基于单片机的智能小车控制系统设计
基于STM32的智能循迹小车的设计
基于STM32的智能循迹小车的设计智能循迹小车是一种具有自主导航能力的智能移动机器人,能够根据预设的轨迹路径进行自主轨迹行驶。
该设计基于STM32单片机,采用感光电阻传感器进行循迹控制,结合电机驱动模块实现小车的前进、后退、转向等功能。
一、硬件设计1.MCU选型:选择STM32系列单片机作为主控芯片,具有高性能、低功耗、丰富接口等特点。
2.传感器配置:使用感光电阻传感器进行循迹检测,通过读取传感器的电阻值判断小车当前位置,根据不同电阻值控制小车行驶方向。
3.电机驱动模块:采用直流电机驱动模块控制小车的前进、后退、转向等动作。
4.电源管理:使用锂电池供电,通过电源管理模块对电源进行管理,保证系统正常工作。
二、软件设计1.系统初始化:对STM32单片机进行初始化,配置时钟、引脚等相关参数。
2.传感器读取:通过ADC模块读取感光电阻传感器的电阻值,判断小车当前位置。
3.循迹控制:根据传感器读取的电阻值判断小车相对于轨迹的位置,根据不同的位置控制小车的行驶方向,使其始终保持在轨迹上行驶。
4.电机控制:根据循迹控制的结果,通过电机驱动模块控制小车的前进、后退和转向动作。
5.通信功能:可通过串口通信模块与上位机进行通信,实现与外部设备的数据传输和控制。
三、工作流程1.初始化系统:对STM32单片机进行初始化配置。
2.读取传感器:通过ADC模块读取感光电阻传感器的电阻值。
3.循迹控制:根据读取的电阻值判断小车相对于轨迹的位置,控制小车行驶方向。
4.电机控制:根据循迹控制的结果,通过电机驱动模块控制小车的前进、后退和转向动作。
5.通信功能:可通过串口通信模块与上位机进行通信。
6.循环运行:不断重复上述步骤,实现小车的自主循迹行驶。
四、应用领域智能循迹小车的设计可以广泛应用于各个领域。
例如,在物流行业中,智能循迹小车可以实现自动化的物品搬运和运输;在工业领域,智能循迹小车可以替代人工,进行自动化生产和组装;在家庭生活中,智能循迹小车可以作为智能家居的一部分,实现家庭清洁和智能控制等功能。
基于单片机智能遥控小车的设计
基于单片机智能遥控小车的设计引言:一、硬件设计:智能遥控小车的硬件设计包括机械结构和电子模块两个方面。
1.机械结构设计:机械结构设计为小车提供了良好的稳定性和移动能力。
首先,选取适合的底盘结构,确保小车的稳固性和均衡性。
其次,选择合适的电机和轮子,以实现小车的前进、后退和转向功能。
最后,在机械结构中添加传感器支架和摄像头支架,方便后续的传感器和摄像头模块的安装。
2.电子模块设计:电子模块设计包括主控模块、通信模块和电源模块三个部分。
(1)主控模块:主控模块是整个智能遥控小车的核心,它负责接收遥控命令、控制电机的转动并实时处理传感器数据。
选择一款性能较强的单片机作为主控芯片,如STM32系列,以满足小车处理复杂任务的需求。
(2)通信模块:(3)电源模块:电源模块为智能遥控小车提供稳定的电源,要保证小车的正常工作需要满足一定的电流和电压要求。
选取合适的锂电池组或者干电池组作为电源,通过适当的电压调节和保护电路,保证电源的稳定性和安全性。
二、软件设计:智能遥控小车的软件设计包括底层驱动程序的编写和上层应用程序的开发。
1.底层驱动程序:底层驱动程序主要用于控制电机和监测传感器数据。
通过编写合适的电机驱动程序,实现小车的前进、后退和转向功能。
同时,编写传感器驱动程序获取传感器的数据,如超声波测距、红外线检测和摄像头采集等,为上层应用程序提供数据支持。
2.上层应用程序:三、功能拓展:智能遥控小车的功能可以通过添加各种传感器和模块进行拓展,如以下几个功能:1.环境检测功能:通过添加温湿度传感器、二氧化碳传感器等,实时监测环境数据,可以应用于室内空气质量、温湿度调节等应用。
2.避障功能:通过添加超声波传感器、红外线传感器等,在小车前方进行信号检测,实现小车的避障功能。
3.图像识别功能:通过添加摄像头模块,对图像进行处理和分析,实现小车的图像识别功能,如人脸识别、物体识别等。
结论:基于单片机的智能遥控小车设计通过合理的硬件结构和软件设计,实现了远程遥控和实时传输数据的功能。
ppt答辩基于MCS-51单片机智能小车控制器设计
本设计在传统小车控制器的基础上, 引入了MCS-51单片机,实现了更高 效、智能的控制。
技术背景
随着智能化技术的发展,智能小车在各 个领域的应用越来越广泛,而控制器作 为小车的核心部件,其设计至关重要。
目的和目标
目的
通过本次设计,旨在提高智能小 车的控制精度、响应速度和稳定 性,以满足不同应用场景的需求 。
感谢观看
THANKS
无线通信
实验四验证了小车的无线通 信功能稳定可靠,数据传输 速度快,满足实时控制要求。
结果讨论与改进建议
结果讨论
总体来说,基于MCS-51单片机的智能小车 控制器设计在速度、转向、障碍物识别和无 线通信等方面表现良好,但在曲线行驶和复 杂环境下的障碍物识别方面仍有改进空间。
改进建议
针对转向控制精度和复杂环境下的障碍物识 别问题,建议优化算法以提高控制精度和识 别率;同时,为提高小车的整体性能,可考 虑采用更先进的传感器和通信模块。
控制器软件设计
主程序流程
描述了主程序的运行流程,包括初始化、传 感器数据采集、运动控制等环节。
数据融合算法
采用适当的算法对传感器数据进行融合,提 高控制精度。
中断服务程序
针对不同中断源,设计了相应的中断服务程 序,提高系统实时性。
运动控制算法
采用PID控制算法实现智能小车的速度和方 向控制。
传感器和执行器的选择与连接
目标
实现基于MCS-51单片机的智能 小车控制器的设计,并进行实际 测试和验证。
02
MCS-51单片机简介
MCS-51单片机的特点
高性能
采用高速、高可靠性的 CMOS技术,运算速度
比普通单片机快。
低功耗
集成度高
基于 STC89C52 单片机的智能小车设计
