最新初中数学 《等腰三角形》教学设计
八年级等腰三角形数学教案【优秀6篇】
八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。
等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。
)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。
问题4给学生留下悬念。
)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。
[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。
(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。
〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。
等腰三角形教案设计5篇
等腰三角形教案设计5篇等腰三角形教案设计5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
最新版初中数学教案《等腰三角形》教学案
h a §2.6 等腰三角形 第一课时 【学习目标】 1、经历探索等腰三角形的性质过程,掌握等腰三角形的轴对称性、三线合一、两底角相等等性质。
2、通过小组合作探究,发现并理解等腰三角形的性质。
3、能够利用等腰三角形的性质解决相关题目。
【学习重点、难点】重点:等腰三角形的性质。
难点:等腰三角形的性质及探索过程【学具准备】等腰三角形的半透明纸片【学习过程】〔一〕分组合作,实验探究现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰AB 、AC 重叠在一起,折痕为AD ,如下列图,你有什么新发现?你发现了什么?尝试归纳、概括,并与同伴交流,结合刚刚你的发现,思考:〔1〕等腰三角形是轴对称图形吗? .〔2〕∠BAD 与∠CAD 相等吗?为什么?〔3〕∠B 与∠C 相等吗?为什么?〔4〕折痕所在直线AD 与底边BC 有什么位置关系?〔5〕线段BD 与线段CD 的长相等吗?〔6〕折痕所在直线AD 具有怎样的性质?由此,我们可以得到等腰三角形的性质:〔1〕等腰三角形是轴对称图形,其对称轴是〔2〕等腰三角形的____________、___________、_________互相重合〔三线合一〕〔3〕等腰三角形两个_________相等。
〔即等边对等角〕〔二〕知识应用〔1〕在△ABC 中,AB=AC ,D 在BC 上,如果AD ⊥BC ,那么∠BAD=∠ ,BD=如果∠BAD=∠CAD ,那么AD ⊥ ,BD=如果BD=CD ,那么∠BAD=∠ ,AD ⊥〔2〕一个等腰三角形一腰上的高与另一腰的夹角是40°,求顶角的度数。
〔三〕例题探究如下列图,屋椽AB 和 AC 的长相等,∠A=120度,求∠B 的度数。
自主解决:〔四〕分组合作,实验探究根据等腰三角形的性质作图:底边及底边上的高作等腰三角形。
:底边a 、及底边上的高h 。
〔画出两条线段a 、h 〕求作:△ABC ,使得一底边为a 、底边上的高为h 。
八年级数学上册《等腰三角形的判定》教案、教学设计
八年级的学生已经具备了一定的几何图形认知基础,对三角形的性质有了初步的了解。在此基础上,学生对等腰三角形的判定这一章节内容的学习将更为顺利。然而,学生在几何证明和逻辑推理方面仍存在一定困难,需要教师在教学过程中给予关注和引导。此外,学生对数学学习的兴趣和积极性存在差异,部分学生对几何学习缺乏自信,教师应关注这一现象,采取差异化教学策略,激发学生的学习兴趣和自信心。通过对本章节的学习,使学生能够更好地理解和运用等腰三角形的判定方法,提高几何图形的解题能力,为后续学习打下坚实基础。
4.教学拓展:
-结合实际生活中的等腰三角形实例,让学生体会数学与生活的联系,提高学生的应用意识。
-引导学生探索等腰三角形与其他几何图形之间的关系,如等腰三角形与圆、正方形等,拓展学生的知识视野。
-组织课后研究性学习活动,鼓励学生自主探究等腰三角形的更多性质和应用,培养学生的探究精神。
四、教学内容与过程
3.生活实践题:让学生观察生活中的等腰三角形,并记录下来,分析它们的特点和应用。例如,观察三角尺、衣架、桥梁等,将观察结果以文字或图片形式进行展示。
4.小组合作研究:以小组为单位,选择以下课题进行研究,并在下一节课上进行汇报。
a.等腰三角形与等边三角形的关系。
b.等腰三角形在生活中的应用。
c.等腰三角形的判定方法在解决实际问题时的重要性。
讨论结束后,各小组汇报讨论成果,教师点评并给予指导。
(四)课堂练习
