数字图像处理基础2

合集下载

数字图像处理(第二版)章 (2)

数字图像处理(第二版)章 (2)
(4) 噪声。数字化设备的噪声水平也是一个重要的性能参 数。例如,数字化一幅灰度值恒定的图像,虽然输入亮度是一 个常量,但是数字化设备中的固有噪声却会使图像的灰度发生 变化。因此,数字化设备所产生的噪声是图像质量下降的根源 之一,应当使噪声小于图像内的反差点(即对比度)。
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)

数字图像处理(冈萨雷斯)2数字图像处理基础PPT课件

数字图像处理(冈萨雷斯)2数字图像处理基础PPT课件
人眼对不同亮度的适应和鉴别能力
亮 暗 适应慢 暗 亮 适应快
55
(1)视觉适应性
2.1.3亮度适应和鉴别
✓亮度适应范围:1010量级(10-6mL(夜视域)~104mL(强闪光));
✓与整个适应范围相比,人眼在某一时刻能鉴别的亮度级别范围很 小(以该环境的平均亮度为中心的一个小的亮度范围);
✓亮度适应级(视觉系统当前的灵敏度级别):
Bit数为:
b=M×N×k
(2.4-4)
因此,存储一幅512×512 ,有256个灰度级(k=8)的图像
需要512×512×8=2097152(Bit) 或
512×512=256K(Byte)
32 32
2.4.3 空间和灰度分辨率
空间分辨率(spatial resolution)
图像中可分辨的最小细节,主要由采样间隔值决定
0<r(x,y)<1 平均反射系数(reflectance) r ( x ,y ) 0 — — 全 吸 收 r ( x ,y ) 1 — — 全 反 射
单色图像在任何坐标(x0,y0)处的强度为图像在该处的灰度 级 l=f(x0,y0),显然有 Lmin,l可L以ma规x 定灰度级范围为 [0,L-1]
2.1.3亮度适应和鉴别
✓当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以
察觉间变化,一般观察者可以辨别12到24级不同强度的变化.
图2.5 亮度辨 别特性的基本 实验
图2.6 作为强
韦伯定理说明:
度函数
的典型
✓人眼视觉系统对亮度的对比度 敏感而非对亮度本身敏感;
韦伯比
✓低照度,韦伯比高,亮度辨别能力差;高照度,韦伯比低, 亮度辨别能力强;

c语言数字图像处理(二):图片放大与缩小-双线性内插法

c语言数字图像处理(二):图片放大与缩小-双线性内插法

c语⾔数字图像处理(⼆):图⽚放⼤与缩⼩-双线性内插法图像内插假设⼀幅⼤⼩为500 * 500的图像扩⼤1.5倍到750 * 750,创建⼀个750 * 750 的⽹格,使其与原图像间隔相同,然后缩⼩⾄原图⼤⼩,在原图中寻找最接近的像素(或周围的像素)进⾏赋值,最后再将结果放⼤最邻近内插法寻找最近的像素赋值双线性内插法v(x,y) = ax + by + cxy + d双线性内插法参数计算已知Q11, Q12, Q21, Q22,要插值的点为P点,⾸先在x轴上,对R1,R2两个点进⾏插值然后根据R1和R2对P点进⾏插值化简得对于边界值的处理,若x1 < 0 ,则直接令f(Q11), f(Q12) = 0处理结果原图扩⼤为6000 * 4000缩⼩为1000 * 500下⾯为代码实现的主要部分int is_in_array(short x, short y, short height, short width){if (x >= 0 && x < width && y >= 0 && y < height)return1;elsereturn0;}void bilinera_interpolation(short** in_array, short height, short width, short** out_array, short out_height, short out_width){double h_times = (double)out_height / (double)height,w_times = (double)out_width / (double)width;short x1, y1, x2, y2, f11, f12, f21, f22;double x, y;for (int i = 0; i < out_height; i++){for (int j = 0; j < out_width; j++){x = j / w_times;y = i / h_times;x1 = (short)(x - 1);x2 = (short)(x + 1);y1 = (short)(y + 1);y2 = (short)(y - 1);f11 = is_in_array(x1, y1, height, width) ? in_array[y1][x1] : 0; f12 = is_in_array(x1, y2, height, width) ? in_array[y2][x1] : 0; f21 = is_in_array(x2, y1, height, width) ? in_array[y1][x2] : 0; f22 = is_in_array(x2, y2, height, width) ? in_array[y2][x2] : 0; out_array[i][j] = (short)(((f11 * (x2 - x) * (y2 - y)) +(f21 * (x - x1) * (y2 - y)) +(f12 * (x2 - x) * (y - y1)) +(f22 * (x - x1) * (y - y1))) / ((x2 - x1) * (y2 - y1))); }}}。

第2章 数字图象处基础(1-27)