能智造与信息技术基于STC89C52单片机的智能小车设计李亚振(安阳师范学院河南安阳455000)摘要:本设计主要器件有STC89C52单片机、RZ7899驱动芯片和N20直流减速电机,使用两节锂电池共7.4V 作为系统供电,经LM7805稳压芯片降压到5V 后为单片机系统供电,通过红外循迹模块和避障模块,实现S 形曲线行驶和避障功能。
通过控制电机驱动模块控制电机输出转速,改变车辆移动状态,实现转弯。
在行驶过程中,通过蜂鸣器播放音乐或充当汽车喇叭,同时设置灯光进行照明。
软件程序采用C 语言,通过keil 软件实现对小车的控制。
通过pcb 设计和实物调试,验证了该智能小车虽设计简单,但功能强大,应用广泛。
关键词:智能小车STC89C52单片机循迹PCB 设计中图分类号:TP23文献标识码:A文章编号:1674-098X(2022)04(a)-0058-04当前,社会新工艺、新技术快速发展,人工智能技术逐步成熟,并广泛应用于工业、农业、医疗等行业。
智能小车作为人工智能领域研究的重要分支,可以代替人类在一些危险环境下完成相关工作。
本设计以STC89C52单片机作为小车控制系统的核心处理器,包括驱动、红外循迹、避障和音乐播放等模块,通过对各模块的设计,全面说明该智能小车工作的基本原理。
1系统总体设计目标本设计增添红外线遥控电路,控制智能小车运动,功能除了前进后退,还可以按照设置路线行驶并躲避障碍物,利用C 语言程序设置智能小车的运动状态,在编写代码时写入不同的音乐模块,调试实现小车的多功能运行[1]。
系统设计框图如图1所示。
2系统模块设计2.1电源输入模块本设计选用7.4V 可充电锂电池,可以循环使用,经过LM7805稳压芯片后,给单片机和外围器件提供供电。
电机驱动的芯片由7.4V 锂电池直接提供。
二极管D1起着防反接的作用,LED2作为电源指示灯,当开关SW1打开时,系统就会开始供电。
电源输入原理图如图2所示。
基于单片机的智能循迹小车设计
基于单片机的智能循迹小车设计智能循迹小车是一种基于单片机控制的小型车辆,通过传感器检测路面信息,结合预设路线实时调整行驶方向,实现自动循迹行驶。
智能循迹小车在无人驾驶、智能物流、探险救援等领域具有广泛的应用前景。
智能循迹小车的硬件主要包括单片机、传感器、电机和电源。
其中,单片机作为整个系统的控制中心,负责接收传感器信号、处理数据并输出控制指令;传感器用于检测路面信息,一般选用红外线传感器或激光雷达;电机选用直流电机或步进电机,为小车提供动力;电源为整个系统提供电能。
智能循迹小车的软件设计主要实现传感器数据采集、数据处理、控制指令输出等功能。
具体来说,软件通过定时器控制单片机不断采集路面信息,结合预设路线信息进行数据分析和处理,并根据分析结果输出控制指令,实现小车的自动循迹。
为提高智能循迹小车的稳定性和精度,需要对算法进行优化。
常用的算法包括PID控制、模糊控制等。
通过对算法的优化,可以实现对路面信息的精确检测,提高小车的循迹精度和稳定性。
为验证智能循迹小车的实际效果,需要进行相关测试。
可以在平坦的路面上进行空载测试,检验小车的稳定性和循迹精度;可以通过加载重量、改变路面条件等方式进行负载测试,以检验小车在不同条件下的性能表现;可以结合实际应用场景进行综合测试,以验证智能循迹小车在实际应用中的效果。
测试环境的选择要具有代表性,能够覆盖实际应用中可能遇到的各种情况。
测试过程中要保持稳定的行驶速度,以获得准确的测试数据。
对于测试过程中出现的问题,要及时记录并分析原因,以便对系统进行改进。
测试完成后,要对测试数据进行整理和分析,评估系统的性能表现,提出改进意见。
通过以上测试,我们发现基于单片机的智能循迹小车在循迹精度、稳定性等方面表现良好,能够满足实际应用中的需求。
同时,通过对算法的优化和硬件的改进,可以进一步提高小车的性能表现。
本文介绍了基于单片机的智能循迹小车的设计和实现过程。
通过合理选择硬件和优化软件算法,实现了小车的自动循迹功能。
基于单片机的智能小车的设计
基于单片机的智能小车的设计智能小车在当今社会中得到越来越广泛的应用,它不仅可以为人们的生活带来方便,还能在工业生产和科研领域发挥关键作用。
而基于单片机的智能小车设计是其中的一个重要方面,它通过利用单片机的高度集成和强大功能,实现智能小车的自主控制和感知任务。
本文将深入探讨基于单片机的智能小车设计的关键技术和发展趋势,为读者提供一些有益的参考和启发。
智能小车的设计中,传感器是至关重要的一环。
而对于基于单片机的智能小车来说,选择合适的传感器和设计有效的传感器数据采集方案显得尤为重要。
在传感器选择方面,常用的传感器有红外传感器、超声波传感器、光电传感器等,它们可以实现对障碍物的检测和环境信息的感知。
在传感器数据采集方案设计上,需要考虑到传感器数据的采集频率、传感器数据的处理方式以及传感器数据与单片机的接口方式等。
通过合理设计传感器的选择和数据采集方案,可以有效提高智能小车的感知能力和控制精度。
除了传感器外,基于单片机的智能小车设计还需要考虑到智能控制算法的设计。
智能控制算法是实现智能小车自主行驶和避障的核心,它可以通过对传感器数据的处理和分析,实现对小车行驶方向和速度的实时控制。
常用的智能控制算法包括PID算法、模糊控制算法和神经网络控制算法等,它们分别适用于不同的应用场景和控制需求。
在智能控制算法的选择和设计中,需要考虑到算法的实时性、稳定性和可调节性,以实现对智能小车的精确控制和智能决策。
在设计基于单片机的智能小车时,硬件设计也是一个不可忽视的方面。
合理的硬件设计可以有效提高智能小车的性能和稳定性,为控制算法的实现提供良好的硬件支持。
常用的硬件设计包括电机驱动电路设计、电源管理电路设计和通信接口电路设计等。
其中,电机驱动电路设计是最为关键的一环,它可以实现对小车电机的精确控制和驱动,保证小车的行驶稳定性和速度调节精度。
电源管理电路设计则是保证小车电路的稳定供电和功耗管理,避免因电路供电不稳定导致小车控制系统工作异常。
基于单片机的一种多功能玩具小车的设计与实现
随着科技的发展,单片机作为一种常用的微控制器,已经在各个领域得到了广泛应用。
在玩具领域,特别是玩具小车的设计中,单片机的运用也越来越普遍,可以实现各种有趣的功能。