设计以下练习题,检验学生对等腰三角形判定方法的理解和应用:
1.判断以下三角形是否为等腰三角形,并说明理由。
2.已知等腰三角形的底和腰长,求底角和顶角的度数。
3.已知等腰三角形的底角,求顶角的度数。
学生在练习过程中,教师巡回指导,解答学生疑问,帮助学生掌握解题方法。
初中数学《等腰三角形》教案范例
初中数学《等腰三角形》教案范例教案标题:探究等腰三角形的性质与应用教学目标:1.知识与技能:理解等腰三角形的定义和性质,并能够应用相关知识解决问题;2.过程与方法:通过观察、分析、探究等方式,培养学生的探究精神和解决问题的能力;3.情感态度价值观:培养学生的合作精神、观察问题的意识,以及对数学的兴趣与热爱。
教学重点:1.掌握等腰三角形的定义和性质;2.学习应用等腰三角形的相关知识解决实际问题。
教学难点:1.理解等腰三角形的定义和性质;2.运用等腰三角形的性质解决实际问题。
教学准备:教师准备:教学课件、教学实例、纸笔;学生准备:教科书、笔记本电脑等。
教学过程:一、导入(5分钟)1.引入题目:你知道什么是等腰三角形吗?请简要描述一下。
2.提出问题:等腰三角形有哪些性质?我们可以如何证明这些性质?二、学习等腰三角形的定义与性质(10分钟)1.展示等腰三角形的定义:两边相等的三角形称为等腰三角形。
2.分享等腰三角形的性质:a.等腰三角形的底边对应的底角相等;b.等腰三角形的顶角等于180度减去底角的度数。
三、探究等腰三角形的性质与应用(30分钟)1.通过教学实例,让学生自主探究等腰三角形性质的应用,如证明等腰三角形的两边平分顶角,以及证明等腰三角形的高和底边的关系等。
2.通过讨论与分享,引导学生总结归纳等腰三角形的性质并进行记忆。
四、应用等腰三角形解决实际问题(20分钟)1.给出一些实际生活中的问题,如求等腰三角形的面积、周长或者边长等。
2.引导学生运用等腰三角形的性质进行解答,鼓励学生自主思考与合作讨论,加深对等腰三角形性质的理解。
五、拓展与归纳总结(15分钟)1.小结等腰三角形的定义与性质,让学生口头回答并做笔记。
2.提出问题:在平面几何中,还有哪些与等腰三角形有关的性质?请同学们自行查找并留作思考。
六、课堂练习与教学反思(10分钟)1.发放练习题,让学生独立完成,并在短时间内进行批改。
2.回顾课堂内容,对学生的学习情况进行评价与反思。
等腰三角形的教学设计(合集3篇)
等腰三角形的教学设计(合集3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的教学设计(合集3篇)等腰三角形的教学设计(1)教材分析:《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。
《等腰三角形》 教学设计
《等腰三角形》教学设计一、教学目标1、知识与技能目标学生能够理解等腰三角形的定义,掌握等腰三角形的性质和判定方法,并能运用这些知识解决简单的几何问题。
2、过程与方法目标通过观察、操作、猜想、证明等活动,培养学生的逻辑推理能力、动手操作能力和创新思维能力。
3、情感态度与价值观目标让学生在探索等腰三角形的性质和判定过程中,感受数学的严谨性和逻辑性,激发学生对数学的兴趣,培养学生的合作精神和探究精神。
二、教学重难点1、教学重点等腰三角形的性质和判定方法。
2、教学难点等腰三角形性质和判定的证明及应用。
三、教学方法讲授法、讨论法、探究法、直观演示法。
四、教学过程1、导入新课通过展示一些生活中常见的等腰三角形的图片,如等腰三角形的建筑、饰品等,引导学生观察这些图形的共同特征,从而引出本节课的主题——等腰三角形。
2、新课讲授(1)等腰三角形的定义结合图片,给出等腰三角形的定义:有两边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
(2)等腰三角形的性质①让学生拿出事先准备好的等腰三角形纸片,通过对折,观察并猜想等腰三角形的性质。
②引导学生从边、角、线段(中线、高线、角平分线)等方面进行猜想。
③对猜想进行证明。
例如,证明等腰三角形的两个底角相等。
已知:在△ABC 中,AB = AC。
求证:∠B =∠C。
证明:作底边 BC 的中线 AD。
因为 AB = AC,BD = CD,AD = AD,所以△ABD ≌△ACD(SSS)。
所以∠B =∠C。
通过类似的方法,证明等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合(三线合一)。
(3)等腰三角形的判定引导学生思考:如果一个三角形有两个角相等,那么这两个角所对的边是否相等?已知:在△ABC 中,∠B =∠C。
求证:AB = AC。
证明:作∠BAC 的平分线 AD。