第2章 数字图象处基础(1-27)
光号 信 视胞 细 生理电信号 视经 神 视神经中枢 大成 脑像
Digital Image Processing
2.2 人的视觉特性
人的视觉模型
▓ ▓
点光源的表示函数
点源可以用 δ 函数表示,表示平面图像的二维 δ 函数 +∞ +∞ 为: ⎧ 1 y, ) x ∫ ∫−∞ δ (dxdy = −∞ ⎪ ⎪ ⎨ = = ⎧ ∞ y , x 0 0, ⎪δ ( y , ) = ⎨ x , 其他 ⎪ ⎩ 0 ⎩ 则任意一幅图像可表示为:
Digital Image Processing
2.2 人的视觉特性
人眼的构造与机理要点(续)
( 3)视细胞: 视网膜上集中了大量视细胞,分为两类: 锥状细胞 :明视细胞,在强光下检测亮度和颜色; 杆 (柱 )状细胞 :暗视细胞,在弱光下检测亮度,无色彩感觉。 其中,每个锥状视细胞连接着一个视神经末梢,故分辨率高, 分辨细节、颜色;多个杆状视细胞连接着一个视神经末梢,故分辨 率低,仅分辨图的轮廓。 (4 ) 人眼成象过程:
2.4 数字图像表示形式和特点
▓ ▓
数字图像的矩阵表示 数字图像的矩阵 矩阵表示
O n
f (0,1) ⎡ f (0,0) ⎢ f (1,1) ⎢ f (1,0) , f (mn) = ⎢ ⋮ ⋮ ⎢ ⎣ f (M−1,0) f (M−1,1)
⋯ f (0, N−1) ⎤ ⎥ ⋯ f (1, N−1) ⎥ ⎥ ⋮ ⋮ ⎥ ⋯ f (M−1, N−1)⎦
Digital Image Processing
2.1 色度学基础
RGB模型:
在三维直角坐标系中,用相互垂直的三个坐标轴代表R、 G、B三个分量,并将R、G、B分别限定在[0,1],则该单位正 方体就代表颜色空间,其中的一个点就代表一种颜色。如下图 方体就代表颜色空间,其中的一个点就代表一种颜色。 所示。 其中,r、g、b、c、m和y分别代表红色(red)、绿色 (green)、蓝色(blue)、青色(cyan)、品红(magenta) 和黄色(yellow)。

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

数字图像处理数字图像处理第二章(第六讲)KL变换、其他正交变换

数字图像处理数字图像处理第二章(第六讲)KL变换、其他正交变换

第二章 常用的数学变换
2.6其他正交变换 —离散沃尔什-哈达玛变换(WHT)
1 1 1 1 1 1 1 1
1
1
1
1
1
1
1
1
1 1 1 1 1 1 1 1
H8
1 22
1 1
1 1
1 1
1 1
1
1 1
1
1 1 1 1
1
1
1
1 1
1
1
1
1 1 1 1 1 1 1 1
1
1
1
1
1
2.6其他正交变换 —离散沃尔什-哈达玛变换(WHT)
1893年法国数学家哈达玛总结前人研究只包含+1和-1的正交矩 阵结果,形成哈达玛矩阵,既简单又有规律
1923年美国数学家沃尔什提出Walsh函数,具有特点 函数取值仅有两个(0,1或-1,+1) 由Walsh函数构成的Walsh函数集,具备正交性和完备性
种是按照哈达玛排列来定义。由于哈达玛排序的沃尔什函数是由2n (n=0,1,2,…)阶哈达玛矩阵(Hadamard Matrix)得到的,而
哈达玛矩阵的最大优点在于它具有简单的递推关系, 即高阶矩阵可 用两个低阶矩阵的克罗内克积求得,因此在此只介绍哈达玛排列定 义的沃尔什变换。
第二章 常用的数学变换
0.443(60) 0.742(70) 0.376(62) 0.106(50)
119.53
国家级精品资源共享课
第二章 常用的数学变换
第二章 常用的数学变换
2.1 引言 2.2 空域变换 2.3 频率域变换 2.4 离散余弦变换 2.5 KL变换 2.6 其他正交变换
第二章 常用的数学变换

数字图像-医学图像处理 Part2:解答题和计算题

数字图像-医学图像处理 Part2:解答题和计算题

Part2:解答题和计算题2.1 图像处理基础一、简答题1、解释模拟图像和数字图像的概念。

(10分)模拟图像在水平与垂直方向上灰度变化都是连续的,因此有时又将模拟图像称之为连续图像( continuous image)数字图像是指把模拟图像分解成被称作像素的若干小离散点,并将各像素的颜色值用量化的离散值,即整数值来表示的图像。

因此,又将数字图像称为离散图像(discrete image)。

像素是组成数字图像的基本元素。

2、简述图像的采样和量化过程,并解释图像的空间分辨率和灰度分辨率的概念。

(10分) 空间采样将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

由于图像是二维分布的信息,所以采样是在x轴和y轴两个方向上进行。

量化把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。

量化值一般用整数来表示。

考虑人眼的识别能力,目前非特殊用途的图像均为8bit量化,即用0~255描述“黑~白”。

空间分辨率(spatial resolution ):图像空间中可分辨的最小细节。

一般用单位长度上采样的像素数目或单位长度上的线对数目表示。

灰度分辨率(contrast resolution ):图像灰度级中可分辨的最小变化。

一般用灰度级或比特数表示。

3、在理想情况下获得一幅数字图像时,采样和量化间隔越小,图像的画面效果越好。

当一幅图像的数据量被限制在一个范围内时,如何考虑图像的采样和量化,使得图像的表现效果尽可能的好? (10 分)当限定数字图像的大小时, 为了得到质量较好的图像,一般可采用如下原则:①对缓变的图像,应该细量化,粗采样,以避免假轮廓②对细节丰富的图像,应细采样,粗量化,以避免模糊4、图像量化时,如果量化级别较少时会发生什么现象?为什么? (10分)如果量化级比较少,会出现伪轮廓现象。

