升流式厌氧污泥床UASB

合集下载

升流式厌氧污泥床反应器(UASB)设计计算书

升流式厌氧污泥床反应器(UASB)设计计算书

UASB反应器 有效容积及 长、宽、高 尺寸的确定
反应器尺寸(矩形池)
反应器的长 取整反应器的长 上升流速 反应器直径
L
反应器尺寸(圆形池)
取整反应器直径 上升流速 长
D
L B H ø H S V
矩形池
宽 高 直径 高 矩形池 圆形池 矩形池 圆形池 矩形池 圆形池 矩形池 圆形池
反应器的外 圆形池 形尺寸 重新核算后的面积 重新核算后的容积
反应器最大单体体积应小于3000m3 考虑检修不停产,一般选取2座。 反应器有效水深应在5~8m之间
矩形设备的长宽比小于4
上升流速宜小于0.8m/h 圆形设备的高径比在1~3之间 上升流速宜小于0.8m/h
沉淀区表面负荷宜小于0.8m3/(m2· h) 一般取值大于1.0m
一般可取45~60°
相邻两个下三角形集气罩之间的水平距离
m2 m2 m/h m/h m m2 m2 m2 m2 m/h m/h m m m m m m m/h m/h cm g/(cm· s) g/(cm· s) cm/s m/h
17.66 19.87 0.21 0.19 0.64 16.38 18.43 6.40 5.65 0.11 0.20 0.52 0.91 0.40 1.31 1.80 3.11 0.28 0.25 0.01 0.01 0.02 0.27 9.59 2.28 34.31 38.59
。 m³ /d 118.80
m3 m2 m m kgSS/d
23.76 0.01 0.13 1.20 24.75
计算书
计算人:
计算公式/取值依据/说明 常温20~25℃,中温35~40℃,高温50~55℃ pH值宜为6.0~8.0 进水CODcr浓度宜大于1500mg/L 进水中悬浮物含量宜小于1500mg/L 一般在300~700mg/L 一般在25~83mg/L 一般在5~17mg/L 颗粒污泥一般可以达到5.0~6.0,絮状污泥一般取值2.0~3.0 对于有机废水去除率可以达到80%~90% 一般去除率为70%左右。 一般沼气产率为0.3~0.5m3/(去除kgCOD) 一般产率按照0.05~0.1kgVSS/(去除kgCOD)计算 一般在0.6~0.85之间

升流式厌氧污泥床UASB课件

升流式厌氧污泥床UASB课件

高效生物反应器设计
通过优化反应器结构,提高UASB处理效率,降低能耗和占地面 积。
高效微生物种群培养
研究并培养具有高效降解有机物能力的微生物种群,提高有机物 利用率。
智能化控制技术
引入先进的传感器和控制系统,实现UASB反应器的实时监控和 智能调控。
资源回收与利用
有机肥料生产
将UASB反应器产生的剩余污泥转化为有机肥料,实现资源化利用 。
设计特点
反应区应设计为能够保持足够的污 泥浓度和良好的混合条件,以促进 微生物与污水之间的接触和反应。
注意事项
反应区的温度、pH值、有机负荷等 参数应保持在适宜的范围内,以保 证厌氧生物反应的顺利进行。
沉淀区
功能
注意事项
实现泥水分离,使处理后的上清液和 污泥能够有效地分离。
定期对沉淀区进行清洗和维护,以防 止污泥堵塞或堆积。
UASB反应器结构
进水系统
功能
为反应器提供待处理的污水。
设计特点
进水管道应设计为能够均匀分配进入反应器的污水,以避免在反应 器内形成不均匀的流速和浓度分布。
注意事项
进水系统应配备适当的格栅或过滤器,以防止大颗粒物进入反应器 ,损坏内部结构或堵塞管道。
反应区
功能
是UASB反应器的核心部分,其中 包含大量的厌氧污泥,进行厌氧 生物反应。
生物气体能源利用
将UASB反应器产生的生物气体(如甲烷)用于发电、供热或车辆 燃料,提高能源利用效率。
废水深度处理
利用UASB技术对废水进行深度处理,提高出水水质,满足更高标 准的排放要求。
政策与经济因素
政策支持
政府应出台相关政策,鼓励和支持UASB技术的研发和应用,提供 资金和税收优惠等支持措施。

升流式厌氧污泥床反应器UASB设计计算书

升流式厌氧污泥床反应器UASB设计计算书
计算项目:
系列 原始数据
进水流量 进水水温 进水pH值 进水COD0 进水BOD0 进水SS0 进水碱度 进水TN0 进水TP0 容积负荷率 COD去除率 SS去除率 沼气表观产率 污泥表观产率 VSS/SS
出水水质
CODe BODe SSe TNe TPe
有效容积
反应器数量
单个容积
有效水深
反应器总高 UASB反应器 反应器面积 有效容积及 长、宽、高 尺寸的确定

m³/d
17.66 19.87 0.21 0.19 0.64 16.38 18.43 6.40 5.65 0.11 0.20
0.52 0.91 0.40 1.31 1.80 3.11
0.28 0.25 0.01 0.01 0.02 0.27 9.59
2.28 34.31 38.59
118.80
m3 m2 m m
锅炉利用沼气柜容积 沼气的产量 水封罐表面积
水封罐尺寸
V
S
直径
ø
高度
H
污泥产量 V泥
红色表示原始数据,根据项目实际情况输入值。 使用说明: 黄色表示设计参数,具有一定取值范围。
绿色代表设计输出值,无需任何修改。
氧污泥床反应器(UASB)设计计算书
单位 m3/d ℃
mg/L mg/L mg/L mg/L mg/L mg/L kgCOD/(m3·d) %/% %/% m3/(去除kgCOD) kgVSS/(去除kgCOD)
51.20 45.22
0.06 0.07 1.00 8.53 7.54
55.00 0.50 0.80 0.50 0.56 2.50 1.38
m2 m2 m/h m/h m m2 m2 m2 m2 m/h m/h

