运筹学第2章 整数规划

合集下载

运筹学:整数规划习题与答案

运筹学:整数规划习题与答案

一、单选题1、下列说法正确的是()。

A.分枝定界法在处理整数规划问题时,借用线性规划单纯形法的基本思想,在求相应的线性模型解的同时,逐步加入对各变量的整数要求限制,从而把原整数规划问题通过分枝迭代求出最优解B.用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解C.用分枝定界法求解一个极大化的整数规划时,当得到多于一个可行解时,通常可任取其中一个作为下界,再进行比较剪枝D.整数规划问题最优值优于其相应的线性规划问题的最优值正确答案:A2、整数规划的最优解中,决策变量满足()。

A.决策变量不是整数B.没有要求C.决策变量至少有一个是整数D.决策变量必须都是整数正确答案:D3、下列()可以求解指派问题。

A.梯度法B.牛顿法C.单纯形法D.匈牙利法4、整数规划中,通过增加线性约束条件将原规划可行域进行切割,切割后的可行域的整数解正好是原规划的最优解的方法是()。

A.隐枚举法B.0-1规划法C.分支定界法D.割平面法正确答案:D5、标准指派问题(m人,m件事)的规划模型中,有()个决策变量。

A.都不对B. m*mC. mD.2m正确答案:B二、判断题1、匈牙利法可以直接求解极大化的指派问题。

()正确答案:×2、整数规划的可行解集合是离散型集合。

()正确答案:√3、用分支定界法求一个极大化的整数规划时,任何一个可行解的目标函数值是该问题的目标函数值的下界。

()4、用分支定界法求一个极大化的整数规划时,当得到多于一个可行解时,通常可以任取一个作为下界值,在进行比较和剪枝。

()正确答案:×5、用割平面求纯整数规划时,要求包括松弛变量在内的全部变量都取整数。

()正确答案:√。

运筹学整数规划

运筹学整数规划

运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。

整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。

整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。

整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。

整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。

由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。

求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。

分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。

分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。

割平面法是一种通过添加新的约束条件来减少解空间的方法。

它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。

割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。

启发式算法是一种基于经验和启发式搜索的方法。

它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。

常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。

启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。

综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。

整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。

常用的求解方法包括分支定界法、割平面法和启发式算法等。

这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。

运筹学中的整数规划问题分析

运筹学中的整数规划问题分析

运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。

其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。

本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。

一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。

通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。

整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。

与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。

二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。

具体使用哪种方法需要根据问题的规模和特点来确定。

1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。

然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。

2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。

通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。

3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。

通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。

运筹学中整数规划问题的近似算法

运筹学中整数规划问题的近似算法

运筹学中整数规划问题的近似算法运筹学是一门研究如何在有限资源下做最优决策的学科,其中整数规划是其中一种重要的决策方法。

整数规划问题是指在线性规划问题的基础上,对决策变量的取值加以限定,限定为整数值。

整数规划问题在实际应用中非常常见,例如优化生产计划、物流配送、资源分配等。

然而,整数规划问题的解空间通常是离散的,由于整数规划问题的NP难解性质,寻找准确解的效率很低,因此近似算法成为解决整数规划问题的重要手段。

一、近似算法的概念近似算法是指在可接受的误差范围内,通过有效的计算方法得到问题的近似最优解。

在整数规划问题中,近似算法主要通过松弛约束条件、局部搜索等方法寻找问题的近似解。

二、近似算法的分类近似算法可以根据问题的特性和解决方法的不同进行分类,下面介绍几种常见的近似算法。

1. 线性松弛算法(Linear Relaxation)线性松弛算法是整数规划问题中常用的近似算法之一。

该算法的基本思想是将整数规划问题的整数约束放宽为实数约束,得到一个线性规划问题。

然后通过求解线性规划问题的松弛解,并将松弛解的整数部分作为整数规划问题的一个近似解。

2. 近似局部搜索算法(Approximate Local Search)近似局部搜索算法通过在整数规划问题的解空间中进行局部搜索,通过一系列的改进和优化策略来逐步提高解的质量。

