概率论与数理统计(第四版)第六章
概率论与数理统计(06)第6章 统计量及其抽样分布
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
解 (1)高该小班有 n 个人,每个人数学考试的分数的可能取值为 0,1,2,…,100,n
个人分数这和的可能取值为 0,1,2,…,100n,平均分数的可能取值为 0 , 1 ,..., 100n , 则 nn n
样本空间为
S=
k n
k
=
0,1, 2,⋯,100n
(2)样本空间 S={10,11,…},S 中含有可数无限多个样本点。 (3)设 1 表示正品,0 有示次品,则样本空间为
而 AB= {(1,6),(6,1)}。由条件概率公式,得
P(B
A)
=
P( AB) P( A)
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0
∪
A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100
{ } S= (x, y) x2 + y2 ≤ 1
------------------------------------------------------------------------------2.设 A,B,C 为三个事件,用 A,B,C 的运算关系表示下列事件。 (1)A 发生,B 与 C 不发生; (2)A 与 B 都发生,而 C 不发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 都发生; (5)A,B,C 都不发生; (6)A,B,C 中不多于一个发生; (7)A,B,C 中不多于两个发生; (8)A,B,C 中至少有两个发生。
理学概率论与数理统计浙江大学第四版盛骤概率论部分
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
9
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第十二章 平稳随机过程
• 12.1 平稳随机过程的概念 • 12.2 各态历经性 • 12.3 相关函数的性质 • 12.4 平稳过程的功率谱密度
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
7
§1 随机试验
确定性现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
概率论与数理统计教程第四版(沈恒范)(超全免费版)
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
4° ,即 是右连续的;
5° 。
对于离散型随机变量, ;
对于连续型随机变量, 。
(5)八大分布
0-1分布
P(X=1)=p, P(X=0)=q
二项分布
在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。
记为(X,Y)~N(
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N(
但是若X~N( ,(X,Y)未必是二维正态分布。
(10)函数分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为
。
是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。
。
(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布
概率论与数理统计(第四版)习题答案全
概率论与数理统计(第四版)习题答案全概率论与数理统计习(第四版)题解答第一章 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( =i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321ωωωωωω=Ω (2)},,{642ωωωA =; }.,{63ωωB =(3)},,{531ωωωA =,表示“出现奇数点”;},,,{5421ωωωωB =,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A =⋃,表示“出现的点数能被2或3整除”;}{6ωAB =,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω= ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( =i ,则},,,{1843ωωω =Ω;},,,{181211ωωωA =;}.,,,{1443ωωωB =(2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ≠≠= ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω=Ω }.,,,,,{145135134125124123ωωωωωωA =三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A ⋃⋃⋃或CA BC AB ⋃⋃(4) BC A C B A C AB C B A C B A C B A C B A ⋃⋃⋃⋃⋃⋃或C B A ⋃⋃或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i ≤≤1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A ⋃⋃⋃ 21; (3) n n n A A A A A A A A A 212121⋃⋃⋃ (4) n A A A ⋃⋃⋃ 21或.21n A A A第二章 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109⨯=C C C C C C C 有利事件总数为456789214151617181919⨯⨯⨯⨯⨯=C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62≈⨯⨯⨯⨯⨯⨯=A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010=A 指定的三本书按某确定顺序排在书架上的所有可能为!777=A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818=C 种;这三本书的排列顺序数为!333=A ;故有利事件总数为!3!8!38!7⨯=⨯⨯(亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)(≈=⨯=A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812≈==C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0(=i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A ⋃=因为V A A =10,所以).()()(10A P A P A P +=而0281.0979942347)(5010050950≈⨯⨯⨯==C C A P 1529.09799447255)(501004995151≈⨯⨯⨯⨯==C C C A P故 181.01529.00281.0)(=+≈A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率. 解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416≈⨯⨯⨯⨯==C C C A P (2) 912.0198199200192193194)(32003194≈⨯⨯⨯⨯==C C B P(3) 00223.019819920012019490)(3200019436119426≈⨯⨯⨯⨯=+=C C C C C C P六、设41)( ,0 ,31)()()(======BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0==P(AC)P(AB),所以V AC V AB ==,,从而V C AB =)(可推出0)(=ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ⋃⋃=,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=75.04341313131==-++=第三章 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)(===B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A +=+=)(,所以)()()(B A P AB P A P +=,即14.06.0)4.01(5.0)()()()()()(=⨯--=-=-=B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(≈=--+=-+==B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011=+=⋅+=+=C C C C C C A B P A P C P(2)4.05151)()()(2511141511=+=+=+=A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1(=i ;B 表示“出现废品”;C 表示“出现合格品”(1))()()()()()()()(22112121A C P A P A C P A P C A P C A P C A C A P C P +=+=+= 973.0)02.01(31)03.01(32≈-⨯+-⨯=(2)25.002.03103.03202.031)()()()()()()()()(22112222=⨯+⨯⨯=+==A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1(=i ,则由题设,有1006.0)(1kA P ==,得60=k ,从而有4.015060150)(2===k A P ,.3.020060200)(3===k A P设A 表示“三次之内击中”,则321211A A A A A A A ++=,故有)()()()()()()(321211A P A P A P A P A P A P A P ++=832.03.0)4.01()6.01(4.0)6.01(6.0=⨯-⨯-+⨯-+= (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()(=---=B P故所求为 832.0)(1)(=-=B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0(=i ,则2201)(312330==C C A P 22027)(31219231==C C C A P 220108)(31229132==C C C A P 22084)(31239033==C C C A P 设B 表示“第二次取出的都是新球”,则312363123731238312393022084220108220272201)()()(C C C C C C C C A B P A P B P i i i ⋅+⋅+⋅+⋅==∑=146.0532400776161112208444722010855142202755212201≈=⋅+⋅+⋅+⋅=第四章 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1(=i ,则9.0)(1=A P 8.0)(2=A P 7.0)(3=A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B +++= 于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P +++= )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0-⨯⨯+⨯-⨯+⨯⨯-+⨯⨯=902.0=.(另解)设i B 表示“有i 台机床需要照管”)1,0(=i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B +=且0B 、1B 互斥,另外有 504.07.08.09.0)(0=⨯⨯=B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1=-⨯⨯+⨯-⨯+⨯⨯-=B P 故902.0398.0504.0)()()()(1010=+=+=+=B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1=A P 2.0)()(32==A P A P 又设B 表示“电路发生间断”,则321A A A B += 于是有)()()()()(321321321A A A P A A P A P A A A P B P -+=+=)()()()()()(321321A P A P A P A P A P A P -+=328.02.02.03.02.02.03.0=⨯⨯-⨯+=.三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)(=A P 31)(=B P 41)(=C P设D 表示“此密码能被译出”,则C B A D ⋃⋃=,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P +---++=⋃⋃=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++= 6.0413151415141513151413151=⨯⨯+⨯-⨯-⨯-++=. (另解)52)411)(311)(511()()()()()(=---===C P B P A P C B A P D P ,从而有6.053521)(1)(==-=-=D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1=A P5.0)(2=A P 7.0)(3=A P 设i B 表示“i 人击中飞机” )3,2,1,0(=i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210=---===A P A P A P A A A P B P)()(3213213211A A A A A A A A A P B P ++=)()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=)()(3213213212A A A A A A A A A P B P ++= )()()(321321321A A A P A A A P A A A P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0=⨯--+-⨯⨯-+--⨯=14.07.05.04.0)()()()()(3213213=⨯⨯===A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0=B A P 2.0)(1=B A P 6.0)(2=B A P 1)(3=B A P故有458.0114.06.041.02.036.0009.0)()()(30=⨯+⨯+⨯+⨯==∑=i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)(=i A P )9,,2,1( =i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则)9()8()7()6()5()5()(99999P P P P P m P A P ++++=≥=+⋅⋅+⋅⋅+⋅⋅=277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0(⋅+⋅⋅+C C+⋅⋅+⋅⋅+⋅⋅=273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(9+⋅⋅+0403.01556.02668.02668.01715.0++++= 901.0=.六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{--=-=一次都不发生至少发生一次要p p n ≥--)1(1,即要p p n -≤-1)1(,从而有.1)1(log )1(=-≥-p n p 答:至少需要进行一次试验.第五章离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布.解:设X表示“在取得合格品以前已取出的废品数”,则X的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p.生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X表示“在两次调整之间生产的合格品数”,且设=1,则ξ的概率分布为q-p三、 已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布;(2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164===-x CCC x X P x x从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66=-==-x C x X P xxx从而X 的概率分布为即四、 电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0(=p168877.0)01.01()01.0()1()4(2964430029644300≈-=-==C p p C ξP(2)用泊松分布计算)301.0300(=⨯==np λ168031355.0!43)4(34≈==-e ξP 相对误差为.5168877.0168031355.0168877.000≈-=δ五、 设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)(==p A P ,5=n ,).3.0,5(~B X 于是有)5()4()3()3(=+=+==≥X P X P X P X P5554452335)1()1(p C p p C p p C +-+-=16308.000243.002835.01323.0≈++≈(另解) )2()1()0(1)3(1)3(=-=-=-=<-=≥X P X P X P X P X P 32254115505)1()1()1(11p p C p p C p p C ------=16308.0≈六、 设随机变量X 的概率分布为2, 1, ,0 , !)(===k k ak X P kλ;其中λ>0为常数,试确定常数a .解:因为∑∞===01)(k k X P ,即∑∞==01!k kk λa ,亦即1=λae ,所以.λe a -=第六章 随机变量的分布函数·连续随机变量的概率密度一、 函数211x +可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)(∞+∞- ,);(2)(0,∞-). 解:(1)设211)(x x F +=,则1)(0<<x F因为0)(lim =-∞→x F x ,0)(lim =+∞→x F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F +=,则1)(0<<x F 且0)(lim =-∞→x F x ,1)(lim 0=-→x F x因为)0( 0)1(2)('22<>+-=x x x x F ,所以)(x F 在(0,∞-)上单增.综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )(=可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)⎥⎦⎤⎢⎣⎡2,0π; (2)[]π,0; (3)⎥⎦⎤⎢⎣⎡23,0π. 解:(1)因为⎥⎦⎤⎢⎣⎡∈2,0πx ,所以sin )(≥=x x f ;又因为1cos )(2020=-=⎰ππx dx x f ,所以当⎥⎦⎤⎢⎣⎡∈2,0πx时,函数x x f sin )(=可作为某随机变量X 的概率密度.(2)因为[]πx ,0∈,所以0sin )(≥=x x f ;但12cos )(00≠=-=⎰ππx dx x f ,所以当[]πx ,0∈时,函数x x f sin )(=不可能是某随机变量X 的概率密度.(3)因为⎥⎦⎤⎢⎣⎡∈23,0πx ,所以x x f sin )(=不是非负函数,从而它不可能是随机变量X 的概率密度.二、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<≤<≤<≤=3,132,22021921,222110,430,0)(x x x x x x F四、(柯西分布)设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1(-内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim =-⋅+=-∞→πB A x F x ,12)(lim =⋅+=-∞→πB A x F x ,解得.1,21πB A == 即)( ,arctan 121)(+∞<<-∞+=x x πx F . (2).21)]1arctan(121[]1arctan 121[)1()1()11(=-+-+=--=<<-ππF F X P(3) X 的概率密度为)1(1)()(2x x F x f +='=π.五、(拉普拉斯分布)设随机变量X 的概率密度为+∞<<∞-=-x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)(⎰+∞∞-=dx x f ,得1220⎰⎰+∞∞-+∞--===A dx e A dx Ae xx,解得21=A ,即有).( ,21)(+∞<<-∞=-x e x f x(2)).11(21)(2121)()10(101010ee dx e dx xf X P x x -=-===<<--⎰⎰(3) 随机变量X 的分布函数为⎪⎩⎪⎨⎧>-≤===-∞--∞-⎰⎰21102121)()(x e x e dx e dx x f x F x xx xx .第七章 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间 不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为⎩⎨⎧∉∈=]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3===≤≤⎰dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率. 解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321≈=-==>===-∞+-∞+-⎰e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P +---++=⋃⋃=638.0287.0287.03287.0332≈+⨯-⨯=(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800≈=-==>-∞+-∞+-⎰e e dx e X P xx从而有713.01)1000(1)1000(45≈-=>-=≤-eX P X P ,进一步有 638.0713.01)]1000([1)(33≈-≈≤-=X P A P三、(1) 设随机变量X 服从指数分布)(λe .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P ≥=≥+≥这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率.解:(1)因为)(~λe X ,所以R x ∈∀,有xe x F λ--=1)(,其中)(x F 为X 的分布函数.设t s X A +≥=,t X B ≥=.因为s 及t 都是非负实数,所以B A ⊂,从而A AB =.根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X P <-+<-=≥+≥====≥+≥tst s e e e λλλ--+-=----=]1[1]1[1)(. 另一方面,我们有tt e e t F t X P t X P t X P λλ--=--=-=≤-=<-=≥)1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P ≥=≥+≥. (2)由题设,知X 的概率密度为⎩⎨⎧≤>=-.,;,0001.0)(1.0x x e x f x设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05≈=-===≥=≥+≥-∞+-∞+-∞+⎰⎰e e dx e dx x f X P s X s X P x x.