UASB

UASB

上流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flow Anaerobic Sludge Bed/Blanket)。

由荷兰Lettinga教授于1977年发明。

污水自下而上通过UASB。

反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。

因水流和气泡的搅动,污泥床之上有一个污泥悬浮层。

反应器上部有设有三相分离器,用以分离消化气、消化液和污泥颗粒。

消化气自反应器顶部导出;污泥颗粒自动滑落沉降至反应器底部的污泥床;消化液从澄清区出水。

UASB 负荷能力很大,适用于高浓度有机废水的处理。

运行良好的UASB 有很高的有机污染物去除率,不需要搅拌,能适应较大幅度的负荷冲击、温度和pH变化。

编辑本段构造uasb构造和原理示意图构造上的特点是集生物反应与沉淀于一体,是一种结构紧凑的厌氧反应器。

反应器主要由下列几个部分组成。

进水配水系统其主要功能是:1.将进入反应器的原废水均匀地分配到反应器整个横断面,并均匀上升;2.起到水力搅拌的作用。

这都是反应器高效运行的关键环节。

反应区是UASB的主要部位,包括颗粒污泥区和悬浮污泥区。

在反应区内存留大量厌氧污泥,具有良好凝聚和沉淀性能的污泥在池底部形成颗粒污泥层。

废水从污泥床底部流入,与颗粒污泥混合接触,污泥中的微生物分解有机物,同时产生的微小沼气气泡不断放出。

微小气泡上升过程中,不断合并,逐渐形成较大的气泡。

在颗粒污泥层的上部,由于沼气的搅动,形成一个污泥浓度较小的悬浮污泥层。

三相分离器由沉淀区、回流缝和气封组成,其功能是将气体(沼气)、固体(污泥)和液体(废水)等三相进行分离。

沼气进入气室,污泥在沉淀区进行沉淀,并经回流缝回流到反应区。

经沉淀澄清后的废水作为处理水排出反应器。

三相分离器的分离效果将直接影响反应器的处理效果。

气室也称集气罩,其功能是收集产生的沼气,并将其导出气室送往沼气柜。

UASB的工作原理

UASB的工作原理

UASB的工作原理
UASB(上升式厌氧污水处理系统)是一种高效的污水处理技术,其工作原理基于厌氧菌的生物降解作用和气体升流作用。

下面是UASB的工作原理的详细解释:
1. 污水输入:污水首先通过进水管道输入UASB反应器。


进水区域,通过适当的设计和水流速度控制,可以确保均匀地分布污水进入整个反应器。

2. 污水沉淀:一旦污水进入反应器,由于反应器底部设计有沉降区域,使得重负荷的悬浮物能够在此沉淀。

3. 气体升流:反应器底部通常设置有气提升装置(Gas lift),通过向反应器内注入厌氧污泥产生的气体(通常是甲烷气体),使之上升,通过气提升装置延长气体与污泥的接触时间。

4. 污泥颗粒化:气提升的过程会使得污泥形成颗粒状,并且气提升的速度会带动污泥上升。

5. 生物降解:沉降下来的污泥颗粒会随着气体上升流动,然后在整个反应器内形成污泥床。

在污泥床中,厌氧菌会利用废水中的有机物质进行生物降解。

这些菌类通过吸附悬浮物、菌落生长、颗粒污泥与底物的反应等方式将有机废物转化为甲烷气体和二氧化碳等产物。

6. 气固分离:产生的气体上升到反应器的顶部,然后进入气固
分离器,通过分离器将气体和固体物质分开。

7. 排放净化:分离后的气体可以通过进一步处理和净化,例如将甲烷气体回收利用,同时可以通过适当的措施使二氧化碳等剩余气体的排放达到环保要求。

总的来说,UASB的工作原理是通过在厌氧环境中,利用厌氧菌对有机废物进行降解,产生甲烷气体等可利用的产物,并通过气提升装置实现气体循环,从而提高污水的处理效率。

uasb反应器工作原理

uasb反应器工作原理

uasb反应器工作原理
UASB反应器是一种高效生物处理工艺,UASB是Upflow Anaerobic Sludge Blanket的缩写,即上升式厌氧污泥床反应器。

