气相色谱的定性方法与定量方法

合集下载

气相色谱分析法-定性定量分析

气相色谱分析法-定性定量分析

利用保留值定性(3)
色谱操作条件不稳定时的定性 相对保留值定性:相对保留值只受柱温和固定相性质的影响, 而柱长、固定相的填充情况和载气的流速均不影响相对保留 值的大小。 用已知标准物增加峰高法定性:在得到未知样品的色谱图后, 在未知样品中加入一定量的已知标准物质,然后在同样的色 谱条件下,作已知标准物质的未知样品的色谱图。对比这两 张色谱图,哪个峰增高了,则说明该峰就是加入的已知纯物 质的色谱峰。
f 'i f ' S 分别为组分i和内标物S的质量校正因子
Ai、AS分别为组分i和内标物S的峰面积
问题:内标法中,如以内标物为基准,则其相应 计算公式如何? 提示:此时 f ' S =1.0。
内标物的选择
内标物应是试样中不存在的纯物质; 内标物的性质应与待测组分性质相近,以使内标物的色谱峰 与待测组分色谱峰靠近并与之完全分离; 内标物与样品应完全互溶,但不能发生化学反应; 内标物加入量应接近待测组分含量。
一般来说,对浓度型检测器,常用峰高定量;对质量型检测器, 常用峰面积定量。
校正因子
校正因子分为相对校正因子和绝对校正因子。 绝对校正因子:表示单位峰面积或单位峰高所代表的物质质量。
mi fi = Ai

f i(h)
mi = hi
绝对校正因子的测定一方面要准确知道进入检测器的组分的 量mi,另一方面要准确测量出峰面积或峰高,并要求严格控制色 谱操作条件,这在实际工作中是有一定的困难的。
答:没有。由测定过程和计算公式我们可以发现,进样量的大小不影 响最终的测定结果。
内标法应用实例:甲苯试剂纯度的测定
标准溶液和试样溶液的配制 标准溶液的配制 甲苯试样溶液的配制 相对校正因子的测定 仪器开机、点火、调试; 标准溶液的分析 相对校正因子的计算: 甲苯试样中甲苯含量的测定 甲苯试样溶液的分析

3气相色谱分离条件的选择以及定性定量方法【仪器分析】

3气相色谱分离条件的选择以及定性定量方法【仪器分析】
温度呈固体;
(4).固定液的相对极性 规定:角鲨烷(异三十烷)的相对极性为零,
β,β’—氧二丙腈的相对极性为100。
(5). 固定相选择的基本原则 “相似相溶” 选择与试样性质相近
的固定相; 按组分性质的主要差别选择。
a.按相似相溶原则选择固定液
固定液与被测组分极性“相似相溶”,K大, 选择性好
挥发性小,对被分离试样中的各组分具有 不同的溶解能力,较好的热稳定性,并且不与 被分离组分发生不可逆的化学反应。
(2). 固定液分类方法
化学分类法:脂肪烃、芳烃、醇、酯、硅氧烷 类等。
极性分类法:按相对极性的大小分为非极性、 中等极性、强极性等。
(3). 固定液的最高、最低使用温度 高于最高使用温度易分解,低于最低使用
5.进样条件及气化温度
在检测器灵敏度允许的范围内使进样量尽 量少,进样量过大容易造成拖尾峰。
最大允许进样量应控制在峰面积与进样量呈 线性的范围内。
气化室温度要高于样品沸点。
第五节 气相色谱定性定量方法 一、 色谱定性方法
1.利用保留值定性 1)已知对照物定性:通过对比试样中具有与纯 物质相同保留值的色谱峰,来确定试样中是否含 有该物质及在色谱图中的位置。
不适用于不同仪器上获得的数据之间的对比。 定性专属性差
2 .利用文献相对保留值定性 相对保留值r21仅与柱温和固定液性 质有关。
在色谱手册中都列有各种物质在不 同固定液上的保留数据,可以用来 进行定性鉴定。
3.利用保留指数定性:
又称Kovats指数(Ⅰ),是一种重现性较
好的定性参数。
测定方法: 将正构烷烃作为标准,规定其保留指数
a.炭
炭分子筛孔径具有典型的非极性表 面,适于分析低碳烃和气体及短链极 性化合物。

