新北师大版八年级数学上册第二次月考考试试题(含答案)

合集下载

最新北师大版八年级数学上册第二次月考试卷及答案【完美版】

最新北师大版八年级数学上册第二次月考试卷及答案【完美版】

最新北师大版八年级数学上册第二次月考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.下列运算正确的是( )A .4=±2B .(4)2=4C .2(4)-=﹣4D .(﹣4)2=﹣44.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( )A .35°B .40°C .45°D .50°9.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,点A 的坐标为(1,3),则点C 的坐标为( )A .(-3,1)B .(-1,3)C .(3,1)D .(-3,-1)10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 3.因式分解:24x -=__________.4.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ’B ’C ,A ’B ’交AC 于点D ,若∠A ’DC=90°,则∠A= °.5.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将BMN △沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠B =________°.6.如图所示,在△ABC 中,∠B =90°,AB =3,AC =5,将△ABC 折叠,使点C 与点A 重合,折痕为DE ,则△ABE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程组:23328x y x y -=⎧⎨+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知a 、b 、c 满足2225(32)0a b c ---=(1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、D6、B7、C8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、()()()22a b a a -+-2、03、(x+2)(x-2)4、55.5、956、7三、解答题(本大题共6小题,共72分)1、21x y =⎧⎨=⎩2、22x -,12-.3、(1)a =b =5,c =2)能;4、(1)△AEF 、△OEB 、△OFC 、△OBC 、△ABC 共5个,EF=BE+FC ;(2)有,△EOB 、△FOC ,存在;(3)有,EF=BE-FC .5、(1)2;(2)60︒ ;(3)见详解6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

北师大版八年级数学上册第二次月考试卷(完整版)

北师大版八年级数学上册第二次月考试卷(完整版)

北师大版八年级数学上册第二次月考试卷(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m-m-10m-m-m2=+,则计算:的结果为().A.3 B.-3 C.5 D.-52.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个5.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠56.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁8.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.比较大小:23133.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。

2023-2024学年八年级数学上学期第一次月考【北师大版】(附解析)

2023-2024学年八年级数学上学期第一次月考【北师大版】(附解析)