答:该电视机还能使用5年以上的概率约为6065.0. 四、 设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211-=;(2)2)3(2X X Y -=.解:X 的分布律为(1)X Y 211-=的分布律为(2)2)3(2X X Y -=的分布律为即五、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>+=.0,0;0,)1(2)(2x x x x f π求随机变量函数X Y ln =的概率密度.解:因为)()()(ln )()(yXyYe F e X P y X P y Y P y F =<=<=<= 所以随机变量函数X Y ln =的概率密度为)( )1(2)()()()(2''+∞<<-∞+====y e e e e f e e F y F y f yyyyyyXYY π,即)( )1(2)(2+∞<<-∞+=y e e y f y yY π.第八章 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布.解:二维随机变量),(Y X 的联合概率分布为Y的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F ++=. 求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),(=-∞=∞-=∞+-∞F F F ,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=++0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ==,.12πA =(2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ++=πππ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy ++==π(3)X 及Y 的边缘分布函数分别为xxxXx dx x dy y x f dx x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰2arctan 1)4(2),()(2ππ2arctan 121x π+=yxy Y ydy y dx y x f dy x F ∞-∞-∞-+∞∞-=+==⎰⎰⎰3arctan1)9(3),()(2ππ3arctan 121y π+=X 及Y 的边缘概率密度分别为⎰⎰⎰+∞+∞∞-+∞∞-++⋅=++==0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X ππ)4(2)3arctan 31()4(1122022x y x +=+⋅=∞+ππ⎰⎰⎰+∞+∞∞-+∞∞-++=++==022222241)9(12)9)(4(6),()(dxx y dx y x dx y x f y f Y ππ)9(3)2arctan 21()9(122022y x y +=+=∞+ππ三、设),(Y X 的联合概率密度为⎩⎨⎧>>=+-.,00;0,,Ae ),(3y)(2x 其它y x y x f求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0<+>>y x y x 内的概率. 解:(1)由1),(=⎰⎰+∞∞-+∞∞-dy dx y x f ,有1610032==⎰⎰∞+∞+--A dy e dx e A yx,解得.6=A (2)),(Y X 的联合分布函数为⎪⎩⎪⎨⎧>>==⎰⎰⎰⎰--∞-∞-其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x yy x xy⎩⎨⎧>>--=--其它00,0)1)(1(32y x e e y x(3)X 及Y 的边缘概率密度分别为⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰020006),()(2032x x ex x dye e dy y xf x f xy x X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞--∞+∞-⎰⎰030006),()(3032y y ex x dxe e dx y xf y f yy x Y(4)⎰⎰⎰⎰---==∈x y xRdye dx edxdy y x f R Y X P 322033026),(}),{( 6306271)(2---⎰-=-=e dx e e x四、设二维随机变量),(Y X 在抛物线2x y =与直线2+=x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2(≥+Y X P . 解:(1) 设),(Y X 的联合概率密度为⎩⎨⎧∉∈=.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212==-+=-+==--+-⎰⎰⎰⎰⎰Cx x x C dx x x C dy dx C Cdxdy x x R解得92=C .故有⎪⎩⎪⎨⎧∉∈=.),(, 0;),(,92),(R y x R y x y x f(2) ⎰⎰⎰⎰⎰⎰++-≥++==≥+x x x x y x dydx dy dx dxdy y x f Y X P 2212210229292),()2(⎰⎰-++=21210)2(92292dx x x xdx481.02713)322(92922132102≈=-++=x x x x .第九章 随机变量的独立性·二维随机变量函数的分布一、 设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P ≥. 解: (1)X 的概率密度为⎩⎨⎧∉∈=)1,0(,0)1,0(,1)(x x x f X,),(Y X 的联合概率密度为(注意Y X ,相互独立)⎪⎩⎪⎨⎧><<==-其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dxedx edy e dx dxdy y x f X Y P x xyxyxy ⎰⎰⎰⎰⎰⎰-∞+-∞+-≥=-===≥102102212)(21),()(7869.0)1(2221122≈-=-=--e ex二、 设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(;,,2 ,1 ,0 ,)(212211n j q p C j p n i q p C i p j n j j n Y in i i n X====--证明它们的和Y X Z +=也服从二项分布. 证明: 设j i k +=, 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P +---=-=∑∑=-===22110)()()()(∑=-+=ki kn n k in i n q p C C 02121)(由k nm ki ik nk m C C C +=-=∑0, 有 kn nki in i n C C C21210+==∑. 于是有),,2,1,0( )(212121n n k q p C k P k n n k in n Z +==-++由此知Y X Z +=也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:⎪⎩⎪⎨⎧><≤<-≤≤=.20 0,;2 1 ,2;10 ,)(y y y y y y y f Y 或求随机变量Y X Z +=的概率密度.解: X 的概率密度为 ⎩⎨⎧∉∈=]1,0[,0]1,0[,1)(x x y f ξ. 于是),(Y X 的联合概率密度为⎪⎩⎪⎨⎧≤<≤≤-≤≤≤≤=. 0,2 1,10 ,210,10,),(其它当当y x y y x y y x fYX Z +=的联合分布函数为}),{(}{}{)(D y x P z Y X P z Z P z F Z∈=≤+=≤=,其中D 是z y x ≤+与),(y x f 的定义域的公共部分.故有⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤<-+-≤≤><=3229321212331023,00)(222z z z z z z z zz z z F Z从而随机变量Y X Z +=的概率密度为⎪⎪⎩⎪⎪⎨⎧≤<-≤<+-≤≤><=3232132103,00)(z z z z z z z z z f Z三、 电子仪器由六个相互独立的部件ijL (3,2,1;2,1==j i )组成,联接方式如右图所示.设各个部件的使用寿命ijX 服从相同的指数分布)(λe ,求仪器使用寿命的概率密度.解: 由题设,知ij X 的分布函数为⎩⎨⎧≤>-=-0,00,1x x e F x X ij λ 先求各个并联组的使用寿命)3,2,1( =i Y i 的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax (21==i Y i i i ξξ从而有)3,2,1( =i Y i 的分布函数为⎩⎨⎧≤>-==-0,00,)1()(221y y e F F y F y X X Y i i i λ设Z "仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321Y Y Y Z =.从而有Z 的分布函数为⎩⎨⎧≤>---=⎩⎨⎧≤>----=-0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z λ故Z 的概率密度为⎩⎨⎧≤>--=---0,00,)2)(1(6)(23z z e e e z f z z z Z λλλλ第十章 随机变量的数学期望与方差一、 一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差.解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即于是有1103322013220924491430=⨯+⨯+⨯+⨯=EX 即3.0004.03041.02205.0175.00≈⨯+⨯+⨯+⨯=EX 2X 的分布为即于是有229220192209444914302=⨯+⨯+⨯+⨯=EX 即4091.0004.09041.04205.0175.002≈⨯+⨯+⨯+⨯=EX从而有3191.013310042471)11033(229)(222≈=-=-=EX EX DX 565.03191.0≈==DX Xσ二、 对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( =i ,则X 的分布为于是有p q p q q p q p iq p ipq EX i ii i i i 1)1()1()(211111=-='-='===∑∑∑∞=∞=-∞=- 2X于是有pp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122-=-=-+='=''==∑∑∑∞=∞=∞=-进一步有pp p p p EX EX DX 11)1(12)(22222-=--=-=三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ ==-=k k X P kk k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为∑∑∑∑∞=∞=∞=∞=-=⋅-=-=-==1111)1(212)1(]2)1([2)1()(k kkk k kkkk kki iik k k X P k x X P x 不绝对收敛,所以ξ没有数学期望. 四、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≥<-=.1, 0;1,11)(2x x x x f π 求数学期望)(X E 及方差)(X D . 解:011)()(112=-⋅==⎰⎰-+∞∞-dx xx dx x xf X E πdxx x dx xx dx x f x X D ⎰⎰⎰-=-⋅==-∞+∞-1022112221211)()(πππ21]arcsin 2112[2102=+--=x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为)( ,21)(+∞<<-∞=-x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(===⎰⎰+∞∞--+∞∞-dx xe dx x xf EX x2!2)3(21)(0222==Γ====⎰⎰⎰+∞-+∞∞--+∞∞-dx e x dx e x dx x f x DX x x(分部积分亦可)第十一章 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y -=的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为于是有72.072.0128.00=⨯+⨯=EY72.072.0128.002=⨯+⨯=EY2016.0)72.0(72.0)(222=-=-=EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为θ,则θ服从]2,2[ππ-上的均匀分布,其概率密度为 ⎪⎩⎪⎨⎧-∉-∈=]2,2[,0]2,2[,1)(ππθππθπθf .弦OB 的长为]2,2[cos 2)(ππθθθ-∈=R L ,故所有弦的平均长度为⎰⎰-∞+∞-⋅==22cos 21)()()]([ππθθπθθθθd R d L f L EπθπθθπππRR d R4sin 4cos 42020===⎰.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为⎪⎩⎪⎨⎧≤>=-. 0,0 ; 0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有⎰⎰---∞--=-===<14110441141)()1(e e dx e dx x f X P x x进而有 41)1(1)1(-=<-=≥e X P X P 设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141≈-⨯=⨯+-⨯-=---e e e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量nX X X ,,21相互独立,并且服从同一分布,数学期望为μ,方差为2σ.求这些随机变量的算术平均值∑==ni iX nX 11的数学期望与方差. 解:因为μ=)(i X E ,2)(σ=i X D ,且随机变量nX X X,,21相互独立.所以有μμ=====∑∑∑∑====ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(σσ=====∑∑∑∑====.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设iX 表示"第i 站的停车次数" (10,,2,1 =i ). 则iX 服从"10-"分布. 其中⎩⎨⎧=站有人下车若在第站无人下车若在第i i X i,1,0 于是iX 的概率分布为设∑==ni iX X 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101--⨯+-⨯===∑∑==i i i i EX X E EX748.8)9.01(1020≈-=即停车次数的数学期望为748.8.第十二章 二维随机变量的数字特征·切比雪夫不等式与大数定律一、 设二维随机变量),(Y X 的联合概率密度为()(). 1,222++=y x Ay x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X . 解: (1) 由⎰⎰+∞∞-+∞∞-=1),(dxdy y x f . 有()()⎰⎰⎰⎰∞+∞-∞+∞-∞+==+=++11120022222A dr r rd A dxdy y x A πθπ解得, π1=A .(2)()11),()(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y xxdy dxdy y x xf X E π.由对称性, 知)(=Y E .⎰⎰+∞∞-+∞∞-==-=dxdy y x f x EX EX X E X D ),(])[()(222()⎰⎰∞+∞-∞+∞-++=dxy xx dy 222211π()()+∞=+++=+-+=+=∞+∞+∞+⎰⎰⎰022022220223]11)1ln([1)1(211r r dr r r r r dr r r d πθπ同理, 有 +∞=)(Y D .)()])([(),cov(XY E EY Y Ex X E Y X =--=⎰⎰+∞∞-+∞∞-=dxdy y x xyf ),(()011),(222⎰⎰⎰⎰∞+∞-∞+∞-∞+∞-∞+∞-=++==dx y x xydy dxdy y x xyf π.二、 设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<=其它.,0;10,,1),(x x y y x f求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 ⎰⎰⎰⎰⎰====-∞+∞-∞+∞-121322),(dx x dy xdx dxdy y x xf EX xx0),(1===⎰⎰⎰⎰-+∞∞-+∞∞-xx ydy dx dxdy y x yf EY 0),()(1===⎰⎰⎰⎰-+∞∞-+∞∞-xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X -=--=⎰⎰+∞∞-+∞∞-=dxdyy x xyf ),(10==⎰⎰-xxydy xdx .(2) 当)1,0(∈x 时,有⎰⎰+∞∞--===xdy dy y x f x f x xX 2),()(; 当)1,0(∉x 时,有0)(=x f X.即⎩⎨⎧∉∈=)1,0(0)1,0(2)(X x x x x f同理有 ⎩⎨⎧∉+∈-=⎪⎩⎪⎨⎧∉∈=⎰⎰-)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f y y 因为),()()(y x f y f x f Y X ≠, 所以X 与Y 不是独立的.又因为0),cov(=Y X , 所以X 与Y 是不相关的.三、 利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差 )(X σ的概率.解:91)3()3(2=≤>-ξξξξξD DD E P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率.解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B ξ且有50005.010000=⨯==np E ξ 2500)5.01(5.010000=-⨯⨯==npq D ξ 于是有npq p npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(-=-≥<-=<- 75.025.011=-=-=pq五、 样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少 个产品,可使次品率为10%的一批产品不被接受的概率达到0.9?解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0= n ξD 09.0=要使得9.0)10(=>ξP ,即9.0)10(=≤<n ξP ,因为9.0)10(=≤<n ξP ,所以)3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P -≤-<-=-≤-<-)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P --≈≤-<-=ΦΦ 1)3.0101.0()3(1,01,0--+nn n ΦΦ (德莫威尔—Laplace 定理) 因为10>n ,所以53>n ,从而有1)3(1,0≈n Φ,故9.0)3.0101.0(1,0≈-nn Φ.查表有8997.0)28.1(1,0=Φ,故有28.13.0101.0≈-nn ,解得.146≈n答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.第十三章 正态分布的概率密度、分布函数、数学期望与方差一、 设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1(<≤-X P ;(2))56.4(≥X P .解:(1) )4.2213.1()8.416.2()8.56.1(<-≤-=<-≤-=<≤-X P X P X P8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0=+-=--=--=ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(<-<--=<-=≥X P X P X P)]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ-+-=---=.0402.09973.09625.02=--二、 已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100±(mm )之间为合格品,求这种机械零件的不合格品率.解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100(≤--=>-=X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100(≤-≤-=≤-≤-=≤-X P X P X P 1)2(2)]2(1[)2()2()2(-Φ=Φ--Φ=-Φ-Φ= 9544.019772.02=-⨯= 故0456.09544.01=-=p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(--=x ex f π求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{>⋃>⋃>=ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ-+-=>+-<=>=ξξP ξP D P 13025.05069.0)8944.05987.02(33≈=--= 于是有86975.013025.01)(1}30{=-=-=<D P P 米至少有一次绝对值三次测量中ξ.四、设随机变量),(~2σμN X ,求随机变量函数Xe Y =的概率密度(所得的概率分布称为对数正态分布). 解:由题设,知X 的概率密度为)(21)(222)(+∞<<-∞=--x ex f x X σμσπ从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F XY≤=≤=.当0≤y 时,有0)(=y F Y ;此时亦有0)(='y F Y. 当0>y 时,有dx ey X P y F yx Y⎰∞---=≤=ln 2)(2221)ln ()(σμσπ. 此时亦有222)(ln 21)(σμσπ--='y Yeyy F .从而可得随机变量Y 的概率密度为⎪⎩⎪⎨⎧>≤=--.0,21;0,0)(222)(ln y e yy y f y Y σμσπ五、设随机变量X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,求: (1) 随机变量函数bY aX Z +=1的数学期望与方差,其中a 及b 为常数;(2) 随机变量函数XY Z =2的数学期望与方差.解:由题设,有211)(,)(σμ==X D X E ;222)(,)(σμ==Y D Y E .从而有 (1)211)()()()()()(μμb a Y bE X aE bY E aX E bY aX E Z E +=+=+=+=; 222212221)()()()()()(σσb a Y D b X D a bY D aX D bY aX D Z D +=+=+=+=. (2)212)()()()(μμ===Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D -=-== )()()]()()][()([2222Y E X E Y E Y D X E X D -++= )()()()()()(22X E Y D Y E X D Y D X D ++= 212222212221μσμσσσ++=.第十四章二维正态分布·正态随机变量线性函数的分布中心极限定理一、设二维随机变量),(Y X 服从二维正态分布,已知0)()(==Y E X E ,16)(=X D ,25)(=Y D ,并且12),cov(=Y X ,求),(Y X 的联合概率密度.。
概率论与数理统计教材第六章习题PPT课件
参数θ的最大似然估计值为
ˆ
1 n
n
i 1
xi
14
3.
