条直线入手,先利用公有性得到交线的一个投影,再根据从属关系求出交线的另一个投影。
本题可见性判断可用直观法。
7、作正垂面M与ABCD的交线,并表明可见性。
●正垂面MV与一般平面相交,从正垂面的正面投影积聚为一条直线入手,先利用公有性得到交线的一个投影,再根据从属关系求出交线的另一个投影。
本题可见性判断可用直观法。
8、作∆ABC与圆平面的交线,并表明可见性。
●利用圆平面为正平圆,∆ABC为铅垂面,此两平面相交的交线在水平投影面积聚为一个点,再根据从属关系求出交线的另一个投影。
本题可见性判断可用直观法。
9、作△EFG与MNPQ的交线,并表明可见性。
●利用∆EFG,MNPQ都为正垂面,此两平面相交的交线在正投影面积聚为一个点,再根据从属关系求出交线的另一个投影。
本题可见性判断可用直观法。
第11页直线与平面及两平面的相对位置(一)用换面法求解点、直线、平面之间的定位和度量问题1、作水平面P、平面ABCD、平面EFGD的共有点。
●先分别求水平面P与其余两平面的交线,再求两条交线的交点即可。
2、已知ΔBCD和PQRS的两面投影,并知ΔBCD上的点A的正面投影a’,在ΔBCD上作直线AE//PQRS。
●矩形PQRS为正垂面,过A点作一平面与矩形PQRS平行,再求所作平面与三角形ABC 的交线,即为所求。
3、已知点A作ΔBCD的垂线AK,K为垂足,并标出点A与ΔBCD的真实距离。
由点A作平面P∥∆ BCD,由点A作铅垂面Q⊥∆BCD,平面P、Q都用约定表示,即只画一条有积聚性的迹线。
●利用两平面互相平行几何条件以及两特殊位置平面互相垂直时,它们具有积聚性的同面投影互相垂直做题。
4、根据下列诸投影图中直线与平面的相对位置,分别在下面的括号内填写“平行”、“垂直”或“倾斜”。
●利用直线与平面、平面与平面垂直的几何条件以及直线与平面、平面与平面平行的几何条件进行判断。
5、根据铅垂面的水平投影和反映真形的V面投影,作出它的真面投影。
1●根据点的投影变换规律作图。
6、补全等腰三角形CDE的两面投影,边CD=CE,顶点C在直线AB上。
●利用一次换面将三角形的底边DE变换为正平线,顶点在反映实长的垂直平分线上,求出C点的投影,再根据点的投影变换规律求出等腰三角形的两面投影。
7、求作飞行员挡风屏ABCD和玻璃CDEF的夹角θ的真实大小。
●经过两次换面将两个平面同时变换成同一投影面的垂直面,即将两平面的交线变换成投影面垂直面,则两平面的有积聚性的同面投影夹角即为所求。
第四章立体的投影第12页平面立体及其表面上的点和线1、作三棱柱的侧面投影,并补全三棱柱表面上诸点的三面投影。
●可利用棱柱表面的积聚性进行作图。
2、作六棱柱的正面投影,并作出表面上的折线ABCDEF的侧面投影和正面投影。
●可利用棱柱表面的积聚性进行作图,并进行可见性判断。