气相色谱仪的定性、定量分析

气相色谱仪的定性、定量分析

常用峰面积定量被测组分经
校正过的峰面积(或峰高)占样品中各组分 经校正过的峰面积(或峰高)的总和的比例
来表示样品中各组分含量的定量方法。 当试样中所有组分均能流出色谱柱,且
完全分离,并在检测器上都能产生信号时, 可用归一化法计算组分含量。
4、标准曲线法 标准曲线法也称外标法或直接比较法, 是一种简便、快速的定量方法,具体方法与 分光光度分析中的标准曲线法相似。 优点:绘制好标准工作曲线后测定工作 就变得相当简单,可直接从标准曲线上读出
含量,因此特别适合于大批样品分析。缺点: 每次样品色谱分析的色谱操作条件(检测器 的响应性能、柱温、流动相流量及组成、进 样量、柱效等)很难完全相同,因此容易出 现圈套误差。
这个结论并不准确可靠。
(2)双柱法定性。若要得到更为准确可靠 的结论,可再用另一根极性完全不同的色谱 柱,做同样的对照比较。如果结论同上,那 么最终的定性结果相对更为可靠。
(3)色谱操作条件不稳定时的定性。这时 可以采用相对保留值定性或用已知标准物增
加峰高法定性。 ① 相对保留值定性; ② 用已知标准物增加峰高法定性。 2、利用保留指数定性 在利用已知标准物直接对照定性时,已
缺点是必须在所有样品中加入内标物, 选择合适的内标物比较困难,内标物的称量 要准确,操作较复杂。
3、标准加入法 标准加入法是一种将欲测组分的纯物质 加入到待测样品中,然后在相同的色谱条件 下,分别测定加入欲测组分纯物质前后欲测 组分的峰面积(或峰高),从而计算欲测组 分在样品中的含量的方法。
优点:不需要别处的标准物质作内标物, 只需要欲则组分的纯物质,进样量不必十分 准确,操作简单,是色谱分析中较常用的定 量分析方法。缺点:要求加入欲测组分前后 两次色谱测定的色谱操作条件完全相同,否 则将引起分析测定的误差。

色谱课讲义(7)-气相色谱定性与定量

色谱课讲义(7)-气相色谱定性与定量
(l)对称形峰面积的测量——峰高乘半峰宽 法 理论上可以证明,对称峰的面积 A=1.065×h×W1/2
气相色谱定量
(2)不对称峰面积的测量一峰高乘平均峰 宽法 对于不对称峰的测量如仍用峰高乘 半峰宽,误差就较大,因此采用峰高乘 平均峰宽法。 A=1/2h(W0.15+W0.85) 式中W0.15和 W0.85分别为峰高0.15倍和 0.85倍处的峰宽。
气相色谱定性
lg tr' A1n C1
式中A1和C1是常数,n为分子中的碳原子数 (n≥3)。该式说明,如果知道某一同系 物中两个或更多组分的调整保留值,则 可根据上式推知同系物中其它组分的调 整保留值。
气相色谱定性
沸点规律 同族具有相同碳数碳链的异构体 化合物,其调整保留时间的对数和它们
气相色谱定量
相对定量校正因子 由于物质量wi不易准确测量,要准确
测定定量校正因子fi′不易达到。在实际工 作中,以相对定量校正因子fi代替定量校 正因子fi′。
相对定量校正因子fi定义为:样品中各 组分的定量校正因子与标准物的定量校 正因子之比。用下式表示
气相色谱定量
fi (m)
fi' (m)
气相色谱定量
气相色谱定量
气相色谱定量分析的基础是根据检测器 对溶质产生的响应信号与溶质的量成正 比的原理,通过色谱图上的面积或峰高, 计算样品中溶质的含量。
气相色谱定量
峰面积测量方法 峰面积是色谱图提供的基本定量数据, 峰面积测量的准确与否直接影响定量结 果。对于不同峰形的
100[n
lg tr' (x) lg tr' (Cn ) ]
lg
t
' r
(Cn1
)

气相色谱的定性分析方法

气相色谱的定性分析方法


fm'

Ms Mi
(3)、相对响应值
相对响应值是物质 i 与标准物质 S 的响应值(灵敏度)
之比,单位相同时,与校正因子互为倒数,即
Si
1 fi
和只与试样、标准物质以及检测器类型有关,而与操
作条件和柱温、载气流速、固定液性质等无关,不受
操作条件的影响,因而具有一定的通用性,是一个能
二、气相色谱的定量分析方法
定量分析就是要确定样品中组分的准确含量。气相 色谱的定量分析与大多数的仪器分析方法一样,是一 种相对定量方法,而不是绝对定量方法。
气相色谱定量分析的依据是:在一定的条件下,被
测谱本组峰公分的式峰为i 通面:过积检A测i 成器正的比数。量因(或此浓气度相)色w谱i定与量该分组析分的色基 W i = fi Ai 析再必用式须适中测当的量的f 其 定i称峰量为面计组积算分方A的法i校和,正确将因定色子组谱。分峰由的面式校积可正换知因算,子为定f试量i ,样分
的组分的量 mi ,另一方面要准确测量出峰面积或峰高,
并要求严格控制色谱操作条件,这在实际工作中有一 定困难。因此,实际测量中通常不采用绝对校正因子, 而采用相对校正因子。
(2)、相对校正因子
相对校正因子是指组分 i 与另一标准物 S 的绝
对校正因子之比,用表示:
fi'
fi fs
mi / Ai ms / As
中组分的含量。
1、峰面积的测量
在使用积分仪和色谱工作站测量蜂高和峰面积时,仪器可根据 人为设定积分参数(半峰宽、峰高和最小峰面积等)和基线来计算 每个色谱峰的峰高和峰面积。然后直接打印出峰高和峰面积的结 果,以供定量计算使用。
当使用一般的记录仪记录色谱峰时,则需要用手工测量的方法 对色谱峰和峰面积进行测量。虽然目前已很少采用手工测量法去 测量色谱峰的峰高和峰面积。但是了解手工测量色谱峰峰高和峰 面积的方法对理解积分仪和色谱工作站的工作原理及各种积分参 数的设定是大有裨益的。所以,以下简单介绍两种常用的手工测 量法。

