初中中考数学动点问题专题讲解
中考数学复习考点题型专题讲解13 数轴动点问题中的新定义问题
中考数学复习考点题型专题讲解 专题13 数轴动点问题中的新定义问题例1.(2023·山东沂南期末)有如下定义 数轴上有三个点,若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”.若点A 表示数﹣4,点B 表示数8,M 为数轴一个动点.若点M 在线段AB 上,且点M 是点A 、点B 的“关键点”,则此时点M 表示的数是________. 【答案】5或﹣1.【解析】解 设点M 表示的数是x , ∴MA =x ﹣(﹣4)=x +4;BM =8﹣x ,∵若其中一个点与其它两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“关键点”, ∴MA =3BM 或BM =3MA ,∴x +4=3(8﹣x )或8﹣x =3(x +4), 解得 x =5或x =﹣1. 故答案为 5或﹣1.例2.(2023·北京期中)在同一直线上的三点A 、B 、C ,若满足点C 到另两个点A 、B 的距离之比是2,则称点C 是其余两点的亮点(或暗点),具体地,当点C 在线段AB 上时,若2CACB=,则称点C 是[A ,B ]的亮点;若点C 在线段AB 延长线上,2CBCA=,则称点C 是[,]B A 的暗点,例如,如图1,在数轴上A B C D 、、、分别表示数,-1,2,1,0,则的点C 是[,]A B 的亮点,又是[,]A D 的暗点;点D 是[,]B A 的亮点,又是[,]B C 的暗点.(1)如图2,M 、N 为数轴上的两点,点M 表示的数为-2,点N 表示的数为4,则[,]M N 的亮点表示的数是,[,]N M 的暗点表示的数是 ;(2)如图3,数轴上的点A 所表示的数为点所表示的数为-20,点B 表示的数为40,一只电子蚂蚁P 从点B 出发以每秒2个单位的速度向左运动,设运动时间为t 秒.①求当t 为何值时,P 是[,]B A 的暗点;②求当t 为何值时,P 、A 和B 三个点中恰有一个点为其余两点的亮点.【答案】(1)2,-8;(2)①t =60;②当点P 为[,]A B 亮点时,t =10;当点P 为[,]B A 亮点时,t =20;当点A 为[,]P B 亮点时,t =90;当点A 为[,]B P 亮点时,t =45.【解析】解 (1)根据题意,[,]M N 的亮点表示的数在线段MN 上, 设亮点表示的数为x , 则x +2=2(4-x ), 解得 x =2∴[,]M N 的亮点表示的数是 2;根据题意,[,]N M 的暗点表示的数在线段NM 延长线上, 设暗点为y , 则4-y =2(-2-y ) 解得,y =-8故答案为 2,-8;(2)①根据题意,点P 是[,]B A 的暗点,即点P 在线段BA 的延长线上 ∴PB =2t ,P A =2t -60 ∵PB =2P A ∴2t =2(2t -60)解得 t =60;②当点P 为[,]A B 亮点时,即P 在线段AB 上 ∴PB =2t ,P A =60-2t ∴60-2t =2×2t ∴t =10当点P 为[,]B A 亮点时,即P 在线段AB 上 ∴2(60-2t )=2t ∴t =20;当点A 为[,]P B 亮点时,即A 在线段PB 上 同理,2t -60=2×60 ∴t =90当点A 为[,]B P 亮点时,即A 在线段BP 上 2(2t -60)=60 ∴t =45B 点不可能在线段AP 上,故B 不可能是[A ,P ]、[P ,A ]的亮点综上所述,当点P 为[,]A B 亮点时,t =10;当点P 为[,]B A 亮点时,t =20;当点A 为[,]P B 亮点时,t =90;当点A 为[,]B P 亮点时,t =45.例3.(2023·北京市期中)对于数轴上的两点P ,Q 给出如下定义 P ,Q 两点到原点О的距离之差的绝对值称为P ,Q 两点的“绝对距离”,记为POQ .例如,P ,Q 两点表示的数如图(1)所示,则312POQ PO QO =−=−=.(1)A ,B 两点表示的数如图(2)所示. ①求A ,B 两点的“绝对距离”;②若点C 为数轴上一点(不与点О重合),且2AOB AOC =,求点C 表示的数.(2)点M ,N 为数轴上的两点(点M 在点N 左侧)且2MN =,1MON =,请直接写出点M 表示的数为________.【答案】(1)①2;②2或-2;(2)12−或32−【解析】解 (1)①求A ,B 两点的绝对距离=2, ②∵AOB AO BO =−=2,又2AOB AOC =, ∴1AOC =,即1AO CO −= ∴OC =0或OC =2 ∵C 不与O 重合∴点C 表示的数为2或-2.(2)由题可知MON =1MO NO −= 得 MO -NO =1或MO -NO =-1 ∵点M 在点N 左侧∴①当M 、N 都在原点的左侧时,∵MN =2, ∴MO -ON =1≠2,该情况不存在,②当M 、N 都在原点的右侧时, 同理知,此情况不存在,③当M 点在原点的左侧,N 点在原点的右侧时, ∵MN =2,即MO +NO =2又MO -NO =1或MO -NO =-1 ∴点M 表示的数为12−或32−.例4.(2023·江苏省锡山期中)如图,数轴上点A 表示的数为-3,点B 表示的数为4,阅读并解决相应问题.(1)问题发现 若在数轴上存在一点P ,使得点P 到点A 的距离与点P 到点B 的距离之和等于n ,则称点P 为点A 、B 的“n 节点”.如图1,若点P 表示的数为1,点P 到点A 的距离与点P 到点B 的距离之和为4+3=7,则称点P 为点A 、B 的“7节点”.填空 ①若点P 表示的数为2−,则n 的值为;②数轴上表示整数的点称为整点,若整点P 为A 、B 的“7节点”,则这样的整点P 共有个.(2)类比探究 如图2,若点P 为数轴上一点,且点P 到点A 的距离为1,请你求出点P 表示的数及n 的值.(3)拓展延伸 若点P 在数轴上运动(不与点A 、B 重合),满足点P 到点B 的距离等于点P 到点A 的距离的34,且此时点P 为点A 、B 的“n 的节点”,请写出点P 表示的数及n 的值.【答案】(1)7①;8②;(2)点P 表示的数为 -4,n =9,或点P 表示的数为 -2,n =7;(3)P 表示的数为25,n =49,或P 表示的数为1,n =7.【解析】解 (1)①∵点P 表示的数为-2,∴点P 到点A 的距离与点P 到点B 的距离之和为1+6=7 ∴点P 为点A 、B 的“7节点” ∴n =7故答案为 7;②设出点P 表示的数为x∴点P 到点A 的距离为 ()33x x −−=+,点P 到点B 的距离为 4x −当x >4时,3+47x x +−>,不符合题意;当34x −≤≤时,34=347x x x x ++−++−=,符合题意 当3x <−时,3+47x x +−>,不符合题意; ∵P 为整点∴P 表示的数为 -3或-2或-1或0或1或2或3或4 ∴整点P 共有8个故答案为 8;(2)∵点P 到点A 的距离为1,点A 表示的数为-3, ∴点P 表示的数为 -4或-2当点P 表示的数为 -4时,n =9; 当点P 表示的数为 -2时,n =7; (3)设点P 表示的数为x由题意,得3344x x ×+=−解得 x =1或x =25 即P 表示的数为25或1 当P 表示的数为25时,n =49 当P 表示的数为1时,n =7.例5.(2023·北京八中期中)数轴上点A 表示10−,点B 表示10,点C 表示18,如图,将数轴在原点O 和点B 处各折一下,得到一条“折线数轴”,在“折线数轴”上,点M 、N 表示的数分别是m 、n ,我们把m 、n 之差的绝对值叫做点M ,N 之间友好距离,即||MN m n =−,那么我们称点A 和点C 在折线数轴上友好距离为28个长度单位.动点P 从点A 出发,以2单位/秒的速度沿着折线数轴的正方向运动,从点O 运动到点B 期间速度变为原来的一半 点P 从点A 出发的同时,点Q 从点C 出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P 到达B 点时,点P 、Q 均停止运动.