该算法在每一步都根据某种准则选择当前最优解,并通过局部搜索来寻找局部最优解。

然后,通过重复进行局部搜索和改进操作,逐渐向全局最优解靠近。

3. 启发式算法(Heuristic Algorithm)启发式算法是一种基于经验和直觉的算法,通过在可行解空间中搜索一组近似解,并根据某种评价准则选择最优解。

在解决整数规划问题时,启发式算法通过寻找有效的近似解,来替代寻找准确解,从而节省计算资源和时间。

三、近似算法的应用案例近似算法在实际问题中有广泛的应用,下面以物流配送问题为例,介绍近似算法的应用。

假设某物流公司需要将一批货物从仓库分配到多个客户,其中仓库和客户的位置已知,货物的需求和供应量也已知。

运筹学知识点总结

运筹学知识点总结

运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。

线性规划的三要素:变量或决策变量、目标函数、约束条件。

目标函数:是变量的线性函数。

约束条件:变量的线性等式或不等式。

可行解:满足所有约束条件的解称为该线性规划的可行解。

可行域:可行解的集合称为可行域。

最优解:使得目标函数值最大的可行解称为该线性规划的最优解。

唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。

凸集:要求集合中任意两点的连线段落在这个集合中。

等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。

松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。

剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。

2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。

4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。

5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。

当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。

第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。

2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。

4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。

管理运筹学讲义:整数规划

管理运筹学讲义:整数规划
3
福建师范大学经济学院
第一节
• 步骤:
整数规划问题
二、 整数规划的图解法
在线性规划的可行域内列出所有决策变量可能取的整数值, 求出这些变量所有可行的整数解, 比较它们相应的目标函数值,最优的目标函数值所对应的 解就是整数规划的最优解。 x2
• 实用性:
只有两个决策变量, 可行的整数解较少。
x2
5
4
3 2 1

• • •
1
• • •
2
x2=3
• •
3

4
5x1 +7 x2 =35 2x1 + x2 =9
x2 =2
x1
10
福建师范大学经济学院
第二节
分枝定界法
• 求解相应的线性规划的最优解
问题4相应的线性规划的最优解: x1=3,x2 =2,Z4=28 问题5相应的线性规划的最优解:x1=14/5,x2 =3,Z5=159/5
11
福建师范大学经济学院
第二节
问题6:maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1≤3 x2 ≥3 x1≤2 x1, x2 ≥0 x1, x2取整数
分枝定界法
问题7: maxZ= 6x1 +5 x2 2x1 + x2 ≤9 5x1 +7 x2 ≤35 x1 ≤3 x2 ≥3 x1 ≥ 3 x1, x2 ≥0 x1, x2取整数
第6章
整数规划
• 线性规划的决策变量取值可以是任意非负实数,但许多
实际问题中,只有当决策变量的取值为整数时才有意义。
例如,产品的件数、机器的台数、装货的车数、完成工作的人 数等,分数或小数解显然是不合理的。

运筹学基础-整数规划(2)

运筹学基础-整数规划(2)

【例 2 】求解 0-1 规划最优解
minZ= 4x1+3x2 +2x3 2x1 -5x2+3x3 ≤4 (1) 4x1 + x2+3x3 ≥3 (2) x2+x3 ≥1 (3) x1 , x2 , x3 =0或 1
解: 先将问题化为如下的标准问题
minZ= 4x1+3x2 +2x3 2x1 - 5x2+3x3 ≤4 (1) - 4x1 - x2 - 3x3 ≤-3 (2) (3) - x2 - x3 ≤ - 1 x1 , x2 , x3 =0或 1
0 13 aij-列min 6 (0) 0 (0) 5 0 0 1 (0) 7 0 6 9 3 2 0 (0) 0 2 15 10 4 9 14 7 8 13 14 16 11 4 15 13 9
(a)从行开始,对只有一个的零元素,打上(),用直线划去所在列 (b)再从列开始,对只有一个的零元素,打上(),用直线划去所在行
∑ ∑
指派问题的解法--匈牙利法 指派问题的解法--匈牙利法 --
从时间表(效率表)出发构建效率矩阵 效率矩阵。 效率矩阵
时间表
任务 人员 甲 乙 丙 丁 E 2 10 9 7 J 15 4 14 8 G 13 14 16 11 R 4 15 13 9
2 15 10 4 9 14 7 8
13 14 16 11
分配表
任务 人员 甲 乙 丙 丁
合计
E x11 x21 x31 x41 1
i
J x12 x22 x32 x42 1
G x13 x23 x33 x43 1
ij x ij
R x14 x24 x34 x44 1
合计
1 1 1 1

