基本逻辑函数及运算规律(与或非)

合集下载

逻辑代数的基本定律和规则

逻辑代数的基本定律和规则

◇逻辑符号:
A B C D
◇与或非门真值表: ◇逻辑表达式:
F
& ≥1 &
A F B C D
+
A B
F
C D
每组有0为1, 某组全1为0。
A 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
B 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
C 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
◇与非逻辑表达式: F A B ◇与非门逻辑符号:
A B
&
F
A B
F
A B
F
◇与非门真值表:
A B F A B 0 0 1 0 1 1 1 0 1 1
与非门运算顺序是: 有0为1,全1为0
先与后非
1 0
即:当输入A、B中,只要有一个 0,输出就是 1,只有输入全为 1时, 输出才是0。
A B
F A B
0
0 1 1
0
1 0 1
1 0 0 0
即:当输入 A 、 B 中, A 只 要 有 一 个 1, 输 出 就 B 是 0, 只有输入全为 0 时, F 输出才是1。
与或非逻辑是与逻辑运算和或非逻辑运算的组合。它是 将输入变量A,B及C,D先进行与运算,然后再进行或非运算。 能够实现与或非逻辑运算的电路称为与或非门。
逻辑代数主要用于解决开关电路和数字逻辑电路的分析与设计。 逻辑代数也用字母表示变量,这种变量称为逻辑变量。在二值 逻辑中,每个逻辑变量的取值只有0和1两种。
在逻辑代数中,0和1不再表示数量的大小,只代表两种不同的逻 辑状态。
一、基本逻辑运算:与、或、非 三种。

数字逻辑基础2

数字逻辑基础2

2、吸收法 (1)利用公式A+AB=A,消去多余的项。 是另 项 是 F1 A B A BCD( E F ) A B 多外 的 另 运用摩根定律 余 一 因 外 如 的个 子 一 果 。乘 , 个 乘 F2 A B CD ADB A BCD AD B 积则乘积 项这积项 ( A AD) ( B BCD) A B (2)利用公式A+AB=A+B,消去多余的变量。 因项 的 F AB C A C D BC D 子 的 反 F AB A C B C 如 AB C C ( A B) D 是 因 是 果 多子 另 一 AB ( A B )C 余, 一 个 AB C ( A B) D 的则 个 乘 AB ABC AB C AB D 。这 乘 积 AB C 个积项 AB C D
A B C D
& ≥1 F
与或非门的逻辑符号
5、同或运算:逻辑表达式为:
F AB AB AB
A B 同或门的逻辑符号
A 0 0 1 1
B F 0 1 1 0 0 0 1 1 真值表
=
F
L=A+B
2.2.3逻辑函数及其表示法
一、逻辑函数的建立: 1、逻辑表达式:由逻辑变量和与、或、非3种运算符连 接起来所构成的式子。 输入逻辑变量:等式右边的字母A、B、C、D 输出逻辑变量:等式左边的字母F 原变量,反变量。 2、逻辑函数:如果对应于输入逻辑变量A、B、C、… 的每一组确定值,输出逻辑变量Y就有唯一确定的值,则称 F是A、B、C、…的逻辑函数。记为 F f ( A, B, C,) 注意:与普通代数不同的是,在逻辑代数中,不管是变 量还是函数,其取值都只能是0或1,并且这里的0和1只表示两 种不同的状态,没有数量的含义。

逻辑函数的运算

逻辑函数的运算

逻辑代数基础
1.1
基本定律和规则
逻辑函数的运算
3.逻辑函数运算规则
1) 代入规则 对于任何一个含有变量A 的等式, 如果所有出现A 的地方都以另一个逻辑 式代替,则等式仍然成立。 2) 反演规则 对于逻辑函数F , 将表达式中的所有“ · ” 换成“ + ” , “ + ” 换成 “ . ” , 常量0换成1 , 常量1 换成0 , 所有原变量换成反变量, 所 有反变量换成原变量, 即得反函数 。 3) 对偶规则 在介绍对偶规则前先定义对偶式。设F 为逻辑表达式, 如果将F 中所有的 “ + ” 换成“ · ” , “ · ” 换成“ + ” , 1 换成0 , 0 换成1 , 而变量保持不变, 则所得新的逻辑式就称为F 的对偶式, 记为F′ 。
逻辑代数基础
1.2
逻辑函数的表示方法
1.真值表
将输入变量所有取值情况及其相 应的输出结果, 全部列表表示, 即为真值表。
逻辑函数的运算
逻辑代数基础
1.2
逻辑函数的表示方法
逻辑函数的运算
2.逻辑表达式
将输入输出关系写成与或非等逻辑运算的组合式, 称为逻辑 表达式, 简称逻辑式。 如图所示判决电路, 当A 闭合, B 和C 中至少一个闭合, 则 可表示为A BC +A B C + A BC , 故其逻辑表达式为
逻辑代数基础
1.4
逻辑函数卡诺图化简
5项的函数时, 由于无关项 的取值对函数不产生影响, 加入的无关 项应与函数尽可能多的最小项具有相邻 性。在画矩形时, 无关项的取值以矩形 组合最大, 矩形数目最少为原则。
逻辑代数基础
1.2
逻辑函数的表示方法
逻辑函数的运算
5.逻辑表达式的标准表达式