原因:量化过程是将连续的颜色划分到有限个级别中,必然会导致颜色的信息缺失。

当量化级别数量级过小时,图像灰度分辨率就会降低,颜色层次就会欠丰富,不同的颜色之间过渡就会变得突然,所以可能会导致伪轮廓现象。

数字图像处理 第2章 图像的数字化与显示

数字图像处理 第2章 图像的数字化与显示
k
(2.20)
2.3.3 空间与灰 度级分辨率
对一幅图像,当量化级数Q一定 时,采样点数 M×N 对图像质量有着显 著的影响。采样点数越多,图像质量越 好;当采样点数减少时,图像越小,图 上的块状效应就逐渐明显。
图像的采样与数字图像的质量
图像的量化与数字图像的质量
量化级数越多,图像质量越好,当量化级数越少时,图像质量越 差,量化级数最小的极端情况就是二值图像,图像出现假轮廓。
2.2 图像场取样
2.2.1 取样和量化的基本概念
数字化包括取样和量化两个过程 :
取样(sampling):对空间连续坐标(x, y)的 离散化 量化(quantization):幅值 f (x, y)的离散化
(a)连续图像
(b)数字化结果
图2.1 图像的数字化过程
(a)
(b)
图2.2 采样网格 (a) 正方形网格; (b) 正六角形网格
截止频率。
u U c , v Vc u U c , v Vc
(2.8)
其中 U c , Vc 对应于空间位移变量x和y的最高
则当采样周期
x, y满足
(2.9)
1 u s 2U c x 1 vs 2Vc y
此时,通过采样信号 f ( mx, ny ) 能唯一地恢 复或重构出原图像信号f (x,y)。该条件称为 Nyquist采样定理。
• 2.3.1

标量量化
标量量化:将数值逐个量化 。 例:假设抽样信号的范围是0~5 V,将它分为8等
分,这样就有8个量化电平,分别是5/8 V,10/8 V,15/8 V,…,35/8 V。 对每一个采样将它量化为离它最近的电平。 在量化后,为了能在数字信号处理系统中处理 二进制码,还必须经过编码操作。

数字图像处理试题集2(精减版)

数字图像处理试题集2(精减版)

第一章概述一.填空题1. 数字图像是用一个数字阵列来表示的图像。

数字阵列中的每个数字,表示数字图像的一个最小单位,称为__________。

5. 数字图像处理包含很多方面的研究内容。

其中,________________的目的是根据二维平面图像数据构造出三维物体的图像。

解答:1. 像素5. 图像重建第二章数字图像处理的基础一.填空题1. 量化可以分为均匀量化和________________两大类。

3. 图像因其表现方式的不同,可以分为连续图像和________________两大类。

5. 对应于不同的场景内容,一般数字图像可以分为________________、灰度图像和彩色图像三类。

解答:1. 非均匀量化 3. 离散图像 5. 二值图像二.选择题1. 一幅数字图像是:( )A、一个观测系统。

B、一个有许多像素排列而成的实体。

C、一个2-D数组中的元素。

D、一个3-D空间的场景。

3. 图像与灰度直方图间的对应关系是:()A、一一对应B、多对一C、一对多D、都不对4. 下列算法中属于局部处理的是:()A、灰度线性变换B、二值化C、傅立叶变换D、中值滤波5. 一幅256*256的图像,若灰度级数为16,则该图像的大小是:()A、128KBB、32KBC、1MB C、2MB6. 一幅512*512的图像,若灰度级数为16,则该图像的大小是:()A、128KBB、32KBC、1MB C、2MB解答:1. B 3. B 4. D 5. B 6. A三.判断题1. 可以用f(x,y)来表示一幅2-D数字图像。

()3. 数字图像坐标系与直角坐标系一致。

()4. 矩阵坐标系与直角坐标系一致。

()5. 数字图像坐标系可以定义为矩阵坐标系。

()6. 图像中虚假轮廓的出现就其本质而言是由于图像的灰度级数不够多造成的。

()10. 采样是空间离散化的过程。

()解答:1. T 3. F 4. F 5. T 6. T 10. T1、马赫带效应是指图像不同灰度级条带之间在灰度交界处存在的毛边现象(√)第三章图像几何变换一.填空题1. 图像的基本位置变换包括了图像的________________、镜像及旋转。