设运动的时间为t 秒.(1)当14t =秒时,P 、Q 两点在折线数轴上的友好距离为______个单位长度. (2)当P 、Q 两点在折线数轴上相遇时,求运动的时间t 的值.(3)是否存在某一时刻使得P 、O 两点在折线数轴上的友好距离与Q 、B 两点在折线数轴上的友好距离相等?若存在,请直接写出t 的值;若不存在,请说明理由. 【答案】(1)5;(2)11.5;(3)存在,t =2或6.5【解析】解 (1)当t =14秒时,点P 和点O 在数轴上相距9个长度单位, 点Q 和点O 在数轴上相距18-1×14=4个长度单位,P 、Q 友好距离9-4=5 故答案为 5;(2)由题意可得 10+(t -5)+t =28, 解得 t =11.5.故运动的时间t的值为11.5;(3)①当点P在AO,点Q在BC上运动时,由题意得10-2t=8-t,解得t=2,②当点P、Q两点都在OB上运动时,t-5=t-8,无解,不存在③当P在OB上,Q在BC上运动时,8-t=t-5,解得t=6.5;即PO=QB时,运动的时间为2秒或6.5秒.综上所述,存在,t的值为2或6.5.例6.(2023·陕西富县月考)对于数轴上的A,B,C三点,给出如下定义若其中一个点与其他两个点的距离恰好满足3倍的数量关系,则称该点是其它两个点的“倍分点”.如图,数轴上点A,B,C表示的数分别是1,4,5,此时点B是点A,C的“倍分点”.(1)当点A表示数2−,点B表示数2时,下列各数52−,1,4是点A,B的“倍分点”的是____;(2)当点A表示数10−,点B表示数30时,D为数轴上一个动点.若点D是点A,B的“倍分点”,求此时点D表示的数.【答案】(1)1,4;(2)①20,0,50,-30;②20,0,50,-30,103,-130,703−,110,503,-90,150.【解析】解(1)∵点A表示数-2,点B表示数2∴AB=2-(-2)=4当C表示的数是52−时,此时点C不是点A,B的“倍分点”.如图,当点C 表示的数是1时,此时点C 是点A ,B 的“倍分点”.如图,当点C 表示的数是4时,此时点C 是点A ,B 的“倍分点”.故答案为 1,4.(2)设点D 对应的数为x .当点D 在AB 之间时,AB =40,所以BD =10, 即x =20; 当34BD AB =时,BD =30,即x =0. 当点D 在点B 右侧,AD =3BD ,即x +10=3(x -30),解得x =50; 当点D 在点A 左侧,BD =3AD ,即30-x =3(-x -10),解得x =-30. 综上所述,点D 表示的数可为20,0,50,-30.例7.(2023·辽宁沈阳月考)在数轴上,若点C 到点A 的距离恰好是3,则称点C 为点A 的“幸福点”;若点C 到点A ,B 的距离之和为6,则称点C 为点A ,B 的“幸福中心”.(1)如图1,点A 表示的数是﹣1,则点A 的“幸福点”C 表示的数是.(2)如图2,点M 表示的数是﹣2,点N 表示的数是4,若点C 为点M ,N 的“幸福中心”,则点C 表示的数可以是(填一个即可);(3)如图3,点A 表示的数是﹣1,点B 表示的数是4,点P 表示的数是8,点Q 从点P 出发,以2单位/s 的速度沿数轴向左运动,经过秒后点Q 是点A ,B 的“幸福中心”?【答案】(1)-4或2;(2)-2(答案不唯一);(3)1.75或4.75.【解析】解(1)由题意得点A的“幸福点”C表示的数为-1-3=-4或-1+3=2,故答案为-4或2;(2)由题意得点M、N的距离为4-(-2)=6,∵点C为点M,N的“幸福中心”,∴点C在点M、N之间,∴点C表示的数可以为-2、-1、0、1、2、3、4,故答案为-2(答案不唯一);(3)由题意可得A、B之间的距离为5,故有两种可能设经过x秒点Q是A、B的“幸福中心”,①点Q在点B和点P之间,则有8-2x-4+8-2x-(-1)=6,解得x=1.75;②点Q在点A的左侧,4-(8-2x)+(-1)-(8-2x)=6,解得x=4.75,综上所述当经过1.75秒或4.75秒时,点Q是A、B的“幸福中心”.例8.(2023·江苏高港月考)阅读理解点A、B、C为数轴上三点,如果点C在A、B之间到A的距离是点C到B的距离3倍,那么我们就称点C 是{A,B}的奇点.例如如图1,点A表示的数为﹣3,点B表80÷(3+1)=20,30−20=10,−50+20=−30,−50−80÷3=−7623(舍去),−50−80×3=−290.故P点运动到数轴上的−290,−30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为−290,−30或10.例9.(2023·湖南师大附中月考)已知数轴上两点A,B对应的数分别为8−和4,点P为数轴上一动点,若规定点P到A的距离是点P到B的距离的3倍时,我们就称点P是关于A B→的“好点”.(1)若点P到点A的距离等于点P到点B的距离时,求点P表示的数是多少;(2)①若点P运动到原点O时,此时点P关于A B→的“好点”(填是或者不是);②若点P以每秒1个单位的速度从原点O开始向右运动,当点P是关于A B→的“好点”时,求点P的运动时间;(3)若点P在原点的左边(即点P对应的数为负数),且点P,A,B中,其中有一个点是关于其它任意两个点的“好点”,请直接写出所有符合条件的点P表示的数.【答案】(1)-2;(2)①不是;1②秒或10秒;(3)-4,-5,-12,-14,-32,-44.【解析】解(1)∵数轴上两点A,B对应的数分别为-8和4,∴AB=4-(-8)=12,∵点P到点A、点B的距离相等,∴P为AB的中点,∴BP=P A=12AB=6,∴点P表示的数是-2;(2)①当点P运动到原点O时,P A=8,PB=4,∵P A≠3PB,∴点P不是关于A→B的“好点”;故答案为不是;②根据题意可知设点P运动的时间为t秒,P A=t+8,PB=|4-t|,∴t+8=3|4-t|,解得t=1或t=10,所以点P的运动时间为1秒或10秒;(3)根据题意可知设点P表示的数为n,P A=n+8或-n-8,PB=4-n,AB=12,①当点A是关于P→B的“好点”时,|P A|=3|AB|,即-n-8=36,解得n=-44;②当点A是关于B→P的“好点”时,|AB|=3|AP|,即3(-n-8)=12,解得n=-12;或3(n+8)=12,解得n=-4;③当点P是关于A→B的“好点”时,|P A|=3|PB|,即-n-8=3(4-n)或n+8=3(4-n),解得n=10或1(不符合题意,舍去);④当点P是关于B→A的“好点”时,|PB|=3|AP|,即4-n=3(n+8),解得n=-5;或4-n=3(-n-8),解得n=-14;⑤当点B是关于P→A的“好点”时,|PB|=3|AB|,即4-n=36,解得n=-32.综上所述所有符合条件的点P表示的数是-4,-5,-12,-14,-32,-44.。
中考数学总复习课件(专题3:动点型问题)
MN 1 x2 S 16 2( 1 x2
8. 8)
1
x2
8.
2
2
根据二次函数的图形和性质,这个函数的图形是开口向下,
对称轴是y轴,顶点是(0,8),自变量的取值范围是0<x
<4.
故答案选C.
(三)面动问题 【例题 4】(2014·玉林市)如图,边长分别为1和2的两个等边 三角形,开始它们在左边重合,大三角形固定不动,然后把 小三角形自左向右平移直至移出大三角形外停止.设小三角形 移动的距离为x,两个三角形重叠的面积为y,则y关于x的函 数图象是( )
解:(1)①当△BPQ∽△BAC时,
∵ BP BQ , BP=5t,QC=4t,
BA BC
AB=10 cm,BC=8 cm,
∴ 5t 8 4t ,∴t=1.
10 8
②当△BPQ∽△BCA时,
∵
BP BC
BQ , BA
∴
5t 8 4t , 8 10
∴
t 32 . 41
∴t=1或 t 32 时,△BPQ与△ABC类似.
41
(2)如图a,过点P作PM⊥BC于点M,AQ,CP相交于点N.
则有PB=5t,PM=3t,CM=8-4t,
∵∠NAC+∠NCA=90°,
∠PCM+∠NCA=90°,
∴∠NAC=∠PCM且∠ACQ=∠PMC=90°.
∴△ACQ∽△CMP.
∴ AC QC .