它是通过一系列的生物化学反应将有机废水转化为可再利用的沼气和减少水污染物的一种处理方式。

UASB反应器主要由上部进料区、中部生物反应区和下部排放区组成。

有机废水从上部进入反应器,经过中部的生物反应区,最后沉淀在下部的排放区。

在上部进料区,废水进入反应器之前会先进行预处理,如调节PH值和温度等。

在中部生物反应区,厌氧微生物通过一系列反应将有机污染物转化为沼气,并将残留物质沉淀到底部。

UASB反应器的工作原理基于厌氧微生物的生长和代谢。

厌氧微生物在缺氧条件下生长和代谢,可以将有机污染物分解为二氧化碳、甲烷等无害物质。

由于反应器中存在的厌氧微生物能够将有机物质高效转化为生物质和沼气,因此UASB 反应器具有高效、低能耗、低运行成本等优点。

UASB反应器在废水处理中的应用非常广泛。

它可以被用于处理各种含有有机废水的工业废水,如食品加工、制药、印染等领域。

同时,UASB反应器也可以用于农村和城市污水处理,将废水转化为沼气和可再利用的水资源,实现废物资源化利用和环境保护的双重目的。

USAB介绍

USAB介绍

升流式厌氧污泥床USAB介绍一、概述(一)功能厌氧生物处理反应器是高浓度有机废水处理的有效工艺,升流式厌氧污泥床(UASB)是厌氧生物处理反应器一种,UASB( Up-flow Anaerobic Sludge Bed,简称UASB)由于具有厌氧过滤及厌氧活性污泥法的双重特点,其结构、运行操作维护管理相对简单,造价相对较低,技术成熟,受到污水处理业界的重视,得到广泛的欢迎和应用。

厌氧生物处理法适用于高浓度有机废水,进水BOD最高浓度可达数万mg/L也可适用于低浓度有机废水,如城市污水等。

对于一般有机废水,当水温在30℃时,容积负荷可达10-20kg(COD)/(m3.d)。

目前已广泛用于高浓度有机废水(如工业废水、精细化工、农药、制药、焦化、啤酒、屠宰废水等)、城市污水的处理,COD去除率可达50-80%。

厌氧生物处理反应器主要有:厌氧接触法、厌氧滤池、上流式厌氧污泥床(UASB)、厌氧流化床、颗粒污泥膨胀床(EGSB)等。

UASB反应器是一种运用广泛、设计成熟、高效的厌氧处理装置,据统计,全球及我国在运行的各类厌氧反应器中,UASB厌氧反应器占60%。

升流式厌氧污泥床工艺近年来在国内外发展很快,该工艺既节约了能源,基至可回收能量,又解决了环境污染问题,取得了较好的经济效益和社会效益。

具有广阔的应用前景。

(二)历史上流式厌氧污泥床反应器(UASB反应器)是荷兰学者Lettinga等人在20世纪70年代初开发的。

当时她们在研究上流式厌氧滤池处理土豆加工和甲醇废水时注意到大部分的净化作用和积累得大部分厌氧微生物均在滤池的下部,于是便在滤池底部设置了一个不装填料的空间来积累更多的厌氧微生物量,后来干脆取消了池内的全部填料,并在池顶设置了一个气、固、液三相分离器,一种结构简单、处理效能很高的新型厌氧反应器便诞生了。

由于这种反应器结构简单、不用填料、没有悬浮物堵塞等问题,因此一出现便立即引起了广大废水处理工作者的极大兴趣,并被广泛应用于工业废水和生活污水的处理中。

UASB厌氧反应器工艺原理及特点

UASB厌氧反应器工艺原理及特点

UASB厌氧反应器工艺原理及特点1、UASB厌氧反应器的原理升流式厌氧污泥床(UASB)反应器是由Lettinga在七十年代开发的。

废水被尽可能均匀的引入到UASB厌氧反应器的底部,污水向上通过包含颗粒污泥或絮状污泥的污泥床。

厌氧反应发生在废水与污泥颗粒的接触过程,反应产生的沼气引起了内部的循环。

附着和没有附着在污泥上的沼气向反应器顶部上升,碰击到三相分离器气体发射板,引起附着气泡的污泥絮体脱气。

气泡释放后污泥颗粒将沉淀到污泥床的表面,气体被收集到反应器顶部的三相分离器的集气室。

一些污泥颗粒会经过分离器缝隙进入沉淀区。

UASB厌氧反应器包括以下几个部分:进水和配水系统、反应器的池体和三相分离器。

在UASB厌氧反应器中最重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。

2、UASB厌氧反应器的选型UASB厌氧反应器的材料,可采用碳钢、Lipp(或拼装结构)和混凝土结构。

对钢制结构的反应器需进行保温处理,钢池可考虑采用现场4~8mm厚阻燃型聚苯乙烯泡沫板及彩色防护板保温和装饰,碳钢的防腐材料采用环氧树脂加玻璃布三层做法。

混凝土池不考虑保温问题。

附属设备如三相分离器、配水系统、走道、扶手、楼梯暂等不考虑。

对以上三种结构型式进行了技术经济比较。

当建立两个或两个以上反应器时,矩形反应器可以采用共用壁。

当建造多个矩形反应器时有其优越性。

对于大型UASB厌氧反应器建造多个池子的系统是有益的,这可以增加处理系统的适应能力。

如果有多个反应池的系统,则可能关闭一个进行维护和修理,而其他单元的反应器继续运行。

通过综合比较,钢结构和混凝土的投资相差不大,从整体比较来看,拼装结构或Lipp罐从投资上和年经常费用上均较低。

且且具有安装方便,施工周期短的优点。

但混凝土使用寿命远远高于碳钢结构池体,且无需考虑保温问题。

目前,我国的UASB厌氧反应器大多以钢筋混凝土为材料。

3、UASB厌氧反应器的特点UASB内厌氧污泥浓度高,平均污泥浓度为20-40gMLVSS/L;有机负荷高,水力停留时间短,例如采用中温发酵时,容积负荷一般为5-10kgCOD/(m3.d)左右;无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有一定程度的搅动;污泥床不设载体,节省造价及避免因填料发生堵塞问题;UASB内设三相分离器,通常不设高效澄清池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通常可以不设污泥回流设备,运行动力较小。

