热力学统计物理_答案

合集下载

热力学与统计物理-参考答案

热力学与统计物理-参考答案

热力学与统计物理 参考答案一、推出克拉珀龙方程mm m m S S dp dT V V βαβα-=-()m m L T V V βα=- 在相图上取两个相邻的点),(p T A 和),(p p T T B ∆+∆+,这两点上化学势都相等,),),p T p T ((βαμμ=),),p p T T p p T T ∆+∆+=∆+∆+((βαμμ两式相减得βαμμd d =,由吉布斯函数的全微分dG SdT Vdp =-+,化学势的全微分dp V dT S d m m +-=μ,dp V dT S m mαα+-dp V dT S m m ββ+-= mm m mS S dp dT V V βαβα-=- 以L 表示1摩尔物质相变潜热,则)(αβS S T S T L -=∆=二、证明均匀系统有:能态方程:()()T V U pT p V T∂∂=-∂∂ 选T ,V 为状态参量,则),(V T U U =,那么,dV VUdT T U dU T V )()(∂∂+∂∂= (1) 右边的偏导数,和状态函数联系,麦氏关系,),(V T S S =,dV VSdT T S dS T V )()(∂∂+∂∂=将dS代入pdV TdS dU -=pdV dU V S T dT T S T T V -∂∂+∂∂=)()(dV p VST dT T S T T V ])([)(-∂∂+∂∂=则 ()[()]V V S pdU T dT T p dV T T∂∂=+-∂∂(2)比较(1)和(2), ()()T V U pT p V T∂∂=-∂∂,能态方程; 三、若按量子力学,一维简谐振子以经典平衡位置的势能为零的振动能级公式为12n n εω⎛⎫=+ ⎪⎝⎭(n=0, 1, 2, …),(1)试求一维简谐振子的振动配分函数;(2)若204.810J n εω-∆=≈⨯,系统在300K 下达到热平衡,求此时处在第一激发态和基态的粒子数之比。

热力学与统计物理学课后习题及解答

热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。

解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。

解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。

1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。

线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常量。

热力学统计物理答案精品资料

热力学统计物理答案精品资料

第一章热力学的基本规律1.1 试求理想气体的体胀系数, 压强系数和等温压缩系数。

解:已知理想气体的物态方程为pV nRT ,(1)由此易得T1 VV T1 pp T1 V V pTpVnR 1 ,pV TnR 1 ,pV T1nRT1 .Vp2p(2)(3)(4)1.2 证明任何一种具有两个独立参量T , p的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得:ln V =αdTκdpT如果1, T1,试求物态方程。

T p解:以 T , p 为自变量,物质的物态方程为V V T , p ,其全微分为V Vdp.(1)dV dTT p p T全式除以 V ,有dV1VdT 1Vdp.V V T V pp T根据体胀系数和等温压缩系数T 的定义,可将上式改写为dVT dp.(2)dTV上式是以 T ,p 为自变量的完整微分,沿一任意的积分路线积分,有ln VdT T dp .(3)若1 ,T1 ,式( 3)可表为 TplnV1 1 (4)dTdp .Tp选择图示的积分路线,从 (T 0 , p 0 ) 积分到 T , p 0 ,再积分到( T , p ),相应地体积由 V 0 最终变到 V ,有ln V =ln Tln p,V 0 T 0p 0即pV p 0V 0 C (常量),TT 0或p VC. T(5)式(5)就是由所给1 , T1求得的物态方程。

确定常量 C 需要进一步的Tp实验数据。

1.8 满足pV n C 的过程称为多方过程,其中常数n 名为多方指数。

试证明:理想气体在多方过程中的热容量C n为C n nC V n 1解:根据式( 1.6.1 ),多方过程中的热容量C n lim QT nT 0U V.(1)pTT n n对于理想气体,内能U 只是温度 T 的函数,UC V ,T n所以C n C VV(2)p.T n将多方过程的过程方程式 pV n C 与理想气体的物态方程联立,消去压强p 可得TV n 1C1(常量)。

热力学统计物理 课后习题 答案

热力学统计物理  课后习题  答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为nRT pV =由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数T pV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数p p nRT V p V V T 1)(112=-⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∂∂-=κ 1.2证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测量的体胀系数和等温压缩系数,根据下述积分求得()⎰-=dp dT V T καln ,如果P T T 1,1==κα,试求物态方程。

解: 体胀系数 pT V V ⎪⎭⎫ ⎝⎛∂∂=1α 等温压缩系数 TT p V V ⎪⎪⎭⎫ ⎝⎛∂∂-=1κ 以T ,P 为自变量,物质的物态方程为 ()p T V V ,=其全微分为 dp V dT V dp p V dT T V dV T Tp κα-=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= dp dT VdV T κα-= 这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得()⎰-=dp dT V T καln 根据题设 , 若 pT T 1,1==κα ⎰⎪⎪⎭⎫ ⎝⎛-=dp p dT T V 11ln 则有 C pT V +=ln ln , PV=CT 要确定常数C ,需要进一步的实验数据。