CM PM
∴ 6 4t , 解得 t 7 ,
题型一 建立动点问题的函数关系式(或函数图象)
【例题 1】(2014·黑龙江省)如图,在平面直角坐标系中,边 长为1的正方形ABCD中,AD边的中点处有一动点P,动点P 沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走
初中常见动点问题解题方法PPT课件
p
考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等 边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称 点就在这个图形上。
练习
1、如图,等边△ABC的边长为4,AD是BC边上的中线,
F是AD边上的动点,E是AC边上一点,若AE=2,
当EF+CF取得最小值时,则∠ECF的度数为( )
2单位
/s
30o
5
综上所述,当t= 5 或t=4时△DEF为直角三角形
2
AE
30o
D
BF
C
小结
在变化中找到不变的性质是解决数学 “动点”探究题的基本思路,这也是动态 几何数学问题中最核心的数学本质。
SUCCESS
THANK YOU
•
(1)确定被“搬”的点 (2)确定被“移”的线
二、动点构成特殊图形
问题背景是特殊图形,考查问题也是特殊图 形,所以要把握好一般与特殊的关系;分析过程中,特 别要关注图形的特性(特殊角、特殊图形的性质、图 形的特殊位置).分析图形变化过程中变量和其他量 之间的关系,或是找到变化中的不变量,建立方程 或函数关系解决。
解析:
作点N关于AD的对称点 N ' 此时BM+MN=BM+M N '
要使BM+MN ' 最小 则要满足:① B,M,N ' 三点共线
②B N 垂' 直于 AC
÷ ∴ BM+MN的最小值= BN '=AB
C
N'
M
D
B
A
N
N'
C
MD
A
NB
练习
1. 如图,在△ABC中,∠C=90°,CB=CA=4, ∠A的平分线交BC于点D,若点P、Q分别是AC 和AD上的动点,则CQ+PQ的最小值是____________
中考数学复习考点知识专题讲解---动点型问题归类解析
中考数学复习考点知识专题讲解动点型问题归类解析点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.一、点动问题例1 如图1,梯形ABCD中,AB∥DC,DE上AB,CF⊥AB,且AE=EF=FB=5,DE=12动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止,设运动时间为t秒,y=S△EPF,则y与t的函数图象大致是( )思路分析分三段考虑:①点P在AD上运动;②点P在DC上运动;③点P在BC上运动.分别求出y与t的函数表达式,继而可得出函数图象.解在Rt△ADE中,综上可得,选项A的图象符合,故选A.点评解答本题的关键是分段讨论y与t的函数关系式,在具体解题中,可直接判断是一次函数还是二次函数,不需要求出解析式.二、线动问题例2 如图2所示,已知等腰梯形ABCD,AD∥BC,若动直线l 垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是( )分析与解分三段考虑:①当直线l经过BA段时,阴影部分的面积越来越大,并且增大的速度越来越快;②直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度保持不变;③直线l经过DC段时,阴影部分的面积越来越大,并且增大的速度越来越小;综合选项可得,选A.点评解答类似问题,有时候只要我们能判断面积增大的快慢速度就能选出答案.三、面动问题例3 如图3所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为( )分析与解根据题意,设小正方形运动的速度为V,分三个阶段:①小正方形向右未完全穿入大正方形,S=2×2-V t×1=4-Vt;②小正方形穿人大正方形,但未穿出大正方形,S=2×2-1×1=3;③小正方形穿出大正方形,S=Vt×1.分析选项可得,选A.四、双动点问题双动点问题对同学们获取信息和处理信息的能力要求更高,解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系.例4 如图4,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=2.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q 从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P 作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为_______,直线l的解析式为_______;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.思路分析 (1)利用梯形性质确定点D的坐标,利用sin∠DAB=2,得到△AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D 的坐标,利用待定系数法求出直线l的解析式;(2)解答本小题,需要弄清动点在各阶段运动过程中的状态.(3)本小题考查二次函数与一次函数在指定区间上的极值,根据(2)中求出的S表达式与取值范围,逐一讨论计算,最终确定S的最大值;(4)△QMN为等腰三角形的情形有两种,需要分类讨论.过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC =5.过点Q作QE⊥x轴于点E,②当1<t≤2时,如图6所示.过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t-5, PE=AF-AP-EF=11-2t-(5t-5)=16-7t,③当点M与点Q相遇时,DM+CQ=CD=1,即(2t-4)+(5t-5)=7,.解得t=167时,如图7所示.当2<t<167.∵a=-5<0,∴抛物线开口向下,对称轴为直线t=75∵当0<t≤1时,S随t的增大而增大,∴当t=1时,S有最大值,最大值为9;②当1<t≤2时,②如图9所示,当点M运动到C点,同时当Q刚好运动至终点D,此时△QMN为等腰三角形,t=125.故当t=209,或t=125时,△QMN为等腰三角形.点评本题是典型的运动型综合题,难度较大,解题的关键仍然是要对动点运动过程有清晰的理解.。
模型39 数轴上动点问题(解析版)-中考数学解题大招复习讲义
1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.✮(4)数轴上两点间的距离公式:AB=X B-X A(即:右端点减左端点)✮(5)数轴上中点数公式:=+2(即:中点等于两端点相加除以2)例题精讲【例1】.如图,点A在数轴上表示的数为﹣3,点B表示的数为2,点P在数轴上表示的是整数,点P不与A、B重合,且PA+PB=5,则满足条件的P点表示的整数有___________.解:∵PA+PB=5,∴点P在A,B两点之间,A,B两点之间的整数有﹣2,﹣1,0,1,变式训练【变式1-1】.如图,点O为原点,A、B为数轴上两点,AB=15,且OA=2OB,点P从点B开始以每秒4个单位的速度向右运动,当点P开始运动时,点A、B分别以每秒5个单位和每秒2个单位的速度同时向右运动,设运动时间为t秒,若3AP+2OP﹣mBP的值在某段时间内不随着t的变化而变化,则m= 2.5或5.5.解:∵AB=15,OA=2OB,∴AO=AB=10,BO=AB=5,∴A点对应数为﹣10,B点对应数为5,设经过t秒,则AP==,OP=5+4t,BP=5+4t﹣(5+2t)=2t,当t≤15时,3AP+2OP﹣mBP=45﹣3t+10+8t﹣2mt=(5﹣2m)t+55,∴当5﹣2m=0,即m=2.5时,3AP+2OP﹣mBP的值在某段时间内不随着t的变化而变化,当t>15时,3AP+2OP﹣mBP=3t﹣45+10+8t﹣2mt=(11﹣2m)t﹣35,∴当11﹣2m=0,即m=5.5时,上式为定值﹣35,也不随t发生改变,故m为2.5或5.5.故答案为:2.5或5.5.【变式1-2】.已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P 从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距46个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有47个、37个、10个整数点,请直接写出t1,t2的值.解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=46,∴t=4,∴运动4秒,点M与点N相距46个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,由t=﹣8+6t可得t=1.6,当t<1.6时,点N在点P左侧,若MP=NP,则t﹣(﹣8+6t)=6+2t﹣t,解得t=(s);当t>1.6时,点N在点P右侧,若MP=NP,则﹣8+6t﹣t=6+2t﹣t,解得t=(s),∴运动s或s时,点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动①当t1=4s时,P在4,M在14,N在﹣32,再往前一点,MP之间的距离即包含10个整数点,NP之间有47个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣33时,此时N、M之间仍为47个整数点,若N点过了﹣33时,此时N、M之间为48个整数点故t2=+4=(s),∴t1,t2的值分别为4s,s.