第二章数字图像处理基础

第二章数字图像处理基础
数字图像处理
第二章 数字图像处理基础
视觉感知要素 图像感知和获取 图像取样和量化 象素间的一些基本关系 线性和非线性操作
2.1 视觉感知要素
眼睛的构造: (人眼包含有三层膜)
眼角膜与巩膜外壳 脉络膜 (前面睫状体 虹膜 晶状体) 视网膜 (视网膜表面的分离光
接收器提供图案视觉, 分为锥状体、杆状体)
感觉的亮度区域不是简单的取决于强度,还与周围的背景有关
2.1 视觉感知要素
视觉错觉
光幻觉是人视觉系 统所特有的,迄今 还没有清楚的解释。 由于以上各种特殊 现象,在进行图像 处理时,应该采取 一些特殊的补偿措 施。
图和背景反转的图形
在错觉 中,眼 睛填上 了不存 在的信 息或错 误地感 知物体 的几何 特点。
2.1 视觉感知要素
辨别光强度变化的能力
典型实验
韦伯比
可辨别增I C量/的I 50%IC
图2.5 用于描述亮度辨别特性的基本实验
图2.6 作为强度函数的典型韦伯比
当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以察觉间变化,一 般观察者可以辨别12到24级不同强度的变化.
低照明级别,亮度辨别(杆状体)较差;高照明级别,亮度辨别(锥状体)较好。
几何错觉图形
2.2 光和电磁波谱
电磁波谱可以用波长( )、频率( )或能量来描述
c 光速
E hv
h 普朗克常量
为波长, 为频率, E为电磁波能量
光速c 2.998 108 m/s 普朗克常数 h=6.626068 ×10-34 m2 kg / s
2.2 光和电磁波谱
电磁波是能量的一种,任何有能量的物体,都会释放电磁波。
D8距离:D8(p,q)=max(|x-s|,|y-t|) (距离小于等于r的像素形成中心在(x,y)的方形)

数字图像处理基础2

数字图像处理基础2

数字图像处理基础2第二章数字图像处理基础2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换2.1 图像数字化技术2.2 数字图像类型2.3 常用图像文件格式2.4 像素间的基本关系2.5 图像的几何变换简单的图像成像模型一幅图像可定义成一个二维函数f(x,y)。

由于幅值f 实质上反映了图像源的辐射能量,所以f(x,y)一定是非零且有限的,也即有:0<f(x,y)</f(x,y)图像是由于光照射在景物上,并经其反射或透射作用于人眼的结果。

所以,f(x,y)可由两个分量来表征:一是照射到观察景物的光的总量,二是景物反射或透射的光的总量。

设i(x,y)表示照射到观察景物表面(x,y)处的白光强度,r(x,y)表示观察景物表面(x,y)处的平均反射(或透射)系数,则有:f(x,y)=i(x,y)r(x,y)其中:0 < i(x,y) < A 1, 0 ≤r(x,y) ≤1对于消色光图像(有些文献称其为单色光图像),f(x,y)表示图像在坐标点(x,y)的灰度值l ,且:l=f(x,y)这种只有灰度属性没有彩色属性的图像称为灰度图像。

显然:L min ≤l ≤L mxa区间[L min ,L max ]称为灰度的取值范围。

在实际中,一般取L min 的值为0,L max =L-1。

这样,灰度的取值范围就可表示成[0,L-1]。

当一幅图像的x 和y 坐标及幅值f 都为连续量时,称该图像为连续图像。

为了把连续图像转换成计算机可以接受的数字形式,必须先对连续的图像进行空间和幅值的离散化处理。

图像数字化:将模拟图像经过离散化之后,得到用数字表示的图像。

图像的数字化包括采样和量化两个过程。

连续图像空间离散数字图像幅度离散采样量化采样:是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。

即:空间坐标的离散化。

量化:把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。

数字图像处理第2章课后题答案

数字图像处理第2章课后题答案

第二章数字图像处理基础1.将一幅光学模拟图像转换为数字图像的过程叫做图像的数字化,包括扫描、采样、量化三个过程。

采样点数越多、量化级数越高,图像质量越好。

2.图像数字化过程中造成失真的原因有两个方面:第一个方面,在采样过程中,如果采样点数满足取样定理(即采样频率不小于最高截止频率的2倍)的情况下,重建图像就不会产生失真,否则就会因为取样点数不够而产生所谓混淆失真;第二个方面,在量化过程中,若图像不产生失真,则需要量化级数无穷大,而实际量化级数往往无法满足这样的取值而造成图像的失真。

3.人的眼睛是人类视觉系统的重要组成部分,当外界景象通过眼球的光学系统在视网膜上成像后,视网膜产生相应的胜利电图像并经视神经传入大脑;人眼的视网膜由感光细胞覆盖,感光细胞吸收来自于光学图像的光线,并通过晶体透镜和角膜聚集在视网膜上。