气相色谱定性定量分析

气相色谱定性定量分析

气相色谱定性定量分析一.定性分析气相色谱的优点是能对多种组分的混合物进行分离分析,(这是光谱、质谱法所不能的)。

但由于能用于色谱分析的物质很多,不同组分在同一固定相上色谱峰出现时间可能相同,进凭色谱峰对未知物定性有一定困难。

对于一个未知样品,首先要了解它的来源、性质、分析目的;在此基础上,对样品可有初步估计;再结合已知纯物质或有关的色谱定性参考数据,用一定的方法进行定性鉴定。

(一)利用保留值定性1.已知物对照法各种组分在给定的色谱柱上都有确定的保留值,可以作为定性指标。

即通过比较已知纯物质和未知组分的保留值定性。

如待测组分的保留值与在相同色谱条件下测得的已知纯物质的保留值相同,则可以初步认为它们是属同一种物质。

由于两种组分在同一色谱柱上可能有相同的保留值,只用一根色谱往定性,结果不可靠。

可采用另一根极性不同的色谱柱进行定性,比较未知组分和已知纯物质在两根色谱柱上的保留值,如果都具有相同的保留值,即可认为未知组分与已知纯物质为同一种物质。

利用纯物质对照定性,首先要对试样的组分有初步了解,预先准备用于对照的已知纯物质(标准对照品)。

该方法简便,是气相色谱定性中最常用的定性方法。

2.相对保留值法对于一些组成比较简单的已知范围的混合物或无已知物时,可选定一基准物按文献报道的色谱条件进行实验,计算两组分的相对保留值:(5)式中:i-未知组分;s-基准物。

并与文献值比较,若二者相同,则可认为是同一物质。

(ris仅随固定液及柱温变化而变化。

)可选用易于得到的纯品,而且与被分析组分的保留值相近的物质作基准物。

2. 保留指数法又称为Kovats指数,与其它保留数据相比,是一种重现性较好的定性参数。

保留指数是将正构烷烃作为标准物,把一个组分的保留行为换算成相当于含有几个碳的正构烷烃的保留行为来描述,这个相对指数称为保留指数,定义式如下:(6)IX为待测组分的保留指数,z与z+n为正构烷烃对的碳数。

规定正己烷、正庚烷及正辛烷等的保留指数为600、700、800,其它类推。

气相色谱常用定量和定性方法

气相色谱常用定量和定性方法

fM
14
2020/10/20
3.2.2相对校正因子的查阅
3.2.3.1相对响应值(S ) 一种物质与相同量的参比物质的响应值之比 3.2.3.2 f =1/S
15
2020/10/20
3.2.3定量校正因子的测定
相对校正因子:采用的标准物因检测器不同而 不同: 热导池检测器TCD:苯 火焰离子化检测器FID:正庚烷
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
2.3.2.2方法
(1)将碳数为Z和Z+1的正构烷烃做标准物,加入到待测样品i中,测得这
三种物质的调整保留值,且tR(Z) < tR(i)< tR(Z+1)
I
100[Z
lg X i lg X Z lg X(Z 1) lg X Z
Xi%=fi×Ai Xs%=fs×As= fi×As Xi%/ Xs%= Ai/As Xi%= Xs% Ai/As
20
2020/10/20
3.3.4内标法
2.常用的色谱定性分析方法
2.1 根据保留值定性(用纯物质对照) 2.2 用双柱定性 2.3 利用文献值对照定性 2.4 GC-MS联用定性
4
2020/10/20
2.1 根据保留值定性--最常用的定性方法
2.1.1 依据 相同物质在相同的色谱条件下具有相同的保留值。
(1()即若:试若样tR中=ti某,组则分R的=i)保留值(tR) 与已知物相同,则试样中含有该物质。 (2)峰增高法:在待测物中加入已知物的纯物质,再与待测物色谱图比较,
]
(2)求出未知物的Ii,并与文献值对照定性 2.3.2.3注意