UASB工艺介绍

UASB工艺介绍

UASB⼯艺介绍1.UASB1.1概述UASB⼯艺全称为升流式厌氧污泥床,是集有机物去除及泥、⽔、⽓三相分离于⼀体的集成化废⽔处理⼯艺,⼯艺原理为通过在反应器内培养可沉降的活性污泥,形成⾼浓度的活性污泥床,使其具有容积负荷较⾼、污泥截留效果好、反应器机构紧凑等⼀系列的运⾏特征。

1.2⼯艺原理污⽔通过提升泵提升到厌氧反应器的底部,通过反应器底部的布⽔系统均匀的将污⽔布置在整个截⾯上,利⽤进⽔的出⼝压⼒和产⽓作⽤,使废⽔与⾼浓度的污泥充分接触和传质,将废⽔中的有机物降解;废⽔在反应区进缓慢上升,进⼀步降解有机物。

在此阶段⽓、⽔、污泥同时上升,产⽣的沼⽓⾸先进⼊三相分离器内部并通过管道排出,污泥和废⽔通过三相分离器的缝隙上升到分离区,污泥在分离区沉淀浓缩并回流到三相分离器下部,保持反应器内的污泥浓度,沉淀后的污⽔经管道排出反应器。

降解过程1.3⼯艺要素1.3.1进⽔分配系统UASB进⽔系统主要是将污⽔尽可能均匀的分配到整个反应器防⽌出现局部污泥堆积,并具有⼀定的⽔⼒搅拌功能。

是反应器⾼效运⾏的关键之⼀。

UASB采⽤的进⽔⽅式⼤多为间歇式进⽔、脉冲式进⽔、连续均匀进⽔和连续进⽔与间歇进⽔相结合的⽅式。

布⽔类型1.3.2反应区反应区是UASB的核⼼,是培养和富集厌氧微⽣物的区域,废⽔与厌氧污泥在此区域充分混合,发⽣强烈的⽣化反应,废⽔中有机物被分解。

反应区污泥床污泥悬浮层反应区分层污泥床内具有很⾼的浓度,⼀般为沉降性较好的颗粒污泥,MLSS⼀般为30~40g/L,占反应区容积的30%左右,对有机物的降解程度占反应器全部讲解量的70~90%。

悬浮层MLSS⼀般为15~20 g/L,⼀般为⾮颗粒状污泥。

1.3.3三相分离器三相分离器是UASB中的重要装置,该装置常安装在反应器顶部,并将反应器分为下部的反应区和上部的沉淀区。

同时具有能收集从分离器下产⽣的沼⽓和使分离器上的悬浮物沉淀下来的功能。

1.3.4出⽔系统在UASB中,出⽔均匀排出将影响沉淀效果和出⽔⽔质。

UASB反应器的启动与运行

UASB反应器的启动与运行

THANKS
谢谢您的观看
运行参数监测
温度
UASB反应器的温度应维持在适宜的 范围内,以保证微生物的生长和代谢 。
pH值
溶解氧
对于厌氧反应器,应严格控制溶解氧 的浓度,以避免对厌氧微生物产生不 利影响。
pH值是影响UASB反应器运行的重要 参数,应保持在一个适宜的范围内。
污泥管理
污泥浓度
保持适宜的污泥浓度是UASB反应器稳定运行的关键。
UASB反应器的应用场景
应用场景
适用于处理高浓度有机废水,如食品、酒精、造纸、印染等 行业的废水。
优势
处理效率高,能去除大部分有机物,同时产生沼气可作为能 源回收利用。
02
UASB反应器的启动步骤
准备工作
01
02
03
检查设备
对UASB反应器的所有设 备和组件进行检查,确保 没有损坏或故障。
清洗与消毒
启动后的调试与优化
调试参数
根据监测结果,对反应器 的运行参数进行调试,以 优化反应器的性能。
优化操作
通过调整进料负荷、回流 量、水力停留时间等操作 ,提高反应器的处理效率 和稳定性。
长期监测
在反应器稳定运行后,应 继续对其运行参数进行长 期监测,以确保其性能的 稳定性和可靠性。
03
UASB反应器的运行管理
进水流量与水质波动
03
保持稳定的进水流量和尽量减少水质波动对反应器的稳定运行
至关重要。
出水水质监测
COD去除率
监测反应器的COD去除 率,以评估其的去除 情况,以确保出水水质
达标。
磷的去除
对于需要去除磷的反应 器,应监测磷的去除效
果。
出水pH值

UASB厌氧反应器工艺原理及特点

UASB厌氧反应器工艺原理及特点

UASB厌氧反应器工艺原理及特点UASB(Upflow Anaerobic Sludge Blanket)厌氧反应器是一种以厌氧微生物为核心的高效处理废水的生物处理设备。