设总体X服从伽玛分布:
f(x;,)()
x1ex,
x0 ,
0,
x0
其中 0,0. 如果取得样本观测值为 x1,x2,,xn,
(1) 求参数α及β的矩估计值;
(2) 已知 0, 求参数β 的最大似然估计值.
解 (1) 矩估计法
定 义 若E (ˆ)0或 E (ˆ), 则 称ˆ为θ的无偏估计量。
结论1 样本均值 X 是总体均值μ的无偏估计量.
结论2 样本方差 S 2是总体方差 2 的无偏估计量.
3
2.有效性
定义 ˆ1X1,X2, ,Xn及 ˆ2X1,X2, ,Xn都是θ的无偏估计量,
如果D(ˆ1)D(ˆ2), 则称ˆ1 较ˆ 2 有效。
23
9、已知高度表的误差 X~N(,0 2) ,01米5,飞机上应该
有多少 这样的仪器,才能使得以概率0.98保持平均高度
的误差的绝对值小于30米?
解 PX300.98
PX3
0
P
X
15 n
30 15 n
P2
nX2
15 n
n2 2n10.98
2n0 .99(2.33)0.9901
X
k i
来估计总体原点矩
vk E(Xk).
(1)设总体分布函数 F(x;)含有一个未知参数θ,令
v1()E(X)n1
n i1
Xi
解方程得:ˆˆ(X1,X2, ,Xn)——θ 的矩估计量
1
(2)设总体分布函数 F(x;1,2)含有两个未知参数θ1,θ2,
令
概率论与数理统计第6章
第六章6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布, 在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6。
8 设总体X ~N (150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤。
解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ= 2857.09615.09772.0=-=第六章《样本与统计量》定理、公式、公理小结及补充:。
概率论与数理统计答案第六章
第六章 样本及抽样分布1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。
解:8293.0)78()712(}63.68.163.65263.62.1{}8.538.50{),363.6,52(~2=-Φ-Φ=<-<-=<<X P X P N X2.[二] 在总体N (12,4)中随机抽一容量为5的样本X 1,X 2,X 3,X 4,X 5. (1)求样本均值与总体平均值之差的绝对值大于1的概率。
(2)求概率P {max (X 1,X 2,X 3,X 4,X 5)>15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}.解:(1)⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧>-=>-25541225415412}112{|X P X P X P=2628.0)]25(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]21215([1}15{1551=-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]21210(1[1}10{15551=Φ-=-Φ--=≥-∏=i iXP 4.[四] 设X 1,X 2…,X 10为N (0,0.32)的一个样本,求}.44.1{1012>∑=i iXP解:)5(1.0}163.0{}44.1{),10(~3.0101221012221012查表=>=>∑∑∑===i i i i i i X P X P χX7.设X 1,X 2,…,X n 是来自泊松分布π (λ )的一个样本,X ,S 2分别为样本均值和样本方差,求E (X ), D (X ), E (S 2 ).解:由X ~π (λ )知E (X )= λ ,λ=)(X D∴E (X )=E (X )= λ, D (X )=.)()(,)(2λX D S E nλn X D === [六] 设总体X~b (1,p),X 1,X 2,…,X n 是来自X 的样本。
《概率论与数理统计》第六章
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .
《概率论与数理统计》第六章样本及抽样分析共67页PPT
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。•Biblioteka 48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
第六章《概率论与数理统计教程》课件
1
例5. 设X服从[0,λ]区间上的均匀分布,参数
λ>0,求λ的最大似然估计. 1 解:由题意得: X ~ f ( x; )
1 L( x1 , x 2 ,..., x n ; ) n 0
0 x
0 其它 0 x1 , x 2 ,..., x n
dL n n1 0 d
其它
无解.
应用最大似然估计基本思想: L越大,样本观察值越可能出现 取 max( x1 , x 2 ,..., x n ) 此时,L取值最大, 所以,所求最大似然估计为 max( x1 , x 2 ,..., x n )
考虑L的取值,要使L取值最大,λ应最小, 0 x1 , x 2 ,..., x n
例2 设总体 X ~ N ( , 2 ) ,其中 及 2 都是未知参数,如
果取得样本观测值为 x1 ,, x n , 求 及 2 的矩估计值。
解: 因为总体X的分布中有两个未知参数,所以应考虑一、二阶 原点矩,我们有 v1 ( X ) E ( X )
v 2 ( X ) E( X 2 ) D( X ) [ E( X )]2 2 2
e
e
1 2
2
2
( x )2 2 2
e
L( x1 , x 2 ,..., x n ; , )
2
i 1
1 2
2
( xi )2
(
2
1 2
2
1 2 2
) e
n
i 1
n
( xi )2
1 n 2 n 1 n 2 2 ) 2 ( x i ) ln 2 ln L n ln( ( xi ) 2 i 1 2 2 2 n 2 2 i 1 1 ln L 1 n Xi X 2 ( xi ) 0 n i 1 i 1 1 n 2 1 n n ln L n 1 ( xi )2 ( xi X )2 2 2 4 ( x i ) 0 n i 1 n i 1 2 2 2 i 1
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第六章
第六章参数估计6.1 点估计问题概述习题1总体X在区间[0,θ]上均匀分布,X1,X2,?,Xn是它的样本,则下列估计量θ是θ的一致估计是().(A)θ=Xn; (B)θ=2Xn;(C)θ=Xˉ=1n∑i=1nXi; (D)θ=Max{X1,X2,?,Xn}.解答:应选(D).由一致估计的定义,对任意?>0,P(∣Max{X1,X2,?,Xn}-θ∣<?)=P(-?+θ<Max{X1,X2,?,Xn}<?+θ)=F(?+θ)-F(-?+θ).因为FX(x)={0,x<0xθ,0≤x≤θ1,x>θ, 及F(x)=FMax{X1,X2,?,Xn}(x)=FX1(x)FX2(x)?FXn(x),所以F(?+θ)=1, F(-?+θ)=P(Max{X1,X2,?,Xn}<-?+θ)=(1-xθ)n,故P(∣Max{X1,X2,?,Xn}-θ∣<?)=1-(1-xθ)n→1(n→+∞).习题2设σ是总体X的标准差,X1,X2,?,Xn是它的样本,则样本标准差S是总体标准差σ的().(A)矩估计量; (B)最大似然估计量; (C)无偏估计量; (D)相合估计量.解答:应选(D).因为,总体标准差σ的矩估计量和最大似然估计量都是未修正的样本标准差;样本方差是总体方差的无偏估计,但是样本标准差不是总体标准差的无偏估计.可见,样本标准差S是总体标准差σ的相合估计量.习题3设总体X的数学期望为μ,X1,X2,?,Xn是来自X的样本,a1,a2,?,an是任意常数,验证(∑i=1naiXi)/∑i=1nai(∑i=1nai≠0)是μ的无偏估计量.解答:E(X)=μ,E(∑i=1naiXi∑i=1nai)=1∑i=1nai?∑i=1naiE(Xi) (E(Xi)=E(X)=μ)=μ∑i=1nai∑i=1n=μ,综上所证,可知∑i=1naiXi∑i=1nai是μ的无偏估计量.习题4设θ是参数θ的无偏估计,且有D(θ)>0, 试证θ2=(θ)2不是θ2的无偏估计. 解答:因为D(θ)=E(θ2)-[E(θ)]2, 所以E(θ2)=D(θ)+[E(θ)]2=θ2+D(θ)>θ2,故(θ)2不是θ2的无偏估计.习题5设X1,X2,?,Xn是来自参数为λ的泊松分布的简单随机样本,试求λ2的无偏估计量.解答:因X服从参数为λ的泊松分布,故D(X)=λ, E(X2)=D(X)+[E(X)]2=λ+λ2=E(X)+λ2,于是E(X2)-E(X)=λ2, 即E(X2-X)=λ2.用样本矩A2=1n∑i=1nXi2,A1=Xˉ代替相应的总体矩E(X2),E(X), 便得λ2的无偏估计量λ2=A2-A1=1n∑i=1nXi2-Xˉ.习题6设X1,X2,?,Xn为来自参数为n,p的二项分布总体,试求p2的无偏估计量.解答:因总体X~b(n,p), 故E(X)=np,E(X2)=D(X)+[E(X)]2=np(1-p)+n2p2=np+n(n-1)p2=E(X)+n(n-1)p2,E(X2)-E(X)n(-1)=E[1n(n-1)(X2-X)]=p2,于是,用样本矩A2,A1分别代替相应的总体矩E(X2),E(X),便得p2的无偏估计量p2=A2-A1n(n-1)=1n2(n-1)∑i=1n(Xi2-Xi).习题7设总体X服从均值为θ的指数分布,其概率密度为f(x;θ)={1θe-xθ,x>00,x≤0,其中参数θ>0未知. 又设X1,X2,?,Xn是来自该总体的样本,试证:Xˉ和n(min(X1,X2,?,Xn))都是θ的无偏估计量,并比较哪个更有效.解答:因为E(X)=θ, 而E(Xˉ)=E(X),所以E(Xˉ)=θ, Xˉ是θ的无偏估计量.设Z=min(X1,X2,?,Xn),因为FX(x)={0,x≤01-e-xθ,x>0,FZ(x)=1-[1-FX(x)]n={1-e-nxθ,x>00,x≤0,所以fZ(x)={nθe-nxθ,x>00,x≤0,这是参数为nθ的指数分布,故知E(Z)=θn, 而E(nZ)=E[n(min(X1,X2,?,Xn)]=θ,所以nZ也是θ的无偏估计.现比较它们的方差大小.由于D(X)=θ2, 故D(Xˉ)=θ2n.又由于D(Z)=(θn)2, 故有D(nZ)=n2D(Z)=n2?θ2n2=θ2.当n>1时,D(nZ)>D(Xˉ),故Xˉ较nZ有效.习题8设总体X服从正态分布N(m,1),X1,X2是总体X的子样,试验证m1=23X1+13X2, m2=14X1+34X2, m3=12X1+12X2,都是m的无偏估计量;并问哪一个估计量的方差最小?解答:因为X服从N(m,1), 有E(Xi)=m,D(Xi)=1(i=1,2),得E(m1)=E(23X1+13X2)=23E(X1)+13E(X2)=23m+13m=m,D(m1)=D(23X1+13X2)=49D(X1)+19D(X2)=49+19=59,同理可得:E(m2)=m,D(m2)=58, E(m3)=m,D(m3)=12.所以,m1,m2,m3都是m的无偏估计量,并且在m1,m2,m3中,以m3的方差为最小.习题9设有k台仪器. 已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,?,k), 用这些仪器独立地对某一物理量θ各观察一次,分别得到X1,X2,?,Xk. 设仪器都没有系统误差,即E(Xi)=θ(i=1,2,?,k), 问a1,a2,?,ak应取何值,方能使用θ=∑i=1kaiXi估计θ时,θ是无偏的,并且D(θ)最小?解答:因为E(Xi)=θ(i=1,2,?,k), 故E(θ)=E(∑i=1kaiXi)=∑i=1kaiE(Xi)=θ∑i=1kai,欲使E(θ)=θ, 则要∑i=1kai=1.因此,当∑i=1kai=1时,θ=∑i=1kaiXi为θ的无偏估计, D(θ)=∑i=1kai2σi2, 要在∑i=1kai=1的条件下D(θ)最小,采用拉格朗日乘数法.