【例2】.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A 落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是点D.解:由图形可知,旋转一周,点B对应的数是1,点C对应的数是0,点D对应的数是﹣1,点E对应的数是﹣2,点F对应的点为﹣3,点A对应的点为﹣4,继续旋转,点B对应的点为﹣5,点C对应的点为﹣6.∵2023÷6=337…1,∴数轴上表示﹣2025的点与圆周上点D重合.故答案为:点D.变式训练【变式2-1】.在数轴上,点A,O,B分别表示﹣15,0,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒4个单位,点Q的速度是每秒1个单位,运动时间为t秒.若点P,Q,O三点在运动过程中,其中一个点恰好是另外两点为端点的线段的一个中点,则运动时间为或或秒.解:由题知,P点对应的数为:﹣15+4t,Q点对应的数为:9+t,(1)当O为PQ中点时,根据题意得15﹣4t=9+t,解得t=,(2)当P是OQ的中点时,根据题意得2(4t﹣15)=9+t,解得t=,(3)当Q是OP的中点时,根据题意得2(9+t)=4t﹣15,解得t=,故答案为:或或.【变式2-2】.如图:在数轴上A点表示数﹣3,B点示数1,C点表示数9.(1)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(2)若点A、点B和点C分别以每秒2个单位、1个单位长度和4个单位长度的速度在数轴上同时向左运动.①若t秒钟过后,A,B,C三点中恰有一点为另外两点的中点,求t值;②当点C在B点右侧时,是否存在常数m,使mBC﹣2AB的值为定值,若存在,求m 的值,若不存在,请说明理由.解:(1)AB=9﹣(﹣3)=12,12÷2=6,AB的中点表示的数为:9﹣6=3,3﹣1=2,3+2=5,则点B与5表示的点重合;(2)①由题意可知,t秒时,A点所在的数为:﹣3﹣2t,B点所在的数为:1﹣t,C点所在的数为:9﹣4t,(i)若B为AC中点,则.∴t=1;(ii)若C为AB中点,则,∴t=4;(iii)若A为BC中点,则,∴t=16,∴综上,当t=1或4或16时,A,B,C三点中恰有一点为另外两点的中点;②假设存在.∵C在B右侧,B在A右侧,∴BC=9﹣4t﹣(1﹣t)=8﹣3t,AB=1﹣t﹣(﹣3﹣2t)=4+t,mBC﹣2AB=m(8﹣3t)﹣2(4+t)=8m﹣3mt﹣8﹣2t=8m﹣8﹣(3mt+2t)=8m﹣8﹣(3m+2)t,当3m+2=0即m=时,mBC﹣2AB=8×(﹣)﹣8=﹣为定值,∴存在常数m=﹣,使mBC﹣2AB的值为定值.1.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”“8cm”的刻度分别对应数轴上的是﹣3和x所表示的点,那么x等于()A.5B.6C.7D.8解:根据数轴可知:﹣3+8=5,故选:A.2.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2021次后,点B()A.对应的数是2019B.对应的数是2020C.对应的数是2021D.不对应任何数解:结合数轴,根据连续翻转可得出从原点开始,向右依次是A、B、C循环排列,2021次后共得出2022个顶点,∵2022÷3=674,∴最后一个点为C,∵最后一个点C是翻转了2021次后得到的,∴点C表示的数为2021,∴点B表示的数为2020,故选:B.3.在解决数学实际问题时,常常用到数形结合思想,比如:|x+1|的几何意义是数轴上表示数x的点与表示数﹣1的点的距离,|x﹣2|的几何意义是数轴上表示数x的点与表示数2的点的距离.结合以上知识,下列说法中正确的个数是()①若|x﹣2022|=1,则x=2021或2023;②若|x﹣1|=|x+3|,则x=﹣1;③若x>y,则|x﹣2|>|y﹣2|;④关于x的方程|x+1|+|x﹣2|=3有无数个解.A.1B.2C.3D.4解:①若|x﹣2022|=1,可得x﹣2022=±1,则则x=2021或2023;所以①说法正确;②若|x﹣1|=|x+3|,几何意义是数轴到表示数1的点和表示数3的点的距离相等的点,即可得出x=﹣1;所以②说法正确;③当y<x<0时,则|x﹣2|<|y﹣2|,所以③说法不正确;④因为|x+1|+|x﹣2|=3的几何意义是到数轴上表示﹣1的点与表示2的点的距离和等于3的点,即﹣1≤x≤2时满足题意,所以有无数个解,故④说法正确.故选:C.4.数轴上点A表示的数是﹣3,把点A向右移动5个单位,再向左移动7个单位到A′,则A′表示的数是﹣5.解:依题意得:﹣3+5﹣7=﹣5,即则A′表示的数是﹣5.故答案为:﹣5.5.数轴上点A表示﹣8,点B表示6,点C表示12,点D表示18.如图,将数轴在原点O 和点B,C处各折一下,得到一条“折线数轴”.在“折线数轴”上,动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C期间速度变为原来的一半,过点C D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动.其中一点到达终点时,两点都停止运动.设运动的时间为t秒,t=4.4时,M、N两点相遇(结果化为小数).解:当点M、N都运动到折线段O﹣B﹣C上,即t≥2时,M表示的数是×(t﹣2)=2t﹣4,N表示的数是12﹣3(t﹣2)=18﹣3t,∵M、N两点相遇时,M、N表示的数相同,∴2t﹣4=18﹣3t,解得:t==4.4,故答案为:4.4.6.如图,在一条不完整的数轴上,从左到右的点A、B、C把数轴分成①②③④四部分,点A、B、C对应的数分别是a、b、c,且ab<0.(1)原点在第②部分(填序号);(2)化简式子:|a﹣b|﹣|c﹣a|﹣|a|;(3)若|c﹣5|+(a+1)2=0,且BC=2AB,求点B表示的数.解:(1)∵点A、B、C对应的数分别是a、b、c,且ab<0,∴a<0,b>0,∴原点在点A和点B之间,又∵从左到右的点A、B、C把数轴分成①②③④四部分,∴原点在第②部分;故答案为:②(2)∵a<0,b>0,∴a﹣b<0,c>0,∴c﹣a>0,∴|a﹣b|﹣|c﹣a|﹣|a|=b﹣a﹣(c﹣a)﹣(﹣a)=b﹣a﹣c+a+a=a+b﹣c;(3)∵|c﹣5|+(a+1)2=0,又∵|c﹣5|≥0,(a+1)2≥0,∴c﹣5=0,a+1=0,∴c=5,a=﹣1,∵B对应的数是b,5>b>﹣1,∴BC=5﹣b,AB=b﹣(﹣1)=b+1,又∵BC=2AB,∴5﹣b=2×(b+1),即3b=3,解得:b=1,∴点B表示的数为1.7.已知b是最小的正整数,且(c﹣5)2与|a+b|互为相反数.(1)填空:a=﹣1,b=1,c=5;(2)若P为一动点,其对应的数为x,点P在0和2表示的点之间运动,即0≤x≤2时,化简:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程);(3)如图,a,b,c在数轴上所对应的点分别为A,B,C,在(1)的条件下,若点A 以1个单位长度/s的速度向左运动,同时,点B和点C分别以2个单位长度/s和5个单位长度/s的速度向右运动.ts后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解:(1)依题意得,b=1,c﹣5=0,a+b=0,解得a=﹣1,c=5.故答案为:﹣1,1,5;(2)点P在0和2表示的点之间运动,即0≤x≤2时,当0≤x≤1时,x+1>0,x﹣1≤0,x+5>0,原式=x+1+x﹣1+2x+10=4x+10;当1<x≤2时,x+1>0,x﹣1>0,x+5>0,原式=x+1﹣x+1+2x+10=2x+12.综上可知,|x+1|﹣|x﹣1|+2|x+5|=4x+10或2x+12;(3)不变,理由:t秒后A点表示的数是﹣1﹣t,B点表示的数是1+2t,C的表示的数是5+5t,∵AB=1+2t﹣(﹣1﹣t)=3t+2,BC=5+5t﹣(1+2t)=3t+4,∴BC﹣AB=2,∴BC﹣AB的值不变,是2.8.数轴上有A、B、C三点,如图1,点A、B表示的数分别为m、n(m<n),点C在点B 的右侧,AC﹣AB=2.(1)若m=﹣8,n=2,点D是AC的中点.①则点D表示的数为﹣2.②如图2,线段EF=a(E在F的左侧,a>0),线段EF从A点出发,以1个单位每秒的速度向B点运动(点F不与B点重合),点M是EC的中点,N是BF的中点,在EF 运动过程中,MN的长度始终为1,求a的值;(2)若n﹣m>2,点D是AC的中点,若AD+3BD=4,试求线段AB的长.解:(1)①∵m=﹣8,n=2,∴AB=2﹣(﹣8)=10.∵AC﹣AB=2,∴AC=12,∴点C对应的数字为4,∵点D是AC的中点,∴CD=AC=6,设点D表示的数为x,∴4﹣x=6,∴x=﹣2.∴点D表示的数为﹣2.故答案为:﹣2;②设EF运动的时间为t秒,则点E对应的数字为t﹣8,点F对应的数字为t﹣8+a,∵点M是EC的中点,N是BF的中点,∴点M对应的数字为=,点N对应的数字为=,∵MN=1,∴||=1.解得:a=0或a=4,∵a>0,∴a=4;(2)设点C对应的数字为c,点D对应的是为d,∵点A、B表示的数分别为m、n(m<n),点C在点B的右侧,AC﹣AB=2,∴c=n+2,AB=n﹣m.