本文将介绍一种基于单片机的多功能玩具小车的设计与实现。
二、设计目标1. 实现无线遥控功能,通过遥控器实现对小车的控制。
2. 设置超声波避障模块,让小车能够自动避开障碍物。
3. 小车可通过蓝牙模块与手机进行连接,实现手机APP控制。
4. 为小车设计多种灯光效果,增添趣味性。
5. 使用音乐模块,使小车产生丰富的声音效果。
三、硬件设计1. 主控芯片选择了常用的Arduino单片机。
2. 驱动模块选用了直流电机驱动模块,实现小车的前进、后退和转向。
3. 采用了超声波传感器模块,用于检测障碍物并实现避障功能。
4. 蓝牙模块选用了蓝牙串口模块,实现与手机的数据传输和控制。
5. 设计了多种灯光效果,包括LED灯和彩色灯带。
6. 音乐模块选用了声音传感器模块,可以发出不同的声音效果。
四、软件设计1. 编写了小车的控制程序,包括前进、后退、左转、右转等基本控制2. 通过编写遥控器程序,实现了对小车的无线遥控功能。
3. 编写了避障算法,使小车能够自动避开障碍物。
4. 开发了手机APP,通过蓝牙模块与小车进行连接和控制。
5. 设计了多种灯光效果的控制程序,可以实现闪烁、变色等效果。
6. 编写了音乐模块的程序,可以根据指令发出不同的声音效果。
五、实现效果1. 小车可以通过遥控器实现前进、后退、左转、右转的基本功能。
2. 超声波传感器可以准确检测到障碍物,并成功避开。
3. 通过手机APP可以实现对小车的遥控和控制各种功能。
4. 多种灯光效果可以有效增加小车的趣味性。
5. 音乐模块发出的声音效果丰富多彩,增加了小车的趣味性。
六、总结与展望本文介绍了一种基于单片机的多功能玩具小车的设计与实现,通过结合硬件设计和软件设计,实现了多种有趣的功能。
未来,可以进一步优化设计,增加更多的传感器模块和功能模块,使小车的功能更加丰富多样。
基于单片机的智能小车控制
信息工程专业课程设计(二)题目基于《STC89C52》单片机的智能小车姓名学号所在院系所在班级完成时间基于单片机的智能小车摘要:智能化作为现代电子产品的新趋势,是今后的电子产业的发展方向。
智能化设计的电子产品可以按照预先设定的模式在一个环境里自动运作,不需要人为的管理,可应用于科学勘探、环境监测、智能家居等方面。
基于单片机的智能小车控制就是其中的一个体现。
本设计实现了一种基于51单片机的按键操作控制和温度检测显示系统,通过温度传感器采集温度数据并且通过显示模块显示出来,通过对按键的操作,自动控制转向电机转向,改变行驶方向。
本课题设计的智能小车,具有按键控制前后左右的功能,温度采集功能,液晶显示功能。
序言 (1)第1章总体设计方案 (2)1.1课题任务分析 (2)1.2 方案论证 (3)1.2.1小车驱动部分 (3)1.2.2 温度显示部分 (3)第2章系统硬件构成 (4)2.1系统设计原理 (4)2.2主要元器件简介 (4)2.2.1 STC89C52RC简介 (4)2.2.2 液晶显示电路 (5)2.2.3 L298N芯片直流电机驱动模块 (6)2.2.4遥控部分独立按键电路 (7)第3章软件的设计与说明 (8)3.1软件设计 (8)3.2软件的说明 (9)3.2.1 控制部分主程序流程 (9)3.2.2 温度检测显示部分主程序流程图 (10)第4章调试与总结 (12)4.1 调试的总结 (12)参考文献 (13)致谢 (14)附录 (15)附件1 L298N电机驱动模块 (15)附件2 小车侧视图 (16)附件3 小车俯视图 (16)附件4 小车最终硬件图 (17)附件5 程序清单 (18)序言随着我国科学技术的进步,智能化和自动化技术越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,使智能机器人越来越多样化。
智能小车是一个多种高新技术的集成体,它融合了机械、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,涉及到当今许多前沿领域的技术[1]。
基于单片机的红外遥控智能小车设计
基于单片机的红外遥控智能小车设计引言:随着科技的不断发展,智能物联网已经走进了我们的生活。
智能小车作为一种智能化的产品,能够实现远程遥控、自动避障等功能,受到了广大消费者的青睐。
本文就基于单片机的红外遥控智能小车设计进行详细介绍。
一、设计目标本设计的目标是通过红外遥控,实现对智能小车的远程控制,小车能够根据收到的指令进行行驶、避障等操作。
二、设计原理1.主控芯片:本设计使用单片机作为主控芯片,常用的单片机有51系列、AVR系列等,可根据实际需求选择合适的芯片型号。
2.红外遥控模块:红外遥控模块是实现红外通信的设备,可以将遥控器发出的红外信号解码成数据,实现遥控操作。
3.电机驱动模块:电机驱动模块可将单片机的PWM信号转化为电机的动力驱动信号,控制小车的行驶方向和速度。
4.超声波传感器:超声波传感器可以感知到小车前方的障碍物距离,根据测得的距离,进行相应的避障操作。
5.电源模块:小车需要使用适当的电源,通常是锂电池或者直流电源供应。
三、系统设计1.硬件设计:(1)搭建小车底盘:根据所选择的底盘,搭建小车结构,并安装好电机驱动模块、电源模块等硬件设备。
(2)连接电路:将红外遥控模块、超声波传感器等硬件设备与主控芯片进行连接,确保每个模块正常工作。
2.软件设计:(1)红外遥控程序设计:通过红外遥控模块接收红外信号,并解码成相应的指令。
根据指令控制电机驱动模块,实现小车的行驶方向和速度控制。
(2)超声波避障程序设计:根据超声波传感器测得的距离,判断是否有障碍物,如果有障碍物就停止或者转向。
四、实验结果和讨论经过实验验证,本设计的红外遥控智能小车能够准确接收红外信号,并根据指令控制小车的行驶方向和速度。
同时,超声波传感器能够及时感知到前方的障碍物,并进行相应的避障操作。
然而,该设计仍然存在一些不足之处,比如超声波传感器的测距范围有限,可能无法感知到较小的障碍物。
此外,红外遥控信号的传输距离也有一定限制,需要保持遥控器与小车之间的距离不过远。