1.4描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是(£,L,T)=0,实验通常在大气压下进行,其体积变化可以忽略。

线胀系数定义为FT L L ⎪⎭⎫ ⎝⎛∂∂=1α ,等温杨氏模量定义为TL F A L Y ⎪⎭⎫ ⎝⎛∂∂= ,其中A 是金属丝的截面。

一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。

如果温度变化范围不大,可以看作常数。

假设金属丝两端固定。

热力学答案

热力学答案

《热力学?统计物理》复习材料答案一、填空题:1. 热力学中所特有的状态参量为温度,它是实现两系统达到热平衡的充分且必要条件。

2. 整个系统在物理、化学性质上都均匀一致的系统称为均匀系统。

3. 热力学第一定律的数学表达式是为 dU=dQ+dW 。

4.热力学第二定律的数学表达式是。

5. 体系由液体和饱和蒸汽组成,此系统包含二相。

6.当独立变量为S、p时,特性函数是 H 。

7. 一个孤立系统有相和相,若系统已达到热平衡和力学平衡,但相物质迁移到相,则化学势满足关系相化学势大于相化学势()。

8.一个系统在压强和温度不变的情况下,为了判别此系统是否已达到平衡态,可采用的判据为 G(吉普斯函数)。

9.判断一个孤立系统是否已达到平衡态,可采用的判据为 S(熵)。

10.一个系统在体积和温度不变的情况下,为了判别此系统是否已达到平衡态,可采用的判据为自由能。

11.固相、液相之间的转变为_____一_______级相变。

12.气液在临界点的转变为_____二____级相变。

13.体系由三种气体按任意比例混合而成,该系统的独立强度参量数目为 4 。

14. 根据吉布斯相律,3元二相系的自由度为 3 。

15. 一级相变的克拉珀龙方程的表达式为。

16. 对于费米系统,给定分布对应的微观状态数为。

17. 对于玻色系统,给定分布对应的微观状态数为。

18. 对于玻尔兹曼系统,给定分布对应的微观状态数为。

19. 等概率原理的内容是对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率都是相等的。

20. 两个全同粒子分布在相同能级的三个不同状态a、b和c中,一个粒子处在状态a,一个粒子处在状态b,如果它们是费米粒子,则这一分布出现的概率是 1/3 。

21.两个全同粒子分布在相同能级的三个不同状态a、b和c中,一个粒子处在状态a,一个粒子处在状态b,如果它们是玻耳兹曼粒子(即经典粒子),则这一分布出现的概率是 1/9 。

22. 两个全同粒子分布在相同能级的三个不同状态a、b和c中,一个粒子处在状态a,一个粒子处在状态b,如果它们是玻色子,则这一分布出现的概率是 1/6 。

热力学与统计物理答案

热力学与统计物理答案

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV= V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=α T PV Rn T P P V /1)(1==∂∂=β P P nRT V P V V T T /111)(12=--=∂∂-=κ 习题 1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT VT κα如果1Tα=1Tpκ=,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp p V dT T V dV T p )()(∂∂+∂∂=, 因为T T p p V V T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少np才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p xn习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方 程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学 统计物理 答案

热力学 统计物理 答案

CV T
dT RT ln V b
a V
U 0 TS 0
F S T V

CV T
V
dT R ln V b S 0
U F TS
C
dT
a V
U0
例8、由麦氏关系之一导出其余三个关系,如由
S V T p p T

( p ,V )
p ( S ,V ) S V

T p V S S V
T V P S S p
引入变量S, p可得 引入变量T, V可得
S p V T T V
dp p
)
ln T ln p C
∴ 物态方程为:
pV CT
C为常数
习题1.4 解: (1)选择T、p为状态参量,则V=V(T, p)
V V dp V的全微分为: dV dT T p p T
两边同除以V: dV
1 V 1 V dT V V T p V p
Tf Ti
C p Ldx ln
Tf T1 T1 T2 L x
C p L dx ln(
T1 Tf

T1 T2 LT f
x)
均匀杆总熵变为:
S

L
0
S i

L
0
C p L dx ln(
1
T1 Tf

T1 T2 LT f
x)
根据积分公式
ln( a bx)dx b (a bx)[ln( a bx 1)