令L(a1,a2,?,ak)=D(θ)+λ(1-∑i=1kai)=∑i=1kai2σi2+λ(1-∑i=1kai),{?L?ai=0,i=1,2,?,k∑i=1kai=1,即2aiσi2-λ=0,ai=λ2i2;又因∑i=1kai=1,所以λ∑i=1k12σi2=1, 记∑i=1k1σi2=1σ02, 所以λ=2σ02, 于是ai=σ02σi2 (i=1,2,?,k),故当ai=σ02σi2(i=1,2,?,k)时,θ=∑i=1kaiXi是θ的无偏估计,且方差最小.习题6.2 点估计的常用方法习题1设X1,X2,?,Xn为总体的一个样本,x1,x2,?,xn为一相应的样本值,求下述各总体的密度函数或分布律中的未知参数的矩估计量和估计值及最大似然估计量.(1)f(x)={θcθx-(θ+1),x>c0,其它, 其中c>0为已知,θ>1,θ为未知参数.(2)f(x)={θxθ-1,0≤x≤10,其它, 其中θ>0,θ为未知参数.(3)P{X=x}=(mx)px(1-p)m-x, 其中x=0,1,2,?,m,0<p<1,p为未知参数.解答:(1)E(X)=∫c+∞x?θcθx-(θ+1)dx=θcθ∫c+∞x-θdx=θcθ-1,解出θ=E(X)E(X)-c,令Xˉ=E(X),于是θ=XˉXˉ-c为矩估计量,θ的矩估计值为θ=xˉxˉ-c,其中xˉ=1n∑i=1nxi.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=θncnθ(∏i=1nxi)-(θ+1),xi>c,对数似然函数为lnL(θ)=nlnθ+nθlnc-(θ+1)∑i=1nlnxi,对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=nθ+nlnc-∑i=1nlnxi=0,解方程得θ=n∑i=1nlnxi-nlnc,故参数的最大似然估计量为θ=n∑i=1nlnXi-nlnc.(2)E(X)=∫01x?θxθ-1dx=θθ+1,以Xˉ作为E(X)的矩估计,则θ的矩估计由Xˉ=θθ+1解出,得θ=(Xˉ1-Xˉ)2,θ的矩估计值为θ=(xˉ1-xˉ)2,其中xˉ=1n∑i=1nxi为样本均值的观测值.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=θn/2(∏i=1nxi)θ-1,0≤xi≤1,对数似然函数为lnL(θ)=n2lnθ+(θ-1)∑i=1nlnxi,对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=n2θ+12θ∑i=1nlnxi=0,解方程得θ=(-n∑i=1nlnxi)2,故参数的最大似然估计量为θ=(n∑i=1nlnXi)2.(3)X~b(m,p),E(X)=mp,以Xˉ作为E(X)的矩估计,即Xˉ=E(X),则参数p的矩估计为p=1mXˉ=1m?1n∑i=1nXi,p的矩估计值为p=1mxˉ=1m?1n∑i=1nxi.另外,似然函数为L(θ)=∏i=1nf(xi;θ)=(∏i=1nCmxi)p∑i=1nxi(1-p)∑i=1n(m-xi),xi=0,1,?,m,对数似然函数为lnL(θ)=∑i=1nlnCmxi+(∑i=1nxi)lnp+(∑i=1n(m-xi))ln(1-p),对lnL(θ)求导,并令其为零,得dlnL(θ)dθ=1p∑i=1nxi-11-p∑i=1n(m-xi)=0,解方程得p=1mn∑i=1nxi,故参数的最大似然估计量为p=1mn∑i=1nXi=1mXˉ.习题2设总体X服从均匀分布U[0,θ],它的密度函数为f(x;θ)={1θ,0≤x≤θ0,其它,(1)求未知参数θ的矩估计量;(2)当样本观察值为0.3,0.8,0.27,0.35,0.62,0.55时,求θ的矩估计值.解答:(1)因为E(X)=∫-∞+∞xf(x;θ)dx=1θ∫0θxdx=θ2,令E(X)=1n∑i=1nXi,即θ2=Xˉ,所以θ=2Xˉ.(2)由所给样本的观察值算得xˉ=16∑i=16xi=16(0.3+0.8+0.27+0.35+0.62+0.55)=0.4817,所以θ=2xˉ=0.9634.习题3设总体X以等概率1θ取值1,2,?,θ, 求未知参数θ的矩估计量.解答:由E(X)=1×1θ+2×1θ+?+θ×1θ=1+θ2=1n∑i=1nXi=Xˉ,得θ的矩估计为θ=2Xˉ-1.习题4一批产品中含有废品,从中随机地抽取60件,发现废品4件,试用矩估计法估计这批产品的废品率.解答:设p为抽得废品的概率,1-p为抽得正品的概率(放回抽取). 为了估计p,引入随机变量Xi={1,第i次抽取到的是废品0,第i次抽取到的是正品,于是P{Xi=1}=p,P{Xi=0}=1-p=q, 其中i=1,2,?,60,且E(Xi)=p, 故对于样本X1,X2,?,X60的一个观测值x1,x2,?,x60, 由矩估计法得p的估计值为p=160∑i=160xi=460=115,即这批产品的废品率为115.习题5设总体X具有分布律X 1 2 3pi θ2 2θ(1-θ) (1-θ)2其中θ(0<θ<1)为未知参数. 已知取得了样本值x1=1,x2=2,x3=1, 试求θ的矩估计值和最大似然估计值.解答:E(X)=1×θ2+2×2θ(1-θ)+3×(1-θ)2=3-2θ,xˉ=1/3×(1+2+1)=4/3.因为E(X)=Xˉ,所以θ=(3-xˉ)/2=5/6为矩估计值,L(θ)=∏i=13P{Xi=xi}=P{X1=1}P{X2=2}P{X3=1}=θ4?2θ?(1-θ)=2θ5(1-θ),lnL(θ)=ln2+5lnθ+ln(1-θ),对θ求导,并令导数为零dlnLdθ=5θ-11-θ=0,得θL=56.习题6(1)设X1,X2,?,Xn来自总体X的一个样本, 且X~π(λ), 求P{X=0}的最大似然估计.(2)某铁路局证实一个扳道员五年内所引起的严重事故的次数服从泊松分布,求一个扳道员在五年内未引起严重事故的概率 p的最大似然估计,使用下面122个观察值统计情况. 下表中,r表示一扳道员某五年中引起严重事故的次数,s表示观察到的扳道员人数.r 012345sr 444221942解答:(1)已知,λ的最大似然估计为λL=Xˉ.因此?P{X=0}=e-λL=e-Xˉ.(2)设X为一个扳道员在五年内引起的严重事故的次数,X服从参数为λ的泊松分布,样本容量n=122.算得样本均值为xˉ=1122×∑r=05r?r=1122×(0×44+1×42+2×21+3×9+4×4+5×2)≈1.123,因此P{X=0}=e-xˉ=e-1.123≈0.3253.习题6.3 置信区间习题1对参数的一种区间估计及一组观察值(x1,x2,?,xn)来说,下列结论中正确的是().(A)置信度越大,对参数取值范围估计越准确;(B)置信度越大,置信区间越长;(C)置信度越大,置信区间越短;(D)置信度大小与置信区间有长度无关.解答:应选(B).置信度越大,置信区间包含真值的概率就越大,置信区间的长度就越大,对未知参数的估计精度越低.反之,对参数的估计精度越高,置信区间的长度越小,它包含真值的概率就越低,置信度就越小.习题2设(θ1,θ2)是参数θ的置信度为1-α的区间估计,则以下结论正确的是().(A)参数θ落在区间(θ1,θ2)之内的概率为1-α;(B)参数θ落在区间(θ1,θ2)之外的概率为α;(C)区间(θ1,θ2)包含参数θ的概率为1-α;(D)对不同的样本观察值,区间(θ1,θ2)的长度相同.解答:应先(C).由于θ1,θ2都是统计量,即(θ1,θ2)是随机区间,而θ是一个客观存在的未知常数,故(A),(B)不正确.习题3设总体的期望μ和方差σ2均存在,如何求μ的置信度为1-α的置信区间?解答:先从总体中抽取一容量为n的样本X1,X2,?,Xn.根据中心极限定理,知U=Xˉ-μσ/n→N(0,1)(n→∞).(1)当σ2已知时,则近似得到μ的置信度为1-α的置信区间为(Xˉ-uα/2σn,Xˉ+uα/2σn).(2)当σ2未知时,用σ2的无偏估计S2代替σ2, 这里仍有Xˉ-μS/n→N(0,1)(n→∞),于是得到μ的1-α的置信区间为(Xˉ-uα/2Sn,Xˉ+uα/2Sn),一般要求n≥30才能使用上述公式,称为大样本区间估计.习题4某总体的标准差σ=3cm, 从中抽取40个个体,其样本平均数xˉ=642cm,试给出总体期望值μ的95%的置信上、下限(即置信区间的上、下限).解答:因为n=40属于大样本情形,所以Xˉ近似服从N(μ,σ2n)的正态分布,于是μ的95%的置信区间近似为(Xˉ±σnuα/2),这里xˉ=642,σ=3,n=40≈6.32,uα/2=1.96, 从而(xˉ±σnuα/2)=(642±340×1.96)≈(642±0.93),故μ的95%的置信上限为642.93, 下限为641.07.习题5某商店为了了解居民对某种商品的需要,调查了100家住户,得出每户每月平均需求量为10kg, 方差为9,如果这个商店供应10000户,试就居民对该种商品的平均需求量进行区间估计(α=0.01), 并依此考虑最少要准备多少这种商品才能以0.99的概率满足需求?解答:因为n=100属于大样本问题,所以Xˉ近似服从N(μ,σ2/n),于是μ的99%的置信区间近似为(Xˉ±Snuα/2), 而xˉ=10,s=3,n=100, uα/2=2.58,所以(xˉ±snuα/2)=(10±3100×2.58)=(10±0.774)=(9.226,10.774).由此可知最少要准备10.774×10000=107740(kg)这种商品,才能以0.99的概率满足需求.习题6观测了100棵“豫农一号”玉米穗位,经整理后得下表(组限不包括上限):分组编号 12345组限组中值频数70~8080~9090~100100~110110~12075859510511539131626分组编号 6789组限组中值频数120~130130~140140~150150~16012513514515520742试以95%的置信度,求出该品种玉米平均穗位的置信区间.解答:因为n=100属于大样本情形,所以μ的置信度为95%的置信区间上、下限近似为Xˉ±snuα/2, 这里n=100,uα/2=1.96, 还需计算出xˉ和s.取a=115,c=10, 令zi=(xi-a)/c=(xi-115)/10, 用简单算公式,(1)xˉ=a+czˉ;(2)sx2=c2sz2.编号 123456789组中值xi zi=xi-11510 组频率mi mizizi2mizi2 758595105115125135145155 -4-3-2-1012343913162620742-12-27-26-160201412816941014916123456789zˉ=1100∑i=19mizi=1100×(-27)=-0.27,xˉ=10×(-27)+115=112.3,sz2=199∑i=19mizi2=199×313≈3.161616,sx2=102×3.161616=316.1616, sx≈17.78.于是(xˉ±snuα)≈(112.3±17.7810×1.96)≈(112.3±3.485) =(108.815,115.785).习题7某城镇抽样调查的500名应就业的人中,有13名待业者,试求该城镇的待业率p的置信度为0.95置信区间.解答:这是(0-1)分布参数的区间估计问题. 待业率p的0.95置信区间为(p1,p2)=(-b-b2-4ac2a,-b+b2-4ac2a).其中a=n+uα/22,b=-2nXˉ-(uα/2)2, c=nXˉ2,n=500,xˉ=13500,uα/2=1.96.则(p1,p2)=(0.015,0.044).习题8设X1,X2,?,Xn为来自正态总体N(μ,σ2)的一个样本,求μ的置信度为1-α的单侧置信限.解答:这是一个正态总体在方差未知的条件下,对μ的区间估计问题,应选取统计量:T=Xˉ-μS/n~t(n-1).因为只需作单边估计,注意到t分布的对称性,故令P{T<tα(n-1)}=1-α和P{T>tα(n-1)}=1-α.由给定的置信度1-α, 查自由度为n-1的t分布表可得单侧临界值tα(n-1). 将不等式T<tα(n-1)和T>tα(n-1), 即Xˉ-μS/n<tα(n-1)和Xˉ-μS/n>tα(n-1)分别变形,求出μ即得μ的1-α的置信下限为Xˉ-tα(n-1)Sn.μ的1-α的置信上限为Xˉ+tα(n-1)Sn,μ的1-α的双侧置信限(Xˉ-tα/2(n-1)Sn,Xˉ+tα/2(n-1)Sn).习题6.4 正态总体的置信区间习题1已知灯泡寿命的标准差σ=50小时,抽出25个灯泡检验,得平均寿命xˉ=500小时,试以95%的可靠性对灯泡的平均寿命进行区间估计(假设灯泡寿命服从正态分布).