基于PIC单片机的智能小车设计报告
摘要本作品采用PIC16F886单片机作为电动车的检测和控制系统。
通过光电传感器ST178来检测路面黑色循迹线,使电动车按预定的轨道行驶,由E18-D80NK传感器检测障碍物,从而控制电动车无碰壁地通过II区和III 区的通道。
电动车的行驶状态,电动车的行驶时间,电动车的行驶路程由液晶LCD12684显示。
一、设计任务概述1.1设计任务概述设计制作一台智能电动小车,该电动小车能按照行径路线(见图示)自动运行,通过I区的黑色轨迹和II、III区的障碍物通道,并完成规定的动作。
1.2基本任务(1)从起跑线A出发,沿轨迹至B,最后经C到达停止线D,总时间要求在90秒内完成,并能实时显示时间。
(2)赛场分Ⅰ、Ⅱ、Ⅲ三个区。
到Ⅱ区入口处B点,应停留5秒,并能发出断续声光报警。
(3)到停止线D,小车车身中心点(选手可以事先在小车上标注)应对准停止线,误差控制在±2cm,并能发出断续声光报警。
1.3发挥部分(1)能实时记录并显示行驶路程。
(2)尽量缩短行驶总时间。
(3)行驶过程中不碰壁。
(4)其它。
注:智能电动小车场地图片的相关说明智能电动小车场地图二、系统方案与论证:根据题目中的设计要求,本系统主要由控制器模块、电源模块、避障模块、循迹传感器模块、直流电机及其驱动模块、液晶显示模块构成。
本系统的方框图如下图所示:系统总框图为较好的实现各模块的功能,我们分别设计了几种方案并分别进行了论证。
2.1车体方案论证与选择方案一:购买玩具电动车。
购买的玩具电动车具有组装完整的车架车轮、电机及其驱动电路。
玩具电动车的电机多为玩具直流电机,力矩小,空载转速快,负载性能差,不易调速。
而且这种电动车一般都价格不菲。
因此我们放弃了此方案。
方案二:使用现成的小车,并根据要求对其进行改装,采用直流减速电机,力矩大,空载转速快,负载性能好,易调速,这样即节省了比赛的时间,也能完成比赛的要求。
小车图示如下:小车实物综上所述,我们采取了方案二。
基于单片机的智能小车速度控制设计
3.速度控制简介速度控制主要是指对智能小车的行驶速度进行控制,使其能 够按照预定的速度行驶,或者根据外界环境变化做出相应的速度调整。速度控制 的好坏直接影响到智能小车的性能和安全性。
二、设计思路
1.关键问题基于单片机的智能小车速度控制设计主要面临两个关键问题:一 是如何获取小车的实时速度;二是如何根据获取的速度信息来调整小车的行驶速 度。
在硬件设计方面,本次演示选用了一种常见的单片机,即STM32F103C8T6。 该单片机具有处理速度快、集成度高、外设接口丰富等特点,能够满足智能物料 搬运小车的控制需求。同时,为了实现小车的自动识别、定位和抓取功能,还选 用了以下硬件设备:
1、传感器部分:采用红外传感器和光电编码器相结合的方式,实现小车对 物料和位置的识别与检测。
analogWrite(motorPin2, 60);
上述代码中,我们通过编码器读取小车的实时速度,并根据速度阈值来判断 小车的速度状态。根据不同的速度状态,我们通过调节PWM信号的占空比来控制 电机的转速,从而实现对小车速度的控制。
三、实验结果
我们在实验中使用了基于Arduino单片机的智能小车速度控制设计,并对其 进行了多项测试。实验结果表明,该设计能够有效地控制小车的行驶速度,并具 有较高的稳定性。下表为实验数据记录:表1实验数据记录表在实验过程中,我 们发现该设计的最大优点在于其简单易行且稳定性高。
四、系统测试与结论
在完成硬件和软件的设计后,对整个系统进行了测试。测试结果显示,基于 单片机控制的智能循迹小车系统能够有效地实现自主循迹和避障功能,具有较高 的稳定性和可靠性。通过本设计的实践,可以得出单片机在自动化控制中具有广 泛的应用前景和发展潜力。
引言
随着科技的快速发展,智能化成为当今社会的关键词。智能小车作为一种智 能化的代表,具有广泛的应用前景。本次演示旨在研究基于STM32单片机的智能 小车控制,通过软硬件结合的方式实现小车的速度、循迹和刹车等控制功能,提 高小车的稳定性和灵活性。
基于单片机的多功能智能小车设计
学科代码:学号:XXXXXXXXXXXXX 大学(本科)毕业论文题目:基于单片机的多功能智能小车设计学院:专业:年级:姓名:指导教师:完成时间:20 年月日、基于单片机的多功能智能小车设计摘要:近几年,我国经济的迅速的增长使得小车的销售量逐渐升高,2016年,我国新能源汽车的销售达到了51.7万辆,销售率同比增长了20.5%。
汽车数量的日益增多使得交通拥挤的现象越来越严重,因此,交通事故的发生的频率也在逐渐的增多。
为了提高小车运行的安全,本文提出了一种基于单片机的多功能智能型小车的设计。
本文以STC89C51的单片机为核心,设计了一款多功能的智能小车,由于STC89C51的单片机在市场上受到了消费者普遍的好评,利用它进行智能小车的设计,既满足了大众的需求,又提高了小车设计的性能。
同时,本文还结合了直流电机L298N型号的驱动芯片、E18-D80NK 红外避障传感器、TCRT5000红外反射式接近开关传感器对智能小车的整体进行了构架。
关键词:单片机;多功能;智能小车;设计AbstractIn recent years, China's rapid economic growth makes the car sales gradually increased, in 2016, China's new energy vehicle sales reached 517,000, sales rate increased by 20.5%. The increasing number of cars makes traffic congestion more and more serious, so the frequency of traffic accidents is gradually increasing. In order to improve the safety of car operation, this