热力学与统计物理试题及答案

热力学与统计物理试题及答案

热力学与统计物理试题及答案一、选择题(每题3分,共30分)1. 热力学第一定律表明能量守恒,下列哪项描述是正确的?A. 能量可以被创造或消灭B. 能量可以从一个物体转移到另一个物体C. 能量可以被转化为物质D. 能量可以从高熵状态自发地转移到低熵状态答案:B2. 根据热力学第二定律,下列哪项描述是正确的?A. 熵是一个状态函数B. 熵总是减少的C. 自然过程总是向熵增加的方向发展D. 熵是一个过程量答案:C3. 理想气体的状态方程是:A. PV = nRTB. PV = nRT + 常数C. PV = nRT - 常数D. PV = nRT^2答案:A4. 以下哪种情况下,系统的熵会增加?A. 气体从高压区域膨胀到低压区域B. 气体被压缩C. 液体凝结成固体D. 固体熔化成液体答案:A5. 统计物理中,配分函数Z的物理意义是:A. 系统的总能量B. 系统的熵C. 系统的自由能D. 系统的微观状态数答案:D6. 绝对零度是:A. 温度的上限B. 温度的下限C. 压力的上限D. 压力的下限答案:B7. 以下哪种过程是可逆的?A. 气体的自由膨胀B. 气体的绝热压缩C. 气体的等温膨胀D. 气体的等压膨胀答案:C8. 以下哪种情况下,系统的吉布斯自由能会减少?A. 系统在恒温恒压下做功B. 系统在恒温恒压下吸收热量C. 系统在恒温恒压下放出热量D. 系统在恒温恒压下吸收热量并做功答案:C9. 理想气体的内能仅取决于:A. 体积B. 温度C. 压力D. 摩尔数答案:B10. 以下哪种情况下,系统的亥姆霍兹自由能会减少?A. 系统在恒温下做功B. 系统在恒温下吸收热量C. 系统在恒温下放出热量D. 系统在恒温下吸收热量并做功答案:B二、填空题(每题4分,共20分)11. 热力学第一定律的数学表达式为:ΔU = Q - W,其中ΔU表示系统的内能变化,Q表示系统吸收的热量,W表示系统对外做的功。

12. 热力学第二定律的开尔文表述是:不可能从单一热源吸热使之完全转化为功而不产生其他影响。

热力学统计物理课后习题答案.doc

热力学统计物理课后习题答案.doc

第七章 玻耳兹曼统计7. 1 试根据公式 Pa lL证明,对于非相对论粒子lVP21 2 22 U 222n x , n y , n z2m 2mL n x n yn z ,( 0, 1, 2, )有P3 V上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明: 处在边长为 L 的立方体中,非相对论粒子的能量本征值为P21 222 22n x , n y , n z 0, 1, 2, ) ------- (1)n x , n y ,n z2m 2mLn x n yn z(为书写简便,我们将上式简记为aV 23----------------------- ( 2)其中 V=L 3 是系统的体积,常量a(2 ) 2222l 代表 n x ,n y ,n z 三2m n xn y n z ,并以单一指标个量子数。

由( 2)式可得L2aVV35 32l--------------------- ( 3)3 V代入压强公式,有 PL2 2 Ua lal l---------------------- ( 4)lV3V l3 V式中 Ual l是系统的内能。

l上述证明未涉及分布的具体表达式, 因此上述结论对于玻尔兹曼分布, 玻色分布和费米分布都成立。

注:( 4)式只适用于粒子仅有平移运动的情形。

如果粒子还有其他的自由度,式( 4)中的U 仅指平动内能。

7. 2 根据公式 Pa lL证明,对于极端相对论粒子lVcp c2n x 2 n y 2 n z 2 11 U2 , n x , n y , n z 0, 1, 2, 有PL3 V 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。

证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为2 n x 2 n y 2 n z 2 1c 2 , n x , n y , n z 0, 1, 2,-------( 1)n x ,n y ,n zL1为书写简便,我们将上式简记为aV 3 ----------------------- ( 2)其中 V=L 3 是系统的体积, 常量 a 2 c n x 2 n y 2n z 212,并以单一指标 l 代表 n x ,n y ,n z 三个量子数。

热力学统计物理答案

热力学统计物理答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即00p V pV C T T ==(常量), 或.p V C T =(5)式(5)就是由所给11,T Tpακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为5171 4.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

11热力学统计物理第四版汪志诚_答案.

11热力学统计物理第四版汪志诚_答案.

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。

解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2)上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.p VC T = (5)式(5)就是由所给11,T Tpακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.4 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。

(完整版)热力学统计物理练习的题目及答案详解

(完整版)热力学统计物理练习的题目及答案详解

热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。

1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。

11.循环关系的表达式为 。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。

13.W Q U U A B +=-,其中W 是 作的功。

14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。

15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。

16.第一类永动机是指 的永动机。

17.内能是 函数,内能的改变决定于 和 。

18.焓是 函数,在等压过程中,焓的变化等于 的热量。

19.理想气体内能 温度有关,而与体积 。

20.理想气体的焓 温度的函数与 无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。

22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。

热力学与统计物理学习题答案

热力学与统计物理学习题答案

第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由 得:nRT PV =V nRTP P nRT V ==; 所以, T P nR V T V V P 11)(1==∂∂=αT PV RnTP P V /1)(1==∂∂=βP PnRT V P V V T T /111)(12=−−=∂∂−=κ习题1.2 试证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数p T ,α及等温压缩系数T κ,根据下述积分求得:∫−=)(ln dp dT V T κα如果,试求物态方程。