解答:由于X~N(μ,502), 所以μ的置信度为95%的置信区间为(Xˉ±uα/2σn),这里xˉ=500,n=25,σ=50,uα/2=1.96, 所以灯泡的平均寿命的置信区间为(xˉ±uα/2σn)=(500±5025×1.96)=(500±19.6)=(480.4,519.6).习题2一个随机样本来自正态总体X,总体标准差σ=1.5, 抽样前希望有95%的置信水平使得μ的估计的置信区间长度为L=1.7, 试问应抽取多大的一个样本?解答:因方差已知,μ的置信区间长度为L=2uα/2?σn,于是n=(2σLuα/2)2.由题设知,1-α=0.95,α=0.05,α2=0.025. 查标准正态分布表得u0.025=1.96,σ=1.5,L=1.7,所以,样本容量n=(2×1.5×1.961.7)2≈11.96.向上取整数得n=12, 于是欲使估计的区间长度为 1.7的置信水平为95%, 所以需样本容量为n=12.习题3设某种电子管的使用寿命服从正态分布. 从中随机抽取15个进行检验,得平均使用寿命为1950小时,标准差s为300小时,以95%的可靠性估计整批电子管平均使用寿命的置信上、下限.解答:由X~N(μ,σ2), 知μ的95%的置信区间为(Xˉ±Sntα/2(n-1)),这里xˉ=1950,s=300,n=15,tα/2(14)=2.145, 于是(xˉ±sntα/2(n-1))=(1950±30015×2.145)≈(1950±166.151)=(1783.85,2116.15).即整批电子管平均使用寿命的置信上限为2116.15, 下限为1783.85.习题4人的身高服从正态分布,从初一女生中随机抽取6名,测其身高如下(单位:cm):149 158.5 152.5 165 157 142求初一女生平均身高的置信区间(α=0.05).解答:X~N(μ,σ2),μ的置信度为95%的置信区间为(Xˉ±Sntα/2(n-1)),这里xˉ=154,s=8.0187, t0.025(5)=2.571, 于是(xˉ±sntα/2(n-1))=(154±8.01876×2.571)≈(154±8.416)≈(145.58,162.42).习题5某大学数学测验,抽得20个学生的分数平均数xˉ=72,样本方差s2=16, 假设分数服从正态分布,求σ2的置信度为98%的置信区间.解答:先取χ2分布变量,构造出1-α的σ2的置信区间为((n-1)S2χα/22(n-1),(n-1)S2χ1-α/22(n-1)).已知1-α=0.98,α=0.02,α2=0.01,n=20, S2=16.查χ2分布表得χ0.012(19)=36.191,χ0.992(19)=7.633,于是得σ2的98%的置信区间为(19×1636.191,19×167.633),即(8.400,39.827).习题6随机地取某种炮弹9发做试验,得炮口速度的样本标准差s=11(m/s).设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为0.95的置信区间.解答:已知n=9,s=11(m/s),1-α=0.95.查表得χ0.0252(8)=17.535, χ0.9752(8)=2.180,σ的0.95的置信区间为(8sχ0.0252(8),8sχ0.9752(8)), 即(7.4,21.1).习题7设来自总体N(μ1,16)的一容量为15的样本,其样本均值x1ˉ=14.6;来自总体N(μ2,9)的一容量为20的样本,其样本均值x2ˉ=13.2;并且两样本是相互独立的,试求μ1-μ2的90%的置信区间.解答:1-α=0.9,α=0.1, 由Φ(uα/2)=1-α2=0.95, 查表,得uα/2=1.645,再由n1=15,n2=20, 得σ12n1+σ22n2=1615+920=9160≈1.232,uα/2σ12n1+σ22n2=1.645×1.232≈2.03,xˉ1-xˉ2=14.6-13.2=1.4,所以,μ1-μ2的90%的置信区间为(1.4-2.03,1.4+2.03)=(-0.63,3.43).习题8物理系学生可选择一学期3学分没有实验课,也可选一学期4学分有实验的课. 期未考试每一章节都考得一样,若有上实验课的12个学生平均考分为84,标准差为4,没上实验课的18个学生平均考分为77,标准差为6,假设总体均为正态分布且其方差相等,求两种课程平均分数差的置信度为99%的置信区间.解答:设有实验课的考分总体X1~N(μ1,σ2), 无实验课的考分总体X2~N(μ2,σ2). 两方差相等但均未知,求μ1-μ2的99%的置信区间,应选t分布变量,T=X1ˉ-X2ˉ-(μ1-μ2)SW1n1+1n2~t(n1+n2-2),其中SW=(n1-1)S12+(n2-1)S22n1+n2-2.μ1-μ2的1-α的置信区间为(X1ˉ-X2ˉ±tα/2(n1+n2-2)SW1n1+1n2).由已知,x1ˉ-x2ˉ=84-77=7, 且sW=(12-1)×42+(18-1)×6212+18-2≈5.305,112+118≈0.373, 1-α=0.99, α2=0.005,查t分布表得t0.005(28)=2.763.于是,μ1-μ2的0.99的置信区间为(7±2.763×5.305×0.373),即(7±5.467),亦即(1.53,12.47).习题9随机地从A批导线中抽取4根,又从B批导线中抽取5根,测得电阻(欧)为A批导线 0.1430.1420.1430.137B批导线 0.1400.1420.1360.1380.140设测定数据分别来自分布N(μ1,σ2),N(μ2,σ2), 且两样本相互独立,又μ1,μ2,σ2均为未知,试求μ1-μ2的置信水平为0.95的置信区间.解答:对于1-α=0.95, 查表得t0.025(7)=2.3646, 算得xˉ=0.141,yˉ=0.139; s12=8.25×10-6, s1≈0.0029.s22=5.2×10-6, s2=0.0023, sW≈0.0026, 15+14=0.6708,故得μ1-μ2的0.95置信区间为(0.141-0.139±2.3646×0.0026×0.6708),即(-0.002,0.006).习题10设两位化验员A,B独立地对某种聚合物含氯量用相同的方法各作10次测定,其测定值的样本方差依次为 sA2=0.5419,sB2=0.6065. 设σA2,σB2分别为A,B所测定的测定值的总体方差,又设总体均为正态的,两样本独立,求方差比σA2/σB2的置信水平为0.95的置信区间.解答:选用随机变量F=SA2σA2/SB2σB2~F(n1-1,n2-1),依题意,已知sA2=0.5419, sB2=0.6065, n1=n2=10.对于1-α=0.95, 查F分布表得F0.025(9,9)=1F0.025(9,9)=14.03, 于是得σA2σB2的0.95的置信区间为(sA2sB21Fα/2(9,9),sA2sB2Fα/2(9,9))≈(0.222,3.601).总习题解答习题1设总体X服从参数为λ(λ>0)的指数分布,X1,X2,?,Xn为一随机样本,令Y=min{X1,X2,?,Xn}, 问常数c为何值时,才能使cY是λ的无偏估计量.解答:关键是求出E(Y). 为此要求Y的密度fY(y).因Xi的密度函数为fX(x)={λe-λx,x>00,x<0;Xi的分布函数为FX(x)={1-e-λx,x>00,x≤0,于是FY(y)=1-[1-FX(y)]n={1-e-nλy,y>00,y≤0.两边对y求导得fY(y)=ddyFY(y)={nλe-nλy,y>00,y≤0,即Y服从参数为nλ的指数分布,故E(Y)=nλ.为使cY成为λ的无偏估计量,需且只需E(cY)=λ, 即cnλ=λ, 故c=1n.习题2设X1,X2,?,Xn是来自总体X的一个样本,已知E(X)=μ, D(X)=σ2.(1)确定常数c, 使c∑i=1n-1(Xi+1-Xi)2为σ2的无偏估计;(2)确定常数c, 使(Xˉ)2-cS2是μ2的无偏估计(Xˉ,S2分别是样本均值和样本方差).解答:(1)E(c∑i=1n-1(Xi+1-Xi)2)=c∑i=1n-1E(Xi+12-2XiXi+1+Xi2)=c∑i=1n-1{D(Xi+1)+[E(Xi+1)]2-2E(Xi)E(Xi+1)+D(Xi)+[E(Xi)+[E(Xi)]2}=c(n-1)(σ2+μ2-2μ2+σ2+μ2)=2(n-1)σ2c.令2(n-1)σ2c=σ2, 所以c=12(n-1).(2)E[(Xˉ)2-cS2]=E(Xˉ2)-cE(S2)=D(Xˉ)+[E(Xˉ)]2-cσ2=σ2n+μ2-cσ2.令σ2n+μ2-cσ2=μ2, 则得c=1n.习题3设X1,X2,X3,X4是来自均值为θ的指数分布总体的样本,其中θ未知. 设有估计量T1=16(X1+X2)+13(X3+X4),T2=X1+2X2+3X3+4X45,T3=X1+X2+X3+X44.(1)指出T1,T2,T3中哪几个是θ的无偏估计量;(2)在上述θ的无偏估计中指出一个较为有效的.解答:(1)θ=E(X),E(Xi)=E(X)=θ,D(X)=θ2=D(Xi),i=1,2,3,4.E(T1)=E(16(X1+X2)+13(X3+X4))=(26+23)θ=θ,E(T2)=15E(X1+2X2+3X3+4X4)=15(1+2+3+4)θ=2θ,E(T3)=14E(X1+X2+X3+X4)=θ,因此,T1,T3是θ的无偏估计量.(2)D(T1)=236θ2+29θ2=1036θ2, D(T3)=116?4θ2=14θ2=936θ2,所以D(T3)<D(T1), 作为θ的无偏估计量,T3更为有效.习题4设从均值为μ, 方差为σ2(σ>0)的总体中,分别抽取容量为n1,n2的两独立样本,X1ˉ和X2ˉ分别是两样本的均值,试证:对于任意常数a,b(a+b=1),Y=aX1ˉ+bX2ˉ都是μ的无偏估计;并确定常数a,b, 使D(Y)达到最小.解答:E(Y)=E(aX1ˉ+bX2ˉ)=aE(X1ˉ)+bE(X2ˉ)=(a+b)μ.因为a+b=1, 所以E(Y)=μ.因此,对于常数a,b(a+b=1),Y都是μ的无偏估计,D(Y)=a2D(X1ˉ)+b2D(X2ˉ)=a2σ2n1+b2σ2n2.因a+b=1, 所以D(Y)=σ2[a2n1+1n2(1-a)2], 令dD(Y)da=0, 即2σ2(an1-1-an2)=0, 解得a=n1n1+n2,b=n2n1+n2是惟一驻点.又因为d2D(Y)da2=2σ2(1n1+1n2)>0, 故取此a,b二值时,D(Y)达到最小.习题5设有一批产品,为估计其废品率p, 随机取一样本X1,X2,?,Xn, 其中Xi={1,取得废品0,取得合格品, i=1,2,?,n,证明:p=Xˉ=1n∑i=1nXi是p的一致无偏估计量.解答:由题设条件E(Xi)=p?1+(1-p)?0=p,D(Xi)=E(Xi2)-[E(Xi)]2=p?12+(1-p)02-p2=p(1-p),E(p)=E(Xˉ)=E(1n∑i=1nE(Xi))=1n∑i=1nE(Xi)=1n∑i=1np=p.由定义,p是p的无偏估计量,又D(p)=D(Xˉ)=D(1n∑i=1nXi)=1n2∑i=1nD(Xi)=1n2∑i=1np(1-p)=1n2np(1-p)=pqn.由切比雪夫不等式,任给?>0P{∣p-p∣≥?}=P{∣Xˉ-p∣≥?}≤1?2D(Xˉ)=1?2p(1-p)n→0,n→∞所以limn→∞P{∣p-p∣≥?}=0, 故p=Xˉ是废品率p的一致无偏估计量.习题6设总体X~b(k,p), k是正整数,0<p<1,k,p都未知,X1,X2,?,Xn是一样本,试求k和p的矩估计.解答:因总体X服从二项分布b(k,p), 故{a1=E(X)=kpa2=E(X2)=D(X)+[E(X)]2=kp(1-p)+(kp)2,解此方程组得p=a1+a12-a2a1,k=a12a1+a12-a2.用A1=1n∑i=1nXi=Xˉ,A2=1n∑i=1nXi2分别代替a1,a2, 即得p,k的矩估计为p=Xˉ-S2Xˉ,k=[Xˉ2Xˉ-S2],其中S2=1n∑i=1n(Xi-Xˉ)2,[x]表示x的最大整数部分.习题7求泊松分布中参数λ的最大似然估计.解答:总体的概率函数为P{X=k}=λkk!e-λ,k=0,1,2,?.设x1,x2,?,xn为从总体中抽取的容量为n的样本,则似然函数为L(x1,x2,?,xn;λ)=∏i=1nf(xi;λ)=∏i=1nλxixi!e-λ=λ∑i=1nxi∏i=1nxi!e-nλ,lnL=(∑i=1nxi)lnλ-nλ-∑i=1nlnxi!,令dlnLdλ=1λ∑i=1nxi-n=0, 得λ的最大是然估计为λ=1n∑i=1nxi=xˉ,即xˉ=1n∑i=1nxi就是参数λ的最大似然估计.