∵点D是AC的中点,∴d=,∴AD=m=,BD=n﹣=,∵AD+3BD=4,∴=4,解得:n﹣m=3.∴AB=3.9.如图,数轴上点A,B分别表示数a,b,其中a<0,b>0.(1)若a=﹣7,b=3,求线段AB的长度及线段AB的中点C表示的数c;(2)该数轴上有另一点D表示数d.①若d=2,点D在点B的左侧,且AB=5BD.求整式2a+8b+2023的值;②若d=﹣2,且AB=5BD,能否求整式2a+8b+2023的值?若能,求出该值;若不能,说明理由.解:(1)∵a=﹣7,b=3,∴线段AB的中点C表示的数c=3﹣×(|﹣7|+3)=3﹣×10=3﹣5=﹣2;(2)①∵d=2,点D在点B的左侧,且AB=5BD,∴AB=b﹣a,BD=b﹣2,∴b﹣a=5(b﹣2),∴a+4b=10,∴2a+8b+2023=2(a+4b)+2023=2×10+2023=2043;②能求出代数式的值,∵d=﹣2,点D在点B的左侧,且AB=5BD,∴AB=b﹣a,BD=b+2,∴b﹣a=5(b+2),∴a+4b=﹣10,∴2a+8b+2023=2(a+4b)+2023=2×(﹣10)+2023=﹣20+2023=2003;10.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点4.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为﹣4.5和 3.5,B,C两点间的距离是8;(2)若点A表示的整数为x,则当x为﹣2时,|x+6|与|x﹣2|的值相等;(3)要使代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.解:(1)4.5的相反数是﹣4.5,即点B表示的数为﹣4.5;点C表示的数为5﹣1.5=3.5;B,C两点间的距离是3.5﹣(﹣4.5)=3.5+4.5=8;故答案为:﹣4.5,3.5,8;(2)∵|x+6|与|x﹣2|的值相等,∴x+6=x﹣2此种情况等式不成立,或x+6=﹣(x﹣2),x=﹣2,∴x=﹣2时,|x+6|与|x﹣2|的值相等;故答案为:﹣2;(3)∵|x+1|+|x﹣2|值最小,∴在数轴上可以看作表示x的到﹣1的距离与到2的距离和最小,∴数x只能在﹣1与2之间,包括﹣1与2两个端点,∴﹣1≤x≤2.故答案为:﹣1≤x≤2.11.如图,已知点O为数轴的原点,点A、B、C、D在数轴上,其中A、B两点对应的数分别为﹣1、3.(1)填空:线段AB的长度AB=4;(2)若点A是BC的中点,点D在点A的右侧,且OD=AC,点P在线段CD上运动.问:该数轴上是否存在一条线段,当P点在这条线段上运动时,PA+PB的值随着点P的运动而没有发生变化?(3)若点P以1个单位/秒的速度从点O向右运动,同时点E从点A以5个单位/秒的速度向左运动、点F从点B以20个单位/秒的速度向右运动,M、N分点别是PE、OF的中点.点P、E、F的运动过程中,的值是否发生变化?请说明理由.解:(1)∵A、B两点对应的数分别为﹣1、3,∴OA=1,OB=3,∴AB=OA+OB=4.故答案为:4;(2)数轴上存在一条线段,当P点在这条线段上运动时,PA+PB的值随着点P的运动而没有发生变化.理由:A、B两点对应的数分别为﹣1、3,∴OA=1,OB=3,∵点A是BC的中点,∴AC=AB=4.∴OC=AC+OA=5,∴C点对应的数为﹣5.又∵OD=AC,点D在点A的右侧,∴D点对应的数为4.设P点对应的数为x,①P点在射线CA上时,PA=﹣1﹣x,PB=3﹣x,∴PA+PB=﹣1﹣x+(3﹣x)=2﹣2x,∴PA+PB的值随着点P的运动而发生变化;②P点在线段AB上时,PA=x﹣(﹣1)=x+1,PB=3﹣x,∴PA+PB=x+1+(3﹣x)=4,∴PA+PB的值随着点P的运动没有发生变化;③P点在射线BD上时,PA=x﹣(﹣1)=x+1,PB=x﹣3,∴PA+PB=x+1+(x﹣3)=2x﹣2,∴PA+PB的值随着点P的运动而发生变化.综上,P点在线段AB上时,PA+PB的值没有发生变化,∴数轴上存在一条线段,当P点在这条线段上运动时,PA+PB的值随着点P的运动而没有发生变化;(3)在运动过程中,的值不发生变化.理由:设运动时间为t 分钟,则OP =t ,OE =5t +1,OF =20t +3,∴EF =OE +OF =25t +4,∵M 、N 分别是PE 、OF 的中点,∴EM =PM =PE =(OP +OE )=3t +,ON =OF =10t +,∴OM =OE ﹣EM =5t +1﹣(3t +)=2t +,∴MN =OM +ON =12t +2,∴.∴在运动过程中,的值不发生变化.12.如图,在数轴上,点O 表示原点,点A 表示的数为﹣1,对于数轴上任意一点P (不与点A 点O 重合),线段PO 与线段PA 的长度之比记作k (p ),即,我们称k (p )为点P 的特征值,例如:点P 表示的数为1,因为PO =1,PA =2,所以.(1)当点P 为AO 的中点时,则k (p )=1;(2)若k (p )=2,求点P 表示的数;(3)若点P 表示的数为p ,且满足p =2n ﹣1,(其中n 为正整数,且1≤n ≤7),求所有满足条件的k (p )的和.解:(1)由题意可知,当点P 为AO 的中点时点P 表示的数为,,∴,故答案为:1;(2)设点P 表示的数为x ,则PO =|x |,PA =|x ﹣(﹣1)|=|x +1|,∵k (p )=2,∴,即PO =2PA ,∴|x|=2|x+1|,∴x=2(x+1)或x=﹣2(x+1),解得:x=﹣2或;故:点P表示的数﹣2或;(3)点P表示的数为p,且满足p=2n﹣1,(其中n为正整数,且1≤n≤7),p=2n﹣1>0,此时:PO=p,PA=p﹣(﹣1)=p+1,当p=2n﹣1时∵1≤n≤7,且n为正整数,则所有满足条件的k的值分别为:(p),故所有满足条件的k的和为:=(p),令,则,②﹣①得:,∴==.13.把一根小木排放在数轴上,木棒左端点与点A重合,右端点与点B重合,数轴的单位长度为1cm,如图所示.(1)若将木棒沿数轴向右移动,当木棒的左端点移动到点B处时、它的右端点在数轴上对应的数为20;若将木棒沿数轴向左移动时,当它的右端点移动到点A处时,木棒左端点在数轴上对应的数为5,由此可得木棒的长为5cm;我们把这个模型记为“木捧摸型”;(2)在(1)的条件下,已知点C表示的数为﹣2.若木棒在移动过程中,当木棒的左端点与点C相距3cm时,求木棒的右端点与点A的距离;(3)请根据(1)的“木棒模型”解决下列问题.某一天,小字问爷爷的年龄,爷爷说:“我若是你现在那么大,你还要41年才出生;你若是我现在这么大,我就有124岁了,世界级老寿星了,哈哈!”请你画出“木棒模型”示意图,求出爷爷现在的年龄.解:(1)由图观察可知,三根木棒长是20﹣5=15(cm),则此木棒长为:15÷3=5(cm);故答案为:5cm;(2)由题可知,点A所表示的数是5+5=10,∵木棒的左端点与点C相距3cm,点C表示的数为﹣2,当左端点在点C右侧3cm时,此时木棒左端点表示的数为:﹣2+3=1,右端点表示的数为;1+5=6,木棒的右端点与A的距离为:10﹣6=4,当左端点在点C左侧3cm时,此时木棒左端点表示的数为:﹣2﹣3=﹣5,木棒的右端点表示的数为:﹣5+5=,木棒的右端点与点A的距离=10﹣0=10,∴木棒的右端点与点A的距离为4或10;(3)由图可知,把小红与爷爷的年龄差看作木棒AB,类似爷爷是小红现在年龄时看作当B点移动到A点时,此时A点所对应的数位﹣41,因为当A点移动到B点时,此时B点所对应的数为124,所以爷爷比小红大[124﹣(﹣41)]÷3=55(岁),所以爷爷的年龄为124﹣55=69(岁),答:爷爷现在的年龄是69岁.14.对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A,B,C 所表示的数分别为1,3,4,此时点B是点A,C的“联盟点”.(1)若点A表示数﹣1,点B表示的数2,下列各数:,0,1,4,5所对应的点分别为C1,C2,C3,C4,C5,其中是点A,B的“联盟点”的是C2,C3,C5;(2)点A表示的数是﹣1,点B表示的数是3,P是数轴上的一个动点:①若点P在线段AB上,且点P是点A,B的“联盟点”,求此时点P表示的数;②若点P在点A的左侧,点P、A、B中有一个点恰好是其它两个点的“联盟点”,求出此时点P表示的数.解:(1)∵AC1═﹣﹣(﹣1)═,BC1═2﹣(﹣)═,∴2AC1≠BC1,∴C1不是A,B的“联盟点”.∵AC2═0﹣(﹣1)═1,BC2=2﹣0=2,∴2AC2═BC2,∴C2是A,B的“联盟点”.∵AC3═1﹣(﹣1)=2,BC3═2﹣1=1,∴AC3═2BC3,∴C3是A,B的“联盟点”.∵AC4═4﹣(﹣1)=5,BC4═4﹣2=2,∴AC4≠BC4,∴C4不是A,B的“联盟点”.∵AC5═5﹣(﹣1)=6,BC5═5﹣2=3,∴AC5═2BC5,∴C5是A,B的“联盟点”.综合上述,是点A,B的“联盟点”的是C2,C3,C5.(2)解;设点P表示的数为x,①∵P在线段AB上,∴AP=x+1,BP=3﹣x,当AP=2BP时,有x+1=2(3﹣x),解得x=,当BP=2AP时,有3﹣x=2(x+1),解得x=,综上所述,点P表示的数为,.②由题意得,AB=4,∵P在A的左侧,∴AP=﹣1﹣x,BP=3﹣x,当点A为B,P的“联盟点”时,若AB=2AP,则有4=2(﹣1﹣x),解得x=﹣3,若AP=2AB,则有﹣1﹣x=2×4,解得x=﹣9,当点B为A,P的“联盟点”时,2AB=BP,则有2×4=3﹣x,解得x=﹣5,当点P为A,B的“联盟点”时,BP=2PA,则有3﹣x=2(﹣1﹣x),解得x=﹣5,综上所述,P表示的数为﹣9,﹣3,﹣5.15.