解: 因为,所以,我们可写成0),,(=p V T f ),(p T V V =,由此, dp pV dT T VdV T p ()(∂∂+∂∂=,因为T T p pVV T V V (1,)(1∂∂−=∂∂=κα 所以, dp dT VdVdp V dT V dV T T κακα−=−=,所以, ,当∫−=dp dT V T καln p T T /1,/1==κα.CT pV pdpT dT V =−=∫:ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为和,可近似看作常量,今使铜块加热至。

问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少 1510*85.4−−=K α1710*8.7−−=n T p κT κα,解:分别设为,由定义得:V xp n Δ;74410*8.7*10010*85.4;10*858.4−−−−=Δ=V x T κ所以,410*07.4,622−=Δ=V p x n 习题 1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在下进行,其体积变化可忽略。

线胀系数定义为n p 1ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学·统计物理答案 第一章(完整资料).doc

热力学·统计物理答案 第一章(完整资料).doc

【最新整理,下载后即可编辑】第一章 热力学的基本规律习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。

解:由得:nRT PV =VnRTP P nRT V ==; 所以, TP nR V T V V P 11)(1==∂∂=αT PVRn T P P V /1)(1==∂∂=βP P nRT V P V V T T /111)(12=--=∂∂-=κ习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:⎰-=)(ln dp dT V T κα如果1Tα= 1Tpκ=,试求物态方程。

解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此,dp pVdT T V dV T p )()(∂∂+∂∂=, 因为T T p pVV T V V )(1,)(1∂∂-=∂∂=κα 所以,dp dT VdVdp V dT V dV T T κακα-=-=,所以,⎰-=dp dT V T καln ,当p T T /1,/1==κα.CT pV pdpT dT V =-=⎰:,ln 得到习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。

问(1压强要增加多少np 才能使铜块体积不变?(2若压强增加100np ,铜块的体积改多少 解:分别设为V xp n ∆;,由定义得:74410*8.7*10010*85.4;10*858.4----=∆=V x T κ所以,410*07.4,622-=∆=V p x n 错习题1.4描述金属丝的几何参量是长度L ,力学参量是张力η,物态方程是0),,(=T L f η实验通常在n p 1下进行,其体积变化可忽略。

线胀系数定义为ηα)(1T L L ∂∂=等杨氏摸量定义为T LA L Y )(∂∂=η其中A 是金属丝的截面积,一般说来,α和Y 是T 的函数,对η仅有微弱的依赖关系,如果温度变化范不大,可看作常数。

热力学统计物理课后习题答案

热力学统计物理课后习题答案

1. 1试求理想气体的体胀系数 :,压强系数:和等温压缩系数:T解:已知理想气体的物态方程为 pV 二nRT 由此得到体胀系数-貯。

诵冷,1. 2证明任何一种具有两个独立参量 T ,P 的物质,其物态方程可由实验测量的体胀系数和 等温压缩系数,根据下述积分求得 InV =:・dT -:T dp ,如果:•二丄「.T -,试求物态方TP程。

解:体胀系数:=-—V 5丿p等温压缩系数K T =--—]V 2P 人这是以T ,P 为自变量的完整微分,沿一任意的积分路线积分,得根据题设,若〉=丄,冷=丄T p则有InV =ln T C , PV=CTp要确定常数C,需要进一步的实验数据。

1. 4描述金属丝的几何参量是长度 L ,力学参量是张力£,物态方程是(£丄,T )=0,实验通 1 r 鬥)常在大气压下进行,其体积变化可以忽略。

线胀系数定义为a =丄丄| ,等温杨氏模量L 5丿F定义为Y -L 「匚 ,其中A 是金属丝的截面。

一般来说,:和Y 是T 的函数,对£仅有微A I^L 人第一章热力 学 的 基 本压强系数1 仔、_ n R _ 1 B JT 厂而=T等温压缩系数'-T =以T ,P 为自变量, 物质的物态方程为V =V T,p其全微分为 dV =eVdp 二 V : dT -V T dp i印」n RT ) T~) p所以C n = C Vn -1弱的依赖关系。

如果温度变化范围不大,可以看作常数。

假设金属丝两端固定。

试证明,当 温度由T1降至T2时,其张力的增加为厶£ = -YA/T 2-TJ 。

解:f ( £ 丄,T)=0, £ =F £ (L,T)d £=空;dT +( dL — i dT (dL=0)©丿Li 此丿T &T .丿L所以:£= -YA MT ? -TJ1. 6 1mol 理想气体,在27o C 的恒温下发生膨胀,其压强由20P n 准静态地降到1P n ,求气体 所做的功和所吸收的热量。