运筹学教材习题答案详解

运筹学教材习题答案详解
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
(2)
【解】最优解X=(3/4,7/2);最优值Z=-45/4
(3)
【解】最优解X=(4,1);最优值Z=-10
(4)
【解】最优解X=(3/2,1/4);最优值Z=7/4
(5) 【解】最优解X=(3,0);最优值Z=3
(6)
【解】无界解。
(7)
【解】无可行解。
(8)
【解】最优解X=(2,4);最优值Z=13
【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为
1.3建筑公司需要用6m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-23所示:
表1-23窗架所需材料规格及数量
型号A
型号B
每套窗架需要材料
长度(m)

运筹学 整数规划( Integer Programming )

运筹学 整数规划( Integer  Programming )
组成两个新的松弛问题,称为分枝。新的松弛问题具有特征:当原问题 是求最大值时,目标值是分枝问题的上界;当原问题是求最小值时,目 标值是分枝问题的下界。
检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1

运筹学(重点)

运筹学(重点)

两个约束条件
(1/3)x1+(1/3)x2=1
及非负条件x1,x2 0所代表的公共部分
--图中阴影区, 就是满足所有约束条件和非负
条件的点的集合, 即可行域。在这个区域中的每
一个点都对应着一个可行的生产方案。
22
5–
最优点
4–
l1 3B E
2D
(1/3)x1+(4/3)x2=3
l2 1–
0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
运筹学 Operational Research
运筹帷幄,决胜千里
史记《张良传》
1
目录
绪论 第一章 线性规划 第二章 运输问题 第三章 整数规划 第四章 动态规划 第五章 目标规划 第六章 图与网络分析
2
运筹学的分支 数学规划: 线性规划、非线性规划、整数规划、 动态规划、目标规划、多目标规划 图论与网络理论 随机服务理论: 排队论 存储理论 决策理论 对策论 系统仿真: 随机模拟技术、系统动力学 可靠性理论
32
西北角
(一)西北角法
销地
产地
B1
0.3
A1
300
0.1 A2
0.7 A3
销量 300
B2
1.1
400
0.9
200
0.4
600
B3
0.3
0.2
200
1.0
300 500
B4
产量
1.0
700 ②
0.8
400 ④
0.5
600
900 ⑥
600
2000




34
Z
cij xij 0.3 300 1.1 400 0.9 200

2.运筹学_整数规划案例

2.运筹学_整数规划案例
1. 投资问题 现有总额为b的资金可用于投资,共有n个项目可 供投资者选择,已知项目j所需投资额为aj,投资后可 得利润cj(j = 1,2,…,n),不妨设b,aj,cj 均是 整数,试问为使所得利润最大,应选取那些项目进行 投资? 1…对项目j投资 先引入0-1变量xj,令 xj= 0…否则 n
设每个月从仓库i运往地区j的产品的货物数量为xij,引入0- 1变量yi= 1表示在Ai设立仓库,否则不设。 设每个月的总花费为z,则上述问题的数学模型为 Min z=200x11+400x12+500x13+300x21+250x22+450x23 +600x31+400x32+250x33+300x41+150x42+350x43+45000y1+5000 0y2+70000y3+40000y4 s.t. x11+x12+x13≤1000y1 x21+x22+x23≤1000y2 x31+x32+x33≤1000y3 x41+x42+x43≤1000y4 x11+x21+x31+x41≥600 x12+x22+x32+x42≥700 x13+x23+x33+x43≥800 y2-y4≤0 y1+y2+y3+y4≤3
y3+y4 ≤ 1
工厂选址运输问题
设有n个需求点,有m个可供选择的厂址, 每个厂址只能建一个工厂,在i处建厂,生产 能力为Di,单位时间的固定成本为ai,需求点 j的需求量为bj,从厂址i到需求点j的单位运费 为Cij,问应如何选择厂址才能获得经济上的总 花费最小的方案。