晶状体相当于普通光学镜头,对光线有屈光作用。

4.发光强度简称光强,指单色光源在给定方向上的单位立体角内发出的发光强度。

亮度是指发光体(反光体)表面发光(反光)强弱的物理量。

照度指物体被被照面单位时间内所接受的光通量。

主观亮度是指由观察者判断出的亮度称为主观亮度。

5.常用的颜色模型有RGB模型、CMYK模型、HSI模型等。

RGB模型是色光的彩色模型,因为是由红、绿、蓝相叠加形成其它颜色,因此该模型也叫加色合成法。

所有的显示器、投影设备,以及电视等许多设备都是依赖于这种加色模型的;CMYK模型也称减色合成法,主要应用于印刷行业中;RGB和CMYK颜色模型都是面向硬件的,但从人眼视觉特性来看,HSI模型用色调、饱和度和亮度来描述彩色空间能更好地与人的视觉特性相匹配。

6.由于彩色图像为RGB图像,利用三元组(R,G,B)来表示每个像素的值。

根据题意,三基色灰度等级为8,而23=8,则存储一个颜色分量所需的比特数为3,存储一个三元组所需的比特数为3⨯3=9,该图像大小为1024*768,则存储整幅图像所需的比特数为9⨯1024⨯768=7077888bit=864KB。

数字图像处理第二章课后习题及中文版解答

数字图像处理第二章课后习题及中文版解答

数字图像处理第⼆章课后习题及中⽂版解答数字图像处理(冈萨雷斯版,第⼆版)课后习题及解答(部分)Ch 22.1使⽤2.1节提供的背景信息,并采⽤纯⼏何⽅法,如果纸上的打印点离眼睛0.2m 远,估计眼睛能辨别的最⼩打印点的直径。

为了简明起见,假定当在黄斑处的像点变得远⽐视⽹膜区域的接收器(锥状体)直径⼩的时候,视觉系统已经不能检测到该点。

进⼀步假定黄斑可⽤1.5mm × 1.5mm 的⽅阵模型化,并且杆状体和锥状体间的空间在该阵列上的均匀分布。

解:对应点的视⽹膜图像的直径x 可通过如下图题2.1所⽰的相似三⾓形⼏何关系得到,即()()220.20.014d x = 解得x =0.07d 。

根据2.1节内容,我们知道:如果把黄斑想象为⼀个有337000个成像单元的正⽅形传感器阵列,它转换成⼀个⼤⼩580×580成像单元的阵列。

假设成像单元之间的间距相等,这表明在总长为1.5 mm 的⼀条线上有580个成像单元和579个成像单元间隔。

则每个成像单元和成像单元间隔的⼤⼩为s =[(1.5 mm)/1159]=1.3×10-6 m 。

如果在黄斑上的成像点的⼤⼩是⼩于⼀个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。

换句话说,眼睛不能检测到以下直径的点:x =0.07d<1.3×10-6m ,即d <18.6×10-6 m 。

下图附带解释:因为眼睛对近处的物体聚焦时,肌⾁会使晶状体变得较厚,折射能⼒也相对提⾼,此时物体离眼睛距离0.2 m ,相对较近。

⽽当晶状体的折射能⼒由最⼩变到最⼤时,晶状体的聚焦中⼼与视⽹膜的距离由17 mm 缩⼩到14 mm ,所以此图中选取14mm(原书图2.3选取的是17 mm)。

图题2.12.2 当在⽩天进⼊⼀个⿊暗的剧场时,在能看清并找到空座位时要⽤⼀段时间适应,2.1节(视觉感知要素)描述的视觉过程在这种情况下起什么作⽤?解:根据⼈眼的亮度适应性,1)由于户外与剧场亮度差异很⼤,因此当⼈进⼊⼀个⿊暗的剧场时,⽆法适应如此⼤的亮度差异,在剧场中什么也看不见;2)⼈眼不断调节亮度适应范围,逐渐的将视觉亮度中⼼调整到剧场的亮度范围,因此⼜可以看见、分清场景中的物体了。

数字图像处理第2章采样量化图像格式

数字图像处理第2章采样量化图像格式
3) 打印机分辨率
又称输出分辨率,是指打印机输出图像时每英寸的点数(dp i)。打印机分辨率也决定了输出图像的质量,打印机分辨率越高, 可以减少打印的锯齿边缘,在灰度的半色调表现上也会较为平滑。 打印机的分辨率可达300-1200 dpi。
4) 扫描仪分辨率
单位长度上采样的像素个数。台式扫描仪的分辨率可以分
• 曲线3:
质量
细节较多的球赛观众图像 k
5
4 32 64 128 256 N
总结
一般,当限定数字图像的大小时, 为了得到质量较好的图像 可采用如下原则:
(1)对缓变的图像,应该细量化,粗采样,以避免假轮廓。
(2)对细节丰富的图像,应细采样,粗量化,以避免模糊。 对于彩色图像,是按照颜色成分——红、绿、蓝分别采样和量
2.3.3 用传感器阵列获取图像
传感器阵列
2.4 图像数字化技术
图像的数字化包括采样和量化两个过程。 设连续图像f(x, y) 经数字化后,可以用 一个离散量组成的矩阵g(i, j)(即二维数组) 来表示。
f (0,0) f (0,1) f (0, n 1)
g(i,
j)
g(1,0)
z 蓝 (Blu e) 品 红 (Magenta )
青 (Cyan ) O 红 (Red) x
绿 (Gre en) 黄 (Yello w) y
(2) 数字化采样一般是按正方形点阵取样的, 除此之外还 有三角形点阵、正六角形点阵取样。
(3)以上是用g (i, j)的数值来表示(i, j)位置点上灰度级值的
大小,即只反映了黑白灰度的关系, 如果是一幅彩色图像, 各点
的数值还应当反映色彩的变化,可用g (i, j, λ)表示,其中λ是波 长。如果图像是运动的,还应是时间t的函数,即可表示为g (i, j, λ, t)。