热力学统计物理试题及其参考答案完整版

热力学统计物理试题及其参考答案完整版
《热力学统计物理》试题参考解答及评分标准
一、1. B, 2. D, 3. A, 4. A, 5. B, 6. A, 7. C, 8. C, 9.A, 10. A.
评分标准:本题共20分, 每个答案2分。
二、1.状态,2.系统从外界吸收,3. , 4. , ,
5. , 6. 0, 7. , 8.负温度状态, 9. ,
(4)
评分标准:(1)和(4)式各2分,(2)(3)式各3分
五、计算题:
1.解:范氏方程可表为
对范氏方程取导数得
(1)
按循环关系式,我们有
(2)
因此
(3)
(4)
. (5)
评分标准:(1)--(5)式各2分。
2.解:双原子分子的转动自由度 =2,选广义坐标和广义动量为 。双原子分子的配分函数为
.(1)
双原子分子理想气体的转动内能和熵
.(2)
。(3)
评分标准:(1)式4分,(2)和(3)式各3分。
令 ,得
=- <0.(2)
这里应用了 和 。
再由
.(3)
令 ,得
= .(4)
这里应用了 和 .
评分标准:(1)和(3)式各2分,(2)和(4)式各3分。
3.证明:由 (1)
绝对零度下自由电子气体中电子动量(大小)的分布为
(2)
其中 是费米动量,)
因此电子的平均速率为
四、1.证:由正则分布 ,得
.(1)
将上式代入广义熵的表示式,得
.(2)
上式即正则系综中系统熵的表示式。
或者,由正则分布中熵的表示式出发
,(3)
利用(1)式,由上式得熵的普遍表示式
. (4)
评分标准:(1),(2)式各5分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰ 如果11,T T pακ==,试求物态方程。

解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dV dT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3) 若11,T T pακ==,式(3)可表为11ln .V dT dp T p ⎛⎫=- ⎪⎝⎭⎰ (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln =ln ln ,V T p V T p - 即000p V pV C T T ==(常量), 或.p V C T =(5) 式(5)就是由所给11,T T p ακ==求得的物态方程。

确定常量C 需要进一步的实验数据。

1.10 声波在气体中的传播速度为s p αρ⎛⎫∂= ⎪∂⎝⎭ 假设气体是理想气体,其定压和定容热容量是常量,试证明气体单位质量的内能u 和焓h 可由声速及γ给出:()21a a u u h h γγγ=+=+-200,-1 其中00,u h 为常量。

解:根据式(1.8.9),声速a 的平方为2v,a p γ= (1)其中v 是单位质量的气体体积。

理想气体的物态方程可表为,m pV RT m+= 式中m 是气体的质量,m +是气体的摩尔质量。

对于单位质量的气体,有 1v ,p RT m +=(2) 代入式(1)得2.a RT m γ+= (3)以,u h 表示理想气体的比内能和比焓(单位质量的内能和焓)。

由式(1.7.10)—(1.7.12)知0,1RT m u m u γ++=+- 0.1RT m h m h γγ++=+- (4) 将式(3)代入,即有2,(1)a u u γγ=+- 20.1a h h γ=+- (5) 式(5)表明,如果气体可以看作理想气体,测定气体中的声速和γ即可确定气体的比内能和比焓。

1.16 理想气体分别经等压过程和等容过程,温度由1T 升至2T 。

假设γ是常数,试证明前者的熵增加值为后者的γ倍。

解:根据式(1.15.8),理想气体的熵函数可表达为0ln ln .p S C T nR p S =-+ (1)在等压过程中温度由1T 升到2T 时,熵增加值p S ∆为21ln .p p T S C T ∆= (2) 根据式(1.15.8),理想气体的熵函数也可表达为0ln ln .V S C T nR V S =++ (3)在等容过程中温度由1T 升到2T 时,熵增加值V S ∆为21ln .V V T S C T ∆= (4) 所以.pp V V S C S C γ∆==∆ (5)1.21 物体的初温1T ,高于热源的温度2T ,有一热机在此物体与热源之间工作,直到将物体的温度降低到2T 为止,若热机从物体吸取的热量为Q ,试根据熵增加原理证明,此热机所能输出的最大功为max 212()W Q T S S =--其中12S S -是物体的熵减少量。

解:以,a b S S ∆∆和c S ∆分别表示物体、热机和热源在过程前后的熵变。

由熵的相加性知,整个系统的熵变为.a b c S S S S ∆=∆+∆+∆由于整个系统与外界是绝热的,熵增加原理要求0.a b c S S S S ∆=∆+∆+∆≥ (1)以12,S S 分别表示物体在开始和终结状态的熵,则物体的熵变为21.a S S S ∆=- (2)热机经历的是循环过程,经循环过程后热机回到初始状态,熵变为零,即0.b S ∆= (3)以Q 表示热机从物体吸取的热量,Q '表示热机在热源放出的热量,W 表示热机对外所做的功。

根据热力学第一定律,有,Q Q W '=+所以热源的熵变为22.c Q Q W S T T '-∆== (4) 将式(2)—(4)代入式(1),即有2120.Q W S S T --+≥ (5) 上式取等号时,热机输出的功最大,故()max 212.W Q T S S =-- (6)式(6)相应于所经历的过程是可逆过程。