运筹学课程06-整数规划(胡运权 清华大学)

运筹学课程06-整数规划(胡运权 清华大学)

NEUQ
全整数规划:除了所有决策变量要求取非负整数外,系数 和常数也要求取整数(这时引进的松弛变量和剩余变量也必须 是整数)。
混合整数规划:只有一部分的决策变量要求取非负整数, 另一部分可以取非负实数。 0-1整数规划:所有决策变量只能取 0 或 1 两个整数。
14
NEUQ
3、IP与LP关系:
设整数规划问题如下

c1n c2n cin b c nn
min Z Z b
min Z Z b
,则X 0也是 min Z的最优解 若X 0是 min Z的最优解
24
NEUQ
指派问题的最优解: 若 C中有n 个位于不同行不同列的零元素,则令这
些零元素对应的变量取1,其余变量取零,即得指派问 题的最优解 匈牙利算法:
B1 B2 L Bn A1 c11 c12 L c1n a1 f1 A2 c21 c22 L c2 n a2 f 2 M M M M M M Am cm1 cm 2 L cmn am f m b1 b2 L bn
6
NEUQ
设: xij 表示从工厂运往销地的运量(i=1.2…m; j=1.2…n), 1 在Ai建厂 又设 yi= (i=1.2…m) 0 不在Ai建厂 m 模型: min Z cij xij f i yi
NEUQ
整数规划 Integer Linear Programming
整数规划的难度远大于一般线性规划
1
NEUQ
本章主要内容
整数规划的模型 0-1 整数规划
指派问题
分支定界法 割平面法
2
NEUQ
一、整数规划的模型
1、案例: 某财团有 B万元的资金,经初期考察选中 n个 投资项目,每个项目只能投资一个。其中第 j 个项目需投资金额为 b j ( j 1, 2,L , n) 万元, 预计5年后获利 c j 万元,问应如何选择项目使 得5年后总收益最大?

运筹学试验:整数规划

运筹学试验:整数规划

《运筹学》上机实验报告三(整数线性规划)实验名称:利用Gomory割平面法编程求解整数规划问题;利用分枝定界法编程求解整数规划问题实验目的:1. 学会软件lindo/lingo的安装及基本的操作;2. 对实际问题进行数学建模,并学会用数学软件Matlab或运筹软件Lindo/Lingo 对问题进行求解。

实验内容:1.用lindo/lingo 计算(学会输入、查看、运行、结果分析)max z = 20x1 + 10x25x1 + 4x2 ≤ 242x1 + 5x2 ≤ 13x1,x2 ≥ 0x1,x2取整数2.(指派问题)现在有A 、B、C、D、E五种任务,要交给甲、乙、丙、丁、戊去完成,每人完成一种任务,每个人完成每种任务所需要的时间如下表。

问应该如何安排个人完成哪项任务可使总的花费的时间最少?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明)A B C D E任务人甲127979乙89666丙717121412丁15146610戊41071063.选址问题某跨国公司准备在某国建三个加工厂,现有8个城市供选择,每个城市需要的投资分别为1200万美元、1400万美元、800万美元、900万美元、1000万美元、1050万美元、950万美元、150万美元,但投资总额不能超过3400万美元,形成生产能力分别为100万台、120万台、80万台、85万台、95万台、100万台、90万台、130万台,由于需求的原因,要求:城市1和城市3最多选1个,城市3、城市4、城市5最多选两个,城市6和城市7最少选1个,问选择哪些城市建厂,才能使总的生产能力最大?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明)整数变量定义LinDo一般整数变量:GIN <Variable>0-1整数变量: INT <Variable>LinGo一般整数变量: @GIN( variable_name);0-1整数变量:@BIN( variable_name);例如(1)Lindo运算程序max 3 x1+5 x2+4 x3subject to2 x1+3 x2<=15002 x2+4 x3<=8003 x1+2 x2 +5 x3<=2000endgin x1gin x3(2) max z = 3x1 - 2x2 + 5x3x1 + 2x2 - x3 ≤ 2x1 + 4x2 + x3 ≤ 4x1 + x2 ≤ 34x2 + x3 < 6x1,x2,x3 = 0或1lingo程序:max =3*x1 – 2*x2 + 5*x3;x1 + 2*x2 - x3 <= 2;x1 + 4*x2 + x3 <= 4;x1 + x2 <= 3 ; 4*x2 + x3< 6; @bin(x1);@bin(x2);@bin(x3);。