因为∠BAD =∠CAD,∠B =∠C,AD = AD,所以△ABD ≌△ACD(AAS)。
初中数学初二数学上册《等腰三角形的性质定理》优秀教学案例
3.学生分享自己在学习等腰三角形性质定理过程中的收获和感悟,教师给予鼓励和指导。
(五)作业小结
1.教师布置适量的作业,包括等腰三角形性质定理的巩固练习和应用题,帮助学生巩固所学知识。
2.教师要求学生在完成作业的过程中,注意解题思路和方法,提高自己的几何证明能力。
二、教学目标
(一)知识与技能
1.理解等腰三角形的定义,掌握等腰三角形的两个底角相等、底边上的中线等于底边一半的性质定理。
2.学会运用等腰三角形的性质解决实际问题,如计算等腰三角形的面积、周长等。
3.能够运用等腰三角形的性质进行几何证明,提高逻辑推理能力。
4.培养学生的几何直观和空间想象能力,为后续学习几何图形打下基础。
Hale Waihona Puke 四、教学内容与过程(一)导入新课
1.教师通过展示等腰三角形的生活实例,如等腰三角形的玩具、建筑图形等,引导学生观察并思考:这些图形有什么共同特点?它们在现实生活中有哪些应用?
2.学生分享观察到的等腰三角形的特征,教师总结并引导学生回忆已学的三角形知识,为新课的学习做好铺垫。
3.提出问题:“等腰三角形的两个底角是否相等?如何证明?”激发学生的好奇心,引导学生进入新课的学习。
(二)讲授新知
1.教师引导学生通过画图、测量等手段,观察等腰三角形的两个底角是否相等,并引导学生思考如何运用几何知识进行证明。
2.教师通过直观演示和讲解,引导学生发现并掌握等腰三角形的性质定理:等腰三角形的两个底角相等,底边上的中线等于底边一半。
3.教师通过例题,展示如何运用等腰三角形的性质解决实际问题,如计算等腰三角形的面积、周长等。
等腰三角形的教学设计(9篇)
等腰三角形的教学设计(9篇)等腰三角形篇一2.5等腰三角形的轴对称性(2)教学目标1.掌握等腰三角形的判定定理。
2.知道等边三角形的性质以及等边三角形的判定定理。
3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径。
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力。
教学重点熟练地掌握等腰三角形的判定定理。
教学难点正确熟练地运用定理解决问题及简洁地逻辑推理。
教学过程(教师活动)学生活动设计思路前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识。
本节课我们将继续学习等腰三角形的轴对称性。
一、创设情境如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc 和一个底角△c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看。
1.学生观察思考,提出猜想。
2.小组交流讨论。
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题。
二、探索发现一请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:(1)在半透明纸上画一条长为6cm的线段bc.(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折。
问题1:ab与ac有什么数量关系?问题2:请用语言叙述你的发现。
1.根据实验要求进行操作。
2.画出图形、观察猜想。
3.小组合作交流、展示学习成果。
演示折叠过程为进一步的说理和推理提供思路。
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验。
三、分析证明思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?问题3:已知如图,在△abc中,△b=△c.求证:ab=ac.引导学分析问题,综合证明。
八年级数学上册《等腰三角形》教案、教学设计
在教学过程中,引导学生通过观察、分析、实践等环节,培养几何逻辑思维能力和解决问题的能力。
1.通过观察等腰三角形的实物或图形,培养学生的观察能力和几何直觉。
2.引导学生运用已学的几何知识,发现并证明等腰三角形的性质,提高学生的逻辑推理能力。
3.通过解决等腰三角形的相关问题,培养学生运用几何知识解决实际问题的能力。
2.学生回答:两边相等,两个角相等。
3.教师总结:这个三角形是我们今天要学习的等腰三角形。它有什么特殊的性质和判定方法呢?接下来,我们一起来探究。
(二)讲授新知
1.教师引导学生复习三角形的分类,回顾已学的全等三角形知识。
2.提出问题:等腰三角形有什么性质?如何判断一个三角形是等腰三角形?