2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .52.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2 B .﹣2与√−83 C .﹣2与−12 D .2与|﹣2|3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 24.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0 B .x ≥﹣1 C .x <﹣1 D .x >﹣1且x ≠05.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .256.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C 到旗杆底部B 的距离为5米,则旗杆的高度为( )米.A.5B.12C.13D.177.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:58.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√139.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤1610.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为,面积为.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.18.计算:(1)2√3(√12−√75+13√108)(2)(√a3b−√ab3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法;(填“正确”或“错误”)(2)已知△ABC的其中两边长分别为1,√7,若△ABC为“类勾股三角形”,则另一边长为;(3)如果Rt△ABC是“类勾股三角形”,它的三边长分别为x,y,z(x,y为直角边长且x<y,z为斜边长),用只含有x的式子表示其周长和面积.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.2023-2024学年八年级数学上学期复习备考高分秘籍【北师大版】专题3.1第一次月考阶段性测试卷(10月培优卷,八上北师大第1~2章)班级:_____________ 姓名:_____________ 得分:_____________本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2023春•滨海新区期末)25的算术平方根是( )A .﹣5B .±5C .25D .5 【答案】D【分析】直接利用算术平方根的定义得出答案.【解答】解:25的算术平方根是:5.故选:D .【点评】此题主要考查了算术平方根,正确把握定义是解题关键.2.(2023•邵阳县校级模拟)下列各组数中互为相反数的是( ) A .﹣2与√(−2)2B .﹣2与√−83C .﹣2与−12D .2与|﹣2| 【答案】A【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A 、√(−2)2=2,﹣2与√(−2)2是互为相反数,故本选项正确; B 、√−83=−2,﹣2与√−83相等,不是互为相反数,故本选项错误;C 、﹣2与−12是互为倒数,不是互为相反数,故本选项错误;D 、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A .【点评】本题考查了实数的性质,对各项准确计算是解题的关键.3.(2022秋•徐汇区校级期末)下列根式中,是最简二次根式的是( )A .√0.2bB .√12a −12bC .√x 2−y 2D .√5ab 2 【答案】C【分析】A 选项的被开方数中含有分母;B 、D 选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C 选项符合最简二次根式的要求.【解答】解:因为:A 、√0.2b =√5b 5; B 、√12a −12b =2√3a −3b ;D 、√5ab 2=√5a |b |;所以这三项都可化简,不是最简二次根式.故选:C .【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4.(2023•新都区模拟)代数式√x+1x 有意义的x 的取值范围是( ) A .x ≥﹣1且x ≠0B .x ≥﹣1C .x <﹣1D .x >﹣1且x ≠0【答案】A【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意,得{x +1≥0x ≠0, 解得:x ≥﹣1且x ≠0.故选:A .【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后,应排除在取值范围内使分母为0的x 的值.5.(2023春•孝感期末)如图,在△ABC 中,∠C =90°,AC =3,BC =2,以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .6B .9C .13D .25【答案】C【分析】先根据勾股定理求出AB的长,再由正方形的面积公式即可得出结论.【解答】解:∵∠C=90°,AC=3,BC=2,∴AB=√AC2+BC2=√32+22=√13,∴正方形的面积=(√13)2=13.故选:C.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.6.(2023春•长垣市期末)如图,数学兴趣小组要测量学校旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,则旗杆的高度为()米.A.5B.12C.13D.17【答案】B【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【解答】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12.答:旗杆的高度为12米.故选:B.【点评】此题考查了勾股定理的应用,熟知勾股定理是解题关键.7.(2022秋•昌图县期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC 是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5D.a:b:c=3:4:5【答案】C【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可.【解答】解:A、∵∠B=∠C+∠A,且∠A+∠B+∠C=180°,∴∠B=90°,故△ABC是直角三角形;B、∵a2=(b+c)(b﹣c),∴a2+c2=b2,故△ABC是直角三角形;C、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,∴最大角∠C=75°≠90°,故△ABC不是直角三角形;D、由条件可设a=3k,则b=4k,c=5k,那么a2+b2=c2,故△ABC是直角三角形;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.也考查了三角形内角和定理.8.(2021秋•诸暨市期中)若9−√13的整数部分为a,小数部分为b,则2a+b等于()A.12−√13B.13−√13C.14−√13D.15−√13【答案】C【分析】先估算√13的大小,再估算9−√13的大小,进而确定a、b的值,最后代入计算即可.【解答】解:∵3<√13<4,∴﹣4<−√13<−3,∴5<9−√13<6,又∵9−√13的整数部分为a,小数部分为b,∴a=5,b=9−√13−5=4−√13,∴2a+b=10+(4−√13)=14−√13,故选:C.【点评】本题考查估算无理数,掌握无理数估算的方法是解决问题的前提,理解无理数的整数部分和小数部分的表示方法是得出正确答案的关键.9.(2023春•赵县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是()A.h≤17B.h≥8C.15≤h≤16D.7≤h≤16【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB=√AD2+BD2=17,∴此时h=24﹣17=7,所以h的取值范围是7≤h≤16.故选:D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.10.(2022秋•高州市期末)下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个【答案】A【分析】利用面积法证明勾股定理即可解决问题.【解答】解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×12ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×12ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=12(a+b)(a+b)=2×12×ab+12c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b−b−a2)(a+b−a2)=12ab+12c⋅12c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.【点评】本题考查了勾股定理的证明、正方形的性质、直角三角形面积的计算;熟练掌握正方形的性质,运用面积法得出等式是解决问题的关键.二.填空题(共6小题)11.(2023春•南陵县期末)√8与最简二次根式√m+1是同类二次根式,则m=1.【答案】见试题解答内容【分析】先把√8化为最简二次根式2√2,再根据同类二次根式得到m+1=2,然后解方程即可.【解答】解:∵√8=2√2,∴m+1=2,∴m=1.故答案为1.【点评】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.12.(2023春•华蓥市校级期末)直角三角形的两条直角边长分别为√2cm、√10cm,则这个直角三角形的斜边长为2√3cm,面积为√5cm2.【答案】见试题解答内容【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长=√(√2)2+(√10)2=2√3cm;直角三角形的面积=12×√2×√10=√5cm2.