运筹学 整数规划

运筹学 整数规划
在东区,由A1, A2, A3三处至多选择两处; 在西区,由A4, A5 两处至少选择一处; 在南区,由A6, A7 两处至少选择一处。 选用Ai点,投资为bi元,获利 ci元 投资总额不超过 B 元
问应如何选择使年利润最大?
相互排斥的约束条件
某厂用车运和船运两种方式运送甲乙两种 货物,每箱体积、重量、利润及限制条件 如下表:
加入约束: 3 x1-2 x2+5 x3 ≥5
x1 . x 2. x3 ( 0. ( 0. ( 0. ( 1. ( 0. ( 1. ( 1. ( 1. 0. 0. 1. 0. 1. 0. 1. 1. 0 ) 1) 0) 0) 1) 1) 0) 1) (0) 0 5 -2 3 3 8 1 4 0 2 (1) 0 -1 0 1
注:划分不影响原(IP)问题的最优解
LP1 的解
x2
先求(LP1),如图所示。 此时B 在点取得最优解。
3 ⑵ ⑴
B ⑶
x1=1, x2 =3, Z(1)=16 找到整数解,问题已探 明,此支停止计算
3
x1
LP2 的解
再求(LP2),如图所示。 此时C 在点取得最优解。 x1=2, x2 =10/3, Z(2) =56/3≈18.7 Z(2) > Z(1) x2 不是整数,加入条 件x2≤3,x2≥4 将(LP2)继续划分为 (LP3) ,(LP4)
1
C (1,1)
计算步骤
1.
用单纯形法求解(IP)对应的松弛问题(LP):
⑴.若(LP)没有可行解,则(IP)也没有可行解, 停止计算。 ⑵.若(LP)有最优解,并符合(IP)的整数条件,则 即为(IP)的最优解,停止计算。 ⑶.若(LP)有最优解,但不符合(IP)的整数条件, 转入下一步。