第十一章 色谱分析法——定性定量分析

第十一章 色谱分析法——定性定量分析
知识目标:
气相色谱法的定性分析
1、知道气相色谱流出曲线及常用的基本术语。 2、知道气相色谱的定性和定量方法
一、色谱流出曲线
色谱流出曲线:以组分电信号为纵坐标,流出时间为横坐标所得的曲线称为色谱流 出曲线或色谱图。该曲线反映了试样在色谱柱分离的效果,是组分定性和定量的依 据,同时也是研究色谱动力学和热力学的依据。
空气峰有时有,有时没有。
tM
②保留时间(tR):组分从进样到柱后出现浓度极大值时所需的时间。
③调整保留时间(t R ’): (1) t′R = tR-tM (2)反映组分在固定相中停 留的时间
(3)在实验条件一定时, t′R 决定于组分的性质,是定性 的基本参数。
(2) 相对保留值r21 组分2与组分1调整保留值之比:
内标法 当组分不能全部流出色谱柱,或检测器对样品中某些组分不产生信号,或只测
定样品中某一组分,采用内标法可获得准确结果。
1、测定步骤 (1)称取样品m样(其中:样品中待测组分i的质量用mi表示) (2)选定内标物。称取内标物ms。 (3)将内标物加入到已准确称量的样品中去。 (4)进样,测定待测组分的峰面积Ai和内标物的峰面积As。
气相色谱的定量分析 一、定量依据
样品中组分的质量与组分色谱峰的面积或峰高成正比。
m i = f i ·A i 或 m i = f i ·h i

绝色

对谱

校峰

正面

因积

文献查出
①准确测定Ai和hi ②准确求出f i ③计算mi
峰 高
峰面积A 1、定义:色谱峰与峰底基线所围成区域的面积叫峰面积。
c.将所测组分的相对保留值ris与手册数据对比作出定性判断。

气相色谱常用定量和定性方法ppt课件

气相色谱常用定量和定性方法ppt课件

定量注意事项
• 一般定量以峰面积为基准 • 所有参加计算的峰形正常(谱峰不前伸、不拖尾、不过载)的情
况下,也可以以峰高为基准进行计算 • 分子量相差不大或分子量较大的同系物校正因子相差不大,可直
接用峰面积(或峰高)定量
谢 谢!
准物S的调整保留时间ti’和ts ’ : ai,s = ti’/ ts ’
(2)计算ai,s并与文献相应值比较定性。 2.3.1.3特点 可消除实验条件不一致带来的误差。
2.3.2保留指数(I)定性法
2.3.2.1依据
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
校正因子与待测物/标准物的性质和检测器的类型有关,可查文献, 也可测定
3.2.1定量校正因子的分类
• 质量校正因子
• 摩尔校正因子
• 体积校正因子
• fM ′ =fV ′
fm
f' m(i)
f' m(s)
m(i) A(s) m(s) A(i)
fM
f' M (i)
f' M (s)
m(i) A(s)M (s) m(s) A(i)M (i)
• 绝对校正因子:用已知准确浓度的标准 样品
3.3常用的定量计算方法
3.3.1 归一化法 3.3.2 外标法 3.3.3 单点校正法 3.3.4 内标法 3.3.5 标准加入法 3.3.6 加内标的标准加入法
3.3.1 归一化法
3.3.1.1 方法
当样品中各组分都能出峰时,将各组分的含量之和
按100%计算的定量方法。
2024/1/26
1
主要内容
1.什么是色谱定性和定量分析 2.常用的色谱定性分析方法 3.常用的色谱定量分析方法

第三章 气相色谱法

第三章 气相色谱法

分离室:准确控制分离需要的温度。当试样复杂时, 分离室温度需要按一定程序控制温度变化,各组分 在最佳温度下分离。
5)检测系统
色谱仪的眼睛,通常由检测器、放大器、记录仪三部 分组成;
被色谱柱分离后的组分依次进入检测器,按其浓度 或质量随时间的变化,转化成相应电信号,经放大 后记录和显示,给出色谱图; 检测器:广谱型—对所有物质均有响应; 专属型—对特定物质有高灵敏响应;
毛细管柱结构流程
具有分流和尾吹装置
二、气相色谱的特点
① ② ③ ④ ⑤
分离效率高 灵敏度高 选择性好 分析速度快 应用范围广
第二节 气相色谱固定相
1. 固体固定相 2. 液体固定相 3. 合成固定相
一、固体固定相
一般采用固体吸附剂,主要用于分离和分 析永久性气体及气态烃类物质。 1. 强极性的硅胶 2. 弱极性的氧化铝 3. 非极性的活性炭 4. 特殊吸附作用的分子筛:碱及碱土金属的 硅铝酸盐(沸石),多孔性。
当试样由载气携带进入色谱 柱与固定相接触时,被固定 相溶解或吸附。 随着载气的不断通入,被溶 解或吸附的组分又从固定相 中挥发或脱附, 挥发或脱附下的组分随着载 气向前移动时又再次被固定 相溶解或吸附。 随着载气的流动,溶解、挥 发,或吸附、脱附的过程反 复地进行。
2、气相色谱流程
1-载气钢瓶;2-减压阀; 3-净化干燥管;4-针形 阀;5-流量计;6-压力表; 4-针形阀;5-流量计;6压力表;9-热导检测器; 10-放大器;11-温度控制 器;12-记录仪;
固定液一般为高沸点有机物,均匀涂在担体 表面,呈液膜状态。
1)对固定液的要求 选择性好:填充柱:r2,1>1.15,毛细管柱r2,1>1.08 热稳定性好 化学稳定性好 对试样各组分有适当的溶解能力 黏度低、凝固点低