3.教师通过画图、演示,引导学生发现等腰三角形的性质:两腰相等,两底角相等,底边上的中线、高线、角平分线互相重合。
a.等腰三角形在几何图形中的应用;
b.等腰三角形在实际生活中的例子;
c.等腰三角形与其他几何图形的关系。
请将探讨结果以书面形式提交,以促进同学们之间的交流与合作。
4.结合本节课所学知识,设计一道关于等腰三角形的证明题或应用题,并给出解题步骤。这个作业旨在提高同学们的几何逻辑思维能力和创新意识。
5.完成课后拓展题:在等腰三角形ABC中,若AB=AC,∠BAC=50°,求∠ABC和∠ACB的度数。请同学们尝试用不同的方法解决问题,并说明解题思路。
5.练习巩固,提高能力:设计不同难度的练习题,让学生分层练习,巩固所学知识,提高几何逻辑思维能力。
6.小组合作,交流提升:鼓励学生进行小组合作,共同探讨等腰三角形相关问题,培养学生的合作精神和团队意识。
7.总结反思,拓展延伸:在课堂尾声,引导学生总结所学知识,反思学习过程中的收获和不足,并进行适当的拓展延伸,激发学生的学习欲望。
等腰三角形的性质教学设计一等奖(精选13篇)
等腰三角形的性质教学设计一等奖(精选13篇)等腰三角形的性质教学设计一等奖(精选一三篇)作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的等腰三角形的性质教学设计一等奖(精选一三篇),希望对大家有所帮助。
等腰三角形的性质教学设计一等奖1一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。
使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。
通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。
它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。
等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。
由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。
最新版-等腰三角形的教学设计(优秀4篇)
等腰三角形的教学设计(优秀4篇)等腰三角形篇一14.3 课时安排4课时从容说课前面两节中,通过对生活中的轴对称现象的认识,进一步对轴对称的性质作了研究,还探讨了轴对称变换,能够作出一些简单的平面图形关于一条直线的对称图形,所以学生对这些结论已经有所了解。
本节在我们已学过的知识的基础上,进一步认识特殊的轴对称图形──等腰三角形,并探究等腰三角形的性质及等腰三角形的判定。
在探究等腰三角形的相关问题时,再对等边三角形的相关内容进行深入探讨。
本节的重点是探索等腰三角形和等边三角形的性质及判定,并利用这些性质和判定求解相关的问题,进一步发展学生的数学思维。
本节的重点同时也是本节的难点。
教师在教学中,不可操之过急,应逐步引导,让学生去发现去探索这些性质,学生对它的理解要有一个过程,对它的应用也要慢慢去认识,并且在教学中要注意对学生数学思想的渗透以及分析问题、解决问题能力的培养。
§14.3.1.1等腰三角形(一)第七课时教学目标(一)教学知识点1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。
2.探索并掌握等腰三角形的性质。
(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯。
教学重点1.等腰三角形的概念及性质。
2.等腰三角形性质的应用。
教学难点等腰三角形三线合一的性质的理解及其应用。
教学方法探究归纳法。
教具准备师:多媒体课件、投影仪;生:硬纸、剪刀。
教学过程ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。
这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。
来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是。
初中数学初二数学上册《等腰三角形》教案、教学设计
1.教师将学生分成小组,每组发放一张含有等腰三角形的图形,要求学生找出图形中的等腰三角形,并讨论其性质。
2.各小组汇报讨论成果,教师点评并给予鼓励。
3.教师提出问题:“等腰三角形性质在解题过程中有什么作用?”引导学生进一步探讨。
(四)课堂练习,500字
1.教师发放练习题,题目涵盖等腰三角形的性质、判定以及运用等方面。
初中数学初二数学上册《等腰三角形》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握等腰三角形的定义及性质,能够识别并运用等腰三角形的性质解决问题。