paper presents a multi-functional intelligent car based on single-chip design.In this paper, STC89C51 single-chip as the core, designed a multi-functional smart car, as STC89C51 microcontroller in the market by consumers generally praise, use it for intelligent car design, both to meet the needs of the public, but also improve The performance of the car design. At the same time, this article also combines the DC motor L298N model driver chip, E18-D80NK infrared obstacle avoidance sensor, TCRT5000 infrared reflector proximity switch sensor on the overall structure of the smart car.Key Words: Single-chip;multi-function;intelligent car;design目录Abstract (3)引言 (6)1方案选型 (6)1.1车体设计 (6)1.2电机驱动选择 (6)2.3 PWM调速技术 (8)2.4 循迹模块技术 (9)2.5 避障模块技术 (9)2.6 控制系统模块 (10)2.7电源选择 (10)2总体方案设计 (10)2.1设计任务描述 (10)2.2总体设计 (11)2.3需求分析 (11)2.4总体方案 (11)3硬件电路设计 (11)3.1电源电路设计 (11)3.2驱动电路设计 (12)3.3循迹避障部分电路 (13)4程序设计 (14)4.1主程序设计概述 (14)4.2 主程序流程图 (14)4.3 驱动程序流程图 (15)4.4 循迹程序流程图 (16)4.5 避障程序流程图 (17)5制作安装与调试 (18)5.1小车的安装 (18)5.2小车运动模式调试 (18)5.3小车循迹调试 (19)5.4小车避障调试 (19)5.3小车的功能 (19)结论 (20)参考文献 (21)引言当前,关于智能化小车的设计越来越成为当前学者们关注的热点问题,对于智能小车的设计,采用的方法也越来对多样,利用单片机的程序设计的智能小车也是其中的一种。
基于单片机控制的wifi智能小车毕业设计
篇一:基于51单片机WiFi智能小车制作
基于51单片机WiFi智能小车制作
一、基本原理
51单片机WiFi智能小车是利用PC或手机作为控制端,通过手机连接wifi模块(路由器)以获得wifi信号,同时车载也连接wifi模块以获得和手机相同的IP地址,实现手机和小车的连接,然后利用PC或手机上的控制软件以wifi网络信号为载体发送相关信号,wifi模块接收PC或手机端发送来的相关信号并分析转换成TTL电平信号,然后发送给单片机,单片机接收到的电平信号处理、分析、计算,转化成控制指令并发送给电机驱动模块以实现小车的前进、后退、左拐、右拐等功能。
第1章
1.1
1.2
第2章
2.1
2.2
2.3 绪论 ................................................................................. 错误!未定义书签。 智能小车的意义和作用 ........................ 错误!未定义书签。 智能小车的现状 ............................................... 1方案设计与论证 ............................................................................................... 2 主控系统 ..................................................... 2 电源模块 ..................................................... 2 电机驱动模块 ................................................. 3
基于STC89C52单片机智能小车设计
五、分析与总结
通过本次设计,我们成功地基于STC89C52单片机实现了一款智能避障小车。 实验结果表明,小车具有较稳定的避障功能和较高的准确性。小车具有较快的反 应速度和响应能力,能够在短时间内对障碍物做出判断和反应。这些优点使得基 于STC89C52单片机的智能避障小车具有广泛的应用前景,例如在无人驾驶车辆、 智能机器人等领域中都具有潜在的应用价值。
二、智能避障小车设计
智能避障小车的设计主要包括以下几个方面:
1、传感器设计:传感器是实现避障功能的关键部件,主要包括红外线传感 器、超声波传感器等。本次设计采用红外线传感器,具有对色彩和材质不敏感、 反应速度快等优点。
2、电路设计:电路部分主要包括电源电路、驱动电路和传感器接口电路等。 其中,驱动电路采用L298N芯片,可以同时驱动两个电机,实现小车的前进、后 退和转向。
总之,本次设计不仅提高了我们对STC89C52单片机和智能避障技术的理解与 应用能力;而且拓宽了我们的知识视野,增强了对领域的认识和理解。希望通过 后续的研究和实践,能够使基于STC89C52单片机的智能避障小车更加完善,并得 到更广泛的应用。
感谢观看
输入输出处理程序:根据传感器的输入信号,控制小车的运动状态,同时将 小车的运动状态和障碍物距离等信息输出到LCD显示屏上。
三、智能控制