气相色谱的定性和定量分析

气相色谱的定性和定量分析

实验七 气相色谱的定性和定量分析一、实验原理对一个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。

衡量一对色谱峰分离的程度可用分离度R 表示:()211221Y Y t t R R R -⨯-=,,式中,T R,2,Y 2和T R,1,Y 1分别是两个组分的保留时间和峰底宽,当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。

在实际应用中,R=1.0一般可以满足需要。

用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。

在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。

因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。

当手头上有待测组分的纯样时,作与已知物的对照进行定性分桥极为简单。

实验时,可采用单柱比较法、峰高加入法或双柱比较法。

单柱比较法是在相同的色谱条件下.分别对已知纯样及待测试样进行色谱分析.得到两张色谱图,然后比较其保留参数。

当两者的数值相同时,即可认为待测试样中有纯样组分存在。

双柱比较法是在两个极性完全不同的色谱住上,在各自确定的操作条件下,测定纯样和待测组分在其上的保留参数,如果都相同,则可准确地判断试样中有与此纯样相同的物质存在。

由于有些不同的化合物会在某一固定相上表现出相同的热力学性质,故双柱法定性比单柱法更为可靠。

在一定的色谱条件下,组分i 的质景m :或其在流动相中的浓度,与检测器的响应信号峰面积Ai 或峰高h ,成正比:2-10 或 2-11式中,f i A 和f i h 称为绝对校正因子。

式(2-10)和式(2-11)是色谱定量的依据。

不难看出,响应信号A 、h 及校正因了的淮确测量直接影响定定分析的准确度。

由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。

测量峰面积的方法分为于上测量和自动测量。

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验

气相色谱的定性和定量分析实验一、实验药品乙酸丁酯(AR)、正己烷(AR)、未知试样二、实验仪器SC3000气相色谱仪;注射器:1μL;容量瓶若干三、实验目的1、深入了解气相色谱仪的基本结构2、进一步熟悉气相色谱分离分析的基本原理3、学习计算色谱峰的分离度4、掌握根据保留值,作已知物对照定性的分析方法5、熟悉用归一化法定量测定混合物各组分的含量四、实验原理利用气相色谱仪,根据物质的沸点、极性、分子量等差别进行分离分析。

对—个混合试样成功地分离,是气相色谱法完成定性及定量分析的前提和基础。

衡量一对色谱峰分离的程度可用分离度R表示:式中,T R,2,w2和T R,1,w1分别是两个组分的保留时间和峰底宽(时间),当R=1.5时,两峰完全分离;当R=1.0时,98%的分离。

在实际应用中,R=1.0一般可以满足需要。

用色谱法进行定性分析的任务是确定色谱图上每一个峰所代表的物质。

在色谱条件一定时,任何一种物质都有确定的保留值、保留时间、保留体积、保留指数及相对保留值等保留参数。

因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何种物质。

在一定的色谱条件下,组分i的质量m:或其在流动相中的浓度,与检测器的响应信号峰面积Ai或峰高h,成正比:m i = f i A• A i(1)或m i = f i h• A i(2)式中,f i A和f i h称为绝对校正因子。

式(1)和式(2)是色谱定量的依据。

不难看出,响应信号A、h及校正因了的淮确测量直接影响定定分析的准确度。

由于峰面积的大小不易受操作条件如校温、流动相的流速、进样速度等因素的影响,故峰面积更适于作为定量分析的参数。

现代色谱仪中一般都配有准确测量色谱峰面积的电学积分仪。

由式(1),绝对校正因子可用下式表示:(3)式中,m i可用质量、物质的量及体积等物理量表示,相应的校正因子分别称为质量校正因子、摩尔校正因子和体积校正因子。

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析基本原理气相色谱是将有机物分离的一种方法,它也可以对混合物的组成进行定性定量分析。