故填2√3cm,√5cm2.【点评】此题主要考查勾股定理及三角形的面积.13.(2023春•丰台区校级期中)已知√6.213≈2.493,√62.13≈7.882,则√62130≈249.3.【答案】249.3.【分析】根据“被开方数的小数点向右或向左移动2位,它们的算术平方根的小数点就相应地向右或向左移动1位”解答即可.【解答】解:∵被开方数62130可由6.213的小数点向右移动4位得到,∴√62130可由√6.123的算术平方根2.493的小数点向右移动2位得到,即√62130≈249.3.故答案为:249.3.【点评】本题考查算术平方根的规律,熟悉被开方数小数点移动与其算术平方根小数点移动的规律是解题的关键.14.(2023春•五莲县期末)已知a=3+2√2,b=3﹣2√2,则a2b﹣ab2=4√2.【答案】见试题解答内容【分析】根据二次根式的运算法则即可求出答案.【解答】解:∵a=3+2√2,b=3﹣2√2,∴ab=9﹣8=1,a﹣b=4√2,∴原式=ab(a﹣b)=4√2,故答案为:4√2【点评】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.15.(2022秋•兴隆县期末)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【答案】见试题解答内容【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=√5,OC=√6,OD=√7∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.16.(2023•宁津县校级开学)如图所示,某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为600√3米.【答案】见试题解答内容【分析】过点C作CO⊥AB,垂足为O,由图可看出,三角形OAC为一直角三角形,已知一直角边和一角,则可求斜边.【解答】解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300√3∴AC=600√3米.故答案为600√3.【点评】本题考查了直角三角形的性质和勾股定理.三.解答题(共7小题)17.(2021秋•乐山期末)如图,在正方形网格中,小正方形的边长为1,点A,B,C为网格的交点.(1)判断△ABC的形状,并说明理由;(2)求AB边上的高.【答案】见试题解答内容【分析】(1)根据题意,可以分别求得BC 、AC 、AB 的长,然后利用勾股定理的逆定理,即可判断△ABC 的形状;(2)根据等积法,可以求得AB 边上的高.【解答】解:(1)△ABC 为直角三角形, 理由:由图可知,AC =√22+42=2√5,BC =√12+22=√5,AB =√32+42=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形;(2)设AB 边上的高为h , 由(1)知,AC =2√5,BC =√5,AB =5,△ABC 是直角三角形,∴12BC ⋅AC =12AB ⋅ℎ, 即12×√5×2√5=12×5h ,解得,h =2, 即AB 边上的高为2.【点评】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.18.计算: (1)2√3(√12−√75+13√108)(2)(√a 3b −√ab 3)√ab(3)(√2−√12)(√18+√48)(4)(5√12−6√32)(14√8+√23)(5)(2√7+5√2)(5√2−2√7)(6)(√3+√2)2013×(√3−√2)2012.【答案】见试题解答内容【分析】(1)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(2)先把括号内的各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(3)先把各二次根式化为最简二次根,然后合并后进行二次根式的乘法运算;(4)先进行二次根式的乘法运算,然后合并即可;(5)利用平方差公式计算;(6)利用积的乘方进行计算.【解答】解:(1)原式=2√3(2√3−5√3+2√3)=2√3×(−√3)=﹣6;(2)原式=(a√ab−b√ab)•√ab=(a﹣b)√ab•√ab=ab(a﹣b)=a2b﹣ab2;(3)原式=(√2−2√3)(3√2+4√3)=6+4√6−6√6−24=﹣2√6−18;(4)原式=54√12×8+5√12×23−32√32×8−6√32×23=52+5√33−3√3−6=−72−4√33;(5)原式=(5√2)2﹣(2√7)2=50﹣28=22;(6)原式=[(√3+√2)(√3−√2)]2012•(√3+√2)=√3+√2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.19.(2023•江门校级三模)如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.【答案】见试题解答内容【分析】先由勾股定理求AB=10.再用勾股定理从△DEB中建立等量关系列出方程即可求CD的长.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE=AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.【点评】此题不但考查了勾股定理,还考查了学生折叠的知识,折叠中学生一定要弄清其中的等量关系.20.(2022秋•巴中期末)已知:3a+1的立方根是﹣2,2b﹣1的算术平方根是3,c是√43的整数部分.(1)求a,b,c的值;(2)求2a﹣b+92c的平方根.【答案】见试题解答内容【分析】(1)根据立方根、算术平方根、无理数的估算即可求出a、b、c的值;(2)求出代数式2a﹣b+92c的值,再求这个数的平方根.【解答】解:(1)∵3a+1的立方根是﹣2,∴3a+1=﹣8,解得,a=﹣3,∵2b﹣1的算术平方根是3,∴2b﹣1=9,解得,b=5,∵√36<√43<√49,∴6<√43<7,∴√43的整数部分为6,即,c=6,因此,a=﹣3,b=5,c=6,(2)当a=﹣3,b=5,c=6时,2a﹣b+92c=−6﹣5+92×6=16,2a﹣b+92c的平方根为±√16=±4.【点评】本题考查算术平方根、立方根、无理数的估算,掌握算术平方根、立方根和无理数的估算是正确解答的前提.21.(2023春•金安区校级期末)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路,完成解答过程.(1)作AD⊥BC于D,设BD=x,用含x的代数式表示CD,则CD=14﹣x;(2)请根据勾股定理,利用AD作为“桥梁”建立方程,并求出x的值;(3)利用勾股定理求出AD的长,再计算三角形的面积.【答案】见试题解答内容【分析】(1)直接利用BC的长表示出DC的长;(2)直接利用勾股定理进而得出x的值;(3)利用三角形面积求法得出答案.【解答】解:(1)∵BC=14,BD=x,∴DC=14﹣x,故答案为:14﹣x;(2)∵AD⊥BC,∴AD2=AC2﹣CD2,AD2=AB2﹣BD2,∴132﹣(14﹣x)2=152﹣x2,解得:x=9;(3)由(2)得:AD=√AB2−BD2=√152−92=12,∴S△ABC=12•BC•AD=12×14×12=84.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出AD的长是解题关键.22.(2023春•金乡县月考)在学习完勾股定理这一章后,小梦和小璐进行了如下对话.小梦:如果一个三角形的三边长a,b,c满足a2+b2=2c2,那我们称这个三角形为“类勾股三角形”,例如△ABC的三边长分别是√2,√6和2,因为(√2)2+(√6)2=2×22,所以△ABC是“类勾股三角形”.小璐:那等边三角形一定是“类勾股三角形”!根据对话回答问题:(1)判断:小璐的说法 正确 ;(填“正确”或“错误”)(2)已知△ABC 的其中两边长分别为1,√7,若△ABC 为“类勾股三角形”,则另一边长为 2或√13 ; (3)如果Rt △ABC 是“类勾股三角形”,它的三边长分别为x ,y ,z (x ,y 为直角边长且x <y ,z 为斜边长),用只含有x 的式子表示其周长和面积.【答案】(1)正确;(2)2或√13;(3)周长为(1+√2+√3)x ,面积为√22x 2. 【分析】(1)根据“类勾股三角形”的定义进行判断即可;(2)设出第三边,利用“类勾股三角形”的定义分三种情况讨论求解并进行验证即可;(3)根据勾股定理和类勾股三角形的性质将b 、c 用a 表示,即可求出结果.【解答】解:(1)设等边三角形三边长分别是a ,b ,c ,则a =b =c ,∴a 2+b 2=2c 2,∴等边三角形是“类勾股三角形”,∴小璐的说法正确.故答案为:正确;(2)设另一边长为x ,①12+(√7)2=2x 2,解得x =2,符合题意;②12+x 2=2(√7)2,解得x =√13,符合题意;③x 2+(√7)2=2×12,x 无解;故答案为:2或√13;(3)∵Rt △ABC 是“类勾股三角形”且x <y ,z 为斜边长,∴x 2+z 2=2y 2,由勾股定理得x 2+y 2=z 2,整理得x 2+x 2+y 2=2y 2,即2x 2=y 2,∴y =√2x , ∴z 2=3x 2,∴z =√3x ,∴Rt △ABC 的周长为x +y +z =(1+√2+√3)x ,Rt △ABC 的面积为12xy =12x •√2x =√22x 2. 【点评】本题考查勾股定理,理解题目中的新定义及掌握勾股定理是解题关键.23.(2021秋•丰泽区校级期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长度;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【答案】(1)7;(2)答案见解答.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD=√AB2−BD2=√132−52=12,Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH在△CHB和△AEF中,∵{BH=EF∠CBH=∠AFE=45°BC=AF,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.。