1、实现小车的智能控制,我们采用了模糊控制算法。该算法可以根据小车 的运动状态和障碍物距离等信息,自动调整小车的运动轨迹和速度,使其能够更 加灵活地避开障碍物。
3、程序设计:程序部分是实现避障功能的核心,主要包括传感器数据采集、 数据处理和电机控制等。
三、算法实现
智能避障小车的算法实现主要包括以下步骤:
1、传感器数据采集:通过红外线传感器采集小车前方的障碍物信息,并将 采集到的数据进行处理。
基于单片机的智能小车的设计与制作
基于单片机的智能小车的设计与制作一、引言:智能小车的概念和应用背景(100字)近年来,随着科技的快速发展,智能小车成为了智能化领域一个备受关注的研究方向。
智能小车作为一种能够自主感知环境、进行智能决策和灵活运动的机器人平台,广泛应用于诸多场景,如仓储物流、智能家居、无人驾驶等。
本文主要介绍了一种,以期能够提供一种参考和借鉴。
二、硬件设计与制作过程(600字)在硬件设计与制作过程中,首先需要明确小车的核心模块,包括电路板、传感器模块和执行器模块等。
其中,单片机是智能小车的“大脑”,其选择和连接是关键一步。
根据实际需求,本文选用了广泛应用的Arduino单片机,并将其与各类传感器(如红外线传感器、超声波传感器等)和执行器(如电机、舵机等)进行连接。
接下来,需要组装小车的机械部分。
通过设计和制作合适的底盘结构,进行电动机的安装和连线,以及舵机和轮子的连接。
这一步需要充分考虑小车的稳定性和灵活性,以确保小车能够平稳运行和方便操作。
为了实现小车的智能化控制,还需要进行编程。
以Arduino作为平台,通过编写相应的代码,实现小车的功能,如环境感知、路径规划、动作执行等。
在编程过程中,需要结合传感器的输入和执行器的输出,使得小车能够根据不同的场景而做出相应的反应和决策。
最后,完成电路板和机械部分的组装后,还需要对整体进行调试和测试。
通过连接电源和运行程序,可以对小车进行上电测试和功能测试,以确保各模块能够正常工作,并进行适当的调整和优化。
三、软件设计与功能实现(200字)在软件设计方面,本文使用Arduino IDE进行编程,采用C/C++语言。
通过对传感器的数据采集和处理,结合运动控制算法,使得小车能够在不同场景下做出智能决策。
例如,在遇到障碍物时,利用超声波传感器测距,通过程序控制小车避开障碍物;在追踪线路时,利用红外线传感器进行线路识别和导航等。
根据实际需求,还可以加入其他功能。
例如,通过无线模块实现与远程设备的通信,利用摄像头实现图像识别和物体跟踪等。
基于AT89C52的智能避障小车设计
基于AT89C52的智能避障小车设计全文共四篇示例,供读者参考第一篇示例:基于AT89C52的智能避障小车设计智能小车是一种基于单片机控制的智能移动设备,能够根据周围环境的变化自主地进行导航和避障。
在现代社会,智能小车已经得到广泛的应用,比如在工业生产中的物流运输、家庭服务机器人等领域。
本文将介绍基于AT89C52的智能避障小车的设计方案,并详细解析各个模块的功能和工作原理。
一、硬件设计1.主控模块主控模块选用AT89C52单片机,其具有较强的计算和控制能力,并且易于编程和驱动外部设备。
AT89C52还具有丰富的外设接口,可以方便地与其他传感器和执行器进行连接。
2.传感器模块智能避障小车需要搭载多种传感器,用于感知周围的环境,并做出相应的反应。
一般包括超声波传感器、红外传感器和摄像头等。
超声波传感器可用于探测障碍物的距离,红外传感器可用于检测地面的黑线以进行自动寻迹,摄像头可用于图像识别和路标识别。
3.执行器模块执行器模块包括直流电机、舵机等,用于驱动小车的轮子和转向,实现前进、后退、左转、右转等动作。
4.电源模块智能避障小车需要稳定可靠的电源供应,一般采用锂电池或者干电池进行供电。
二、软件设计1.传感器数据处理传感器模块采集到的数据需要进行处理和分析,以确定当前环境的状态。
比如利用超声波传感器测量到的距离数据,可以计算出周围障碍物的位置和距离。
2.路径规划根据传感器模块采集到的数据,主控模块需要根据预设的算法来规划小车的行驶路径,避开障碍物并找到最优的行驶路线。
3.运动控制执行器模块需要根据路径规划模块给出的指令来控制小车的运动,包括轮子的速度和方向等。
4.用户界面智能小车设计还需要考虑用户界面的设计,一般通过蓝牙或者Wi-Fi模块,将小车的状态和控制权传输到手机App或者PC端,方便用户进行监控和控制。
三、系统整合在完成硬件和软件模块的设计后,还需要对系统进行整合调试。
首先需要进行硬件电路的连接和焊接,然后对软件进行编译和下载,最后将各个模块进行组合测试,验证整个系统的功能和性能。
基于单片机的智能小车的设计与制作
基于单片机的智能小车的设计与制作智能小车是一种基于单片机的自动驾驶车辆,具有多种传感器和控制器,能够实现自主导航、避障、语音识别、图像识别等功能。
本文将介绍智能小车的设计与制作过程,包括硬件设计、软件开发和测试等内容。
1.硬件设计智能小车的硬件设计包括小车底盘、传感器、控制器、驱动器和电源等组成。
(1)小车底盘:选择适合自动驾驶的小车底盘,具有足够的稳定性和可靠性。
(2)传感器:智能小车需要使用多种传感器来感知周围环境,常用的传感器包括红外线避障传感器、超声波传感器、陀螺仪、加速度计等,这些传感器可以用于测量距离、速度、角度等。
(3)控制器:选择一款适合单片机的控制器,如Arduino、Raspberry Pi等,这些控制器能够实现对各种传感器的数据处理和控制指令的发送。
(4)驱动器:选择适合小车底盘的驱动器,包括电机驱动器和舵机驱动器等。
电机驱动器用于控制小车前进、后退、左转和右转等运动,舵机驱动器用于控制转向。
2.软件开发智能小车的软件开发主要包括控制算法的设计和实现,以及数据处理和通信等功能的开发。
(1)控制算法:根据传感器数据的反馈,设计小车的控制算法,可以使用PID控制器、模糊控制等算法来实现自动导航、避障等功能。
(2)数据处理:对传感器数据进行处理,例如将超声波传感器测量的距离数据转化为电平信号,以便确定是否有障碍物。