如图,点A,O,B,D在同一条直线l上,点B在点A的右侧,AB=6,OB=2,点C 是AB的中点,如图画数轴.(1)若点O是数轴的原点,则点B表示的数是2,点C表示的数是﹣1;(2)若点O是数轴的原点时,D点表示的数为x,且AD=5,求x;(3)若点D是数轴的原点,点D在点A的左侧,点A表示的数为m,且A,B,C,O 所表示的数之和等于21,求m;(4)当O是数轴的原点,动点E,F分别从A,B出发,相向而行,点E的运动速度是每秒2个单位长度,点F的运动速度是每秒1个单位长度,当EF=3时,求点A,B,E,F表示的数之和.解;(1)点B在点A的右侧,OB=2,∴点B表示的数是﹣2,故答案为:2;AB=6,点C是AB的中点,∴BC=3,∴点C表示的数是2﹣3=﹣1,故答案为:﹣1;(2)AB=6,点B在点A的右侧,点A表示的数是﹣4,AD=|﹣4﹣x|=5,x=1或x=﹣9;(3)若点D是数轴的原点,点D在点A的左侧,点A表示的数为m,∵AB=6,C是AB的中点,OB=2,∴AC=3,AO=4,∴点O表示的数是m+4,点C表示的数是m+3,点B表示的数是m+6,m+(m+6)+(m+3)+(m+4)=21,解得m=2;(4)设运动时间为t,据题意得:6﹣2t﹣t=3,解得t=1,AE=2,BF=1,点E表示的数是﹣2,点F表示的数是1,点A,B,E,F表示的数之和为:﹣4+2+(﹣2)+1=﹣3,16.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,a,c满足|a+4|+(c﹣2)2=0,b是最大的负整数.(1)a=﹣4,b=﹣1,c=2.(2)若将数轴折叠,使得点A与点C重合,则点B与数﹣1表示的点重合;(3)点A,B,C开始在数轴上运动,若点A和点B分别以每秒0.4个单位长度和0.3个单位长度的速度向左运动,同时点C以每秒0.2个单位长度的速度向左运动,点C到达原点后立即以原速度向右运动,运动时间为t秒,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,请问:5AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出5AB﹣BC的值.解:(1)∵|a+4|+(c﹣2)2=0,b是最大的负整数,a=﹣4,b=﹣1,c=2,故答案为:﹣4,﹣1,2;(2)AB=﹣1﹣(﹣4)=3,AC=2﹣(﹣4)=6,点B为AC的中点,故将数轴折叠,使得点A与点C重合,则点B与自身重合,故答案为:﹣1;(3)AB=3+0.4t=0.3t=3+0.1t,当C运动到原点时,t=2÷0.2=10(秒),点B运动到点A的位置,当t≤10秒时,BC=3+0.3t﹣0.2t=3+0.1t,5AB﹣B=5(3+0.1t)﹣(3+0.1t)=15+0.5t﹣3﹣0.1t=12+0.4t,5AB﹣BC的值随时间的变化而变化;当t>10时,BC=4+0.3t+0.2t=4+0.5t,5AB﹣BC=5(3+0.1t)﹣(4+0.5t)=15+0.5t﹣4﹣0.5t=11.这时5AB﹣BC的值不变.17.定义:对于数轴上的三点,若其中一个点与其他两个点的距离恰好满足2倍的数量关系.如下图,数轴上点A,B,C所表示的数分别为1,3,4,此时点B就是点A,C的一个“关联点”.(1)写出点A,C的其他三个“关联点”所表示的数:﹣2、2、7.(2)若点M表示数﹣2,点N表示数4,数﹣8,﹣6,0,2,10所对应的点分别是C1,C2,C3,C4,C5,其中不是点M,N的“关联点”是点C2.(3)若点M表示的数是﹣3N表示的数是10,点P为数轴上的一个动点.①若点P在点N左侧,且点P是点M,N的“关联点”,求此时点P表示的数.②若点P在点N右侧,且点P,M,N中,有一个点恰好是另外两个点的“关联点”,求此时点P表示的数.解:(1)2﹣1=1,4﹣2=2,2是A,C的一个“关联点”,设x是A,C的一个“关联点”,x﹣1=2(x﹣4)解得x=7,设y是A,C的一个“关联点”,2(1﹣y)=4﹣y解得y=﹣2,A,C的其他三个“关联点”所表示的数为:﹣2、2、7,故答案为:﹣2、2、7,(2)∵﹣2﹣(﹣8)=6,4﹣(﹣8)=12,∴C1是关联点,∵﹣2﹣(﹣6)=4,4﹣(﹣6)=10,∴C2不是关联点,∵0﹣(﹣2)=2,4﹣0=4,∴C3是关联点,∵2﹣(﹣2)=4,4﹣2=2,∴C4是关联点,∵10﹣(﹣2)=12,10﹣4=6,∴C5是关联点,故答案为:C2.(3)①若点P在点N左侧且在M的右侧,设点P表示的数为x,当2(x+3)=10﹣x解得,当x+3=2(10﹣x)解得,若点P在M点左侧,设点P表示的数为x,∴2(﹣3﹣x)=10﹣x解得x=﹣16,综上所述:P表示的数为:;②若点P在点N右侧,设点P表示的数为x,当PN=2MN时,则2×13=x﹣10解得x=36,当MN=2PN时,则13=2×(x﹣10)解得,当MP=2MN时,则x+3=2×13解得x=23,当MP=2PN时,则x+3=2×(x﹣10)解得x=23,综上所述:P表示的数为:,23.36.18.[知识背景]:数轴上,点A,点B表示的数为a,b,则A,B两点的距离表示为AB=|a﹣b|.线段AB的中点P表示的数为.[知识运用]:已知数轴上A,B两点对应的数分别为a和b,且(a﹣4)2+|b﹣2|=0,P 为数轴上一动点,对应的数为x.(1)a=4,b=2;(2)若点P为线段AB的中点,则P点对应的数x为3,若点B为线段AP的中点,则P点对应的数x为0;(3)若点A、点B同时从图中位置在数轴上向左运动,点A的速度为每秒1个单位长度,点B的速度为每秒3个单位长度,则经过122秒点B追上点A;(4)若点A、点B同时从图中位置在数轴上向左运动,它们的速度都为每秒1个单位长度,与此同时点P从表示﹣16的点处以每秒2个单位长度的速度在数轴上向右运动.经过多长时间后,点A、点B、点P三点中,其中一点是另外两点组成的线段的中点?解:(1)∵(a﹣4)2+|b﹣2|=0,∴a﹣4=0,b﹣2=0,∴a=4,b=2.故答案为4、2.(2)点A,B表示的数分别为4,2,P对应数为x,若点P为线段AB的中点,则P点对应的数x==3,若B为线段AP的中点时,则=2,解得x=0.故答案为1,0;(3)解:设经过x秒点B追上点A,(3﹣1)x=4﹣2,2x=2,x=1,答:经过1秒点B追上点A.(4)经过t秒后,点A,点B,点P三点中其中一点是另外两点的中点,t秒后,点A的位置为:4﹣t,点B的位置为:2﹣t,点P的位置为:﹣16+2t,当点A为PB的中点时,则有,2×(4﹣t)=2﹣t﹣16+2t,解得:t=,当点B为PA的中点时,则有,2×(2﹣t)=4﹣t﹣16+2t,解得:t=,当点P为BA的中点时,则有,2×(﹣16+2t)=4﹣t+2﹣t,解得:t=,答:经过秒,秒,秒后,点A,点B,点P三点中其中一点是另外两点的中点.故答案为:秒,秒,秒.19.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和3的两点之间的距离是2.②数轴上表示﹣1和﹣4的两点之间的距离是3.③数轴上表示﹣3和5的两点之间的距离是8.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于|a﹣b|.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=7.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=﹣1.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是3.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是a>5或a<﹣3.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.解:(1)①5﹣3=2,故答案为:2;②(﹣1)﹣(﹣4)=3,故答案为:3;③5﹣(﹣3)=8,故答案为:8;(2)根据数轴上两点间的距离得|a﹣b|,故答案为:|a﹣b|;(3)①∵表示数a的点位于﹣4与3之间,∴|a+4|+|a﹣3|=a+4+3﹣a=7,故答案为:7;②∵|a﹣1|=|a+3|∴表示数a的点在1和﹣3∴|a﹣1|=|a+3|,1﹣a=a+3,a=﹣1,故答案为:﹣1;③∵|a﹣1|+|a+2|有最小值,∴表示a的点在﹣2与1之间,∴|a﹣1|+|a+2|=1﹣a+a+2=3,故答案为:3;④|a+3|+|a﹣5|>8,当﹣3<a<5时,|a+3|+|a﹣5|=a+3+5﹣a=8,不合题意舍去;当a<﹣3时,|a+3|+|a﹣5|=﹣(a+3)+5﹣a>8,a<﹣3;当a>5时,|a+3|+|a﹣5|>8,a+3+a﹣5>8,a>5,故答案为:a<﹣3或a>5;(4)设电子蚂蚁运动x秒时,P、Q相距20个单位长度,①4x+3x+20=20+100,x=,点P表示的是4×﹣20=②4x+3x﹣20=20+100,x=20,点P表示的是4×20﹣20=60,20.将一条数轴在原点O和点B处各折一下,得到如图所示的“折线数轴”,图中点A表示﹣10,点B表示10,点C表示18.我们称点A和点C在数轴上的“友好函数”为28个单位长度.动点P从点A出发,以2单位长度/秒的速度沿着“折线数轴”向其正方向运动.