北师大版八年级(上)数学第二次月考(12月)试卷(4)

北师大版八年级(上)数学第二次月考(12月)试卷(4)

北师大版八年级(上)数学第二次月考(12月)试卷(4)一.选择题(共6小题,满分12分,每小题2分)1.(2分)实数3的平方根是()A.B.C.D.92.(2分)用四舍五入法,865600精确到千位的近似值是()A.8.65×105B.8.66×105C.8.656×105D.8650003.(2分)如图,在△ABC中,PB=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,则三个结论:①AS=AR;②QP∥AR;③AB+AQ=2AR中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确4.(2分)已知一次函数y=2x+b,当x=3时,y=10,则该一次函数的表达式为()A.y=﹣x+13B.y=x+7C.y=2x+4D.y=2x﹣4 5.(2分)如图,平面直角坐标系内有一个Rt△ABC已知B(﹣2,0),C(2,0),直角顶点A在第一象限,且∠ABC=30°,D为BC边上一点,将△ACD沿AD翻折使点C落在AB边上的点E处,再将△BDE沿DE翻折使点B落在点F处,则点F的坐标为()A.(1﹣,3﹣3)B.(﹣1,3﹣3)C.(﹣1,﹣1)D.(1﹣,﹣1)6.(2分)一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1B.2C.3D.4二.填空题(共10小题,满分20分,每小题2分)7.(2分)在,3.14,0,0.101 001 000 1,中,无理数有个.8.(2分)比较大小:﹣﹣2;3.9.(2分)点与(﹣3,7)关于x轴对称,点与(﹣3,7)关于y轴对称,点(﹣3,7)与(﹣3,﹣2)之间的距离是.10.(2分)在平面直角坐标系中,将点P(﹣3,2)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为.11.(2分)如图:点(﹣2,3)在直线y=kx+b(k≠0)上,则不等式kx+b≥3关于x的解集是.12.(2分)如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CDEF.设若A(0,3),C(4,0),则BD2+BF2﹣BC2的最小值为.13.(2分)已知一次函数y=2x+b图象与正比例函数y=kx图象交于点(2,3)(k,b是常数),则关于x的方程2x=kx﹣b的解是.14.(2分)点(x1,y1),(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1y2.15.(2分)如图,在三角形ABC中,AD为中线,AB=4,AC=2,AD为整数,则AD的长为.16.(2分)在直角坐标系中,已知两点A、B的坐标分别是(0,−4)、(0,2),那么A与B两点之间的距离是(结果保留根号).三.解答题(共10小题,满分68分)17.(6分)(1)求等式中x的值:(x+1)3+27=0;(2)计算:.18.(4分)若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.19.(6分)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,若∠EAF=∠BAD,可求得EF、BE、FD之间的数量关系为.(只思考解题思路,完成填空即可,不必书写证明过程)(2)如图2,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,若∠EAF=∠BAD,判断EF、BE、FD之间的数量关系还成立吗,若成立,请完成证明,若不成立,请说明理由.【可借鉴第(1)问的解题经验】20.(6分)如图,在△ABC中,DE垂直平分BC,BD平分∠ABC.(1)若∠ADB=48°,求∠A的度数;(2)若AB=5cm,△ABC与△ABD的周长只差为8cm,且△ADB的面积为10cm2,求△ABC的面积.21.(6分)在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣5,4),(﹣3,0),(0,2).(1)画出三角形ABC,直接写出三角形ABC的面积;(2)若将三角形ABC平移得到三角形A'B'C',三角形ABC中的任意一点P(a,b)经过平移后的对应点P'的坐标是(a+4,b﹣3),直接写出平移的方法;(3)若点D在直线AC下方且在x轴上,三角形ACD的面积为7,直接写出D点的坐标;(4)仅用无刻度直尺在AC边上画点E,使三角形ABE的面积为6(保留画图痕迹).22.(6分)已知直线y=kx+b经过点A(0,﹣3),且平行于直线y=﹣2x﹣1.(1)求这条直线y=kx+b的表达式;(2)如果这条直线y=kx+b经过点B(m,3)求点A与点B之间的距离.23.(8分)四名同学两两一队,从学校集合进行徒步活动,目的地是距学校10千米的前海公园.由于乙队一名同学迟到,因此甲队两名同学先出发.24分钟后,乙队两名同学出发.甲队出发后第30分钟,一名同学受伤,处理伤口,稍作休息后,甲队由一名同学骑单车载受伤的同学继续赶往目的地.若两队距学校的距离s(千米)与时间t(小时)之间的函数关系如图所示,请结合图象,解答下列问题:(1)甲队在队员受伤前的速度是千米/时,甲队骑上自行车后的速度为千米/时;(2)当t=时,甲乙两队第一次相遇;(3)当t≥1时,什么时候甲乙两队相距1千米?24.(8分)如图,已知△ABC,AB<BC,请用尺规作图的方法在BC上取一点P,使得P A+PC =BC(保留作图痕迹,不写作法)25.(8分)如图,在△ABC中,∠BAC=90°,AB=6cm,BC=10cm,点D在线段AC上,且CD=2cm,动点P从距A点10cm的E点出发,以每秒2cm的速度沿射线EA的方向运动了t秒.(1)AD的长为;(2)写出用含有t的代数式表示AP,并写出自变量的取值范围;(3)直接写出多少秒时,△PBC为等腰三角形.26.(10分)在平面直角坐标系xOy中,函数y=2x的图象与函数y=﹣kx+3的图象交于点A(1,m).(1)求k的值;(2)过点A作x轴的平行线l,直线y=2x+b与直线l交于点B,与函数y=﹣kx+3的图象交于点C,与x轴交于点D.当点BD=2BC时,求b的值.。

2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

2024-2025学年北师大版八年级数学上册第一次月考综合测试卷(含答案)