习题8已知总体X的概率分布P{X=k}=C2k(1-θ)kθ2-k,k=0,1,2,求参数的矩估计.解答:总体X为离散型分布,且只含一个未知参数θ, 因此,只要先求离散型随机变量的数学期望E(X), 然后解出θ并用样本均值Xˉ代替E(X)即可得θ的矩估计θ.由E(X)=∑k=02kC2k(1-θ)kθ2-k=1×2(1-θ)θ+2(1-θ)2=2-2θ, 即有θ=1-E(X)2.用样本均值Xˉ代替上式的E(X), 得矩估计为θ=1-Xˉ2.习题9设总体X的概率密度为f(x)={(θ+1)xθ,0<x<10,其它,其中θ>-1是未知参数,X1,X2,?,Xn为一个样本,试求参数θ的矩估计和最大似然估计量. 解答:因E(X)=∫01(θ+1)xθ+1dx=θ+1θ+2. 令E(X)=1n∑i=1nXi=Xˉ, 得θ+1θ+2=Xˉ, 解得θ的矩估计量为θ=2Xˉ-11-Xˉ.设x1,x2,?,xn是样本X1,X2,?,Xn的观察值,则似然函数L(x1,x2,?,xn,θ)=∏i=1n(θ+1)xiθ=(θ+1)n(x1x2?xn)θ(0<xi<1,i=1,2,?,n),取对数得lnL=nln(θ+1)+θ∑i=1nlnxi, 从而得对数似然方程dlnLdθ=nθ+1+∑i=1nlnxi=0,解出θ, 得θ的最大似然估计量为θ=-n∑i=1nlnXi.由此可知,θ的矩估计和最大似然估计是不相同的.习题10设X具有分布密度f(x,θ)={θxe-θx!,x=0,1,2,?0,其它,0<θ<+∞,X1,X2,?,Xn是X的一个样本,求θ的最大似然估计量.解答:似然函数L(θ)=∏i=1nθxie-θxi!=e-nθ∏i=1nθxixi!,lnL(θ)=-nθ+∑i=1nxilnθ-∑i=1nln(xi!),ddθ(lnL(θ))=-n+1θ∑i=1nxi,令ddθ(lnL(θ))=0, 即-n+1θ∑i=1nxi=0?θ=1n∑i=1nxi,故θ最大似然估计量为θ=Xˉ=1n∑i=1nXi.习题11设使用了某种仪器对同一量进行了12次独立的测量,其数据(单位:毫米)如下:232.50 232.48 232.15 232.53 232.45 232.30232.48 232.05 232.45 232.60 232.47 232.30试用矩估计法估计测量值的均值与方差(设仪器无系统误差).解答:设测量值的均值与方差分别为μ与σ2,因为仪器无系统误差,所以θ=μ=Xˉ=1n∑i=1nXi=232+112∑i=1n(Xi-232)=232+1/12×4.76≈232.3967.用样本二阶中心矩B2估计方差σ2, 有σ2=1n∑i=1n(Xi-Xˉ)2=1n∑i=1n(Xi-a)2-(Xˉ-a)2=112∑i=112(Xi-232)2-(232.3967-232)2=0.1819-0.1574=0.0245.习题12设随机变量X服从二项分布P{X=k}=Cnkpk(1-p)n-k,k=0,1,2,?,n,X1为其一个样本,试求p2的无偏估计量.解答:\becauseX~b(n,p),∴E(X)=np, D(X)=np(1-p)=E(X)-np2?p2=1n[E(X)-D(X)]=1n[E(X)-E(X2)+(EX)2]?p2=1n[E(X(1-X))]+1nn2p2=1nE(X(1-X))]+np2?p2=E[X(X-1)]n(n-1), 由于E[X(X-1)]=E[X1(X1-1)],故p2=X1(X1-1)n(n-1).习题13设X1,X2,?,Xn是来自总体X的随机样本,试证估计量Xˉ=1n∑i=1nXi和Y=∑i=1nCiXi(Ci≥0为常数,∑i=1nCi=1)都是总体期望E(X)的无偏估计,但Xˉ比Y有效.解答:依题设可得E(Xˉ)=1n∑i=1nE(Xi)=1n×nE(X)=E(X),E(Y)=∑i=1nCiE(Xi)=E(X)∑i=1nCi=E(X).从而Xˉ,Y均为E(X)的无偏估计量,由于D(Xˉ)=1n2∑i=1nD(Xi)=1nD(X),D(Y)=D(∑i=1nCiXi)=∑i=1nCi2D(Xi)=D(X)∑i=1nCi2.应用柯西—施瓦茨不等式可知1=(∑i=1nCi)2≤(∑i=1nCi2)(∑i=1n12)=n∑i=1nCi2, ?1n≤∑i=1nCi2,所以D(Y)≥D(Xˉ), 故Xˉ比Y有效.习题14设X1,X2,?,Xn是总体X~U(0,θ)的一个样本,证明:θ1=2Xˉ和θ2=n+1nX(n)是θ的一致估计.解答:因E(θ1)=θ, D(θ1)=θ23n; E(θ2)=θ,D(θ2)=θn(n+2),X(n)=max{Xi}.依切比雪夫不等式,对任给的?>0, 当n→∞时,有P{∣θ1-θ∣≥?}≤D(θ1)?2=θ23n?2→0,(n→∞)P{∣θ2-θ∣≥?}≤D(θ2)?2=θ2n(n+1)?2→0,(n→∞)所以,θ1和θ2都是θ的一致估计量.习题15某面粉厂接到许多顾客的订货,厂内采用自动流水线灌装面粉,按每袋25千克出售. 现从中随机地抽取50袋,其结果如下:25.8, 24.7, 25.0, 24.9, 25.1, 25.0, 25.2,24.8, 25.4, 25.3, 23.1, 25.4, 24.9, 25.0,24.6, 25.0, 25.1, 25.3, 24.9, 24.8, 24.6,21.1, 25.4, 24.9, 24.8, 25.3, 25.0, 25.1,24.7, 25.0, 24.7, 25.3, 25.2, 24.8, 25.1,25.1, 24.7, 25.0, 25.3, 24.9, 25.0, 25.3,25.0, 25.1, 24.7, 25.3, 25.1, 24.9, 25.2,25.1,试求该厂自动流水线灌装袋重总体X的期望的点估计值和期望的置信区间(置信度为0.95).解答:设X为袋重总体,则E(X)的点估计为E(X)=Xˉ=150(25.8+24.7+?+25.1)=24.92kg.因为样本容量n=50, 可作为大样本处理,由样本值算得xˉ=24.92, s2≈0.4376, s=0.6615, 则E(X)的置信度为0.95的置信区间近似为(Xˉ-uα/2Sn,Xˉ+uα/2Sn),查标准正态分布表得uα/2=u0.025=1.96, 故所求之置信区间为(24.92- 1.96×0.661550,24.92+1.96×0.661550)=(24.737,25.103),即有95%的把握,保证该厂生产的面粉平均每袋重量在24.737千克至25.103千克之间. 习题16在一批货物的容量为100的样本中,经检验发现有16只次品,试求这批货物次品率的置信度为0.95的置信区间.解答:这是(0-1)分布参数区间的估计问题.这批货物次品率p的1-α的置信区间为(p1,p2)=(12a(-b-b2-4ac),12a(-b+b2-4ac)).其中a=n+uα/22,b=-(2nXˉ+uα/22), c=nXˉ2.由题意,xˉ=16100=0.16,n=100,1-α=0.95,u0.025=1.96. 算得a=100+1.962=103.842,b=-(2×100×0.16+1.962)=-35.842,c=100×0.162=2.56.p的0.95的置信区间为(p1,p2)=(12a(-b±b2-4ac)), 即(12×103.842(35.8416±221.2823)),亦即(0.101,0.244).习题17在某校的一个班体检记录中,随意抄录25名男生的身高数据,测得平均身高为170厘米,标准差为12厘米,试求该班男生的平均身高μ和身高的标准差σ的置信度为0.95的置信区间(假设测身高近似服从正态分布).解答:由题设身高X~N(μ,σ2), n=25, xˉ=170, s=12,α=0.05.(1)先求μ置信区间(σ2未知),取U=Xˉ-μS/n~t(n-1),tα/2(n-1)=t0.025(24)=2.06.故μ的0.95的置信区间为(170-1225×2.06,170+1225×2.06)=(170-4.94,170+4.94)=(165.06,174,94).(2)σ2的置信区间(μ未知),取U=(n-1)S2σ2~χ2(n-1),χα/22(n-1)=χ0.0252(24)=39.364, χ1-α/22(n-1)=χ0.9752(24)=12.401,故σ2的0.95的置信区间为(24×12239.364,24×12212.401)≈(87.80,278.69), σ的0.95的置信区间为(87.80,278.69)≈(9.34,16.69).习题18为研究某种汽车轮胎的磨损特性,随机地选择16只轮胎,每只轮胎行驶到磨坏为止. 记录所行驶的路程(以千米计)如下:41250 40187 43175 41010 39265 41872 42654 4128738970 40200 42550 41095 40680 43500 39775 40440假设这些数据来自正态总体N(μ,σ2). 其中μ,σ2未知,试求μ的置信水平为0.95的单侧置信下限.解答:由P{μ>Xˉ-Sntα(n-1)=1-α, 得μ的1-α的单侧置信下限为μˉ=Xˉ-Sntα(n-1).由所给数据算得xˉ≈41119.38,s≈1345.46,n=16.查t分布表得t0.05(15)=1.7531, 则有μ的0.95的单侧置信下限为μˉ=41119.38-1345.464×1.7531≈40529.73.习题19某车间生产钢丝,设钢丝折断力服从正态分布,现随机在抽取10根,检查折断力,得数据如下(单位:N):578,572,570,568,572,570,570,572,596,584.试求钢丝折断力方差的置信区间和置信上限(置信度为0.95).解答:(1)这是一个正态总体,期望未知,对方差作双侧置信限的估计问题,应选统计量χ2=(n-1)S2σ2~χ2(n-1).σ2的1-α的置信区间是((n-1)S2χα/22(n-1),(n-1)S2χ1-α/22(n-1)).由所给样本值得xˉ=575.2, (n-1)s2=∑1=110(xi-xˉ)2=681.6;根据给定的置信度1-α=0.95(即α=0.05).查自由度为10-1=9的χ2分布表,得双侧临界值χα/22(n-1)=χ0.0252(9)=19.0, χ1-α/22(n-1)=χ0.9752(9)=2.7,代入上公式得σ2的95%的置信区间为(681.619.0,681,62.70)=(35.87,232.44),即区间(35.87,232.44)包含σ2的可靠程度为0.95.(2)这是一个正态总体期望未知时,σ2的单侧区间估计问题,σ2的置信度为1-α=95%(α=0.05)的单侧置信上限为(n-1)S2χ1-α2(n-1)=∑i=110(xi-xˉ)2χ1-α2(n-1),已算得(n-1)S2=∑i=110(xi-xˉ)2=681.6, 根据自由度1-α=0.95.查自由度10-1=9的χ2分布表得单侧临界值χ1-α2(n-1)=χ0.952(9)=3.325,代入上式便得σ2的0.95的置信上限为681.63.325=205, 即有95%的把握,保证σ2包含在区间(0,205)之内,当然也可能碰上σ2超过上限值205的情形,但出现这种情况的可能性很小,不超过5%.习题20设某批铝材料比重X服从正态分布N(μ,σ2),现测量它的比重16次,算得xˉ=2.705,s=0.029,分别求μ和σ2的置信度为0.95的置信区间。
概率论与数理统计(理工类.第四版)吴赣昌主编答案5,6,7,8章