2.2 设一物质的物态方程具有以下形式:(),p f V T =试证明其内能与体积无关.解:根据题设,物质的物态方程具有以下形式:(),p f V T = (1)故有().V p f V T ∂⎛⎫= ⎪∂⎝⎭ (2) 但根据式(2.2.7),有,T V U p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以 ()0.TU Tf V p V ∂⎛⎫=-= ⎪∂⎝⎭ (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.2.6 试证明在相同的压强降落下,气体在准静态绝热膨胀中的温度降落大于在节流过程中的温度降落. 解:气体在准静态绝热膨胀过程和节流过程中的温度降落分别由偏导数S T p ⎛⎫∂ ⎪∂⎝⎭和HT p ⎛⎫∂ ⎪∂⎝⎭描述. 熵函数(,)S T p 的全微分为 .P TS S dS dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在可逆绝热过程中0dS =,故有 .T P p S PS V T p T T S p C T ⎛⎫∂∂⎛⎫ ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (1) 最后一步用了麦氏关系式(2.2.4)和式(2.2.8).焓(,)H T p 的全微分为.P TH H dH dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ 在节流过程中0dH =,故有 .T P p H PH V T V p T T H p C T ⎛⎫∂∂⎛⎫- ⎪ ⎪∂⎛⎫∂∂⎝⎭⎝⎭=-= ⎪∂∂⎛⎫⎝⎭ ⎪∂⎝⎭ (2) 最后一步用了式(2.2.10)和式(1.6.6).将式(1)和式(2)相减,得 0.pS H T T V p p C ⎛⎫⎛⎫∂∂-=> ⎪ ⎪∂∂⎝⎭⎝⎭ (3) 所以在相同的压强降落下,气体在绝热膨胀中的温度降落大于节流过程中的温度降落. 这两个过程都被用来冷却和液化气体.由于绝热膨胀过程中使用的膨胀机有移动的部分,低温下移动部分的润滑技术是十分困难的问题,实际上节流过程更为常用. 但是用节流过程降温,气体的初温必须低于反转温度. 卡皮查(1934年)将绝热膨胀和节流过程结合起来,先用绝热膨胀过程使氦降温到反转温度以下,再用节流过程将氦液化.2.9 证明范氏气体的定容热容量只是温度T 的函数,与比体积无关.解:根据习题2.8式(2) 22,V T VC p T V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 范氏方程(式(1.3.12))可以表为 22.nRT n a p V nb V=-- (2) 由于在V 不变时范氏方程的p 是T 的线性函数,所以范氏气体的定容热容量只是T 的函数,与比体积无关.不仅如此,根据2.8题式(3) 0202(,)(,),VV V V V p C T V C T V T dV T ⎛⎫∂=+ ⎪∂⎝⎭⎰ (3) 我们知道,V →∞时范氏气体趋于理想气体. 令上式的0V →∞,式中的0(,)V C T V 就是理想气体的热容量. 由此可知,范氏气体和理想气体的定容热容量是相同的.顺便提及,在压强不变时范氏方程的体积V 与温度T 不呈线性关系. 根据2.8题式(5) 22,V T VC p V T ⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭ (2) 这意味着范氏气体的定压热容量是,T p 的函数.()()222121.2b a p p p p ⎡⎤=--+-⎢⎥⎣⎦(3) 将11,1000n n n p p p p ==代入,得110.527J mol K .S --∆=-⋅⋅根据式(1.14.4),在等温过程中水从外界吸收的热量Q 为 ()112980.527J mol 157J mol .Q T S--=∆=⨯-⋅=-⋅3.1 证明下列平衡判据(假设S >0); (a )在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,稳定平衡态的H 最小.(c )在,H p 不变的情形下,稳定平衡态的S 最小.(d )在,F V 不变的情形下,稳定平衡态的T 最小.(e )在,G p 不变的情形下,稳定平衡态的T 最小.(f )在,U S 不变的情形下,稳定平衡态的V 最小.(g )在,F T 不变的情形下,稳定平衡态的V 最小.解:为了判定在给定的外加约束条件下系统的某状态是否为稳定的平衡状态,设想系统围绕该状态发生各种可能的自发虚变动. 由于不存在自发的可逆变动,根据热力学第二定律的数学表述(式(1.16.4)),在虚变动中必有đ,U T S W δδ<+ (1)式中U δ和S δ是虚变动前后系统内能和熵的改变,đW 是虚变动中外界所做的功,T 是虚变动中与系统交换热量的热源温度. 由于虚变动只涉及无穷小的变化,T 也等于系统的温度. 下面根据式(1)就各种外加约束条件导出相应的平衡判据.(a ) 在,S V 不变的情形下,有đ0.W =根据式(1),在虚变动中必有0.U δ< (2)如果系统达到了U 为极小的状态,它的内能不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S V 不变的情形下,稳定平衡态的U 最小.