当运动到点O与点B经过点B后立刻恢复原速;同时,动点Q从点C出发,以1单位长度/秒的速度沿着“折线数轴”向其负方向运动,当运动到点B与点O之间时速度变为原来的两倍,经过O后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至点C需要19秒,动点Q从点C运动至点A需要23秒;(2)P,Q两点相遇时,求出相遇点M在“折线数轴”上所对应的数;(3)是否存在t值,使得点P和点Q任“折线数轴”上的“友好距离”等于点A和点B 在“折线数轴”上的“友好距离”?若存在,求出t的值;若不存在,请说明理由.解:(1)∵点A表示﹣10,点B表示10,点C表示18,∴OA=10,BO=10,BC=8,∴动点P从点A运动至点C需要的时间是:10÷2+10÷1+8÷2=19(s),动点Q从点C运动至点A需要的时间是:10÷1+10÷2+8÷1=23(s),故答案为:19,23;(2)根据题意可知,P、Q两点在OB上相遇,P点运动到OB上时表示的数是t﹣5,Q点运动到OB上时表示的数是10﹣2(t﹣8),∴t﹣5=10﹣2(t﹣8),解得t=,∴M点表示的数是﹣5=;(3)存在t值,使得点P和点Q任“折线数轴”上的“友好距离”等于点A和点B在“折线数轴”上的“友好距离”,理由如下:∵点A表示﹣10,点B表示10,∴点A和点B在“折线数轴”上的“友好距离”是20,①当0≤t≤5时,P点在OA上,Q点在BC上,此时P点表示的数是﹣10+2t,Q点表示的数是18﹣t,∴点P和点Q任“折线数轴”上的“友好距离”为18﹣t+10﹣2t=28﹣3t,由题意可得,28﹣3t=20,解得t=;②当5<t≤8时,P点在OB上,Q点在OC上,此时P点表示的数是t﹣5,Q点表示的数是18﹣t,∴点P和点Q任“折线数轴”上的“友好距离”为18﹣t﹣t+5=23﹣2t,由题意可得,23﹣2t=20,解得t=(舍);③8<t≤13时,点P、Q都在BO上,此时PQ<10,∴此情况不符合题意;④13<t≤15时,P点在OB上,Q点在OA上,此时P点表示的数是t﹣5,Q点表示的数是t﹣13,∴点P和点Q任“折线数轴”上的“友好距离”为t﹣5+t﹣13=2t﹣18,由题意可得,2t﹣18=20,解得t=19(舍);⑤15<t≤19时,P点在BC上,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是t﹣13,∴点P和点Q任“折线数轴”上的“友好距离”为t﹣13+2t﹣20=3t﹣33,由题意可得,3t﹣33=20,解得t=;⑥19<t≤23时,P点在C的右侧,Q点在OA上,此时P点表示的数是2t﹣20,Q点表示的数是t﹣13,∴点P和点Q任“折线数轴”上的“友好距离”为t﹣13+2t﹣20=3t﹣33,由题意可得,3t﹣33=20,解得t=(舍);⑦t>23时,P点在C点右侧,Q点在A点左侧,PQ>20,不符合题意;综上所述:t的值为或.21.在数轴上,点M,N对应的数分别是m,n(m≠n,mn≠0),P为线段MN的中点,同时给出如下定义:如果=10,那么称M是N的“努力点”.例如:m=1,n=,M是N的“努力点”.(1)若|m﹣10|+(n+90)2=0则m=10,n=﹣90;(2)在(1)的条件下,下列说法正确的是③(填序号);①M是P的“努力点”;②M是N的“努力点”③N是M的“努力点”;④N是P的“努力点”(3)若mn<0,且P是M,N其中一点的“努力点”,求值?解:(1)∵|m﹣10|+(n+90)2=0,∴m=10,n=﹣90,故答案为:10,﹣90;(2)∵m=10,n=﹣90,∴P点对应的数是﹣40,∵||=,∴M不是P的“努力点”,故①不符合题意;∵m=10,n=﹣90,∴||=,∴M不是N的“努力点”,故②不符合题意;∵||=10,∴N是M的“努力点”,故③符合题意;∵||=,∴N是P的“努力点”,故④不符合题意;故答案为:③;(3)∵P为线段MN的中点,∴P点对应的数为,当P是M点的“努力点”时,||=10,∴=21或=﹣19,∵mn<0,∴=﹣;当P是N点的“努力点”时,||=10,∴=21或=﹣19,∵mn<0,∴=﹣19;综上所述:的值为﹣19或﹣.22.在数轴上,O为原点,点A,B对应的数分别是a,b(a≠b,ab≠0),M为线段AB的中点.给出如下定义:若OA÷OB=4,则称A是B的“正比点”;若OA×OB=4,则称A是B的“反比点”.例如a=2,时,A是B的“正比点”;a=2,b=﹣2时,A是B的“反比点”.(1)若|a+2|+(b﹣4)2=0,则M对应的数为1,下列说法正确的是③④(填序号).。
动点与定值问题初三
动点与定值问题初三一、动点与定值问题解析动点与定值问题是一种常见的数学问题,主要考察学生的空间思维能力和代数运算能力。
这类问题通常涉及到几何图形中的动点和定点,通过给定的条件和关系,求出动点的轨迹或定值。
解决动点与定值问题的关键在于理解问题的几何背景和代数关系。
首先,要明确动点和定点的位置关系,以及它们之间的距离、角度等关系。
其次,要运用代数方法,将几何关系转化为代数方程或不等式,通过求解方程或不等式得到答案。
二、例题讲解例题1:在直角坐标系中,点A的坐标为(0,1),点B的坐标为(2,0),点C的坐标为(4,3)。
若点P是x轴上的一个动点,当△PAB的周长最小时,求点P的坐标。
分析:首先,我们可以通过平移的方式找到点P的位置。
由于点A和点B关于x轴对称,我们可以将点A关于x轴的对称点设为点P,这样△PAB的周长最小。
解:设点P的坐标为(x,0)。
由于点A和点B关于x轴对称,因此,我们有:AP = BP根据点到点的距离公式,我们可以得到:AP = √(x^2 + 1)BP = √((x-2)^2 + 1)因为AP=BP,所以:x^2 + 1 = (x-2)^2 + 1解这个方程,我们得到:x = 1所以,当△PAB的周长最小时,点P的坐标为(1,0)。
例题2:在矩形ABCD中,AB=2, BC=4, 点E是BC的中点。
将△ABE沿AE折起,使得AB=BE=2, 求二面角B-AE-D的平面角的余弦值。
分析:首先,我们需要找到二面角B-AE-D的平面角所在的三角形。
通过观察和计算,我们可以发现平面角所在的三角形是△BAE。
因此,我们需要求出△BAE 的三边长度,然后利用余弦定理求出余弦值。
解:由于AB=BE=2,AE=2√2(根据勾股定理)。
我们可以得到△BAE的三边长度分别为2、2√2、4。
根据余弦定理,我们可以得到:cos∠BAE = (AB^2 + AE^2 - BE^2) / (2 ×AB ×AE)= (4 + 8 - 4) / (2 ×2 ×2√2)= √2/2所以,二面角B-AE-D的平面角的余弦值为√2/2。
中考数学动点问题专题讲解(22页)
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.!2222233621419x x x MH PH MP +=-+=+=HM NG PO!AB图1xy∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;}(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,:又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.[(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.AEDCB 图2AC 3(2)¥EC 3(1)根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, (∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE.∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . *∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . A!BCO 图8HC此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学专题复习之几何图形动点问题
12,∴AB= 12 =2 3 ,又∵△ABE是等边三角形,∴BE=AB=2 3,即PD+ PE的最小值为2 3 .
专题二 几何图形动点问题
类型3 同侧差最大值问题 【问题】两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值 最大. 【解决思路】根据三角形任意两边之差小于第三边,|PA-PB|≤AB,当A,B, P三点共线时,等号成立,即|PA-PB|的最大值为线段AB的长.连接AB并延 长,与直线l的交点即为点P.
2 AN
-PN=PM′-PN≤M′N=2,延长M′N交BD于点P′,连接P′M,∴
例4题图
当点P运动到P′时,即点M′、N、P′共线时,M′N=P′M′-P′N=2,
∴PM-PN的最大值为2.
例4题解图
专题二 几何图形动点问题
模型二 “一点两线”型(两动点+一定点)
【问题】点P是∠AOB的内部一定点,在OA上找一点M,在OB上找一点N, 使得△PMN周长最小. 【解决思路】要使△PMN周长最小,即PM+PN+MN值最小.根据两点之 间线段最短,将三条线段转化到同一直线上即可.
专题二 几何图形动点问题
例5 如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分 ∠AOB,且OP=6,则△PMN的周长最小值为( C )
213.∴PM-PO的最大值为
13
2.
例3题解图
专题二 几何图形动点问题
类型4 异侧差最大值问题 【问题】两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大. 【解决思路】将异侧点转化为同侧点,同类型3即可解决.