混合物是通过在流动相和固定相中的相作用而分离的。

流动相和固定相构成色谱法的基础。

流动相可以有气体和液体两种状态,固定相则有液体和固体两种状态。

流动相是气体的称作气相色谱。

流动相是液体的称做液相色谱。

气相色谱是一种分配色谱,其固定相是由特定的液体黏附在一些固体基质上组成的。

各种气相色谱仪虽然在功能、价格和操作上有所不同,但其都是由气流系统、分离系统、检测系统和数据处理系统所组成的。

如下图:气相色谱的气流系统主要包括气源和气体纯化及调节装置。

气源一部分是作为流动相的载气,我们所使用的载气是氮气。

气源的另一部分是作为后期检测所用的燃烧气体,主要是氢气和空气。

由于进入分离系统的气体纯度需要保证,所以不论气源纯度如何,都应通过气体净化装置才能进入色谱分离系统。

虽然根据检测器或色谱柱不同,气相色谱的气体纯度有所差异,但所有气体的纯度至少要达到99%以上,许多情况下应达99?99%。

气相色谱分离系统包括样品汽化室和色谱柱两部分。

气相色谱分离技术需要所测有机物样品必须在气态才能进行,因此,首先需要将液态或固态的样品加热(100一300℃)汽化才能进入色谱柱进行分离。

这样气相色谱进样是用人工或自动注射的方式将有机样品首先注入汽化室。

气相色谱的定性定量分析气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定性定量分析。

所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。

色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。

有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。

色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

㈠定性分析气相色谱的定性分析主要有保留值定性法、化学试剂定性法和检测器定性法。

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析基本原理气相色谱是将有机物分离的一种方法,它也可以对混合物的组成进行定性定量分析。

混合物是通过在流动相和固定相中的相作用而分离的。

流动相和固定相构成色谱法的基础。

流动相可以有气体和液体两种状态,固定相则有液体和固体两种状态。

流动相是气体的称作气相色谱。

流动相是液体的称做液相色谱。

气相色谱是一种分配色谱,其固定相是由特定的液体黏附在一些固体基质上组成的。

各种气相色谱仪虽然在功能、价格和操作上有所不同,但其都是由气流系统、分离系统、检测系统和数据处理系统所组成的。

如下图:气相色谱的气流系统主要包括气源和气体纯化及调节装置。

气源一部分是作为流动相的载气,我们所使用的载气是氮气。

气源的另一部分是作为后期检测所用的燃烧气体,主要是氢气和空气。

由于进入分离系统的气体纯度需要保证,所以不论气源纯度如何,都应通过气体净化装置才能进入色谱分离系统。

虽然根据检测器或色谱柱不同,气相色谱的气体纯度有所差异,但所有气体的纯度至少要达到99%以上,许多情况下应达9999%。

气相色谱分离系统包括样品汽化室和色谱柱两部分。

气相色谱分离技术需要所测有机物样品必须在气态才能进行,因此,首先需要将液态或固态的样品加热 (100一300℃)汽化才能进入色谱柱进行分离。

这样气相色谱进样是用人工或自动注射的方式将有机样品首先注入汽化室。

气相色谱的定性定量分析气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定性定量分析。

所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。

色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。

有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。

色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

㈠定性分析气相色谱的定性分析主要有保留值定性法、化学试剂定性法和检测器定性法。

2-气相色谱

2-气相色谱

正构烷烃的保留指数为碳数100,测定时,将碳 数为Z和Z +n的正构烷烃加入到样品 x 中进行色谱
分析,此时测得这三个物质的调整保留值。
例:乙酸正丁酯在阿皮松L柱上的流出曲线如下 图所示。由图中测得调整保留距离为:乙酸正 丁酯310.0 mm,正庚烷174.0 mm,正辛烷373.4 mm。求乙酸正定酯的保留指数。
lg 310.0 lg174.0 I x 100 [7 ] 775.6 lg 373.4 lg174.0
在与文献值对照时,一定 要重视文献值的实验条件, 如固定液、柱温等。而且 要用几个已知组分进行验 证。
与其它分析仪器联用定性
气相色谱-质谱(GC-MS) 、NMR联用; 气相色谱-富里叶变换红外光谱(GC-FTIR)联用; 与化学方法配合进行定性鉴定;
A 1.065h t R b
适用范围:狭窄峰。 (5)数字积分仪求峰面积 应用范围广,精度一般可达0.2~2%。
定量校正因子
绝对校正因 子 单位峰面积(或单位峰高)的组分的量
f i mi / Ai
相对校正因子
f i mi / Ai mi As fi f s ms / As ms Ai
f f
' V
2 常用的几种定量分析方法 (1)归一化法
依据:组分含量与峰面积成正比
f i ' Ai Wi ' 100% ' ' f1 A1 f 2 A2 f 中所有组分 均须出峰
操作条件如进样量、载气流速等 变化时对结果的影响较小。
f i' hi i 100% f i' hi
已知水与内标物甲醇的相对质量校正因子分别为0.70和0.75,计算样品中水分