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。

其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。

一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。

在生产、运输、选址等问题中,线性规划都有着重要的应用。

其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。

如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。

线性规划的求解方法一般分为单纯形法和内点法两种方法。

单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。

内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。

这种方法对大规模问题求解能力强,使用较多。

二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。

整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。

与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。

因此,通常需要采用分支定界、割平面等方法来求解。

分支定界是一种常用的整数规划求解方法。

它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。

割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。

总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。

运筹学课后习题答案第六版

运筹学课后习题答案第六版

运筹学课后习题答案第六版运筹学是一门应用数学学科,旨在研究如何在有限资源和约束条件下做出最佳决策。

它涉及到决策分析、优化理论、线性规划、整数规划、动态规划等多个领域。

在学习运筹学的过程中,课后习题是巩固知识和提高能力的重要途径。

本文将为大家提供《运筹学课后习题答案第六版》的相关内容。

第一章:决策分析决策分析是运筹学的基础,它主要涉及到决策的目标、决策的环境、决策的准则等方面。

在第一章的习题中,我们需要运用决策树、决策表、决策矩阵等方法来解决实际问题。

比如,一个公司需要决策是否要进军某个新市场,我们可以通过绘制决策树来分析各种可能的结果和概率,从而选择最佳的决策。

第二章:线性规划线性规划是运筹学中的重要工具,它主要涉及到线性目标函数和线性约束条件的最优化问题。

在第二章的习题中,我们需要运用单纯形法、对偶理论等方法来求解线性规划问题。

比如,一个工厂需要决策如何分配有限的资源以最大化利润,我们可以建立一个线性规划模型,然后通过单纯形法来求解最优解。

第三章:整数规划整数规划是线性规划的扩展,它主要涉及到目标函数和约束条件都是整数的最优化问题。

在第三章的习题中,我们需要运用分支定界法、割平面法等方法来求解整数规划问题。

比如,一个物流公司需要决策如何安排货物的配送路线以最小化成本,我们可以建立一个整数规划模型,然后通过分支定界法来求解最优解。

第四章:动态规划动态规划是一种用来解决多阶段决策问题的方法,它主要涉及到状态转移方程和最优子结构的求解。

在第四章的习题中,我们需要运用贝尔曼方程、最短路径算法等方法来求解动态规划问题。

比如,一个投资者需要决策在不同时间点买入和卖出股票以最大化收益,我们可以建立一个动态规划模型,然后通过贝尔曼方程来求解最优解。

第五章:网络优化网络优化是一种用来解决网络流问题的方法,它主要涉及到网络的建模和最大流最小割定理的求解。

在第五章的习题中,我们需要运用最大流算法、最小割算法等方法来求解网络优化问题。

运筹学教材习题答案详解

运筹学教材习题答案详解
X(2)=( 0 ,450 ,0 ,0,0 ,0,0 ,0 ,0 ,0 ,0 ,200 ,0 ,0 );Z=0,用料650根
显然用料最少的方案最优。
1.4A、B两种产品,都需要经过前后两道工序加工,每一个单位产品A需要前道工序1小时和后道工序2小时,每一个单位产品B需要前道工序2小时和后道工序3小时.可供利用的前道工序有11小时,后道工序有17小时.
3
B1:2.0
3
需要量(套)
200
150
问怎样下料使得(1)用料最少;(2)余料最少.
【解】第一步:求下料方案,见下表。
方案










十一
十二
十三
十四
需要量
B1:2.7m
2
1
1
1
0
0
0
0
0
0
0
0
0
0
300
B2:2m
0
1
0
0
3
2
2
1
1
1
0
0
0
0
450
A1:1.7m
0
0
1
0
0
1
0
2
1
0
3
2
1
0
《运筹学》
第1章线性规划
第2章线性规划的对偶理论
第3章整数规划
第4章目标规划
第5章运输与指派问题
第6章网络模型
第7章网络计划
第8章动态规划
第9章排队论
第10章存储论
第11章决策论
第12章对策论
习题一
1.1讨论下列问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20
10 21

例:某市6个区,希望设 置最少消防站以便节省 费用。条件:

必须保证在城区任何地方发 生火警时,消防车能在15分 钟之内赶到现场。各区之间 消防车行驶的时间见右表。
四 区
五 区 六 区
28
27 20
32
17 10
12
27 21
0
15 25
15
0 14
25
14 0

请确定设站方案。
布点问题的数学模型: 0-1规划
因此,可将集合内的整数点一一找出,其最 大目标函数的值为最优解,此法为完全枚举法。 如此例中(2,2)(3,1)点为最大值,Z=4。
整数规划问题的求解方法
目前,常用的求解整数规划的方法有:
分枝定界法、割平面法;
隐枚举法、匈牙利法。
整数规划模型应用举例
排班问题(人力资源配置问题)
例:邮局每天需要的职工数因业务忙闲而异,据 统计邮局一周内每天需要的人数如下表。排班 要符合每周连续工作5天,休息2天的规定。问 如何排班可使用人最少。

可通过计算每一物品的重要性系数和重量 的比值ci/ai来解决。
布点问题

共同目标:满足公共要 求,布点最少,节约投 资费用。

地 点
一 区
二 区
三 区
四 区
五 区
六 区
学校、医院、商业区、消防 队等公共设施的布点问题。
一 区
二 区 三 区
0
10 16
10
0 24
16
24 0
28
32 12
27
17 27
用图解法求出最优解 x1=3/2, x2 = 10/3 且有Z = 29/6
x2
3


(3/2,10/3)
现求整数解(最优解): 如用“舍入取整法”可得 2 到4个点即(1,3) (2, 1 3)(1,4)(2,4)。显然, 它们都不可能是整数规划 的最优解。
1
2
3
x1
按整数规划约束条件,其可行解肯定在线性规划问题 的可行域内且为整数点 ,如图所示。
(纯整数规划问题) X=(1.3, 3.3, 2, 7.3, 0, 3.3, 5)T , z=22.3 X*=( 7, 5, 1, 8, 0, 2, 0) T , z=23
背包问题