2.培养学生运用几何图形、符号、文字等多种表达方式描述等腰三角形的特征,提高学生的数学表达能力。
3.通过对等腰三角形性质的学习,使学生能够运用这些性质进行简单的几何证明,培养逻辑思维能力。
作业要求:
1.学生独立完成作业,确保作业质量,书写规范,答案准确。
2.家长协助监督,关注学生的学习进度,鼓励学生主动思考和解决问题。
3.教师在批改作业时,注意学生的解题思路和方法,及时发现问题,有针对性地进行辅导。
4.学生完成作业后,进行自我检查,确保作业无误,养成良好的学习习惯。
3.结合等腰三角形的性质,思考并完成以下问题:若已知等腰三角形的一腰和底边,如何求解该等腰三角形的面积?请给出解题步骤和答案。
4.小组合作,探讨等腰三角形在生活中的应用,并以图文并茂的形式展示成果,提高学生的合作意识和实践能力。
5.完成课后拓展题:已知等腰三角形ABC,AB=AC,D、E分别是BC、AC上的点,且BD=CE。求证:AD垂直平分CE。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的解答进行展示和点评,强调解题过程中的注意事项,如证明步骤、逻辑关系等。
初中数学等腰三角形的性质教案优秀9篇
初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。
)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。
想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。
)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点等边三角形的。
判定定理和直角三角形的性质定理。
教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。
等腰三角形性质教学设计(共5篇)
第 1 篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标〔一〕、知识目标1、掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行有关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
〔2〕、能力目标1、培养学生“转化〞的数学思想及应用意识,初步掌握作辅助线的规律及“分类讨论〞的思想。
2、培养学生进行独立思量,提高独立解决问题的能力。
〔三〕、德育目标通过本节课教学,激发学生探索在现实生活中与数学有关的实际问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点1、教学重点:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程课的导入:〔一〕、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形)〔二〕、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.〔三〕、普通三角形有那些性质?〔两边之和大于第三边.三个内角的和等于180°〕 . 〔四〕、图片展示等腰三角形在日常生活中的实例。
新课讲解〔一〕、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两个底角还有什么关系?〔二〕、〔电脑或者几何画板演示〕结论:折叠等腰三角形或者改变等腰三角形的腰长后,两底角之间依旧保持相等关系。
〔三〕、证明结论,得出性质1、性质定理的证明。
〔1〕学生找出文字命题的题设、结论、画图,换成符号语言。
〔2〕引导学生寻觅辅助线、如何添加辅助线。
〔3〕电脑显示证明过程。
〔4〕说明“等边对等角〞的作用。
2、推论 1 的证明。
〔1〕进一步启示学生得到“等腰三角形三线合一〞的性质。
〔2〕说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。
等腰三角形教案
等腰三角形教案一、教学目标1. 理解等腰三角形的定义和性质。
2. 能够识别等腰三角形,并能够使用等腰三角形的性质解决问题。
3. 发展学生的逻辑思维和分析问题的能力。
二、教学内容1. 等腰三角形的定义和性质。
2. 等腰三角形的边和角的关系。
3. 等腰三角形的分类。
三、教学过程1. 导入(5分钟)教师可以利用实物或图片展示等腰三角形,向学生提问:“你在这个图形中看到了什么规律?”引导学生发现等腰三角形的特点。
2. 知识讲解(15分钟)教师向学生详细讲解等腰三角形的定义和性质。
强调等腰三角形的两边相等,并且两等长边所对的两个角也相等。