其主要原理是利用厌氧微生物对有机废水进行分解和转化,以降解污水中的有机物质。

1.上升式流化床原理:UASB反应器采用上升式流化床的方式进行废水处理。

废水由反应器的底部进入,通过水流动力将反应器内的污泥悬浮于水体中。

厌氧微生物在反应器内固定生长,并利用污水中的有机物质进行脱氢、脱酸和甲烷发酵等反应。

2.悬浮污泥颗粒化反应:UASB反应器内的污泥通过颗粒化的方式,形成一定大小和密度的污泥颗粒,这些颗粒能够在水流中悬浮,并且能够保持较长的滞留时间。

这种污泥颗粒化的方式,可以有效提高厌氧微生物的生物负荷,提高废水处理效率。

3.少污泥:与传统的活性污泥法相比,UASB反应器的污泥产量较低。

污泥的颗粒化可以减少反应器内的污泥产生,因此可以在降低运营成本的同时,减少对水环境的二次污染。

1.处理效果好:UASB反应器具有较高的有机负荷承载能力,能够有效去除污水中的COD、BOD等有机物质。

处理效果稳定且水质良好,COD去除率可达到80%以上。

2.运行成本低:UASB反应器由于少量污泥的产生,节省了后续处理、回流和处置等方面的成本。

另外,反应器内部的流态不需要设备辅助保持,无需能耗较高的搅拌器等设备,运行成本相对较低。

3.对水质适应性强:UASB反应器对水质波动和温度变化具有较强的适应性。

厌氧微生物具有一定的抗冲击负荷和一定的抗毒性,能够适应不同水质和负荷波动的情况,而且在一定程度上抑制了细菌和病毒的生长。

4.占地面积小:UASB反应器具有高处理效率、较小的体积和占地面积的特点。

相对传统的废水处理设备而言,UASB反应器需要的占地面积较小,节省土地资源,减少环境影响。

总之,UASB厌氧反应器以其高效的废水处理效果、低运行成本、对水质的适应性以及占地面积小等特点,成为一种常用的生物处理废水的设备。

UASB升流式厌氧污泥床知识概述

UASB升流式厌氧污泥床知识概述

升流式厌氧污泥床 UASB( Up-flow Anaerobic Sludge Bed,注:以下简称 UASB〕工艺具有厌氧过滤及厌氧活性污泥法的双重特点,作为能够将污水中的污染物转化成再生清洁能源——沼气的一项技术。

对于不同含固量污水的适应性也强,且其构造、运行操作维护治理相对简洁,造价也相对较低,技术已经成熟,正日益受到污水处理业界的重视,得到广泛的欢送和应用。

UASB 工作原理UASB 由污泥反响区、气液固三相分别器〔包括沉淀区〕和气室三局部组成。

在底部反响区内存留大量厌氧污泥,具有良好的沉淀性能和分散性能的污泥在下部形成污泥层。

要处理的污水从厌氧污泥床底部流入与污泥层中污泥进展混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。

沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,渐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较淡薄的污泥和水一起上升进入三相分别器,沼气遇到分别器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分别器的沉淀区,污水中的污泥发生絮凝,颗粒渐渐增大,并在重力作用下沉降。

沉淀至斜壁上的污泥沼着斜壁滑回厌氧反响区内,使反响区内积存大量的污泥,与污泥分别后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

UASB 工艺的优缺点UASB 的主要优点是:1、UASB 内污泥浓度高,平均污泥浓度为 20-40gVSS/1;2、有机负荷高,水力停留时间短,承受中温发酵时,容积负荷一般为10kgCOD/m3.d 左右;3、无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬浮状态,对下部的污泥层也有确定程度的搅动;4、污泥床不填载体,节约造价及避开因填料发生堵赛问题;5、UASB 内设三相分别器,通常不设沉淀池,被沉淀区分别出来的污泥重回到污泥床反响区内,通常可以不设污泥回流设备。

uasb反应器进水基本条件

uasb反应器进水基本条件

uasb反应器进水基本条件
UASB(上升流式厌氧污泥床)反应器是一种高效处理有机废水的生物反应器,其进水基本条件如下:
1. 收集污水:将废水从排水口收集起来,通过管道输送至反应器。

2. 进水水质:进水在进入UASB反应器前,通常会进行预处理,如除油、减少固体悬浮物等操作。

进水的COD浓度通常为1000-5000 mg/L,BOD5浓度为300-3000 mg/L,并且应确保进水pH值在中性范围内。

3. 进水流量:根据实际处理需求,控制进水流量以保持反应器内的水力负荷。

流量的控制通常使用流量计来实现。

4. 进水温度:进水温度对UASB反应器的性能和微生物活性有影响。

通常,进水温度应保持在20-35摄氏度之间。

5. 进水停留时间:进水停留时间是指进入反应器的污水在反应器内停留的平均时间,通常为4-12小时,可以根据具体情况进行调节。

综上所述,UASB反应器的进水基本条件包括进水水质、进水流量、进水温度和进水停留时间等。

根据实际情况,可进行适当调整以实现最佳的反应器性能。

UASB的原理及其特点是什么

UASB的原理及其特点是什么

UASB的原理及其特点是什么?
UASB即升流式厌氧污泥床(见图6-11),其在构造上的主要特点是集生物反应池与沉淀池于一体,是一种结构紧凑的厌氧生物反应器。

主要由以下几部分组成;进水配水系统;反应区,包括颗粒污泥区和悬浮污泥区,废水从反应器底部进入,与颗粒污泥充分混合接触,污泥中的微生物不断分解有机物,并放出气体,在气体的搅动作用下形成了悬浮污泥层;三相分离器,由沉淀区、回流缝和气封组成,将固液气分离,污泥经回流缝回流到反应区,气室收集产生的沼气;处理排水系统。

与其他厌氧反应器相比,升流式厌氧污泥反应器具有很多优点。

污泥床内生物量多颗粒污泥增强了反应器对不利条件的抵抗能力,颗
粒污泥直接接种可以加快反应器的启动速度;容积负荷率高,在中温发酵条件下可高达 15~40kgCOD/(m3·d);水力停留时间短,池体容积大减;设备简单,三相分离器的使用避免了附设沉淀装置、脱气装置、回流装置和搅拌装置,节省了投资和运行费用,降低了能耗,反应器内不需投加填料和载体,提高了容积利用率,无堵塞问题。