(3)通信:如果需要实现远程控制或者数据传输功能,可以使用蓝牙、Wi-Fi等无线通信方式,将智能小车与手机或者电脑连接起来。
3.测试与改进在制作智能小车的过程中,需要进行系统的测试和改进。
首先测试小车的底盘、传感器和控制器是否能够正常工作,然后进行实验室内或者室外的测试,看看小车是否能够自主导航、避障等功能。
根据测试结果,对系统进行改进和优化,提高小车的性能和稳定性。
总结:通过硬件设计和软件开发,我们可以制作一辆功能全面的智能小车。
智能小车不仅可以提供便利的出行方式,还可以广泛应用于物流、安防、环境监测等领域,为人们的生活带来更多的便利和效益。
基于单片机的智能小车设计
基于单片机的智能小车设计前言随着汽车工业的迅速发展,关于汽车的研究也就越来越受人关注。
全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。
可见其研究意义很大。
本设计就是在这样的背景下提出的。
本题目是结合科研项目而确定的设计类课题,设计的智能电动小车应该能够实时显示时间、速度、里程,具有自动寻迹、寻光、避障功能,可程控行驶速度、准确定位停车。
根据题目的要求,确定如下方案:在现有玩具电动车的基础上,加装光电、红外线、超声波传感器及金属探测器,实现对电动车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制。
这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。
本设计采用MCS-51系列中的80C51单片机。
以80C51为控制核心,利用超声波传感器检测道路上的障碍,控制电动小汽车的自动避障,快慢速行驶,以及自动停车,并可以自动记录时间、里程和速度,自动寻迹和寻光功能。
方案设计与论证根据题目的要求,在智能小车上加装光电检测器,实现对智能小车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制。
这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。
调速系统采用晶闸管的直流斩波器基本原理与整流电路不同的是,在这里晶闸管不受相位控制,而是工作在开关状态。
当晶闸管被触发导通时,电源电压加到电动机上,当晶闸管关断时,直流电源与电动机断开,电动机经二极管续流,两端电压接近于零。
脉冲宽度调制(Pulse Width Modulation),简称PWM。
脉冲周期不变,只改变晶闸管的导通时间,即通过改变脉冲宽度来进行直流调速。
检测系统检测系统主要实现光电检测,即利用各种传感器对电动车的避障、位置、行车状态进行测量。
基于单片机控制的智能自动往返小汽车设计
基于单片机控制的智能自动往返小汽车设计随着现代科技的发展和自动化水平的提高,智能小汽车作为生活中的常用工具,人们对其智能性、可靠性等提出了越来越高的要求,因此需要对智能小汽车进行优化设计. 本文对硬件系统和主要功能模块进行了规划,设计了一个基于单片机控制的自动往返小汽车系统,以STC89C52 单片机为核心器件,可实现电动小汽车的速度控制、自动停车、往返控制等功能,从而满足人们对小汽车智能化功能的要求.1 系统总体设计系统设计以单片机STC89C52 芯片为核心控制部件,LG9110 作为电机驱动芯片,利用传感器检测技术原理、AD 画图、KEIL 软件编程,将程序烧录到单片机中,实现各个子模块的功能. 此外,系统采用红外探测法来检测实时路况信息,并通过PWM 调制自动调节电机转速. 系统总体设计框图如图1 所示.图1 系统总体设计框图2 系统硬件设计系统硬件模块设计主要包含电机驱动模块、路况检测模块、智能防撞报警模块、寻迹模块等.2.1 电机驱动模块电机驱动模块是目前遥控小车普遍采用的驱动模块[3]. 直流电机有两个控制端,通过设置输入电平值来改变电机的运转,单片机通过控制引脚电平的高低来控制直流电机的转速. 由于单片机自身管脚输出的高电平电压很小,不足以驱动电机进而带动整个小车运行,因此最适合小车驱动的是运用电机驱动芯片来完成,我们采用的是电机驱动芯片LG9110.2.2 路况检测模块该模块使用红外探测法. 由于黑线和白纸对光线的反射系数不同,故可根据接收到反射光的强弱来判断路面情况和前方是否存在障碍物. 红外发射管发射红外信号,经路面反射后传给红外接收管进行判断处理. 上电后,红外发射管导通,向地面以及前方发射红外信号,当遇到白色路面时,红外信号经白色路面进行漫反射,这时红外接收探头刚好接收到红外信号,探头导通,将低电平送给单片机进行判断处理.2.3 智能防撞报警模块智能小车能够自动识别前方的障碍物,如果有障碍物则调节小车的运动轨迹来避开障碍物,同时在遇到障碍物时,能够报警提示.2.4 寻迹模块所谓寻迹,就是在一条有弯曲黑线的白纸跑道上,利用红外线在不同颜色的物理表面具有不同的反射性质的特点来改变小车的运行轨迹. 小车在行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,而当红外光遇到黑色地面时,不产生反射. 如果小车右边稍微跑出黑色跑道,发出的红外光就会遇到白色地面而产生漫反射,这时旁边的黑色接收探头接收到反射信号后会导通. 探头接收到红外信号,会产生一个低电平,送给单片机处理,使小车进行左转操作;同理,当小车左边跑出黑线时,左侧探头识别之后给小车低电平,提示小车右转,这样就完成了小车的自动寻迹功能.3 系统软件设计在系统软件设计时,我们将所有的模块程序嵌入到单片机中,这种嵌入式设计主要是为了便于控制,且不占用CPU 资源,因为寻迹模块以及避障模块等都同时用到了实时检测扫描,这样不仅占CPU,而且多个程序同时运行还会产生冲突. 系统程序设计流程图如图2 所示.软件设计主要子模块介绍:(1) 红外解码的实现红外解码是实现小车的自动寻迹功能的前提条件,因此单片机的红外解码是贯穿整个程序设计的主线,在整个系统中起着重要作用.