第五章数理统计的基础知识5.1 数理统计的基本概念习题一已知总体X服从[0,λ]上的均匀分布(λ未知),X1,X2,⋯,Xn为X的样本,则().(A)1n∑i=1nXi-λ2是一个统计量;(B)1n∑i=1nXi-E(X)是一个统计量;(C)X1+X2是一个统计量;(D)1n∑i=1nXi2-D(X)是一个统计量.解答:应选(C).由统计量的定义:样本的任一不含总体分布未知参数的函数称为该样本的统计量.(A)(B)(D)中均含未知参数.习题2观察一个连续型随机变量,抽到100株“豫农一号”玉米的穗位(单位:cm),得到如下表中所列的数据. 按区间[70,80),[80,90),⋯,[150,160),将100个数据分成9个组,列出分组数据计表(包括频率和累积频率),并画出频率累积的直方图.解答:分组数据统计表X¯=1n∑i=1nXi与Sn2=1n∑i=1n(Xi-X¯)2分别表示样本均值和样本二阶中心矩,试求E(X¯),E(S2).解答:由X∼B(10,3100),得E(X)=10×3100=310,D(X)=10×3100×97100=2911000,所以E(X¯)=E(X)=310,E(S2)=n-1nD(X)=291(n-1)1000n.习题6设某商店100天销售电视机的情况有如下统计资料f(x)={λe-λx,x>00,其它,F(x)={1-e-λx,x>00,x≥0,X(2)的概率密度为f(2)(x)=2F(x)f(x)={2λe-λx(1-e-λx),x>00,其它,又X(1)的概率密度为f(1)(x)=2[1-F(x)]f(x)={2λe-2λx,x>00,其它.习题9设电子元件的寿命时间X(单位:h)服从参数λ=0.0015的指数分布,今独立测试n=6元件,记录它们的失效时间,求:(1)没有元件在800h之前失效的概率;(2)没有元件最后超过3000h的概率.解答:(1)总体X的概率密度f(x)={(0.0015)e-0.0015x,x>00,其它,分布函数F(x)={1-e-0.0015x,x>00,其它,{没有元件在800h前失效}={最小顺序统计量X(1)>800},有P{X(1)>800}=[P{X>800}]6=[1-F(800)]6=exp(-0.0015×800×6)=exp(-7.2)≈0.000747.(2){没有元件最后超过3000h}={最大顺序统计量X(6)<3000}P{X(6)<3000}=[P{X<3000}]6=[F(3000)]6=[1-exp{-0.0015×3000}]6=[1-exp{-4.5}]6≈0.93517.习题10设总体X任意,期望为μ,方差为σ2,若至少要以95%的概率保证∣X¯-μ∣<0.1σ,问样本容量n应取多大?解答:因当n很大时,X¯-N(μ,σ2n),于是P{∣X¯-μ∣<0.1σ}=P{μ-0.1σ<X¯<μ+0.1σ}≈Φ(0.1σσ/n)-Φ(-0.1σσ/n)=2Φ(0.1n)-1≥0.95,则Φ(0.1n)≥0.975,查表得Φ(1.96)=0.975,因Φ(x)非减,故0.1n≥1.96,n≥384.16,故样本容量至少取385才能满足要求.5.2 常用统计分布习题1对于给定的正数a(0<a<1),设za,χa2(n),ta(n),Fa(n1,n2)分别是标准正态分布,χ2(n),t(n),F(n1,n2)分布的上a分位点,则下面的结论中不正确的是().(A)z1-a(n)=-za(n);(B)χ1-a2(n)=-χa2(n);(C)t1-a(n)=-ta(n);(D)F1-a(n1,n2)=1Fa(n2,n1).解答:应选(B).因为标准正态分布和t分布的密度函数图形都有是关于y轴对称的,而χ2分布的密度大于等于零,所以(A)和(C)是对的.(B)是错的. 对于F分布,若F∼F(n1,n2),则1-a=P{F>F1-a(n1,n2)}=P{1F<1F1-a(n1,n2)=1-P{1F>1F1-a(n1,n2)由于1F∼F(n2,n1),所以P{1F>1F1-a(n1,n2)=P{1F>Fa(n2,n1)=a,即F1-a(n1,n2)=1Fa(n2,n1). 故(D)也是对的.习题2(1)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (1)X1-X2X32+X42;解答:因为Xi∼N(0,1),i=1,2,⋯,n,所以:X1-X2∼N(0,2),X1-X22∼N(0,1),X32+X42∼χ2(2),故X1-X2X32+X42=(X1-X2)/2X32+X422∼t(2).习题2(2)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布? (2)n-1X1X22+X32+⋯+Xn2;解答:因为Xi∼N(0,1),∑i=2nXi2∼χ2(n-1),所以n-1X1X22+X32+⋯+Xn2=X1∑i=2nXi2/(n-1)∼t(n-1).习题2(3)2.设总体X∼N(0,1),X1,X2,⋯,Xn为简单随机样本,问下列各统计量服从什么分布?(3)(n3-1)∑i=13Xi2/∑i=4nXi2.解答:因为∑i=13Xi2∼χ2(3),∑i=4nXi2∼χ2(n-3),所以:(n3-1)∑i=13Xi2/∑i=4nXi2=∑i=13Xi2/3∑i=4nXi2/(n-3)∼F(3,n-3).习题3设X1,X2,X3,X4是取自正态总体X∼N(0,22)的简单随机样本,且Y=a(X1-2X2)2+b(3X3-4X4)2,则a=?,b=?时,统计量Y服从χ2分布,其自由度是多少?解答:解法一Y=[a(X1-2X2)]2+[b(3X3-4X4)]2,令Y1=a(X1-2X2),Y2=b(3X3-4X4),则Y=Y12+Y22,为使Y∼χ2(2),必有Y1∼N(0,1),Y2∼N(0,1),因而E(Y1)=0,D(Y1)=1,E(Y2)=0,D(Y2)=1,注意到D(X1)=D(X2)=D(X3)=D(X4)=4,由D(Y1)=D[a(X1-2X2)]=aD(X1-X2)=a(D(X1)+22D(X2))=a(4+4×4)=20a=1,D(Y2)=D[b(3X3-4X4)]=bD(3X3-4X4)=b(9D(X3)+16D(X4))=b(4×9+16×4)=100b=1,分别得a=120,b=1100.这时Y∼χ2(2),自由度为n=2.解法二因Xi∼N(0,22)且相互独立,知X1-2X2=X1+(-2)X2∼N(0,20),3X3-4X4=3X3+(-4)X4∼N(0,100),故X1-2X220∼N(0,1),3X3-4X4100∼N(0,1),为使Y=(X1-2X21/a)2+(3X3-4X41/b)2∼χ2(2),必有X1-2X21/a∼N(0,1),3X3-4X41/b∼N(0,1),与上面两个服从标准正态分布的随机变量比较即是1a=20,1b=100,即a=120,b=1100.习题4设随机变量X和Y相互独立且都服从正态分布N(0,32).X1,X2,⋯,X9和Y1,Y2,⋯,Y9是分别取自总体X和Y的简单随机样本,试证统计量T=X1+X2+⋯+X9Y12+Y22+⋯+Y92服从自由度为9的t分布.解答:首先将Xi,Yi分别除以3,使之化为标准正态.令X′i=Xi3,Y′i=Yi3,i=1,2,⋯,9,则X′i∼N(0,1),Y′i∼N(0,1);再令X′=X′1+X′2+⋯+X′9,则X′∼N(0,9),X′3∼N(0,1),Y′2=Y′12+Y′22+⋯+Y′92,Y′2∼χ2(9).因此T=X1+X2+⋯+X9Y12+Y22+⋯+Y92=X1′+X2′+⋯+X9′Y′12+Y′22+⋯+Y′92=X′Y′2=X′/3Y′2/9∼t(9),注意到X′,Y′2相互独立.习题5设总体X∼N(0,4),而X1,X2,⋯,X15为取自该总体的样本,问随机变量Y=X12+X22+⋯+X1022(X112+X122+⋯+X152)服从什么分布?参数为多少?解答:因为Xi2∼N(0,1),故Xi24∼χ2(1),i=1,2,⋯,15,而X1,X2,⋯,X15独立,故X12+X22+⋯+X1024∼χ2(10),X112+X122+⋯+X1524∼χ2(5),所以X12+X22+⋯+X1024/10X112+X122+⋯+X1524/5=X12+X22+⋯+X1022(X112+X122+⋯+X152)=Y习题6证明:若随机变量X服从F(n1,n2)的分布,则(1)Y=1X服从F(n2,n1)分布;(2)并由此证明F1-α(n1,n2)=1Fα(n2,n1).解答:(1)因随机变量X服从F(n1,n2),故可设X=U/n1V/n2,其中U服从χ2(n1),V服从χ2(n2),且U与V相互独立,设1X=V/n2U/n1,由F分布之定义知Y=1x=V/n2U/n1,服从F(n2,n1).(2)由上侧α分位数和定义知P{X≥F1-α(n1,n2)}=1-α,P{1X≤1F1-α(n1,n2)=1-α,即P{Y≤1F1-α(n1,n2)=1-α,1-P{Y>1F1-α(n1,n2)=1-α,故P{Y>1F1-α(n1,n2)=α,而P{Y≥Fα(n2,n1)}=α.又Y为连续型随机变量,故P{Y≥1F1-α(n1,n2)=α,从而Fα(n2,n1)=1F1-α(n1,n2),即F1-α(n1,n2)=1Fα(n2,n1).习题7查表求标准正态分布的上侧分位数:u0.4,u0.2,u0.1与u0.05.解答:u0.4=0.253,u0.2=0.8416,u0.1=1.28,u0.05=1.65.习题8查表求χ2分布的上侧分位数:χ0.952(5),χ0.052(5),χ0.992(10)与χ0.012(10).解答:1.145,11.071,2.558,23.209.习题9查表求F分布的上侧分位数:F0.95(4,6),F0.975(3,7)与F0.99(5,5).解答:0.1623,0.0684,0.0912.习题10查表求t分布的下侧分位数:t0.05(3),t0.01(5),t0.10(7)与t0.005(10).解答:2.353,3.365,1.415,3.169.(2)P{X¯>4.5}=P{Z>4.5-42/9=1-P{Z≤2.25}≈1-Φ(2.25)=1-0.9878=0.0122.习题2设总体X服从正态分布N(10,32),X1,X2,⋯,X6是它的一组样本,设X¯=16∑i=16Xi.(1)写出X¯所服从的分布;(2)求X¯>11的概率.解答:(1)X¯∼N(10,326),即X¯∼N(10,32).(2)P{X¯>11}=1-P{X¯≤11}=1-Φ(11-1032)≈1-Φ(0,8165)≈1-Φ(0.82)=0.2061.习题3设X1,X2,⋯,Xn是总体X的样本,X¯=1n∑i=1nXi,分别按总体服从下列指定分布求E(X¯),D(X¯).(1)X服从0-1分布b(1,p);(2)*X服从二项分布b(m,p);(3)X服从泊松分布P(λ);(4)X服从均匀分布U[a,b];(5)X服从指数分布e(λ).解答:(1)由题意,X的分布律为:P{X=k}=Pk(1-P)1-k(k=0,1).E(X)=p,D(X)=p(1-p).所以E(X¯)=E(1n∑i=1nXi)=1n∑i=1nE(Xi)=1n⋅np=p,D(X¯)=D(1n∑i=1nXi)=1n2∑i=1nD(X1)=1n2⋅np(1-p)=1np(1-p). (2)由题意,X的分布律为:P{X=k}=CmkPk(1-p)m-k(k=0,1,2,⋯,m).同(1)可得E(X¯)=mp,D(X¯)=1nmp(1-p).(3)由题意,X的分布律为:P{X=k}=λkk!e-λ(λ>0,k=0,1,2,⋯).E(X)=λ,D(X)=λ.同(1)可得E(X¯)=λ,D(X¯)=1nλ.(4)由E(X)=a+b2,D(X)=(b-a)212,同(1)可得E(X¯)=a+b2,D(X¯)=(b-a)212n.(5)由E(X)=1λ,D(X)=1λ2,同(1)可得D(X¯)=1λ,D(X¯)=1nλ2.习题4某厂生产的搅拌机平均寿命为5年,标准差为1年,假设这些搅拌机的寿命近似服从正态分布,求:(1)容量为9的随机样本平均寿命落在4.4年和5.2年之间的概率;(2)容量为9的随机样本平均寿命小于6年的概率。
概率论与数理统计6-8
无关的样本的连续函数,则称g(X1,X2,…,Xn)为
统计量。 统计量是样本的函数,它是一个随机变量, 如果x1, x2, …, xn是样本观察值, 则g(x1, x2, …, xn)是统计量g(X1, X2, …, Xn)的一个观察值.X i ; n i 1 2 n 1 2 2. 样本方差 S (X i X ) ; n - 1 i 1 1 n k 3. 样本k阶原点矩 A k X i , k 1, 2, ; n i 1 1 n 4. 样本k阶中心矩 Bk (X i X ) k , k 2, 3, . n i 1
§7.1 点估计 一. 问题的提法:
设总体X的分布函数F ( x; θ )的形式为已知 ,
是待估参数, 1 , X 2 , , X n 是X的一个样本, X
x1, x2 , , xn 是相应的一个样本值。
点估计问题就是要构造 一个适当的统计量 ˆ ( X , X , X ),用它的观察值 ˆ( x , x , , x )
2
分布具有可加性,定义 X 1 ,X 2 , ,X n 独立 中 n 1 同服从N (0,1),所以 = X ~ ( , ) 2 2 i 1
2 2 i n
β α α-1 -x x e , x 0, 分布的概率密度为 f ( x) Γ (α ) : 0 , 其它. n 1 2 2 比较 (n)的密度可知: (n) 分布就是 , 2 2 2 的分布, 即 (n) (n / 2, 1/2).