该工艺流程如图6-12所示。

处理工业废水的 UASB反应器在启动前必须投加接种污泥,污泥优先选择处理同类废水所产生的新鲜颗粒污泥。

颗粒污泥并非是种泥形成的,而是以种泥为种子,在基质营养条件充足的情况下,新长成的微生物繁殖而成。

对于处理生活污水的该类反应器可采用自接种法启动,该方法可分为启动滞后期、颗粒污泥出现期和颗粒污泥成熟期三个阶段。

UASB升流式厌氧污泥床反应器工艺

UASB升流式厌氧污泥床反应器工艺

升流式厌氧污泥床反应器(UASB)1、工作原理废水由反应器的底部均匀引入,污水向上通过包含颗粒污泥和絮凝污泥的污泥床,在与污泥的充分接触过程中,微生物分解废水中的有机物产生沼气引起内部循环,有利于颗粒污泥的形成和维持。

部分气体以气泡的形式附着在污泥颗粒上,附着和没有附着的气体向反应器顶部上升,上升到表面的颗粒碰击气体发射板的底部,引起附着气泡的污泥絮体脱气,气泡释放的同时,污泥颗粒将沉淀到污泥床的表面,气体被收集到反应器顶部的集气室。

置于集气室单元缝隙之下的挡板的作用是气体反射器和防止沼气进入沉淀区,否则将引起沉淀区的紊动,会阻碍颗粒沉淀,使得包含一些剩余固体和污泥颗粒夫人液体经过分离器缝隙进入沉淀区。

由于分离器的斜壁沉淀区的过流面积沿接近水面的方向逐渐增加,因此上升流速逐渐降低,由于流速降低,污泥絮体易于形成。

积累在三相分离器上的污泥絮体在一定程度上将克服其在斜壁上受的摩擦力,而返回反应区。

三相分离器是UASB反应器最重要的设备,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。

三相分离器的目的:尽可能有效地分离从污泥床(层)中产生的沼气,特别在高负荷的情况下。

在气室下面反射板的作用:①防止沼气通过气室之间的缝隙溢出到沉淀区;②有利于减少反应区内高产气量所造成的液体紊动。

2、UASB反应器的构造UASB可分为开敞式和封闭式两种。

开敞式UASB反应器的顶部不加密封,出水水面敞开,主要适用于中低浓度的有机废水;封闭式UASB反应器的顶部加盖密封,主要适用于高浓度有机废水或含较多硫酸盐的有机废水。

UASB反应器断面一般为圆形或矩形,圆形结构一般为钢结构,矩形结构一般为钢筋混凝土结构。

1)布水器即进水配水系统,主要功能:①将废水均匀地分配到整个反应器的底部;②水力搅拌。

2)反应区其中包括污泥床和污泥悬浮层,其污泥多为颗粒污泥,污泥床高度约为反应区总高度的1/3,但其污泥量约占全部污泥量的2/3以上。

uasb工艺参数

uasb工艺参数

uasb工艺参数
UASB(Upflow Anaerobic Sludge Blanket,上流式厌氧污泥床)工艺是一种常用的生物处理技术,常用于高强度有机废水的处理。

其工艺参数包括以下几个方面:
1. 水力停留时间(Hydraulic retention time,HRT):指废水在UASB反应器内停留的平均时间,一般根据废水的特性和处理
效果要求确定,通常在4-12小时之间。