精品课件-《数字图像处理(第三版)》第2章 数字图像

精品课件-《数字图像处理(第三版)》第2章 数字图像
j 1
其它
i 1,2,n
2.3 数字图像类型
矢量(Vector)图和位图(Bitmap),位图也称为栅格图像。 矢量图是用数学(准确地说是几何学)公式描述一幅图像。(计 算机图形学)
➢ 优点:一是它的文件数据量很小,因为存储的是其数学公式; 其二是图像质量与分辨率无关,这意味着无论将图像放大或 缩小了多少次,图像总是以显示设备允许的最大清晰度显示。
2.2.3 颜色变换
对彩色图像进行颜色变换,可实现对彩色图像的增强处理,改 善其视觉效果,为进一步处理奠定基础。 基本变换
➢ 颜色变换模型为:g(x,y)=T[ f ( x,y )] 式中:f ( x , y )是彩色输入图像,其值为一般为向量; g ( x , y )是变换或处理后的彩色图像,与 f(x,y)同维; T是在空间域上对f的操作。T对图像颜色的操作 有多种方式;
2.4 图像文件格式 数字图像有多种存储格式,每种格式一般由不同的软件公司开 发所支持。 文件一般包含文件头和图像数据。就像每本书都有封面,目录, 它们的作用类似于文件头,通过文件头我们可读取图像数据。 文件头的内容由该图像文件的公司决定,一般包括文件类型 、 文件制作者、制作时间、版本号、文件大小等内容,还有压缩方 式。
2.2.2 颜色模型
HSI 颜色模型 ➢ 色调H (Hue): 与光波的波长有关,它表示人的感官对不同 颜色的感受,如红色、绿色、蓝色等, ➢ 饱和度(Saturation): 表示颜色的纯度,纯光谱色是完合饱 和的,加入白光会稀释饱和度。饱和度越大,颜色看起来就 会鲜艳,反之亦然。 ➢ 强度I (Intensity):对应成像亮度和图像灰度,是颜色的 明亮程度。 ➢ HSI模型建立基于两个重要的事实: (1) I分量与图像的彩色 信息无关; (2) H和S分量与人感受颜色的方式是紧密相联 的。这些特点使得HSI模型非常适合彩色特性检测与分析。

数字图像处理2-真彩色,灰度图像,索引色图像等的相互转化

数字图像处理2-真彩色,灰度图像,索引色图像等的相互转化

timg 真彩色timg1 灰度图像timg2 索引色图像(64色)timg3 二值图像(阈值为0.5)这里从网上找到了timg真彩色图像作为本次作业中进行数字处理的图像。

首先在ps中调整了图像模式,并进行了另存为,生成了timg1与timg2,又在MATLAB中将灰度图像转化为了二值图像timg3,其中阈值为0.5。

这一步操作的代码如下:A = imread('timg1.jpg');B = im2bw(A, 0.5);imshow(B)imwrite(B,'timg3.jpg');随后我们来对每个图像imread的返回值进行观察。

对于timg处理的程序如下:A = imread('timg.jpg');disp(A);whos Aimshow(A)由于disp显示数据过多,这里不放原始数据了。

其具体内容为3个数组,每个数组都是320*200的,分别代表图片中每个像素的rgb值。

而whos语句显示出的内容如下:Bytes Class Name Size192000 uint8A 200x320x3其中200*320*3说明图像像素为200*320而且为rgb格式,有3个矩阵。

192000为图片大小,而其rgb值是用unit8即8位无符号整数存储,0-255的值代表了某一点像素某一颜色分量的强度。

同理,若将上述程序中的timg改为timg1灰度图像,显示出来的矩阵则只有一个,大小仍为200*320但是每个点的数值则代表对应像素的灰度值。

whos语句显示出的内容如下:Name SizeBytes Class64000 u int8A 200x320由于灰度图像只需要存储灰度而不是rgb3个分量,其大小便没有最后的*3,因此其大小也只为timg的1/3。