3. 案例分析(20分钟)教师给学生提供一些实际问题,让学生运用等腰三角形的性质来解决。
例如:“一个房顶是等腰三角形,两边长为6米,底边长为10米,求房顶的高度是多少?”通过这样的案例分析,学生可以意识到等腰三角形的性质在实际问题中的应用。
4. 练习与巩固(25分钟)学生进行一些练习题,巩固等腰三角形的知识和应用能力。
教师可以设计一些填空、选择或计算题目,加深学生对等腰三角形的理解。
5. 拓展(10分钟)教师向学生介绍其他类型的三角形,如直角三角形、锐角三角形和钝角三角形,并与等腰三角形进行比较。
通过比较不同类型三角形的性质,学生可以加深对等腰三角形的理解。
6. 归纳总结(5分钟)教师与学生一起归纳总结等腰三角形的定义和性质,并鼓励学生自主思考和提问。
四、教学评价教师可以通过观察学生在练习和案例分析中的表现,以及学生提问和参与讨论的情况来进行评价。
同时,教师可以设计一些小测验或考试来检验学生对于等腰三角形的理解和应用能力。
五、教学延伸为了进一步提高学生对等腰三角形的认识和运用能力,教师可以组织学生进行团队合作的小组活动,让学生通过多种方式解决问题。
同时,教师还可以引导学生自主学习,探究等腰三角形的其他性质和应用场景。
六、教学反思等腰三角形是初中数学中重要的基础概念之一。
通过本节课的教学,学生能够通过实例理解等腰三角形的定义和性质,并能够运用等腰三角形的性质解决实际问题。
人教版八年级上册13.3《等腰三角形》优秀教学案例
1.设计具有针对性的作业,让学生巩固所学知识。
2.鼓励学生对自己的学习过程进行反思,发现自己的不足,找出改进方法。
3.对学生的作业进行评价,给予肯定和鼓励,提高他们的自信心。
在作业小结环节,我会设计具有针对性的作业,让学生巩固所学知识。同时,我会鼓励学生对自己的学习过程进行反思,发现自己的不足,找出改进方法。最后,我会对学生的作业进行评价,给予肯定和鼓励,提高他们的自信心。通过这些措施,帮助学生更好地理解和掌握等腰三角形的性质。
五、案例亮点
1.情景创设贴近生活:通过实物模型、图片等直观教具,以及生动的生活实例,我成功吸引了学生的注意力,让他们在轻松愉快的氛围中学习等腰三角形的性质。这种情景创设的方式不仅提高了学生的学习兴趣,还使他们更加深刻地理解了数学在实际生活中的运用。
2.问题导向激发学生思考:我设计了一系列具有启发性的问题,引导学生独立思考、主动探究。这种问题导向的教学策略,使学生在思考和解决问题的过程中,提高了自己的逻辑思维和问题解决能力。
三、教学策略
(一)情景创设
1.利用实物模型、图片等直观教具,为学生创设生动、具体的主动探究等腰三角形的性质。
3.通过数学软件(如几何画板)动态演示等腰三角形的性质,让学生在直观感受中理解知识。
在教学过程中,我会充分利用实物模型、图片等直观教具,为学生创设生动、具体的学习情境。例如,我可以让学生观察一些生活中的等腰三角形物体,如金字塔、腰带等,从而引出等腰三角形的概念。同时,我会设计一些有趣的问题,如“等腰三角形为什么叫等腰三角形?”“等腰三角形的底角是否相等?”等,引导学生主动探究等腰三角形的性质。此外,我还会利用几何画板等数学软件,动态演示等腰三角形的性质,让学生在直观感受中理解知识。
八年级数学上册---《等腰三角形》课堂设计
八年级数学上册---《等腰三角形》课堂设计3分钟7分钟5分钟复习导入探究新知复习:有两条边相等的三角形叫做等腰三角形. 等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.探究1:如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?问题:仔细观察自己剪出的三角形纸片,你能发现这个三角形有什么特征吗?追问:同学们剪下的等腰三角形纸片大小不同,形状各异,是否都具有上述所概括的特征?事实上,△ABC中,AB=AC,是等腰三角形,这个结论不随纸片大小和形状而变化。
探究2:前面我们认识了轴对称图形,探究了轴对称的性质.这节课我们就从轴对称的角度来认识等腰三角形.问题1:观察探究1中剪出的等腰三角形,研究三角形的对称性、底角以及三角形内重要线段有什么特点。
在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍然成立吗?由此你能概括出等腰三角形的性质吗?总结等腰三角形的性质:(1)等腰三角形的两个底角相等;(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.问题2:以上性质是利用实验操作的方法通过猜想得到的,你能通过严格的逻辑推理证明这个结论吗?(1)你能根据结论画出图形,写出已知、求证吗?(2)结合所画的图形,你认为证明两个底角相等的思路是什么?(3)如何在一个等腰三角形中构造出两个全等三角形呢?教师指导证明等腰三角形的性质1.已知:△ABC中,AB=AC.求证:∠B=∠C.