气相色谱的保留值法定性及归一化法定量

气相色谱的保留值法定性及归一化法定量

操作条件(色谱柱、温度、流速等)不变,在一定进 样量范围内:
mi fi' Ai
式中: mi为i组份的量, Ai为i组份的峰面积, fi '为比例常数,又称i组份的校正因子。
(fi '表示了单位峰面积所代表 i组份的量)
2019-5-18
谢谢观赏
5
• 由于各组分在检测器上的响应不同(等含量的各
• 组分得到的峰面积不同),需引入相对校正因子
柱温通常要等于或略高于样品的平均沸点(分析时间2030min);对宽沸程的样品,应使用程序升温方法。
2019-5-18
谢谢观赏
14
色谱柱及使用条件的选择
(1) 固定相的选择
气-液色谱,应根据“相似相溶”的原则 ①分离非极性组分时,通常选用非极性固定相。各组分 按沸点顺序出峰,低沸点组分先出峰。
② 分离极性组分时,一般选用极性固定液。各组分按极 性大小顺序流出色谱柱,极性小的先出峰。
2019-5-18
谢谢观赏
15
③分离非极性和极性的(或易被极化的)混合物,一般 选用极性固定液。此时,非极性组分先出峰,极性的(或易 被极化的)组分后出峰。
④醇、胺、水等强极性和能形成氢键的化合物的分离, 通常选择极性或氢键性的固定液。
⑤组成复杂、较难分离的试样,通常使用特殊固定液, 或混合固定相。
热敏元件:电阻率高、电阻温度系数大、且价廉易加工 的钨丝制成。
参考臂:仅允许纯载气通过,通常连接在进样装置之前。
测量臂: 需要携带被分 离组分的载气 流过,则连接 在紧靠近分离 柱出口处。
2019-5-18
谢谢观赏
18
(2)检测原理
平衡电桥,右图。 不同的气体有不同的热导系数。