八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。

北师大版八年级上册数学第二次月考试卷(含答案)

北师大版八年级上册数学第二次月考试卷(含答案)

北师大版八年级上册数学第二次月考试卷(含答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.在△ABC 中,AB=10,,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.下列说法中错误的是( )A .12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN的周长为___________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:2211(1)m m m m +--÷,其中3.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、C5、D6、A7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2≥.2、x13、32或424、(-4,2)或(-4,3)5、46、42.三、解答题(本大题共6小题,共72分)x=1、42、3、(1)1;(2)m>2;(3)-2<2m-3n<184、略(2)∠EBC=25°5、略.6、(1)2元;(2)至少购进玫瑰200枝.。

最新北师大版八年级数学上册11月份月考测试题及答案解析(精品试题).docx

最新北师大版八年级数学上册11月份月考测试题及答案解析(精品试题).docx

八年级(上)月考数学试卷(11月份)一、选择题(共10小题,每小题3分,满分30分) 1.下列计算正确的是( ) A . a 2•(﹣a )2=a 4 B . ﹣a 8+a 4=﹣a 4 C . (2a 2)3=6a 6D . a 2•a 3=a 62.下列图形中不是轴对称图形的是( )A .B .C .D .3.在一次函数y=(2m+2)x+5中,y 随x 的增大而减小,那么( ) A . m <﹣1 B . m >﹣1C . m=1D . m <14.如图的分割正方形,拼接成长方形方案中,可以验证( )A . (a+b )2=a 2+2ab+b 2B . (a ﹣b )2=a 2﹣2ab+b 2C . (a+b )2=(a+b )2﹣4abD . (a+b )(a ﹣b )=a 2﹣b 25.等腰三角形一个角等于70°,则它的底角是( )A.70°B.55°C.60°D.70°或55°6.若(x+3)•(x﹣p)=x2+mx+36,则p、m的值分别是()A.p=12,m=14 B.p=﹣12,m=15 C.p=﹣12,m=﹣9 D.p=12,m=97.若单项式2x m y3与单项式﹣3xy n的和也是单项式,则单项式2x m y3与单项式﹣3xy n乘积为()A.﹣6x2y3B.﹣6x2y6C.﹣6xy3D.﹣6x2y58.若实数k、b满足kb<0,且不等式kx<b的解集是x,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.如图所示,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D.∠MON=60°,则∠BDC=()A.120°B.130°C.140°D.150°10.如图折线ABCDE描述了一汽车在某一直路上行驶时汽车离出发地的距离s(千米)和行驶时间t(小时)间的变量关系,则下列结论正确的是()A.汽车共行驶了120千米B.汽车在行驶途中停留了2小时C.汽车在整个行驶过程中的平均速度为每小时24千米D.汽车自出发后3小时至5小时间行驶的速度为每小时60千米二、填空题(共10小题,每小题3分,满分30分)11.函数中自变量x的取值范围是.12.计算(20a2﹣4a)÷4a= .13.光的速度约是每秒钟3×105千米,有一颗恒星发射的光要10年才能到达地球,若一年以3.1×107秒计算,这颗恒星与地球的距离用科学记数法表示为千米.14.将直线y=5x+6平移后过点(2,﹣1),则平移后直线的解析式为.15.若函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为.16.如图,在△ABC中,AB=AC,BD=CD,AD=AE,∠BAD=40°,∠CDE= .17.计算(﹣)7×494= .18.如图,把一张矩形的纸片沿对角线折叠,若BE平分∠ABD,FE=3,CD=3,则△BFD的面积S= .19.已知,一次函数y=kx+b的图象与正比例函数交于点A,并与y轴交于点B(0,﹣4),△AOB的面积为6,则kb= .20.如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点,AB=10厘米,则MD的长为厘米.三、解答题(共8小题,满分60分)21.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.22.在正方形网格中每个小正方形边长都是1个单位,如图建立直角坐标系,△ABC在坐标系中位置如图所示(1)作出△ABC关于y轴对称的△A1B1C1;(2)△ABC的面积是.23.如图,△ABC中,AB=AC,∠1=∠2,求证:AD平分∠BAC.24.一张展开后桌面平行于地面的折叠型方桌如图甲,从正面看如图乙,已知AO=BO=40cm,C0=D0=30cm,现将桌子放平,两条桌腿叉开的角度∠AOB刚好为120°,求桌面到地面的距离是多少?25.一辆汽车的油箱中现有汽油49升,如果不再加油,那么油箱中的油y(单位:升)随行驶里程x(单位:公里)的增加而减少,平均耗油量为0.07升/公里.(1)写出y与x之间的函数关系式;(2)求自变量x的取值范围;(3)汽车行驶200公里时,油箱中还有多少汽油?26.A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A,B 两校运往甲、乙两校的费用如下表:C校(元/台)D校(元/台)A校40 80B校0 50(1)设A校运往C校的电脑为x台,求总运费y(元)关于x的函数关系式,直接写出x的取值范围;(2)求出总运费最低的调运方案,最低运费是多少?27.如图:在平面直角坐标系中,直线y=2x+6与x轴、y轴分别交于A、B两点,点C(4,0),过点C作直线AB的垂线,垂足为点D,交y轴于点E,S△ADC=.(1)求直线CD的解析式;(2)点P从点B出发,以每秒2个单位的速度沿射线BE运动,运动时间为t秒,过P点作y轴的垂线,交直线AB于点M,交直线DC于点N,线段MN的长为d(d>0),求d与t的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,DM=DE时,求t值.28.如图,△ABD是等腰三角形,AB=AD,将△ABD沿BD翻折至△CBD,过点A作AP⊥AB交BD 于点P,点F在线段CD上,(1)如图一,连接PF,若∠DPF=45°,求证:AD=AP+DF(2)如图二,若∠ABD=30°,点F为AP延长线与CD的交点,点Q在线段BD上,且DQ=3BQ,连接BF、CQ,试探究线段BF与线段CQ的数量关系,并说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列计算正确的是()A.a2•(﹣a)2=a4B.﹣a8+a4=﹣a4C.(2a2)3=6a6D.a2•a3=a6考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方与积的乘方、合并同类项、同底数幂的乘法公式解答.解答:解:A、a2•(﹣a)2=a2+2=a4,故本选项正确;B、﹣a8和a4不是同类项,不能合并,故本选项错误;C、(2a2)3=8a6,故本选项错误;D、a2•a3=a5,故本选项错误;故选A.点评:本题考查了合并同类项,同底数幂的乘法,积的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.2.下列图形中不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在一次函数y=(2m+2)x+5中,y随x的增大而减小,那么()A.m<﹣1 B.m>﹣1 C.m=1 D.m<1考点:一次函数图象与系数的关系.分析:先根据一次函数的增减性得出关于m的不等式,求出m的取值范围即可.解答:解:∵一次函数y=(2m+2)x+5中,y随x增大而减小,∴2m+2<0,解得m<﹣1.故选A.点评:本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0时,y随x的增大而减小是解答此题的关键.4.如图的分割正方形,拼接成长方形方案中,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=(a+b)2﹣4ab D.(a+b)(a﹣b)=a2﹣b2考点:平方差公式的几何背景.分析:对图形中阴影部分的面积进行计算即可得到相关的等式:矩形的面积=正方形的面积﹣空白部分的面积.解答:解:如图所示,矩形的面积=正方形的面积﹣空白部分的面积,则(a+b)(a﹣b)=a2﹣b2.故选:D.点评:本题考查了平方差公式的几何背景.表示出图形阴影部分面积是解题的关键.5.等腰三角形一个角等于70°,则它的底角是()A.70°B.55°C.60°D.70°或55°考点:等腰三角形的性质.分析:题中没有指明这个角是底角还是顶角,故应该分情况进行分析,从而求解.解答:解:①当这个角为顶角时,底角=(180°﹣70°)÷2=55°;②当这个角是底角时,底角=70°.故选D.点评:此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.6.若(x+3)•(x﹣p)=x2+mx+36,则p、m的值分别是()A.p=12,m=14 B.p=﹣12,m=15 C.p=﹣12,m=﹣9 D.p=12,m=9考点:多项式乘多项式.分析:将(x+3)•(x﹣p)展开,再由对应相等得出p与m的值.解答:解:∵(x+3)•(x﹣p)=x2+mx+36,∴x2+(3﹣p)x﹣3p=x2+mx+36,∴3﹣p=m,﹣3p=36,解得p=﹣12,m=15,故选B.点评:本题考查了多项式乘以多项式,注意运算法则是解题的关键.7.