目标:在不超过一定重量的前提下,使所携 带物品的重要性系数之和最大 。 例:登山队员需携带的物品及每一件物品 的重量和重要性系数见下表。假定允许携带 的最大重量为25千克,试确定一最优方案。
58.4
52.8 59.1 57.0
解: 设i=1,2,3,4分别表示甲、乙、丙、丁;j=1, 2,3,4分别表示仰泳、蛙泳、蝶泳、自由泳。并 设 xij= 0,表示 i 不参加 j 1,表示 i 参加 j 据题意,此题的数学模型为:
第四章
整数规划
整数规划问题的提出
整数规划模型与一般的线性规划模型 的区别仅在于:整数规划的变量要求 部分的或全部的为整数。例如:
max Z x1 x2 14 x1 9 x2 51 6 x1 3 x2 1 x , x 0且为整数 1 2
依照决策变量取整要求的不同,整 数规划可分为纯整数规划、 0-1整 数规划、混合整数规划。
例:设整数规划问题如下
max Z x1 x2 14 x1 9 x2 51 6 x1 3 x2 1 x , x 0且为整数 1 2
首先不考虑整数约束,得到线性规划问题(一般称 为松弛问题)。 max Z x x
1 2
14 x1 9 x2 51 6 x1 3 x2 1 x1 , x2 0
一 17 二 13 三 15 四 19 五 14 六 16 日 11
(纯整数规划问题)
解:设xi为第i天开始上班的人数: Min:z=x1+x2+x3+x4+x5+x6+x7 s.t. x1 +x4+x5+x6+x7≥17 x1+x2 +x5+x6+x7≥13 x1+x2+x3 +x6+x7≥15 x1+x2+x3+x4+ +x7≥19 x1+x2+x3+x4+x5 ≥14 x2+x3+x4+x5+x6 ≥16 x3+x4+x5+x6+x7≥11 xi≥0 ( i=1,2,…,7)
纯整数规划:如果所有决策变量都要求取 整数,则称为“纯整数规划”
0-1整数规划:所有决策变量仅限于取 0 或 1 两个整数,这种规划问题称为“0-1规划” 混合整数规划:如果仅有一部分的决策变 量要求取整数,则称为“混合型整数规划”。
求解思路:既然整数规划是线性规划的 一种特殊形式,求解只需在线性规划的 基础上,通过舍入取整求解即可。? 但实际上,两者却有很大的不同,通过 舍入得到的整数解也不一定就是最优解, 有时甚至不能保证所得到的解是整数可 行解。举例说明。
游泳运动员的选拔
例:甲乙丙丁是4名游泳运动员,他们各种姿势的 100m游泳成绩见下表。为组成一个4×100m混合 泳接力队,怎样选派运动员,方能使接力队的游 泳成绩最好?
运动员 仰泳 蛙泳 蝶泳 自由泳

乙 丙 丁
75.5
65.8 67.6 74.0
86.8
66.2 84.3 69.4
66.6
57.0 77.8 60.8

设01为决策变量,当表示i地区设站,表示i 地区不设站。这样根据消防车15分钟赶到现 场的限制,可得到如下模型
min Z x1 x2 x3 x4 x5 x6 ≥1 x1 x2 x x x6 ≥ 1 2 1 x3 x4 ≥1 s.t. x3 x4 x5 ≥1 x4 x5 x6 ≥ 1 x2 x5 x6 ≥ 1 xi 取 0 或 1 ,i 1, , 6
数据 物品 项目 重量(千克) 重要系数 食品 氧气 冰镐 绳索 帐篷 照相器材 通信设备
5 212 8
2 4
4 10
背包问题的数学模型: 0-1规划

解:设01变量表示携带物品i,表示不携带 物品i,则问题可写为
maxZ 20 x1 15 x2 18 x3 14 x4 8 x5 4 x6 10 x7 5 x1 5 x2 2 x3 6 x4 12 x5 2 x6 4 x7 ≤ 25 s.t. xi 取 0 或 1,i 1, 2, ,7
相关文档
最新文档