2. 温度:UASB反应器的温度对反应器内的微生物活性很重要。

一般要控制在25-40摄氏度范围内,适当的温度有助于菌群的
快速生长和废水的处理效果。

3. 水力负荷(Hydraulic loading rate,HLR):指单位时间内进入反应器的废水流量与反应器有效体积的比值。

根据废水的特性和处理效果要求确定,一般在1-10立方米/立方米/天之间。

4. 有机负荷(Organic loading rate,OLR):指单位时间内进
入反应器的可生物降解有机物质量与反应器体积的比值。

根据废水的特性和处理效果要求确定,一般在1-10千克化学需氧
量(COD)/立方米/天之间。

5. 微生物浓度:UASB反应器内的微生物浓度对反应器的稳定
运行和废水处理效果有影响。

通常要控制在1-10克固体可悬
浮物(SS)/升之间。

需要注意的是,具体的UASB工艺参数还需根据废水的特性和处理要求进行调整和优化,以获得最佳的处理效果。

上流式厌氧污泥床反应器UASB反应器

上流式厌氧污泥床反应器UASB反应器
,更易形成颗粒。
胞外聚合物假说
通过扫描电镜观察发现,颗粒污泥中某
些细菌会分泌出胞外聚合物,而胞外聚
合物为共生细菌间提供生成各种生物键
的条件。
微生物细胞连在一起形成微生物菌落的
层状结构,在此基础上细菌进一步生长
形成颗粒污泥。
开普敦假说(1987)
颗粒化取决于以H2为唯一能源、能产生
除半胱氨酸外的其所有氨基酸的微生物
聚集在一起的颗粒, 亚单位之间呈半透
明状态, 在光学显微镜下其界限明显可
见, 颗粒的边缘不整齐, 整体呈桑箕状,
称做成的初生颗粒, 一般结构
较疏松, 亚单位之间呈半透明状态, 颗粒
表面无统一的基质膜包围, 边缘不整齐。
随着初生颖粒内细菌的生长和黑色金属
容积
有机负荷的控制
甲烷菌的数量和活性是UASB效率的主要限
制因素。负荷过高,反应器内水解菌和产酸
菌增多,反应器内pH降低,产甲烷菌受到抑
制。
❖ 在启动阶段,一次增加的负荷不宜过高,在
低负荷阶段提负荷可以稍快,超过
0.1kgCOD/kgSS·d后每次负荷提高量为
20%~30%,在每一阶段要运行20天甚至更长
形成过程
影响因素
UASB中污泥的特性
UASB的有机负荷率与污泥浓度有关,
试验表明,污水通过底部0.4~0.6m的高
度,已有90%的有机物被转化。由此可
见厌氧污泥具有极高的活性,改变了长
期以来认为厌氧处理过程进行缓慢的概
念。
工艺的稳定性和高效性很大程度上取
决于生成具有优良沉降性能和很高甲烷
活性的污泥,尤其是颗粒状污泥。与此
应器高效运行的关键之一。
UASB采用的进水方式大多为间歇式进水,

USAB法又称升流式厌氧污泥床法

USAB法又称升流式厌氧污泥床法

USAB法又称升流式厌氧污泥床法,是利用反应器底部的高浓度污泥床(污泥浓度可达60-80g/L),对上升流废水进行厌氧处理的高速废水生物处理过程。

废水由反应器底部进入,向上流动通过反应器,大部分有机物在污泥床中经发酵转化为气体。

由于所产气体的搅动,污泥窗上部有一个污泥悬浮层。

反应器上部设有沉淀器——气体分离器。

被分离的气体(沼气)导出反应器收集利用,被分离的污泥则回流到厌氧反应区。

对于一般有机废水,当水温在30oC左右时,容积负荷可达10-20kg(COD)/(m3.d)。

目前已广泛用于高浓度有机废水(如食品、屠宰、啤酒废水等)的处理。

COD去除率可达75-80%。

UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。

在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。

要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。

沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时,折向反射板的四周,然后穿过水层进入气室,集中在气室沼气,用导管导出,固液混合液经过反射进入三相分离器的沉淀区,污水中的污泥发生絮凝,颗粒逐渐增大,并在重力作用下沉降。

沉淀至斜壁上的污泥沼着斜壁滑回厌氧反应区内,使反应区内积累大量的污泥,与污泥分离后的处理出水从沉淀区溢流堰上部溢出,然后排出污泥床。

关于UASB的详解!

关于UASB的详解!

关于UASB的详解!升流式厌氧污泥床反应器是一种处理污水的厌氧生物方法,又叫升流式厌氧污泥床,英文缩写UASB(Up-flow Anaerobic Sludge Bed/Blanket)。

由荷兰Lettinga教授于1977年发明。

污水自下而上通过UASB。

反应器底部有一个高浓度、高活性的污泥床,污水中的大部分有机污染物在此间经过厌氧发酵降解为甲烷和二氧化碳。

1、UASB 工艺的主要特点1)利用微生物细胞固定化技术-污泥颗粒化UASB 反应器利用微生物细胞固定化技术—污泥颗粒化,实现了水力停留时间和污泥停留时间的分离,从而延长了污泥泥龄,保持了高浓度的污泥。

颗粒厌氧污泥具有良好的沉降性能和高比产甲烷活性,且相对密度比人工载体小,靠产生的气体来实现污泥与基质的充分接触,节省了搅拌和回流污泥的设备和能耗,也无需附设沉淀分离装置;同时反应器内不需投加填料和载体,提高了容积利用率,避免了堵塞问题,具有能耗低、成本低的特点。

2)由产气和进水的均匀分布所形成的良好的自然搅拌作用在UASB 反应器中,由产气和进水形成的上升液流和上窜气泡对反应区内的污泥颗粒产生重要的分级作用。

这种作用不仅影响污泥颗粒化进程,同时还对形成的颗粒污泥的质量有很大的影响,同时这种搅拌作用实现了污泥与基质的充分接触。

3)设计合理的三相分离器的应用三相分离器是UASB 反应器中最重要的设备,它可收集从反应区产生的沼气,同时使分离器上的悬浮物沉淀下来,使沉淀性能良好的污泥能保留在反应器内。

三相分离器的应用避免了辅设沉淀分离装置、脱气装置和回流污泥设备,简化了工艺,节约了投资和运行费用。

4)容积负荷率高对中高浓度有机废水容积负荷可达20kgCOD/(m3·d),COD 去除率均可稳定在 80%左右。

5)污泥产量低与传统好氧工艺相比,污泥产量低,污泥产率一般为0.05kgVSS/kgCOD~0.10kgVSS/kgCOD,仅为活性污泥产泥量的1/5 左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