(b )在,S p 不变的情形下,有0,đ,S W pdV δ==-根据式(1),在虚变动中必有0,U p V δδ+<或0.H δ< (3)如果系统达到了H 为极小的状态,它的焓不可能再减少,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,S p 不变的情形下,稳定平衡态的H 最小.(c )根据焓的定义H U pV =+和式(1)知在虚变动中必有đ.H T S V p p V W δδδδ<+++在H 和p 不变的的情形下,有0,0,đ,H p W p V δδδ===-在虚变动中必有0.T S δ> (4)如果系统达到了S 为极大的状态,它的熵不可能再增加,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,H p 不变的情形下,稳定平衡态的S 最大.(d )由自由能的定义F U TS =-和式(1)知在虚变动中必有đ.F S T W δδ<-+在F 和V 不变的情形下,有đ0,W =故在虚变动中必有0.S T δ< (5)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F V 不变的情形下,稳定平衡态的T 最小.(e )根据吉布斯函数的定义G U TS pV =-+和式(1)知在虚变动中必有đ.G S T p V V p W δδδδ<-++-在,G p 不变的情形下,有0,0,đ,G p W p V δδδ===-故在虚变动中必有0.S T δ< (6)由于0S >,如果系统达到了T 为极小的状态,它的温度不可能再降低,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,G p 不变的情形下,稳定的平衡态的T 最小.(f )在,U S 不变的情形下,根据式(1)知在虚变动中心有đ0.W >上式表明,在,U S 不变的情形下系统发生任何的宏观变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,U S 不变的情形下,稳定平衡态的V 最小.(g )根据自由能的定义F U TS =-和式(1)知在虚变动中必有δδđ.F S T W <-+在,F T 不变的情形下,有δ0,δ0,F T == 必有đ0W > (8)上式表明,在,F T 不变的情形下,系统发生任何宏观的变化时,外界必做功,即系统的体积必缩小. 如果系统已经达到了V 为最小的状态,体积不可能再缩小,系统就不可能自发发生任何宏观的变化而处在稳定的平衡状态,因此,在,F T 不变的情形下,稳定平衡态的V 最小.3.16 将范氏气体在不同温度下的等温线的极大点N 与极小点J 联起来,可以得到一条曲线NCJ ,如图所示. 试证明这条曲线的方程为()32,m m pV a V b =-并说明这条曲线划分出来的三个区域Ⅰ、Ⅱ、Ⅲ的含义.解:范氏方程为 2.m mRTap V b V =--(1) 求偏导数得 ()232.m mT m p RT aV V V b ⎛⎫∂=-+ ⎪∂-⎝⎭(3) 等温线的极大点N 与极小点J 满足0,m Tp V ⎛⎫∂= ⎪∂⎝⎭即()232,mm RTaV V b =-或()()32.m m mRT aV b V b V =-- (3) 将式(3)与式(1)联立,即有()322,m m ma ap V b V V =-- 或()32m m m pV a V b aV =--()2.m a V b =- (4)式(4)就是曲线NCJ 的方程.图中区域Ⅰ中的状态相应于过热液体;区域Ⅲ中的状态相应于过饱和蒸气;区域Ⅱ中的状态是不能实现的,因为这些状态的0m Tp V ⎛⎫∂> ⎪∂⎝⎭,不满足平衡稳定性的要求.4.8 绝热容器中有隔板隔开,两边分别装有物质的量为1n 和的理想气体,温度同为T ,压强分别为1p 和2p . 今将隔板抽去,(a )试求气体混合后的压强.(b )如果两种气体是不同的,计算混合后的熵增加值. (c )如果两种气体是相同的,计算混合后的熵增加值.解:(a )容器是绝热的,过程中气体与外界不发生热量交换. 抽去隔板后气体体积没有变化,与外界也就没有功的交换. 由热力学第一定律知,过程前后气体的内能没有变化. 理想气体的内能只是温度的函数,故气体的温度也不变,仍为T.初态时两边气体分别满足111222,.pV n RT p V n RT == (1)式(1)确定两边气体初态的体积1V 和2V . 终态气体的压强p 由物态方程确定:()()1212,p V V n n RT +=+即1212.n n p RT V V +=+ (2) 上述结果与两气体是否为同类气体无关.(b )如果两气体是不同的. 根据式(1.15.8),混合前两气体的熵分别为111,11110,222,22220ln ln ln ln .p m m p m m S n C T n R p n S S n C T n R p n S =-+=-+ (3)由熵的相加性知混合前气体的总熵为12.S S S =+ (4)根据式(4.6.11),混合后气体的熵为111,111012ln lnp m m n S n C T n R p n S n n '=-+++222,222012ln ln.p m m n n C T n R p n S n n -++ (5) 两式相减得抽去隔板后熵的变化()b S ∆为()1212121122ln ln b n n p p S n R n R n n p n n p ⎛⎫⎛⎫∆=-⋅-⋅ ⎪ ⎪++⎝⎭⎝⎭12121212lnln ,V V V Vn R n R V V ++=+ (6) 第二步利用了式(1)和式(2). 