(2) 电机驱动从实际情况来说,在整个系统中,电机的驱动在小车运行中占据主导地位,是很重要的一部分,同时也是小车在接收到控制命令之后单片机的最终输出部分,是所有模块在执行控制命令时的外在表现.图2 系统程序设计流程(3) 小车寻迹寻迹的基本原理:黑白跑道对红外光的反射不同. 所以通过编写扫描单片机管脚值的程序,来实现相应功能. 小车寻迹模块的程序流程如图3 所示.(4) 小车防撞报警开启小车防撞功能时,主程序调用防撞报警子函数,当道路前方遇到障碍物时,小车内部的防撞函数将调用电机驱动子函数来调节小车的运行轨迹,避免小车撞击障碍物,同时报警提示.图3 寻迹程序流程图4 系统功能实现4.1 硬件作品(1) 对基于单片机控制的自动往返小汽车主要的STC89C52 核心主控模块、电机驱动模块、显示模块、避障模块进行组装,确保接线无误,完成实物的制作. 硬件作品如图4 所示.(2) 接通电源,整个小车处于启动状态,由于小车头部下方的红外探头未接收到自身发出的红外光,小车不运动,处于静止状态. 启动状态如图5 所示.图4 作品实物图5 小车启动状态(3) 在接通电源的状态下,将手放在左红外探头的下方,红外探头发出的红外光由于碰到手指发生漫反射而被探头接收,从而驱动电机驱动模块,左电机处于运行状态,左轮向前转动. 同理,右轮向前转动. 运动状态如图6 所示.图6 小车运动状态4.2 功能实现本系统实现的主要功能如下:(1)实现小汽车自动往返;(2)当小汽车偏离行驶轨道时,会及时转向,返回跑道;(3)当检测到障碍物时,能自动报警.STC89C52 芯片可以发挥数据处理与实时控制的功能,提高整个系统灵敏度. 当要驱动自动小车前进时,可以通过寻迹模块返回给单片机的信号,使单片机做出相应的控制判断,进而控制电机驱动模块,同时还需要进行PID 算法的测试,精准地控制自动小车在黑线上实现前进、后退和转向,从而实现小车自动往返.4.3 系统实现效果评价对系统功能进行了分析、拓展和延伸,其根本目的是为了实现小汽车的智能化. 通过系统调试,本设计可实现小汽车的自动寻迹和报警功能,且系统设计稳定. 实验结果与理论分析吻合较好,表明该设备在技术上有一定智能性和可靠性.5 总结本文采用的是以STC89C52 为核心的单片机,LG9110 为电机驱动芯片,利用传感器检测技术,结合硬件AD 画图及软件KEIL 的编译与烧录[5],使单片机控制的小汽车能自动寻迹、防撞报警,从而实现小车的自动往返功能. 本设计最大的特色:无需有线或者无线遥控来控制小车的往返,只需要装上电源,其他功能都可以由单片机来实现,消除了一般玩具小车需无线或有线控制的弊端,是未来玩具小车发展的趋势;同时也可以推广至公交车,实现无人驾驶,降低安全事故的发生,既环保又安全,因此具有一定的应用价值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 引言 智能车作为一种轮式的移动机器人[1-2] ,是一个
集环境感知、动态决策与规划、智能控制与执行等多 功能于一体的综合系统[3-4] ,能应用到自动控制、模式 识别、传感器技术、汽车电子、电气、计算机、机械等多 个领域,是典型高新技术综合体,在导盲车辆、国防安 全、工业生产等领域,都有广泛应用,具有重要的军用 及民用价值[5-6] 。
2018 年 第1期
仪表技术与传感器
Instrument Technique and Sensor
2018 No������ 1
基于单片机的智能小车控制系统设计
罗刘敏,王明霞,郭艳花,刘晓青
( 周口师范学院机械与电气工程学院,河南周口 466001)
摘要:针对智能车的控制系统,选用 STC89C52 作为整个系统的主控芯片,并进行硬件电路设计;以 NREF24L01 作为无线接收模块,选取 E18-D80NK-N 红外光电传感器作为避障模块的核心器件;并用 Proteus 软件进行电路的模拟和仿真,结果表明可行。 以 STM32103C8 为核心,设计了智能小车的实时 监控系统,并制定了系统软件的设计方案;在系统软件方案的基础上提出基于 NRF24L01 的 SPI 通信、 串口通信和电机的 PWM 调速方案。 最终与基于 VB 的遥控器进行联合调试,通过示波器、LED 指示灯 简易监控观察智能车的运行状态。 结果表明:系统能很好地执行小车的前进、后退、转向、避障等功能, 达到预期设想,有良好的使用效果和广阔的市场前景。 关键词:智能车;NRF24L01;SPI 通信;PWM 中图分类号:TN791 文献标识码: A 文章编号:1002-1841(2018)01-0123-04
随着技术的发展, 对智能车辆的研究越来越深 入[7-8] 。 通过在智能车上装配各种传感器和控制芯片 来实现自主巡航等功能,在完全没有人工干预或只有
基金项目:周口师范学院教育教学改革项目( J2016051) ;河南 省教育技术装备与实践教育研究项目( GAS390) ;河南省教育 技术装备与实践教育研究项目( GAS310) ;周口师范学院青年 基金项目( zknuB315214) 收稿日期:2017-07-05
部分人工干预的情况下,沿着预设的路径行驶到达目 的地[9-10] 。 要实现自主巡航功能,智能车辆必须通过 一些传感器获取自身的位置信息或者外部环境提供 的引导信息,所以对车辆智能化技术的研究开发过程 中,智能车的控制系统和外部导航一直是研究的核心 问 题[11-12] 。 针 对 智 能 车 的 控 制 问 题, 本 文 选 用 STC89C52 作为主控芯片,进行控制系统研究,完成了 相应的硬件和软件设计,实现控制小车前进、后退、转 向、避障等功能。 1 系统总体设计方案
Design of Intelligent Car Control System Based on MCU
LUO Liu⁃min,WANG Ming⁃xia, GUO Yan⁃hua, LIU Xiao⁃qing
( School of Mechanical and Electrical Engineering,Zhoukou Normal University,Zhoukou 466001,China)