若单项式2x m y3与单项式﹣3xy n的和也是单项式,则单项式2x m y3与单项式﹣3xy n乘积为()A.﹣6x2y3B.﹣6x2y6C.﹣6xy3D.﹣6x2y5考点:单项式乘单项式;合并同类项.分析:首先利用合并同类项法则求出m,n的值,进而利用单项式乘以单项式求出即可.解答:解:∵单项式2x m y3与单项式﹣3xy n的和也是单项式,∴m=1,n=3,则单项式2x m y3与单项式﹣3xy n乘积为:2xy3×(﹣3xy3)=﹣6x2y6.故选:B.点评:此题主要考查了单项式乘以单项式以及合并同类项法则,得出m,n的值是解题关键.8.若实数k、b满足kb<0,且不等式kx<b的解集是x,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系;不等式的性质.分析:先根据不等式kx<b的解集是x判断出k的符号,进而可得出结论.解答:解:∵不等式kx<b的解集是x,∴k<0.∵kb<0,∴b>0,∴函数y=kx+b的图象经过一、二、四象限.故选C.点评:本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b中,当k<0,b>0时函数的图象在一、二、四象限是解答此题的关键.9.如图所示,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D.∠MON=60°,则∠BDC=()A.120°B.130°C.140°D.150°考点:角平分线的性质;全等三角形的判定与性质.专题:几何综合题.分析:首先由P为BC的中点,过P作BC的垂线交OA于点D得出BD=CD,再过点D作∠MON 两边的垂线交两边于点E和F,则DE=DF,则Rt△DEB≌Rt△DFC,得∠BDE=∠CDF,通过等量代换得∠BDC=∠EDF,由已知∠MON=60°,得出∠EDF=120°,即∠BDC=120°.解答:解:已知P为BC的中点,DP⊥BC,∴BD=CD,过点D作∠MON两边的垂线交两边于点E和F,则DE=DF,在Rt△DEB和Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC,∴∠BDE=∠CDF,∠BDC=∠BDF+∠CDF,∠EDF=∠BDF+∠BDE,∴∠BDC=∠EDF,已知∠MON=60°,∴∠EDF=360°﹣90°﹣90°﹣∠MON=120°,即∠BDC=120°,故选:A.点评:此题由角平分线性质和证明三角形全等得出∠BDC=∠EDF是关键.10.如图折线ABCDE描述了一汽车在某一直路上行驶时汽车离出发地的距离s(千米)和行驶时间t(小时)间的变量关系,则下列结论正确的是()A.汽车共行驶了120千米B.汽车在行驶途中停留了2小时C.汽车在整个行驶过程中的平均速度为每小时24千米D.汽车自出发后3小时至5小时间行驶的速度为每小时60千米考点:函数的图象.分析:根据观察图象的横坐标、纵坐标,可得行驶的路程与时间的关系,根据路程与时间的关系,可得速度.解答:解:A、由纵坐标看出,行驶最远是120千米,由最远又行驶到出发点,路程是120千米,共行驶了240千米,故A错误;B、由横坐标看出,停留的时间是2﹣1.5=0.5(小时),故B错误;C、汽车在整个行驶过程中的平均速度为每小时240÷5=48(千米),故C错误;D、汽车自出发后3小时至5小时间行驶的速度为每小时120÷2=60(千米),故D正确;故选:D.点评:本题考查了函数图象,观察函数图象的横坐标、纵坐标获得信息是解题关键.二、填空题(共10小题,每小题3分,满分30分)11.函数中自变量x的取值范围是x≥1 .考点:函数自变量的取值范围.分析:根据二次根式有意义的条件,被开方数是非负数就可以求得.解答:解:根据二次根式的意义可得:x﹣1≥0,解得:x≥1.点评:主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.计算(20a2﹣4a)÷4a= 5a﹣1 .考点:整式的除法.分析:直接利用多项式除以单项式的法则即可求出结果.解答:解:(20a2﹣4a)÷4a=5a﹣1.故答案为5a﹣1.点评:本题考查多项式除以单项式.多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.13.光的速度约是每秒钟3×105千米,有一颗恒星发射的光要10年才能到达地球,若一年以3.1×107秒计算,这颗恒星与地球的距离用科学记数法表示为9.3×1013千米.考点:科学记数法—表示较大的数.分析:利用有理数的乘法运算法则结合同底数幂的乘法法则求出即可.解答:解:由题意得:3.1×107×3×105×10=9.3×1013.故答案为:9.3×1013.点评:此题考查科学记数法的表示方法以及同底数幂的乘法运算,正确掌握运算法则是解题关键.14.将直线y=5x+6平移后过点(2,﹣1),则平移后直线的解析式为y=5x﹣11 .考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=5x+b,然后将点(2,﹣1)代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=5x+b.把(2,﹣1)代入直线解析式得﹣1=5×2+b,解得b=﹣11.所以平移后直线的解析式为y=5x﹣11.故答案为:y=5x﹣11.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.15.若函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为x>2 .考点:一次函数与一元一次不等式.分析:从图象得到函数y=kx+b的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.解答:解:从图象知,函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,∴当x>2是,y<0,即关于x的不等式kx+b<0的解集是x>2.故答案为x>2.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.16.如图,在△ABC中,AB=AC,BD=CD,AD=AE,∠BAD=40°,∠CDE= 20°.考点:等腰三角形的性质.分析:根据等腰三角形三线合一性质可得到AD同时还是顶角的角平分线和底边的高线,从而可求得∠CAD与∠ADC的度数,再根据AD=AE,利用三角形内角和定理可求得∠ADE的度数,从而不难求解.解答:解:∵AB=AC,BD=CD,∴AD平分∠BAC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°.∵AD=AE,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC﹣∠ADE=20°.∴故答案为为20°.点评:本题主要考查等腰三角形的判定与性质,还涉及三角形内角和等知识点,需要熟练掌握等腰三角形的判定与性质.17.计算(﹣)7×494= ﹣7 .考点:幂的乘方与积的乘方.分析:根据幂的乘方,可得78,再根据积得乘方,可得(﹣)7,根据负数的奇次幂是负数,可得答案.解答:解:原式=(﹣)7×(72)4=(﹣)7×78=7×=7×(﹣1)=﹣7.点评:本题考查了幂的乘方与积得乘方,先算幂的乘方,再算积的乘方,注意负数的奇次幂是负数.18.如图,把一张矩形的纸片沿对角线折叠,若BE平分∠ABD,FE=3,CD=3,则△BFD的面积S= .考点:翻折变换(折叠问题).分析:首先根据勾股定理求出DF的长度,然后借助面积公式即可解决问题.解答:解:如图,根据题意得:DE=DC=,∠E=∠C=90°;由勾股定理得:,∴DF=6,∴,即△BFD的面积S=,故答案为:.点评:该命题主要考查了翻折变换及其应用问题;同时还考查了勾股定理、矩形的性质、三角形的面积公式等几何知识点.19.已知,一次函数y=kx+b的图象与正比例函数交于点A,并与y轴交于点B(0,﹣4),△AOB的面积为6,则kb= 4或﹣.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:一次函数经过点(0,﹣4),代入即可求得b的值,即已知△AOB中,OB的值,根据△AOB的面积为6,即可求得k的值,从而求解.解答:解:把(0,﹣4)代入y=kx+b,得到b=﹣4;则OB=4,设A的横坐标是m,则根据△AOB的面积为6,得到×4×|m|=6,解得m=±3.把x=±3代入正比例函数y=x,解得y=±1,则A的坐标是(3,1)或(﹣3,﹣1).当A是(3,1)时,代入y=kx﹣4,得到k=.则kb=﹣×4=﹣;当A是(﹣3,﹣1)时,代入y=kx﹣4,得到k=﹣1,则kb=(﹣1)×(﹣4)=4.故答案为4或﹣.点评:本题主要考查了待定系数法求函数解析式,把三角形面积以及线段的长的问题转化为点的坐标的问题.20.如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点,AB=10厘米,则MD的长为 5 厘米.考点:三角形的外角性质;三角形内角和定理;直角三角形斜边上的中线.专题:计算题.分析:取AB中点N,连接DN,MN.根据直角三角形的性质、等腰三角形的性质证明∠NDB=∠B,根据三角形的中位线定理和平行线的性质证明∠NMB=∠C,结合三角形的外角的性质和已知条件可得∠DNM=∠C=∠NMD,从而发现DM=DN.解答:解:取AB中点N,连接DN,MN.在Rt△ADB中,N是斜边AB上的中点,∴DN=AB=BN.∴∠NDB=∠B.在△ABC中,M,N分别是BC,AB的中点.∴MN∥AC,∴∠NMB=∠C.又∠NDB是△NDM的外角,∴∠NDB=∠NMD+∠DNM.即∠B=∠NMD+∠DNM=∠C+∠DNM.又∠B=2∠C,∴∠DNM=∠C=∠NMD.∴DM=DN.又AB=10(厘米),∴DM=5(厘米).故答案为5.点评:此题综合运用了直角三角形的性质、等腰三角形的性质、三角形的中位线定理、平行线的性质和三角形的外角的性质.三、解答题(共8小题,满分60分)21.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣.考点:整式的混合运算—化简求值.分析:先利用乘法公式化简代数式,再代入求值.