N (0, 2 ) ,X1,X2,X3 为取自总体的一个样本, 2.设总体 X~
试求:(1)3X1-2X2+X3 的分布;(2)
2 X1 X 22 X 32
的分布。
概率论与数理统计第六章
Ch 6 数理统计的基本概念§6.1 基本概念 一、总体与样本1、总体——研究对象的全体,记为X 。
2、个体——构成总体的每一个对象,记为i X 。
3、总体容量——总体中包含的个体的个数。
有限总体——容量有限;无限总体——容量无限。
为推断总体X 的分布,从总体中抽取n 个个体,则对应n 个r.v.n X X X .....2,1——来自于总体X 的一个样本。
n X X X ......,21的取值((n x x x ,.....,21)--观测结果)称为样本的观测值,简称为样本值,整个抽取过程称之为抽样。
抽取的目的是根据样本的取值情况推断总体情况,因此应尽可能的使抽取的样本能反映总体的状况,故要求抽取的样本具有以下性质:文档收集自网络,仅用于个人学习⑴ 代表性:样本中每个r.v.i X 与总体X 具有相同的分布。
文档收集自网络,仅用于个人学习⑵ 独立性:n X X X ......,21相互独立。
——简单的随机抽样所得的样本称为简单的随机样本;若总体X 的分布函数为F (x ),则样本n X X X .....2,1的联合分布函数)().....,(121*i ni n x F x x x F =∏=。
文档收集自网络,仅用于个人学习若X 为连续型,且d.f 为f(x),且联合p.d.f 为:)()....,(121*i ni n x f x x x f =∏= 若X 为离散型,且分布律为:....2,1,)(===k p x X P k k 则联合分布律:in i i in n i i p p p x X x X x X P ....).....,(212211⋅⋅====。
...2,1.....3,2,1=in i i i 二、统计量Def:不含有任何未知数的关于样本空本空间的函数称为统计量。
e.g.1 设总体X~),(2σμN ,其中2,σμ未知,(n X X X .....2,1)为取自总体X 的一个样本,则:∑∑==--==n i i n i i X X n S X n X 1221)(11,1均为统计量。
概率论与数理统计答案第六章
=
(2)P {max (X1,X2,X3,X4,X5)>15}=1-P (X1,X2,X3,X4,X5)≤15}
{max
=
(3)P {min (X1,X2,X3,X4,X5)<10}=1- P {min (X1,X2,X3,X4,X5)≥10}
[六] 设总体X~b (1,p),X1,X2,…,Xn是来自X的样本。
(1)求的分布律;
(2)求的分布律;
(3)求E (), D (), E (S 2 ).
解:(1)(X1,…,Xn)的分布律为
=
(2)
(由第三章习题26[二十七]知)
(3)E ()=E (X )=P,
[八]设总体X~N(μ,σ2),X1,…,X10是来自X的样本。 (1)写出X1,…,X10的联合概率密度(2)写出的概率密度。 解:(1)(X1,…,X10)的联合概率密度为
第六章 样本及抽样分布
1.[一] 在总体N(52,6.32)中随机抽一容量为36的样本,求样本
均值落在50.8到53.8之间的概率。
解:
2.[二] 在总体N(12,4)中随机抽一容量为5的样
本X1,X2,X3,X4,X5.
(1)求样本均值与总体平均值之差的绝对值大于1的概率。
(2)求概率P {max (X1,X2,X3,X4,X5)>15}.
= 4.[四] 设X1,X2…,X10为N(0,0.32)的一个样本,求 解:
7.设X1,X2,…,Xn是来自泊松分布π (λ )的一个样本,,S2分别 为样本均值和样本方差,求E (), D (), E (S 2 ).
解:由X~π (λ )知E (X )= λ ,
概率论与数理统计(第四版)第六章
由简单随机抽样得到的样本(子样)称 为简单随机样本(子样)。
用( X1 , X2 , … , Xn )表示。
简单随机样本是应用中最常见的情形,
今后,当说到( X1 , X2 , … , Xn )是取自
某总体的样本时,就指简单随机样本。
休息 结束
3. 总体、样本、样本值的关系 总体(理论分布)
但是,一旦取定一组样本,得到的是n 个具体的数 ( x1 , x2 , … , xn ),称为样本的 一次观察值,简称样本观察值 。
休息 结束
最常用的一种抽样方法叫作“简单 随机抽样”,它要求抽取的样本满足下 面两点:
休息 结束
1. 代表性: X1 , X2 , … , Xn 中每一个 与所考察的总体有相同的分布。 2. 独立性: X1 , X2 , … , Xn 是相互独 立的随机变量。
P{1 1 }1
F F1(n1,n2)
F1
1 ( n1
,n2
)
P{1
1
y
}
F F1(n1,n2)
F(n2 ,n1 )
令:1 F
F
则 F: F(n2,n1)
P{F 1 }
x
F1(n1,n2) F(n2,n1)F1(1n1,n2)
F1(n1,n2)F(n12,n1)
休息 结束
1
F0.975(6,4)F0 .025 ( 4 ,6 )
2 DX
n
休息 结束
它反映了总体k 阶矩 的信息
3. 样本k阶原点矩
Ak
1 n
n i1
Xik
4. 样本k阶中心矩 Bk n1in1(Xi X)k
它反映了总体k 阶 中心矩的信息
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
休息
结束
分布的性质:
2
1. 设 X 1, X 2 ,, X n 相互独立, 都服从分布 2 N ( , ), 则
2
1
2 2 ( X ) ~ ( n ) i 2 i 1
n
2. 设 X 1 ~ 2 (n1 ), X 2 ~ 2 (n2 ), 且X1,X2相互 独立,则 X 1 X 2 ~ 2 (n1 n2 )
( 2 ) X 和 s 相互独立.
休息 结束
比较:
( n 1 )S 2
2
n
( X i X )2
i 1
2
2 ( n-1 )
i 1
n
( X i )2
2
2( n )
1 n 2 2 其中 S ( Xi X ) n 1 i 1
休息 结束
n取不同值时
休息 结束
定理 5 (两总体样本方差比的分布)
X~
2 N( 1 , 1
),Y ~
2 N( 2 , 2
),且X与Y独立,
Y1,Y2,…,
X1, X2,…,
X n1 是取自X的样本,
Yn2 是
样本
取自Y的样本, X和Y 分别是这两个样本的 均值, s 2 和s 2 分别是它们的样本方差, 1 2 则有:
( n 1 )S 2
2
的分布
休息
结束
定理 3 设 X1,X2,…,Xn 是取自正态总体 N( , 2 ) 的样本, X 和 s 2分别为样本均值和样本方差, 则有:
X S n
~ t( n 1 )
休息
结束
证明: X ~ N ( 0 ,1 ) n
( n 1 )S
n
~ N ( 0 ,1 )
休息 结束
n取不同值时样本均值 X 的分布
休息
结束
定理 2 ( 样本方差的分布 ) 设X1, X2, …, Xn 是取自正态总体 N( , ) 的样本, X 和 s 2分别为样本均值和样本方差, 则有:
2
(1)
( n 1 )s
2
2
2
~ 2( n 1 )
2 2
取自Y的样本, X和Y 分别是这两个样本的 样本
2 2分别是这两个样本的样本方差, 均值, s1 和s2
则有:
休息 结束
X Y ( 1 2 ) Sw 1 1 n1 n2
~ t( n1 n2 2 )
其中
Sw 2
2 ( n1 1 )S1
n1 n2 2
X n1 F Y n2
服从自由度为n1及 n2 的F分布,n1称为第 一自由度,n2称为第二自由度,记作 : F ~F ( n1 , n2 ) .
休息 结束
由定义可见,
1 Y n2 ~ F ( n2, n1) F X n1
休息
结束
若X~F(n1,n2), X的概率密度为
( ) n1 n1 ( n2 )( n2 x ) n1 n 2 f ( x; n1 , n2 ) ( 2 ) ( 2 ) 0
2
2
X n ( n 1 )s
2
~ 2( n 1 )
独立
X S n
~ t( n 1 )
2
/( n 1 )
休息
结束
定理 4 (两总体样本均值差的分布)
设X ~ N ( 1, ),Y ~ N ( 2 , ), 且X与Y独立, X1,X2,…, X n1 是取自X的样本, Y1,Y2,…, Yn2 是
n
事实上:
i 1
( Xi X
n
2 2
) X i nX
2 i 1
n
2
2 1 n 2 故有: S Xi X n 1 i 1 n1 2
n
休息
结束
定理 设总体X有 EX=μ, DX=σ2, X1, X2, …, Xn 是来自总体 X 的样本,则:
EX
DX
休息 结束
§6.1 随机样本 1.总体与个体
一个统计问题总有它明确的研究对象。
研究对象的全体称为总体(母体),
总体中每个成员称为个体。
休息
结束
在数理统计中,总体这个概念
的要旨是:
———总体就是一个概率分布。
25 20
15
10
5
0 -500
0
500
1000
1500
2000
休息
结束
容量为 n 的样本(也称为子样)可以 看作 n 维随机变量: ( X , X , … , X )
1 F1 ( n1 ,n2 )
F(n2 ,n1 )
1 令: F 则 F F(n2 ,n1 ) F x 1 P{ F } F1 ( n1 , n2 ) 1 F1 ( n1 ,n2 ) 1 F ( n2 ,n1 ) F ( n2 , n1 ) F1 ( n1 , n2 )
休息 结束
T 的密度函数为:
1 [( n 1 ) 2 ] x 2 n f ( x;n ) (1 ) 2 n ( n 2 ) n
具有自由度为n的t分布的随机变量T的数 学期望和方差为: E ( T ) = 0 ; D ( T ) = n / (n-2) , 对 n >2
休息 结束
抽样分布
精确抽样分布 (小样本问题中使用) 渐近分布
(大样本问题中使用)
休息
结束
三大抽样分布
2 分布 1、
定义: 设 X 1, X 2 ,, X n 相互独立, 都服从正态
分布N(0,1), 则称随机变量:
所服从的分布为自由度为 n 的 分布. 记为: ~ (n)
2 2
休息 结束
1 2 n
但是,一旦取定一组样本,得到的是 n个具体的数 ( x1 , x2 , … , xn ),称为样本 的一次观察值,简称样本观察值 。
休息
结束
最常用的一种抽样方法叫作“简单
随机抽样”,它要求抽取的样本满足下 面两点:
休息
结束
1. 代表性: X1 , X2 , … , Xn 中每一个
与所考察的总体有相同的分布。 2. 独立性: X1 , X2 , … , Xn 是相互独 立的随机变量。
第六章 样本及抽样分布
休息
结束
本章转入课程的第二部分
———数理统计
数理统计的特点是应用面广,分支较多。 社会的发展不断向统计提出新的问题。
休息
结束
需要强调说明一点: 统计方法具有“部分推断整体”的 特征 。 因为我们是从一小部分样本观察值 去推断该全体对象(总体)情况,即由 部分推断全体。 这里使用的推理方法是 “归纳推理”。
F( n1 ,n2 )
1
一般地,
1 F1 ( n1 ,n2 ) F F1 ( n1 ,n2 )} 1
1 1 P{ } 1 F F1 ( n1 ,n2 ) y 1 1 P{ } F F1 ( n1 ,n2 )
2 2 S1 1 2 2 S2 2
~ F ( n1 1,n2 1 )
休息 结束
证明:
2 ( n1 1 )S1 2 1
~ 2 ( n1 1 )
2 ( n2 1 )S 2 2 2
~ 2 ( n2 1 )
独立
2 ( n1 1 )S1 2 1 2 ( n2 1 )S 2 2 2
样本
样本值
休息
结束
§6.2 抽样分布 1. 统计量及其抽样分布
这种不含任何未知参数的样本的函数称为统 计量。它是完全由样本决定的量。统计量的分布 称为抽样分布。
休息
结束
2. 样本均值及其抽样分布 1. 样本均值
1 n X Xi n i 1
反映了总体均值的信息
休息
结束
定理: 设 X 1, X 2 ,, X n 是来自某总体X的样 本, X 为样本均值。 1. 若总体分布为 N( μ,σ2), 则 的精确分 X 布为 N(μ, σ2/n ) ;
X
2. 若总体分布未知或不是正态分布, 则 X 的渐近分布为 N(μ, σ2/n ) ;
休息 结束
2. 样本方差与样本标准差
它反映了总体方差 的信息
样本方差
1 2 S ( Xi X ) n 1 i 1
2
n
样本标准差
S
1 2 ( Xi X ) n 1 i 1
休息 结束
休息
结束
由简单随机抽样得到的样本(子样)称 为简单随机样本(子样)。 用( X1 , X2 , … , Xn )表示。
简单随机样本是应用中最常见的情形,
今后,当说到( X1 , X2 , … , Xn )是取自
某总体的样本时,就指简单随机样本。
休息
结束
3. 总体、样本、样本值的关系
总体(理论分布)
2 ( n2 1 )S2
休息
结束
证明: X Y ~ N( 1 2 ,
2
n1
2
n2
)
2 2 Y ( 1 2 E(X X Y Y) ) 2) D( X ∴ ~ N ( 0 ,1 ) 1 n1 1 n2 n1 n2
X Y ( 1 2 ) ∴ t(n 1 n2 ~ t( t n1 ) 2) 2 1 1 1 1 1 S S w 2 1 n n n n 1 n 1 1 2 2
n1 n2 2
n1 1 2
1 x