对于索引图进行的操作与其他图像不同,由于其本身存储的是索引值,需要导入索引表才能还原原本的图像,因此程序如下:[IM, map] = imread('timg2.png','png');disp(IM);IMrgb(:,:,:) = ind2rgb(IM,map);whos IMrgbimshow(IMrgb)这里如果直接imshow原本图像的话会根据灰度图像的方式显示错误的图像,因此采用了一个ind2rgb函数通过之前导入的索引表和索引值矩阵将图像恢复为rgb图像矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理基础
许昌学院公共选修课
图像运算——代数运算 1.3 图像运算 代数运算
算数运算——乘法 乘法 C(x,y) = A(x,y) * B(x,y) 主要应用举例 图像的局部显示(抠图技术) 用二值蒙板图像与原图像做乘法 逻辑运算——非 非 g(x,y) = 255 - f(x,y) 主要应用举例 获得一个阴图像 ฀ 获得一个子图像的补图像
数字图像处理基础
许昌学院公共选修课
图像运算——代数运算 1.3 图像运算 代数运算
算数运算——加法 加法运算的定义 ◦ C(x,y) = A(x,y) + B(x,y) ◦ 注意:若结果值超出255,则结果值取255。 主要应用举例 ◦ 生成图像叠加效果 生成图像叠加效果 对于两个图像f(x,y)和h(x,y)的均值有: g(x,y) = 1/2f(x,y) + 1/2h(x,y) 推广这个公式为: g(x,y) = αf(x,y) + βh(x,y) 其中α+β= 1 可以得到各种图像合成的效果,也可以用于 两张图片的衔接。
许昌学院公共选修课
图像运算——点运算 1.3 图像运算 点运算
对数变换
公式: Ioutput=c*log(1+ Iinput ) c为一个常数 右图为c=3时的 对数变换曲线图
数字图像处理基础
许昌学院公共选修课
图像运算——点运算 1.3 图像运算 点运算
作用:有时原图的动态范围太大,超出某些显示设备的允许 动态范围,如直接使用原图,则一部分细节可能丢失,此时 可以对原图进行对数变换(灰度压缩)以确保设备能够对原 图正常显示。
数字图像处理基础
许昌学院公共选修课
图像运算——代数运算 1.3 图像运算 代数运算
算数运算——减法 减法运算的定义 C(x,y) = A(x,y) - B(x,y) 主要应用举例 ◦ 显示两幅图像的差异,检测同一场景两幅图像之间的变化。如: 视频人脸检测; ◦ 去除不需要的叠加性图案。如:视频制作蓝屏技术。 去除不需要的叠加性(背景)图案 设: 背景图像b(x,y) , 前景背景混合图像f(x,y) g(x,y) = f(x,y) – b(x,y) g(x,y) 即为去除了背景的图像。
红色+绿色=黄色(橙色) 绿色+蓝色=青色 蓝色+红色=紫色(品红色)。
◦ 当这三种原色以等比例叠加在一起 时,会变成灰色;若将此三原色的 强度均调至最大并且等量重叠时, 则会呈现白色。
数字图像处理基础
许昌学院公共选修课
1.2 图像的颜色模型
减色原理
◦ 一般来说以反射光源或颜料着色时所使 用的色彩是属于“消减型”的原色系统, 此系统中包含了黄色、青色(Cyan)、品 红(Magenta)三种原色,是另一套“三 原色”系统。 ◦ 当这三种原色混合时可以产生其他颜色, 例如: 黄色⊕青色=绿色 黄色⊕品红色=红色 ◦若将此三原色的饱和 品红色⊕青色=蓝色 度均调至最大并且等 当这三种原色以等比例叠加在一起时,会 量混合时,理论上会 得到不同深度的灰色; 呈现黑色,但实际上 呈现的是浊褐色。
◦ 应用
图像科学计算。如图像色彩分析、色彩调整等。
数字图像处理基础
许昌学院公共选修课
1.2 图像的颜色模型
RGB、CMYK、CIE-Lab颜色模型色域比较
◦ 色域比较
Lab颜色模型色域最大, 其次是RGB颜色模型, CMYK颜色模型色域最小。
◦ 可以被用来通过修改 a 和 b 分量的输出色阶来做精确的颜 色平衡,或使用 L 分量来调整 亮度对比。这些变换在 RGB 或 CMYK 中是困难或不可能的。
许昌学院公共选修课
HSI颜色空间 1.2 HSI颜色空间
由于人的视觉对亮度的敏感程度远强于对颜色浓淡的敏感程 度,为了便于色彩处理和识别,人的视觉系统经常采用HSI 色彩空间,它比RGB色彩空间更符合人的视觉特性。在HSI 模式中,所有的颜色都是根据下列三种基本特征来进行描述。
◦ 色相(Hue):是由物体发射或反射出来的颜色。它是根据色 彩在一个0-360的标准色盘上的位置来决定的,通常以颜色的 名称来辨识,例如红、橙和绿等等,红色在0度,绿色在120度, 蓝色在240度。它基本上是RGB模式全色度的饼状图。 ◦ 饱和度(Saturation):表示色彩的纯度,有时也被称为彩度, 为0%时为灰色。白、黑和其他灰色色彩都没有饱和度的。在最 大饱和度时,每一色相具有最纯的色光。 ◦ 亮度(Intensity或Value):是指颜色相对的亮度和暗度,通 常是用为0%(黑)到100%(白)的方式进行测定。