解答:解:原式=(4x2+12xy+9y2)﹣(4x2﹣y2),=4x2+12xy+9y2﹣4x2+y2,=12xy+10y2,当x=,y=﹣时,原式=12×()×(﹣)+10×(﹣)2,=﹣2+2.5=.点评:本题考查了完全平方公式,平方差公式,关键是先化简代数式,再代入求值,要注意运算符号的处理.22.在正方形网格中每个小正方形边长都是1个单位,如图建立直角坐标系,△ABC在坐标系中位置如图所示(1)作出△ABC关于y轴对称的△A1B1C1;(2)△ABC的面积是 4 .考点:作图-轴对称变换.分析:(1)利用轴对称图形的性质得出对应点的坐标进而得出答案;(2)利用矩形面积减去周围三角形的面积得出答案即可.解答:解:(1)如图所示:△A1B1C1,即为所求;(2)△ABC的面积是:3×4﹣×4×2﹣×1×2﹣×3×2=4.故答案为:4.点评:此题主要考查了轴对称变换以及三角形面积求法,得出对应点位置是解题关键.23.如图,△ABC中,AB=AC,∠1=∠2,求证:AD平分∠BAC.考点:全等三角形的判定与性质.专题:证明题.分析:先利用等腰三角性质和已知条件求出∠ABD=∠ACD,从而证明△ABD≌△ACD,所以∠BAD=∠CAD,AD平分∠BAC.解答:解:∵AB=AC,∴∠ABC=∠ACB.∵∠1=∠2,∴∠ABD=∠ACD,BD=CD.∵AB=AC,BD=CD,∴△ABD≌△ACD.∴∠BAD=∠CAD.即AD平分∠BAC.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题比较简单,要从∠1=∠2认知思考.24.一张展开后桌面平行于地面的折叠型方桌如图甲,从正面看如图乙,已知AO=BO=40cm,C0=D0=30cm,现将桌子放平,两条桌腿叉开的角度∠AOB刚好为120°,求桌面到地面的距离是多少?考点:含30度角的直角三角形;等腰三角形的性质.专题:应用题.分析:作OE⊥AB,OF⊥CD,解RT△AOE和RT△COF即可求得OE,OF的值,即可解题.解答:解:作OE⊥AB,OF⊥CD,∵OA=OB,∠AOB=120°,∴∠A=∠B=30°,∴OE=OB•sin30°=20cm,∵OC=OD,∠COD=∠AOB=120°,∴∠C=∠D=30°,∴OF=OC•sin30°=15cm,∴桌面到地面的距离为35cm.点评:本题考查了含30°角的直角三角形根据斜边求直角边的运算,考查了等腰三角形底角相等的性质,本题中构建RT△△AOE和RT△COF是解题的关键.25.一辆汽车的油箱中现有汽油49升,如果不再加油,那么油箱中的油y(单位:升)随行驶里程x(单位:公里)的增加而减少,平均耗油量为0.07升/公里.(1)写出y与x之间的函数关系式;(2)求自变量x的取值范围;(3)汽车行驶200公里时,油箱中还有多少汽油?考点:函数关系式;函数自变量的取值范围;函数值.分析:(1)每行程x公里,耗油0.07x,即总油量减少0.07x,则油箱中的油剩下49﹣0.07x.(2)从实际出发,x代表的实际意义为行驶里程,所以x不能为负数,又行驶中的耗油量为0.07x,不能超过油箱中的汽油量49L.(3)将x=200时,代入第一问中求出的x,y的关系式即可得出答案.解答:解:(1)根据题意,每行程x公里,耗油0.07x,即总油量减少0.07x,则油箱中的油剩下49﹣0.07x,∴y与x的函数关系式为:y=49﹣0.07x;(2)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.1x,不能超过油箱中现有汽油量的值49,即0.07x≤49,解得,x≤700.综上所述,自变量x的取值范围是0≤x≤700;(3)当x=200时,代入x,y的关系式:y=49﹣0.07×200=35.所以,汽车行驶200km时,油桶中还有35L汽油.点评:本题考查了一次函数的应用,关键是正确理解题意,从实际考虑得出x的范围.26.A校和B校分别库存有电脑12台和6台,现决定支援给C校10台和D校8台.已知从A,B 两校运往甲、乙两校的费用如下表:C校(元/台)D校(元/台)A校40 80B校0 50(1)设A校运往C校的电脑为x台,求总运费y(元)关于x的函数关系式,直接写出x的取值范围;(2)求出总运费最低的调运方案,最低运费是多少?考点:一次函数的应用.分析:(1)表示出从A校运往D校,从B校运往C校和D校的电脑台数,然后根据列出费用表达式整理即可,再根据运往各校的电脑台数不小于0列式求解即可得到x的取值范围;(2)根据一次函数的增减性求出x的值,然后解答即可.解答:解:(1)设A校运往C校的电脑为x台,则A校运往D校的电脑为(12﹣x)台,从B校运往C校的电脑为(10﹣x)台,运往D校的电脑为8﹣(12﹣x)=(x﹣4)台,由题意得,y=40x+80(12﹣x)+30(10﹣x)+50(x﹣4),=﹣20x+1060,由解得4≤x≤10,所以,y=﹣20x+1060(4≤x≤10);(2)∵k=﹣20<0,∴y随x的增大而减小,∴当x=10时,y最小,y最小=﹣20×10+1060=860元.答:总运费最低方案:A校给C校10台,给D校2台,B校给C校0台,给D校6台,最低运费是860元.点评:本题考查了一次函数的应用,主要利用了一次函数的增减性求最值问题,难点在于表示出运往各校的电脑台数.27.如图:在平面直角坐标系中,直线y=2x+6与x轴、y轴分别交于A、B两点,点C(4,0),过点C作直线AB的垂线,垂足为点D,交y轴于点E,S△ADC=.(1)求直线CD的解析式;(2)点P从点B出发,以每秒2个单位的速度沿射线BE运动,运动时间为t秒,过P点作y轴的垂线,交直线AB于点M,交直线DC于点N,线段MN的长为d(d>0),求d与t的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,DM=DE时,求t值.考点:一次函数综合题.分析:(1)根据三角形的面积,可得D点的纵坐标,根据点在直线AB上,可得D点的坐标,再根据待定系数法,可得CD的解析式;(2)根据平行于y轴的直线上的点的纵坐标相等,可得y N=y M=y P=6﹣2t,根据点的纵坐标,可得相应的横坐标,根据平行于x轴的直线上的两点间的距离是大数减小数,可得答案;(3)根据余角的性质,可得∠B与∠N的关系,根据全等三角形的判定与性质,可得BM与BE的关系,根据解一元一次方程,可得答案.解答:解:(1)如图1:作DH⊥x轴与H点.直线y=2x+6与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,6)又C(4,0)∴AC=7.S△ADC=AC×DH=×7×DH=∴DH=当y=时,=2x+6,解得x=﹣∴D(﹣,)设CD的解析式为:y=kx+b,图象过C、D点,得,解得,直线CD的解析式y=﹣x+2;(2)∵PN⊥y轴,∴PN∥x轴,∴y N=y M=y P=6﹣2t.当y N=6﹣2t时,6﹣2t=﹣x+2,解得x N=4t﹣8;当y M=6﹣2t时,6﹣2t=2x+6,解得x M=﹣t;当0≤t<时,如图2,:d=x M﹣x N=﹣t﹣(4t﹣8)=8﹣5t;当t>时,如图3,d=x N﹣x M=(4t﹣8)﹣(﹣t)=5t﹣8;(3)当0≤t<时,如图2,当x=0时,y=2,即E(0,2),BE=6﹣2=4.∵NP⊥y,∴∠NPE=90°,∠B+∠NEP=90°.∵DC⊥AB,∴∠BDE=90°,∠B+∠BED=90°,∴∠N=∠B.在△NDM和△BDE中,∴△NDM≌△BDE(AAS),∴NM=BE=4,8﹣5t=4,解得t=当t>时,如图3,同理有△NDM≌△BDE,∴NM=BE=4,5t﹣8=4,t=综上所述,当t=或t=时,DM=DE.点评:本题考查了一次函数的综合题,利用了待定系数法求解析式,平行于x轴的直线上的两点间的距离是大数减小数,全等三角形的判定与性质.28.如图,△ABD是等腰三角形,AB=AD,将△ABD沿BD翻折至△CBD,过点A作AP⊥AB交BD 于点P,点F在线段CD上,(1)如图一,连接PF,若∠DPF=45°,求证:AD=AP+DF(2)如图二,若∠ABD=30°,点F为AP延长线与CD的交点,点Q在线段BD上,且DQ=3BQ,连接BF、CQ,试探究线段BF与线段CQ的数量关系,并说明理由.考点:全等三角形的判定与性质;等腰三角形的性质;翻折变换(折叠问题).分析:(1)如图(一),连PC,由翻折知:△ABD≌△CBD,根据全等三角形的性质和SAS可证△ABP≌△CBP,根据全等三角形的性质得到AP=CP,∠BCP=∠BAP=90°,设∠2=∠4=α,依此得到CD=CF+FD=PC+FD=AP+DF,即AD=AP+DF;(2)由翻折知:△CBD≌△ABD,根据全等三角形的性质得到∠DBC=∠BDC=30°,进一步得到DF=AD=CD,如图(二),作CO⊥BD于O,得到BQ=OQ=BD,延长CQ至N,使QN=QC,连NB,根据SAS可证△QNB≌QCO,△NBC≌△FCB,从而得到FB=NC=2QC.解答:(1)证明:如图(一),连PC,由翻折知:△ABD≌△CBD,∴AB=BC,∠1=∠2,∠3=∠4,AD=CD,∵AB=AD,∴∠1=∠3,∴∠2=∠4,在△ABP与△CBP中,,∴△ABP≌△CBP,∴AP=CP,∠BCP=∠BAP=90°,设∠2=∠4=α,∴∠CPD=∠2+∠BCP=α+90°,∵∠FPD=45°,∴∠5=∠CPD﹣∠FPD=α+90°﹣45°=α+45°,∵∠6=∠FPD+∠4=α+45°,∴∠5=∠6,∴CP=CF,∴CD=CF+FD=PC+FD=AP+DF,即AD=AP+DF;(2)∵AB=AD,∠ABD=30°,∴∠ADB=∠ABD=30°∠BAD=120°由翻折知:△CBD≌△ABD,∴∠DBC=∠BDC=30°,∵AF⊥BA,∴∠BAP=90°,∴∠1=∠BAD﹣∠BAP=30°,∵∠ADF=∠ADB+∠BDC=60°,∴∠AFD=90°,∴DF=AD=CD,如图(二),作CO⊥BD于O,∵∠BDC=30°,∴CO=CD=DF,∵CB=CD,CO⊥BD,∴BO=BD,∵DQ=3BQ,∴BQ=OQ=BD,延长CQ至N,使QN=QC,连NB,在△QNB和△QCO中,,∴△QNB≌QCO,∴NB=CO=CF,∠NBQ=∠BOC=90°,∴∠NBC=∠NBQ+∠DBC=120°=∠BCF,在△GBC和△FCB中,,∴△NBC≌△FCB,∴FB=NC=2QC.点评:考查了翻折变换(折叠问题),等腰三角形的性质和全等三角形的判定与性质,本题关键是根据SAS证得△ABP≌△CBP,△QNB≌QCO,△NBC≌△FCB.。