专题二 几何图形动点问题
例4 (2019陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的
中考数学压轴专题动点问题解析版
1..如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A 为中心,沿顺时针方向旋转,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒.(1)当点B及点D重合时,求t的值;(2)设△BCD的面积为S,当t为何值时,S25=?4(3)连接MB,当MB∥OA时,如果抛物线2=-的顶点y ax10ax在△ABM内部(不包括边),求a的取值范围.3,抛物线2.如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=42=+经过点A(4,0)及点(-2,6)y ax bx(1)求抛物线的函数解析式.(2)直线m及⊙C相切于点A交y轴于点D,动点P在线段OB 上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.3.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=1,A(3,0),D(﹣1,0),E(0,33).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形及△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE及△ABE重叠部分的面积为s,求s及t之间的函数关系式,并指出t的取值范围.4.已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2 ),点E为线段AB上的动点(点E不及点A,B 重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C 为y轴正半轴上一点,且OC=AB,抛物线y=2-x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(122+)倍.若存在,请直接..写出点P的坐标;若不存在,请说明理由.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.5.如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线D M⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB 于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF及△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.6.(10分)(2019•常州)如图,一次函数y=﹣x+4的图象及x 轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB及△OAP外接圆的交点,点P、Q 及点A都不重合.(1)写出点A的坐标;(2)当点P在直线l上运动时,是否存在点P使得△OQB及△APQ 全等?如果存在,求出点P的坐标;如果不存在,请说明理由.(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM 外接圆的面积分别是S1、S2,求的值.7.(10分)(2019•常州)如图,反比例函数y=的图象及一次函数y=x 的图象交于点A 、B ,点B 的横坐标是4.点P 是第一象限内反比例函数图象上的动点,且在直线AB 的上方.(1)若点P 的坐标是(1,4),直接写出k 的值和△PAB 的面积;(2)设直线PA 、PB 及x 轴分别交于点M 、N ,求证:△PMN 是等腰三角形;(3)设点Q 是反比例函数图象上位于P 、B 之间的动点(及点P 、B 不重合),连接AQ 、BQ ,比较∠PAQ 及∠PBQ 的大小,并说明理由.1.【答案】解:(1)∵CAO BAE 90∠+∠=︒,∴CAO ABE ∠=∠。
几何中的动点问题:中考数学轨迹与路径
几何中的动点问题:中考数学轨迹与路径几何作为数学的一部分,一直以来被认为是高难度的学科之一,但是在实际中,几何也是生活和科学中必不可少的组成部分。
而在几何中,动点问题一直是人们感到困惑的一个问题。
在这篇文章中,我们将为大家全面介绍几何中的动点问题,以及如何在中考数学中处理轨迹和路径的问题。
一、动点问题的基本定义及特点动点问题可以简单定义为:在几何图形中,设有一个动点进行运动,如何求出该点的轨迹和路径。
动点问题是几何中的一个重要问题,具有以下特点:1. 动点问题一般是基于静态点进行分析,因此需要对静态点的性质有深刻的认识。
2. 动点问题的解决需要具备一定的数学能力和三维空间思维能力,需要较高的数学水平。
3. 动点问题结合实际进行探究,可以帮助人们更好地理解几何、物理等知识,也有益于培养人们的空间思维能力。
二、动点问题的基本应用1. 针对不同的几何图形,我们可以找到它们的动点问题:(1)直线的动点问题:一般是着眼于直线上的动点,分析其轨迹和路径;(2)圆的动点问题:针对圆上的任意一点,求其轨迹和路径;(3)曲线的动点问题:着重考虑曲线上的动点,探究它们的轨迹和路径。
2. 在实际生活中,动点问题也有很多应用:(1)公路的修建:如何建设一条曲线公路,使得大车可以顺利通过,是一个很好的动点问题实例;(2)太空飞行器飞行:在太空中,如何预测航天器的运动轨迹,需要运用动点问题的相关知识;(3)排球比赛中跑位:排球比赛中,如何控制自己的跑位,使得球能够顺利地落到自己的手中,也是一种动点问题的体现。
三、如何在中考数学中处理轨迹和路径在中考数学中,轨迹和路径的处理是重点。
我们可以通过以下方法来解决问题:1. 把动点分解成几个静止的点,结合点的特性,推导出动点刚好经过这些点时的轨迹和路径。
2. 找到一个合适的坐标系,将动点变成坐标,问题就可以转化为一个数学问题,更加便于解决。
3. 运用相关的几何定理,如垂线定理、角平分线定理等,结合动点的运动特性,解决问题。
中考数学动点问题专题讲解
动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. 2222233621419x x x MH PH MP +=-+=+= AEDCB 图2HM NGPOAB图1x y(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 如三、应用求图形面积的方法建立函数关系式例4()如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考数学动点题讲解
中考数学动点题讲解中考数学动点题主要考察考生对平面几何中动点的理解和应用能力。
在这种题型中,需要考生根据动点的特点和运动轨迹,推导出动点所在的图形的性质和相关参数。
以下是中考数学动点题的讲解。
1. 直线上动点问题直线上动点问题是动点题中最简单的一种,通常需要考生根据动点的移动轨迹,推导出线段长度、角度等相关量的变化规律。
例如,有一条长度为10的线段AB,动点P沿着这条线段从A点开始匀速向B点移动,求当P点到达B点时,线段AB的中点O的位置。
解题思路:由于P点是匀速移动的,可以通过构建等速度线段来找到P点在到达B点前所处的位置。
具体地,我们可以在AB上构造以A点和B点为端点、长度为5的等速度线段CD和EF,分别与P点的轨迹相交于C点和E点。
根据线段AB的中点公式,可以得出线段OB的长度为5,因此,当P点到达B点时,线段OB的位置位于B点的左侧5个单位长度处。
2. 圆上动点问题圆上动点问题通常需要考生根据动点所在的圆的性质,推导出相关的几何关系和参数。
例如,有一条固定的半径为3的圆和一个动点P沿着这个圆的周长运动,当P点从起始位置出发后,经过圆心O点后,再走过180度后又回到起始位置,求动点P所走的路径长度。
解题思路:由于P点沿着圆的周长匀速运动,因此,当P点运动经过180度后,它所走的路径长度就是圆的周长的一半,即3π。
又因为P点在运动过程中经过圆心O点,因此,P点所在的运动轨迹是一条弧线,其长度等于圆心角的对应弧长。
根据圆心角的定义,当P 点运动经过180度时,它所对应的圆心角为π,因此,P点所在弧线的长度为圆的周长的一半,即3π。
3. 平面内任意图形上动点问题平面内任意图形上的动点问题通常需要考生根据所给图形的几何特征,推导出动点所处的位置和相关参数。
例如,有一个正方形ABCD和一个动点P沿着正方形边界从A点开始匀速运动,当P点回到A点时,求P点所在的轨迹。
解题思路:由于P点沿着正方形边界匀速运动,它所在的轨迹应为一条四边形,其四个顶点分别为A、B、C、D。
中考数学复习专题二---动点问题题型方法归纳
长度单位和 2 个长度单位的速度沿 OC 和
BO 运动,当其中一个点停止运动时另一
个点也随之停止运动.设它们的运动的时
间 为 t ( s) , 连 接 y D
M
C PQ , 当
3
P
A O
Q Bx
(这里规定:点和线段是面积为 形),解答下列问题:
O 的三角
( 1)点 P 、 Q 从出发到相遇所用时间是
3 时,求 m的取值范围 ( 写出答案即可 ) .
注 意:发现特殊性, DE∥OA
6
动.
( 1)直接写出 A、 B 两点的坐标;
( 2)设点 Q 的运动时间为 t 秒, △OPQ
的面积为 S ,求出 S 与 t 之间的函数关系
式;
( 3)当 S 48 时,求出点 P 的坐标,并 5
直接写出以点 O、 P、Q 为顶点的平行四边
形的第四个顶点 M 的坐标.
y B
提示:第( 2 )问按点 P 到拐点 B 所有时 间分段分类; 第( 3 )问是分类讨论:已知三定点 O 、 P、 Q , 探究第四点构成平行四 边形时按已知线段身份不同分类 ---- ① OP 为 边 、 OQ 为 边 , ② OP 为 边 、 OQ 为 对 角 线 , ③ OP 为 对 角 线、 OQ 为边。然后画出各类的图 形,根据图形性质求顶点坐标。
动时间为 t( s)(0 t 2) ,连结 EF,当 t 为
何值时,△ BEF 为直角三角形. 注意:第( 3 )问按直角位置分类讨论
C F
A
OEB
图
2
t 为何值时,四边形 BCPQ 的面积最小? 并求出最小值及此时 PQ 的长.
注意:发现并充分运用特殊角∠ DAB=60 ° 当 △OPQ 面 积 最 大 时 , 四 边 形
中学考试数学动点问题专题讲解
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠AEDCB 图2A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. ABCO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 如三、应用求图形面积的方法建立函数关系式例4()如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). AEDCB 图2ABCO 图8HABCDEOlA ′ABCDE O lF (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、以动态几何为主线的 (二)线动问题在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于点E.(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由. [题型背景和区分度测量点]本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线l 沿AB 边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二. [区分度性小题处理手法]1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法.2.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段. [ 略解](1)∵A ’是矩形ABCD 的对称中心∴A ’B =AA ’=21AC ∵AB =A ’B ,AB =3∴AC =6 33=BC(2)①92+=x AC ,9412+=x AO ,)9(1212+=x AF ,x x AE 492+=∴AF 21⋅=∆AE S AEFx x 96)9(22+=,x x x S 96)9(322+-= xx x S 968127024-+-= (333<<x )②若圆A 与直线l 相切,则941432+=-x x ,01=x (舍去),582=x ∵3582<=x ∴不存在这样的x ,使圆A 与直线l 相切.[.(例3:如图,在等腰直角三角形ABC 中,斜边BC=4,OA ⊥BC 于O,点E 和点F 分别在边AB 、AC 上滑动并保持AE=CF,但点F 不与A 、C 重合,点E 不与B 、A 重合。
判断∆OEF 的形状,并加以证明。
判断四边形AEOF 的面积是否随点E 、F 的变化而变化,若变化,求其变化范围,若不变化,求它的值.∆AEF 的面积是否随着点E 、F 的变化而变化,若变化,求其变化范围,若不变化,求它的值。
本题包容的内涵十分丰富,还可以提出很多问题研究:比如,比较线段EF 与AO 长度大小等(可以通过A 、E 、O 、F 四点在以EF 为直径的圆上得出很多结论)例8:如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB边从点A 开始向点B 以2厘米/秒的速度移动;点Q 沿DA 边从点D 开始向点A 以1厘米/秒的速度移动。
如果P、Q同时出发,用t 秒表示移动的时间(0≤ t ≤6),那么:(1)当t 为何值时,三角形QAP 为等腰三角形?(2)求四边形QAPC 的面积,提出一个与计算结果有关的结论; (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?分析:(1)当三角形QAP 为等腰三角形时,由于∠A 为直角,只能是AQ=AP ,建立等量关系,t t -=62,即2=t 时,三角形QAP 为等腰三角形;(2)四边形QAPC 的面积=ABCD 的面积—三角形QDC 的面积—三角形PBC 的面积=6)212(211221612⨯--⨯⨯-⨯x x =36,即当P 、Q 运动时,四边形QAPC 的面积不变。
(3)显然有两种情况:△PAQ ∽△ABC ,△QAP ∽△ABC ,FEOCBA由相似关系得61262=-xx 或12662=-x x ,解之得3=x 或2.1=x 建立关系求解,包含的内容多,可以是函数关系,可以是方程组或不等式等,通过解方程、或函数的最大值最小值,自变量的取值范围等方面来解决问题;也可以是通过一些几何上的关系,描述图形的特征,如全等、相似、共圆等方面的知识求解。
例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。