YUV颜色空间的由来
◦ 在现代彩色电视系统中,通常采用三管彩色摄像机或彩色CCD 摄像机进行摄像,然后把摄得的彩色图像信号经分色、分别放 大校正后得到 RGB分量值,再经过矩阵变换电路得到亮度信号 Y和两个色差信号R-Y(即U)、B-Y(即V),最后发送端将 亮度和色差三个信号分别进行编码,用同一信道发送出去。这 种色彩的表示方法就是所谓的YUV色彩空间表示。
1.2 图像的颜色模型
原色 加色原理和减色原理 常用的颜色模型(色彩空间)
◦ ◦ ◦ ◦ ◦ RGB CMYK像处理基础
许昌学院公共选修课
1.2 图像的颜色模型
原色
◦ 定义
是指不能透过其他颜色的混合调配而得出的“基本 色”。
◦ 特性
以不同比例将原色混合,可以产生出其他的新颜色。
理论上只用上述三种颜色相 混合就可以形成黑色。但实 际印刷时青色、品红色和黄 色很难叠加形成真正的黑色, 最多不过是褐色而已。因此 才引入了K——黑色。黑色 的作用是强化暗调,加深暗 部色彩 应用:印刷
数字图像处理基础
许昌学院公共选修课
1.2图像的颜色模型 1.2图像的颜色模型
CMYK色彩空间
数字图像处理基础
数字图像处理基础
许昌学院公共选修课
1.2 图像的颜色模型
常用的颜色模型
◦ RGB颜色模型
RGB是色光的色彩模式。即红 (Red)、 绿 (Green)、蓝 (Blue)三原色的简称。 三原色光模式是一种加色模型,三种色彩叠加形成了其它的 色彩。因为三种颜色都有256个亮度水平级,所以三种色彩叠 加就形成224,约1670万种颜色了。也就是真彩色,通过它们 足以在现绚丽的世界。 原因:三原色的选取不是出于物理原因,而是由于人类生理 原因造成的。人的眼睛内有几种辨别颜色的锥形感光细胞, 分别对红色、绿色和蓝色的光最敏感。这三种光可以分别对 三种锥形细胞产生刺激,根据每种感光细胞受到刺激的强度 就产生了不同色彩的视觉效果。 应用:显示器、电视机、各种投影设备
Iinput
Ioutput=255- Iinput
数字图像处理基础
许昌学院公共选修课
Ioutput
图像运算——点运算 1.3 图像运算 点运算
实例2:彩色图像的反转变换
Ioutput_R=255- Iinput_R Ioutput_G=255- Iinput_G Ioutput_B=255- Iinput_B
数字图像处理基础
许昌学院公共选修课
图像运算——代数运算 1.3 图像运算 代数运算
代数运算 ◦ 算数运算 加、减、乘、除 ◦ 逻辑运算 非、与、或、异或 算数运算——加法 加法运算的定义 ◦ C(x,y) = A(x,y) + B(x,y) ◦ 注意:若结果值超出255,则结果值取255。 主要应用举例 ◦ 生成图像叠加效果
许昌学院公共选修课
1.2 图像的颜色模型
RGB色彩模式和CMY(K)色彩模式是互补的
数字图像处理基础
许昌学院公共选修课
1.2 图像的颜色模型
◦ CIE-Lab颜色模型
L:亮度; a,b:色彩分量
◦ 特点
色域范围大;几乎可以描绘出人眼视觉所能察 觉的所有颜色 理论上存在,和物理世界是不对应的; 感知均匀性,它的 L 分量密切匹配人类亮度感 知。 三个分量之间几乎两两正交,极大的减少了降 低了色彩信息的关联性。
Ioutput
数字图像处理基础
Iinput
许昌学院公共选修课
图像运算——点运算 1.3 图像运算 点运算
幂次变换:Ioutput = c·Iinput γ
◦ ฀ ◦ ฀ ◦ ฀ c和γ是正常数 γ<1提高灰度级,在正比函数上方,使图像变亮 γ>1降低灰度级,在正比函数下方,使图像变暗
数字图像处理基础
S = 1−
1 G≥B θ −1 2 [( R − G ) + ( R − B )] θ = cos H = 2 ( R − G ) + ( R − B)(G − B ) G≤B 2πθ
数字图像处理基础
许昌学院公共选修课
彩色模型间转换
HSI到RGB的转换
当0 o ≤ H ≤ 120 o 时
C:Cyan = 青色 M:Magenta = 品红色,又称为‘洋红色’ Y:Yellow = 黄色 K:Black = 黑色,为了避免与RGB的Blue蓝色混淆而改称K
数字图像处理基础
许昌学院公共选修课
1.2 图像的颜色模型
黄 色 ⊕ 青 色 = 绿 色 黄 色 ⊕ 品 红 色 = 红 色 品 红 色 ⊕ 青 色 = 蓝 色
数字图像处理基础
许昌学院公共选修课
1.2 图像的颜色模型
影响
显示器不能显示出人眼所能识别的所有色彩(Lab>RGB) 显示器显示出来的色彩打印机不一定能够打印出来 (CMYK<RGB) 打印出的色彩要比显示器显示的色彩降低一个灰阶 (CMYK<RGB)
数字图像处理基础
许昌学院公共选修课
YUV颜色空间 1.2 YUV颜色空间
YUV颜色空间的特性
◦ 采用YUV色彩空间的重要性是它的亮度信号Y和色度信号U、V 是分离的。
相关文档
最新文档