UASB工艺的应用 UASB工艺的应用
投加阳离子聚合物加速UASB反应器中颗粒污泥形成,2009) UASB反应器中颗粒污泥形成 (李保石 佘宗莲*,投加阳离子聚合物加速UASB反应器中颗粒污泥形成,2009)
UASB反应器装置示意图 图3 UASB反应器装置示意图
表2 反应器运行参数
两级UASB SBR处理高氨氮垃圾渗滤液的快速启动及稳定运行 2009) UASB处理高氨氮垃圾渗滤液的快速启动及稳定运行, (孙洪伟 彭永臻*,两级UASB-SBR处理高氨氮垃圾渗滤液的快速启动及稳定运行,2009)
缺氧/厌氧UASB SBR生化系统流程 UASB图4 缺氧/厌氧UASB-SBR生化系统流程
系统启动及运行阶段COD SBR反应器内水温变化规律 COD及 图5 系统启动及运行阶段COD及SBR反应器内水温变化规律
图6 系统启动及运行阶段氮的转化规律
束玉保,催化微电解—UASB处理羧甲基纤维素生产废水 2009) 处理羧甲基纤维素生产废水, (潘碌亭 束玉保,催化微电解—UASB处理羧甲基纤维素生产废水,2009)
Thank you for your attention
表1 厌氧生物处理技术发展历程表
UASB工作原理 UASB工作原理
UASB装置示意图 图1 UASB装置示意图
UASB装置构造图 图2 UASB装置构造图
UASB工艺的优缺点 UASB工艺的优缺点
UASB的主要优点是: UASB的主要优点是: 的主要优点是
1、UASB内污泥浓度高,平均污泥浓度为20-40gVSS/1; UASB内污泥浓度高,平均污泥浓度为20-40gVSS/1; 内污泥浓度高 20 有机负荷高,水力停留时间长,采用中温发酵时,容积负荷一般为10kgCOD/m .d左右 左右; 2、有机负荷高,水力停留时间长,采用中温发酵时,容积负荷一般为10kgCOD/m3.d左右; 无混合搅拌设备,靠发酵过程中产生的沼气的上升运动, 3、无混合搅拌设备,靠发酵过程中产生的沼气的上升运动,使污泥床上部的污泥处于悬 浮状态,对下部的污泥层也有一定程度的搅动; 浮状态,对下部的污泥层也有一定程度的搅动; 4、污泥床不填载体,节省造价及避免因填料发生堵赛问题; 污泥床不填载体,节省造价及避免因填料发生堵赛问题; UASB内设三相分离器 通常不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内, 内设三相分离器, 5、UASB内设三相分离器,通常不设沉淀池,被沉淀区分离出来的污泥重新回到污泥床反应区内,通 常可以不设污泥回流设备。 常可以不设污泥回流设备。
Fig.10 Comparison for experimental and corresponding fitted values of various output variables for UASB reactor
其它一些研究
1.UASB+A/O法处理大豆蛋白生产废水的研究 1.UASB+A/O法处理大豆蛋白生产废水的研究 2.混凝-UASB工艺处理豆制品废水的实验研究 2.混凝-UASB工艺处理豆制品废水的实验研究 混凝 3.UASB+MBBR组合工艺处理城市污水减量剩余污泥的试验研究 3.UASB+MBBR组合工艺处理城市污水减量剩余污泥的试验研究 4.UASB与ABR工艺处理印染废水中试实验研究 4.UASB与ABR工艺处理印染废水中试实验研究 5.UASB—MBR—DTRO工艺在垃圾渗滤液处理中的应用 5.UASB—MBR—DTRO工艺在垃圾渗滤液处理中的应用
升流式厌氧污泥床UAS71年荷兰瓦格宁根农业大学拉丁格(Lettinga) 1971年荷兰瓦格宁根农业大学拉丁格(Lettinga)教授通过物 年荷兰瓦格宁根农业大学拉丁格 理结构设计,利用重力场对不同密度物质作用的差异, 理结构设计,利用重力场对不同密度物质作用的差异,发明了 三相分离器。使活性污泥停留时间与废水停留时间分离, 三相分离器。使活性污泥停留时间与废水停留时间分离,形成 了上流式厌氧污泥床(UASB)反应器的雏型。 了上流式厌氧污泥床(UASB)反应器的雏型。 1974年荷兰CSM公司在其 反应器处理甜菜制糖废水时, 年荷兰CSM公司在其6m 1974年荷兰CSM公司在其6m3反应器处理甜菜制糖废水时,发现 了活性污泥自身固定化机制形成的生物聚体结构, 了活性污泥自身固定化机制形成的生物聚体结构,即颗粒污泥 sludge)。颗粒污泥的出现,不仅促进了以UASB )。颗粒污泥的出现 (granular sludge)。颗粒污泥的出现,不仅促进了以UASB 为代表的第二代厌氧反应器的应用和发展, 为代表的第二代厌氧反应器的应用和发展,而且还为第三代厌 氧反应器的诞生奠定了基础。 氧反应器的诞生奠定了基础。
UASB的主要缺点是: UASB的主要缺点是:
1、进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下; 进水中悬浮物需要适当控制,不宜过高,一般控制在100mg/l以下; 100mg/l以下 污泥床内有短流现象,影响处理能力; 2、污泥床内有短流现象,影响处理能力; 对水质和负荷突然变化较敏感,耐冲击力稍差。 3、对水质和负荷突然变化较敏感,耐冲击力稍差。
(Sucheta Sinha,Purnendu Bose,Application of Neural Network Simulation of Upflow Anaerobic Sludge Blanket(UASB) Reactor Performance,2002)
Fig.9 Four-layered neural network used modeling UASB reactor performance
图7 工艺流程
张安龙,UASB-改良式氧化沟-物化工艺处理高得率APMP浆废水,2009) APMP浆废水 (刘春 张安龙,UASB-改良式氧化沟-物化工艺处理高得率APMP浆废水,2009)
表3 各工段水质情况
表4 各段水质指标
APMP浆废水处理工艺流程 图8 4800m3/d APMP浆废水处理工艺流程
相关文档
最新文档