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析

气相色谱的原理及定性定量分析基本原理气相色谱是将有机物分离的一种方法,它也可以对混合物的组成进行定性定量分析。

混合物是通过在流动相和固定相中的相作用而分离的。

流动相和固定相构成色谱法的基础。

流动相可以有气体和液体两种状态,固定相则有液体和固体两种状态。

流动相是气体的称作气相色谱。

流动相是液体的称做液相色谱。

气相色谱是一种分配色谱,其固定相是由特定的液体黏附在一些固体基质上组成的。

各种气相色谱仪虽然在功能、价格和操作上有所不同,但其都是由气流系统、分离系统、检测系统和数据处理系统所组成的。

如下图:气相色谱的气流系统主要包括气源和气体纯化及调节装置。

气源一部分是作为流动相的载气,我们所使用的载气是氮气。

气源的另一部分是作为后期检测所用的燃烧气体,主要是氢气和空气。

由于进入分离系统的气体纯度需要保证,所以不论气源纯度如何,都应通过气体净化装置才能进入色谱分离系统。

虽然根据检测器或色谱柱不同,气相色谱的气体纯度有所差异,但所有气体的纯度至少要达到99%以上,许多情况下应达99?99%。

气相色谱分离系统包括样品汽化室和色谱柱两部分。

气相色谱分离技术需要所测有机物样品必须在气态才能进行,因此,首先需要将液态或固态的样品加热 (100一300℃)汽化才能进入色谱柱进行分离。

这样气相色谱进样是用人工或自动注射的方式将有机样品首先注入汽化室。

气相色谱的定性定量分析气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定性定量分析。

所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。

色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。

有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。

色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。

㈠定性分析气相色谱的定性分析主要有保留值定性法、化学试剂定性法和检测器定性法。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘 要: 本文主要对气相色谱分析 中的定性方法和定量方 法进行 了阐述 。
关键词 : 气相色谱 ; 定性 ; 定量
在气 相 色谱 分析 中 , 当操 作条 件确 定后 , 将一 定量 样 品注 入色 谱 柱 , 经过 一定 时 间 , 品 中各组 分在柱 中被分 样 离, 经检 测器 后 , 在记 录仪 上 得 到 一 张 确定 的色 谱 图。 就 由谱图中每个组分峰的位置可进行定性分析 , 由每个色
( 从 地 层 水 的 矿 化 度 来 分 析 , 化 度 大 ቤተ መጻሕፍቲ ባይዱ 4) 矿
() 2 利用保 留值 的经验规律定性 大量实验结果 已经证明, 在一定柱温下 , 同系物的保 留值对数与分子中的碳数成线性关系, 此即为碳数规律 ; 另外同一族的具有相同碳数 的异构体 的保 留值对数与其 沸点成线性关系, 此即为沸点规律。 当 已知 样 品为某 一 同系列 , 但没 有纯 样 品对 照时 , 可 利用上 述 经验规 律定 性 。 () 3利用 其他 方法定 性 ①利用 化学方 法 配 合进 行 定 性 ; 可在 柱 后 把 流 出 还 物通人 有选 择性 的化 学试剂 中 , 利用 显性 、 淀 等对未 知 沉 物进行 定性 。 ②结 合仪 器进行 定性 气相色谱是 比较高效的分离分析工具 , 但对 复杂 的 混合物单靠色谱定性鉴定是很有困难的, 而红外光谱 、 质 谱等 仪器 分析方 法 对化 合 物 的定 性鉴 定 是 很 有 特 征 的 , 但对 复杂 混合物 的 分析 有 困难 , 因此 如 果 用 气 相 色谱 法 将复 杂混 合物 分成单 个或 复 杂 的组 成 , 然后 用质 谱 、 光谱 鉴定 则有 助于解 决许 多 问题 。近年 来 发展 了气 相色 谱 与 质谱 或红 外光谱 在 系统上 联用 , 离和 定性 同时进行 , 分 当 色谱分析完毕后时 , 质谱与光谱的谱图也就全部得到。
2 2 定 量校 正 因子 .
在气 相 色谱 中 , 行 定 量计 算 的依 据 是 每 个 组 分 的 进 含量与每个组分的峰面积( 或峰高) 成正 比例。
mi g f =
( 下转第 1 页) 6
( ̄f-  ̄: q嘲试技 术 1 -- 2年攀 ∞ 卷摹 3期
裹 2 措施前后效果统计情况表
2 定 量分 析
在气相色谱分析中的定量分析就是要根据色谱峰 的 峰高或峰面积来计算样品中各组分的含量 。无论采用峰 高或峰面积来进行定量 , 其物质浓度 和相应峰高或峰面 积之间必须呈直线 函数关系, 符合 函数式 A = × i这 i f m, i 是色谱定量分析的重要依据。定量分析方法很多 , 但各 种定量分析方法的使用范围和准确度是有条件的 , 一定 要 掌握 各种 方法 的特 点 , 活运 用 。 灵 2 1 峰高、 . 峰面积定量法 本方法较为简便 , 析结果 的准 确度 主要 取决 于进样 分 量 的重复 陛和操 作条件 的稳定 程度 , 如果 仪器 和操作 条 件 不稳定 , 对结果影 口 艮 , 大 需定期校正标准工作 曲线 。
谱峰 的峰高或峰面积进行定量分析。
1 定 性 分析
气相 色 谱 的定性 分 析就 是要 确定 谱 图中每个 色谱 峰 究 竟 代 表什 么 组分 。 因此必 须 了解每 个色 谱 峰位置 的表
示方 法 及定 性 分析 方法 。
11 常用保 留值 . 在气相色谱分析 中, 常用 的保 留值为保留时间。保 留时 间是指 从 进样 开始 到色 谱 图上 出现某 组分 浓度 极 大 值 时所 需要 的时 间 。 保 留时 间是 由两种 时 间构成 的。一是 被测 组分 通 过 固定 相所 占据 的柱 空 间体 积 、 进样 系统 与检 测 器 死 体 积 所消 耗 的 时间 , 常 叫死 时 间 。死 时 间 可 由不 与 固 定 相 通 发生 作 用 的惰 性组 分 ( 空 气 、 如 甲烷 ) 色谱 图上 出 现 峰 在 最高 点 所需 时 间来 表示 。另一是 由于被测 组 分与 固定 相 发生 吸附或 分 配过 程 , 造 成 被 测 组分 在色 谱 柱 中 滞 留 而 所需 的时 间 , 个 时 间仅 由被 测 组 分 和 固定 相 的热 力 学 这 性质 所 决定 。 由上述 分 析 可 知 , 体 积 与 被 测 组 分 的性 质 无 关 。 死 因此以保留时间与死体积的差值 , 即调整保留时间, 作为 被测 组 分 的定 性指 标 , 具有 更本 质 的意义 。 12 常用 的定 性 方法 . () 物质 对 照法 1纯 对组分不太复杂 的样 品 , 若想确定 色谱 图中某一未 知色谱峰所代表的组分 , 可选择一系列与未知组分相接 近的标准纯物质 , 依次进样 , 当某一纯物质的保留值与未 知 色谱 峰 的保 留 时 间相 同时 , 即可 初 步 确定 此 未 知 色 谱 峰所代表的组分。 严 格 地讲 , 在一 根 色 谱 柱 上 利 用 纯 物质 和未 知 组 仅 分 的保 留值相 同 , 为定 性 的依 据 是不 完善 的 , 作 因为在 一 根色谱柱上 , 可能有几种物质具有相 同的保 留值。如果 可能 , 应在两根极性不 同的色谱柱上进行验证 , 如在两根 极性不 同的柱上纯物质和未知组分的保 留值 皆相同 , 就 可 以确定 未 知物 与纯 物质 相 同 。
李健隽 : 气相 色谱 的定 性方法与定量方法
气 相 色谱 的定 性 方 法 与定 量 方 法
Qu laieMe da d Q a taieMe di p l ain ai t  ̄o n u ni t  ̄o GC A pi t t v t v n c o
李健 隽
( 尔 滨 市 计 量 检 定 测 试 院 , 龙 江 哈尔 滨 103 ) 哈 黑 506
相关文档
最新文档