最新北师大版八年级数学上册第二次月考测试卷(精编)

最新北师大版八年级数学上册第二次月考测试卷(精编)

最新北师大版八年级数学上册第二次月考测试卷(精编) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -= 6. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A.1 B.2 C.3 D.47.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE⊥AB 于E,PF⊥AC于 F,M 为 EF 中点,则 AM 的最小值为()A.1 B.1.3 C.1.2 D.1.58.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.分解因式:22a4a2-+=__________.3.因式分解:a2-9=_____________.4.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC 于点E ,则△BCE 的周长为__________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,长为8 cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3 cm 到点D ,则橡皮筋被拉长了_____ cm.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.先化简,再求值:2211(1)m m m m+--÷,其中3.3.已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求△ABC 的周长.4.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD,(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C5、A6、C7、C8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、()2 2a1-3、(a+3)(a﹣3)4、135、1 (21,2) n n--6、2.三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、3、(1)略;(2)△ABC的周长为5.4、(1)略;(2)3.5、(1)略(2)略6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册第二次月考考试试题本试卷共四页,满分120分,时间100分钟题号-一- -二二三四五总分得分、选择题:(本大题共10个小题,每小题3分,共30 分)2.下列平方根中,已经化简的是(4.直角三角形两条直角边的长分别为8和6,则斜边上的高为C. 4要求工人每天做的螺杆和螺母完整配套而没有剩余, 若设安排X个工人做螺杆,y个工人做螺母,则列出6.如图,在直角坐标系中,△AOB是等边三角形, B点的坐标是(A. ( 2, 1)B. (1 , 2)则A点的坐标是(7. 一次函数y=kx+6 , y随x的增大而减小,则这个一次函数的图象不经过A.第一象限B.第二象限C.第三象限D.第四象限&已知直角三角形两边的长分别为3和4,则此三角形的周长为()A . 129.下列图形中,表示一次函数象的是((m mx + n与正比例函数y = mnx10 .某工厂现有95个工人,一个工人每天可做D .以上都不对8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在221.在实数可、0、、3、506、0.101中,无理数的个数是A.2个B.3个C.4个D.5个B. 20C.D. <1213•已知点A的坐标为(3, -2), 则点A关于y轴的对称点的坐标是(A •第一象限B.第二象限C.第三象限 D .第四象限A、2.4B、4.8C、1.2 105.正比例函数kx的图象经过点A (2, 6),贝U k的值为(正确的二元一次方程组为()四、解答题二:(本大题共 3个小题,每小题7分,共21 分) 20. 如图,在三角形 ABC 中D 为BC 边上一点,已知AB=13 , AD=12 , AC=15 , BD=5,求 CD 长x y 95x y 95 x y 95 x y 95A. 8x 22yB. 4x 22y 0 C 16x 22y 0 D 16x 11y 0 二、填空题:(本大题共 6个小题,每小题 4分,共24分) 11.的算术平方根是12. 一组数据 2, 4, 5, 5, 6的众数是13. P (x ,y )点在第三象限,且 P 点到x 轴的距离为3,到y 轴的距离为2,则P 点的坐标为 14. 已知点(-2 , a ), (1 ,b )在直线 y 2x 3 上,则 a _________ b;(填" >” “ <”或"=”号) 15. 如图,已知直线 y=ax+b 和直线y=kx 交于点P ( -4,-2),则关于x ,y 的二元一次方 ■ V =祇+乩 程组抚 的解是 _________________ . O16.如图,长方体的底面边长分别为 2cm 和4cm ,高为5cm .若一只 蚂蚁从P 点开始 经过4个侧面爬行一圈到达 Q 点,则蚂蚁爬行的最短路径长为 ________________________________________________________________________ cm ; 三、解答题一:(本大题共 3个小题,每小题6分,共18 分) 4 cm P16题图17•计算:75 .3、3 x y 4,①18.解方程组3x y 8.②19•如图,已知长方形A B C D ,对于长为3、宽4为的正方形,建立适当的直角坐标系,写出各个顶点21.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品, F面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买售货员:好,每支钢笔比每本笔记本贵10支钢笔和15本笔记本.2元,退你5元,请清点好,再见根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?22 •某学校抽查了某班级某月10天的用电量,数据如下表(单位:度)(1 )这10天用电量的众数是 ___________ ,中位数是_________ ;(2) 求这个班级平均每天的用电量;(3) 已知该校共有20个班级,该月共计30天,试估计该校该月的用电量.五、解答题三:(本大题共3个小题,每小题9分,共27分)23.已知点A( 2,8), B 9,6,现将A点向右平移2个单位长度,再向下平移8个单位长度得到点D, C点在x轴负半轴上且距离y轴12个单位长度.(1)点C的坐标为___________ ;点D的坐标为____________(2)请在右边的平面直角坐标系中画出四边形ABCD ;(3)求四边形ABCD的面积.24•某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费•甲乙两厂的印刷费用y(千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是_________ 千元,当X 2(千个)时乙厂证书印刷单价是_______________ 元/个.(2)求出甲厂的印刷费y甲与证书数量X的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?25.如图,直线y=kx+6与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0).(1)求k的值;(2)若点P (x, y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出厶OPA的面积S 与x的函数关系式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△ OPA的面积为27/8,并说明理由.八年级数学参考答案及评分标准12 3 4 5 6 7 8 9 10 答案ACCBBDCCAC二、填空题:(本大题共6个小题,每小题 4分,共24分).13. (-2,-3)3个小题,每小题6分,共18分)17.计算:竺严,;2075 _ 3 20.25-1- 4 ..............=5-1-2 =2解:②-①得:2x=4x=2 ........................ 2分 将x=2代入①中得:y=2 ................................. 4分所以原方程组的解是19.直角坐标系建立正确 ............... 2 分;每个顶点的坐标正确四、解答题二:(本大题共 3个小题,每小题7分,共21分) 20.如图,在三角形 ABC 中D 为BC 边上一点,已知 AB=13 , AD=12 , AC=15 , BD=5,求 CD 长解:在△ ABD 中, AB=13, AD= 12, BD=5AB =A D +B D. •••△ ABD 为直角三角形 •••/ADB=90 即/ ADC=90............... 4•分•在厶ADC 中,即有 AD 2 + CD 2 =AC 2 • CD 2 =AC 2 -AD21. 解:设钢笔每支为x 元,笔记本每本y 元,则12.514 . a > b15.16.13三、解答题一:(本大题共18.解方程组x y 4,3x y 8.1分(共6分)•/ AC= 15 , AD= 12DC 2 = 152 - 122 =81DC= 9. .................. 7•分x y 210x 15y 100 5解得y 3答:钢笔每支为5元,笔记本每本3元22. (1)(1)这10天用电量的众数是_13,中位数是_13;(2分)(2)平均用电量为:(8X1+9X1 + 10X2+13X3+14X1+15X2)^10=12 度;(5 分)(3)总用电量为20X12X30=7200度.(7分)五、解答题三:(本大题共3个小题,每小题9分,共27 分)23 .解:(1 )点C的坐标为(-12,0);点D的坐标为(0,0); (2分)(2)如图(5分)(3)S=1\2X3X5+1\2 X2X8+1\2 X6+8)X=66(9分)24.解:(1 )甲厂的制版费是 1 千元,当x 2 (千个)时乙厂证书印刷单价是0.5元/个• (2 分)(2 )设甲厂的印刷费y甲与证书数量x的函数关系式为y甲=kx由题意,得b2k b 2 解得bk1所以y甲=-x 1 ,2(5分)(2)把x=6代入y甲=^x2 1中得y=4 (6分)当x>2时由图像可设y乙与x的函数关系式为y乙=kx b ,由已知得6k+b== 4 '解得1k=45, 得b=2(8分)当x 8时,y甲=*X8+仁5 (千元),99•- 5 -0.5 (千元)2即,当印制8千张证书时,选择乙厂,节省费用25.(1)将(-8 , 0)代入y=kx+6 中0=-8k+6 • k=3/4 (3 分)⑵点P到OA的距离为y这里因为P在第二象限面积S=1/2 | OA|X y=1/2 X 6y=3y=3(3/4x+6)=9/4 这里-8<x<0(3 )S=27/8 • 27/8=9/4x+18 • y=9/8 (8 分)••• x=-13/2••• P (-13/2 ,y>0x+18(6分)(7分)9/8 )500(千兀),(9分)。

相关文档
最新文档