式(6)与式(1.17.4)相当. 这表明,如果两气体是不同的,抽去隔板后两理想气体分别由体积1V 和2V 扩散到12.V V + 式(6)是扩散过程的熵增加值.(c )如果两气体是全同的,根据式(1.15.4)和(1.15.5),初态两气体的熵分别为111,1101222,2202ln ln,ln ln.V m m V m m V S n C T n R n S n V S n C T n R n S n =++=++ (7)气体初态的总熵为12.S S S =+ (8)在两气体是全同的情形下,抽去隔板气体的“混合”不构成扩散过程. 根据熵的广延性,抽去隔板后气体的熵仍应根据式(1.15.4)和(1.15.5)计算,即()()()1212,1212012ln ln.V m m V V S n n C T n n R n n S n n +'=++++++ (9) 两式相减得抽去隔板后气体的熵变()c S ∆为()()121212121212lnln ln .c V V V VS n n R n R n R n n n n +∆=+--+ (10) 值得注意,将式(6)减去式(10),得()()12121212lnln .b c n n S S n R n R n n n n ∆-∆=--++ (11) 式(11)正好是式(4.6.15)给出的混合熵.6.1中 试根据式(6.2.13)证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为()()132232d 2d .VD m hπεεεε=解: 式(6.2.13)给出,在体积3V L =内,在x p 到d ,x x y p p p +到d ,y y x p p p +到d x x p p +的动量范围内,自由粒子可能的量子态数为3d d d .x y z Vp p p h (1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的量子态数为234πd .V p p h (2) 上式可以理解为将μ空间体积元24d Vp p π(体积V ,动量球壳24πd p p )除以相格大小3h 而得到的状态数. 自由粒子的能量动量关系为2.2p mε= 因此2,d .p m p p md εε==将上式代入式(2),即得在体积V 内,在ε到d εε+的能量范围内,三维自由粒子的量子态数为()132232π()d 2d .VD m hεεεε= (3)6.3 试证明,对于二维的自由粒子,在面积2L 内,在ε到d εε+的能量范围内,量子态数为()222π.L D d md hεεε=解: 根据式(6.2.14),二维自由粒子在μ空间体积元d d d d x y x y p p 内的量子态数为21d d d d .x y x y p p h(1) 用二维动量空间的极坐标,p θ描述粒子的动量,,p θ与,x y p p 的关系为cos ,sin .x y p p p p θθ==用极坐标描述时,二维动量空间的体积元为d d .p p θ在面积2L 内,动量大小在p 到d p p +范围内,动量方向在θ到d θθ+范围内,二维自由粒子可能的状态数为22d d .L p p hθ(2) 对d θ积分,从0积分到2π,有20d 2π.πθ=⎰可得在面积2L 内,动量大小在p 到d p p +范围内(动量方向任意),二维自由粒子可能的状态数为222πd .L p p h(3) 将能量动量关系22p mε= 代入,即有()222πd d .L D m hεεε= (4)7.11 表面活性物质的分子在液面上作二维自由运动,可以看作二维气体. 试写出二维气体中分子的速度分布和速率分布,并求平均速率υ,最概然速率m υ和方均根速率s .υ解: 参照式(7.3.7)—(7.3.9),可以直接写出在液面上作二维运动的表面活性物质分子的速度分布和速率分布. 速度分布为()222e d d .2x y m υυkT x y m υυkTπ-+ (1) 速率分布为222e d .2m υkTm υυkTππ- (2) 平均速率为2220ed m υkTmυυυkT-+∞=⎰.2kTmπ=(3)速率平方的平均值为22320e d 2.m υkTm υυυkT kT m -+∞==⎰因此方均根速率为22.s kTυυm==(4) 最概然速率m υ条件22d e 0d m υkTυυ-⎛⎫= ⎪ ⎪⎝⎭确定. 由此可得.m kTυm=(5) 值得注意,上述,,s m υυυ三种速率均小于三维气体相应的速率,这是由于二维和三维气体中速率在υ到d υυ+中的分子数分别与速度空间的体积元2d υυπ和24d υυπ成正比,因而二维气体中大速率分子的相对比例低于三维气体的缘故.7.16 已知粒子遵从经典玻耳兹曼分布,其能量表达式为()22221,2x y z p p p ax bx mε=++++ 其中,a b 是常量,求粒子的平均能量.解: 应用能量均分定理求粒子的平均能量时,需要注意所难能量表达式ε中2ax 和bx 两面三刀项都是x 的函数,不能直接将能量均分定理用于2ax 项而得 出212ax kT =的结论. 要通过配方将ε表达为()222221.224x y z b b p p p a x m a a ε⎛⎫=++++- ⎪⎝⎭ (1) 在式(1)中,仅第四项是x 的函数,又是平方项. 由能量均分定理知()22222124x y z b b p p p a x m a a ε⎛⎫=++++- ⎪⎝⎭22.4b kT a=- (2)。

相关文档
最新文档