方法1:作底边上的中线作底边的中线AD,则BD=CD.∵{AB=AC,BD=CD,AD=AD,5分钟3分钟新知应用课堂练习∴△BAD≅△CAD(SSS)∴ ∠B=∠C.教师追问,你还有其他方法证明性质1吗?方法2:作∠A的平分线AD,则用SAS证全等方法3:作AD⊥BC于D,则用HL证全等.问题3:性质2可以分解为三个命题,你能分别证明吗?本节课证明“等腰三角形底边上的中线也是底边上的高和顶角的平分线”.问题4:在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此,你能发现等腰三角形具有什么特征?总结等腰三角形特征:等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.例.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC中个各角的度数.解:∵AB=AC,BD=BC=A D,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《等腰三角形》教学设计班级:初一(1)学科:数学课型:新授课教师:张三一·教材分析:1、本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。
2、等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。
3、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。
4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。
5、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。
6、新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。
7、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。
8、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。
二·学情分析1、授课班级为平行班,学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。
2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。
3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。
三·教学目标:1、知识目标:等腰三角形的相关概念,两个定理的理解及应用。
2、技能目标:理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。
3、情感目标:体会数学的对称美,体验团队精神,培养合作精神。
四·教学中的重点、难点:重点: 1、等腰三角形对称的概念。
2、“等边对等角”的理解和使用。
3、“三线合一”的理解和使用。
难点: 1、等腰三角形三线合一的具体应用。
2、等腰三角形图形组合的观察,总结和分析。
五·主要教学手段及相关准备:教学手段: 1、使用导学法、讨论法。
2、运用合作学习的方式,分组学习和讨论。
3、运用多媒体辅助教学。
4、调动学生动手操作,帮助理解。
准备工作: 1、多媒体课件片断,辅助难点突破。
2、学生课前分小组预习,上课时按小组落座。
3、学生自带剪刀,圆规,直尺等工具。
4、每人得到一张印有“长度为a的线段”的纸片。
六·教学设计策略:依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。
2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。
3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。
七·教学步骤及说明(一)学生活动:1、预习相关概念及定理。
2、观察并回答。
(二)教师活动: 1、课题引入:让学生观察两把三角尺,从三角形分类思考“两把三角尺的形状除了角度不同外还有什么区别”2、在对学生思考结果的总结基础上,引入新课题。
(三) 教学目标:从直观图形上,回忆小学知识,体会等腰三角形。
(四)教学说明 1、培养学生良好的学习习惯。
2、在小学知识和第八章三角形知识的基础上,学生比较容易得到结论。
(五)学生同步回答:等腰三角形的相关概念,腰,底边,顶角,底角(由于学生有相应的小学的知识和预习,基本概念的理解不成问题)。
(六)学生运用直尺或圆规和剪刀进行绘图和剪切:指导学生做一做,要求:在事先准备的纸上,画一个腰长为a的等腰三角形,并将它剪下来,与组内其他成员的作品放在一起,并观察和回答问题(深入体会,等腰三角形的构成和画三角形的方法,由于三角形的形状不限,方法不限,学生绘制的结论也有所不同)。
(七)学生观察并思考,然后讨论,然后积极回答。
1、第一个问题:观察所剪得的三角形形状是否相同,在满足条件的情况下,可以画几个不同类的等腰三角形。
教学目标:1、直观体会钝角等腰三角形,锐角等腰三角形,直角等腰三角形的不同特点。
2、体会已知两边不能确定三角形,为理解全等或三角形的构成作铺垫。
2、第二个问题:将这些三角形放在一起,并且使顶点重合,观察另外的一些顶点,看看有什么特点和发现。
教学目标:1、培养学生的观察,猜测,总结的能力;2、体验等腰三角形在圆中的存在;3、体会合作的乐趣;4、体会从特殊到一般的过程,为今后的轨迹思想做一些准备. (八)学生对自己剪得的等腰三角形作操作,体会对称的思想,在讨论的基础上,回答更高层次的问题。
问题一:等腰三角形是否为轴对称图形,如何通过具体的操作体现他是轴对称,并指出对称轴;问题二:等边三角形是否为轴对称图形,对称轴有几条;等腰三角形的对称轴有几条。
教学目标:1、从轴对称角度理解等腰三角形,为后面的等量关系的得出做铺垫;2、体验学习过程;3、加深对一般情况和特殊情况的理解,提高学生对两解问题的敏感度。
(九) 学生观察,并且以小组竞赛的方式进行大范围的搜索和体验。
1、通过刚才的折叠结合屏幕上图形的字母,说明轴对称图形的等量关系和位置关系;2、在总结刚才观察结论的基础上,引出两条重要的定理。
教学目标:1、体会轴对称图形中的等量关系和由此得到的特殊位置关系。
为下面定理的引出得出有用的结论;2、感受组间竞争;3、体验从特殊到一般的过程;4、体验合作和竞争的关系。
(十)深入探究、加强巩固1、集体讨论并互相帮助记忆重要的结论,每个小组抽查记忆;2、学生思考,看书理解,然后讨论每一步的理由;3、小组讨论,并且竞争回答;4、学生讨论,并且试图写出过程;5、学生讨论,通过讨论,体会数学定理的使用和数学语言的组织;6、学生在自己剪得的等腰三角形上画上已知条件,并且观察是否相等,然后进行相应证明的思考,并积极讨论;7、学生小组讨论后发言;8、开放性问题,自由发言。
(十一)随堂练习1、已知:在△ABC中,AB=AC,∠B=80°.求∠C和∠A的度数.2、如果等腰三角形的一个外角等于140°,那么等腰三角形三个内角等于多少度?3、在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数?4、建筑工人在盖房子的时候,要看房梁是否水平,可以用一块等腰三角形放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板的底边中点,那么房梁就是水平的,为什么?5、等腰△ABC中,AB=AC,D、E是BC上的两点,若BD=CE,那么AD和AE相等吗?为什么?(十二)课堂小结: 1、通过今天的学习,你体会到什么?2、通过今天的学习,你有哪些方法判断剪得的三角形是等腰三角形?教学目标:1、体验原定理和逆定理的关系;(不作任何表述,只做理解)2、完成对定理1的应用。
体会定理在几何计算中的运用;3、体会合作精神;4、体会两解可能性的运用,培养思维的严密性;5、注意分类表达的合理性和清晰性;6、对三线合一的使用;7、结合学生的过程书写,体会合情推理;8、体会三线合一在生活中的使用;9、体验数学语言的精练和准确;10、直观体验轴对称的概念,以及应用对称思想实现辅助线的寻找;11、继续体验合情推理的使用;12、培养学生开放性思维的运用。
(十三)课后小结:由于运用了新课程教学方法和理念,知识从不同的方向得到了渗透。
基本完成了课前制定的教学目标和教学要求,为进一步的深入理解打下了基础。
布置作业:课后习题2、3、4题做到作业本上,其余的同学们自己看一下,有兴趣的同学自己做一下。
施工组织设计和专项施工方案审查的基本内容一、施工组织设计和专项施工方案审查的基本内容施工组织设计:1编审程序应符合相关规定;2施工进度、施工方案及工程质量保证措施应符合施工合同要求;3资源(资金、劳动力、材料、设备)供应计划应满足工程施工需要;4安全技术措施应符合工程建设强制性标准;5施工总平面布置应科学合理。
6审查施工组织设计中的生产安全事故应急预案,重点审查应急组织体系、相关人员职责、预警预防制度、应急救援措施。
专项施工方案:7编审程序应符合相关规定;8安全技术措施应符合工程建设强制性标准。
二、项目监理机构在安全方面应重点检查施工单位哪些内容?1.施工单位现场安全生产规章制度的建立和落实情况;2.施工单位安全生产许可证及施工单位项目经理资格证、专职安全生产管理人员上岗证和特种作业人员操作证;3.施工机械和设施的安全许可验收手续;4审查施工单位报审的专项方案;5.定期巡视检查危险性较大的分部分项工程施工作业情况。
三、工程开工应同时具备哪些条件?(十四)。