高二通用技术---逻辑门

高二通用技术---逻辑门

00
1
01 4
6
14
11
10
9
(2) 四个相邻最小项合并可以消去两个因子
CD AB 00 01 11 10
00 0
32
01 4
11 12
10 8
11 10
CD AB 00 01 11 10
00 0
2
01
57
11
13 15
10 8
10
(3) 八个相邻最小项合并可以消去三个因子
CD AB 00 01 11 10
[例] 证明: 德 摩根定理
A+A=A
A B AB
A B A B 00 0 1 01 0 1 10 0 1 11 1 0
AB
A B
11 1 0 1 1
10 1 1 0 0
01 1 1 0 0
00 0 1 0 0
相等
相等
五、关于等式的三个规则
1. 代入规则: 等式中某一变量都代之以一个逻 辑函数,则等式仍然成立。
A BC ( A B) ( A C)
[例 ] 证明公式 [解] 方法一:公式法
右式 ( A B)( A C) A A A C A B B C A AC AB BC A(1 C B) BC A BC 左式
证明公式 方法二:真值表法(将变量的各种取值代入等式
(2) 或非逻辑
(NOR)
A ≥1
B
Y2 A B
(3) 与或非逻辑
A
(AND – OR – INVERT) B
Y3 AB CD
C D
Y1、Y2 的真值表
Y1
A B Y1 Y2
00 11
01 10
Y2 1 0 1 0 11 00

数电2-逻辑函数与逻辑门

数电2-逻辑函数与逻辑门

A 1=? A A 0=? A
4〉同或: A⊙ B = A B=AB + AB 相同为1 相异为0
@ Copyright 杭州电子科技大学 电子信息学院 张珣
二、逻辑函数及其表示方法
1> 真值表
例1:三个人表决一件事情,结果按“少数服从多数”的原则决定,试 建立该逻辑函数。
解:第一步:设置自变量和因变量。 第二步:状态赋值。
@ Copyright 杭州电子科技大学 电子信息学院 张珣
4 逻辑证明
(1)用简单的公式证明略为复杂的公式。 例3.1.1 证明吸收律 A + AB = A + B 证: A + AB= A(B + B) + AB = AB + AB + AB = AB + AB + AB + AB
= A(B + B) + B(A + A) = A + B
@ Copyright 杭州电子科技大学 电子信息学院 张珣
一、与或非代数系统基本逻辑关系
3、非: Y= A Y
(逻辑补) 取反
X 例: 1 = ? 0
0=? 1
A= ? A
*运算顺序:非〉与〉或
@ Copyright 杭州电子科技大学 电子信息学院 张珣
4、其他常用逻辑运算
1>与非 ——由与运算和非运算组合而成。
推广:ABC=ABC=A+B+C A+B+C=A+B+C=A B C
@ Copyright 杭州电子科技大学 电子信息学院 张珣
1、常用公式 2〉AB+AC+BC=AB+AC 证明: AB+AC+BC= AB+AC+(A+A)BC

第3章(1) 逻辑代数

第3章(1)  逻辑代数

3.2 逻辑函数的卡诺图化简法
3.2.1 最小项的定义及其性质
1、最小项 ⑴、定义:
在n个变量逻辑函数中,若m为包含n个因子的乘 积项,而且这n个变量均以原变量或反变量的形式在m 中出现一次,则称m为该组变量的最小项。
例:3变量逻辑函数中
ABC , ABC, ABC , ABC, ABC , ABC, ABC , ABC 是最小项
一、化简的意义和最简的概念 1、化简的意义
• 节省器材。元器件减少,成本降低。
• 提高了工作的可靠性。单个门电路减少,输入、输出头减 少,电路的工作可靠性提高
· 例: A B·
·· &

&
C
·1
&
≥1 Y=ABC+ABC+ABC
A
&
Y=ABC+ABC+ABC
B
≥1
C
=A(BC+BC+BC) =A(BC+BC+BC+BC) =A(B+C)
4、配项法:
利用 A=A(B+ B )作配项用,然后消去更多的项 Z=AB+ A C+BC=AB+ A C+(A+ A )BC
=AB+ A C+ABC+ A BC=AB+ A C 也可利用 A+1=1 或 A+A=A 来配项
Z=ABC+ A BC+ AB C=ABC+ A BC+ AB C+ABC =(A+ A )BC+( AB +AB)C=BC+C=C
3.1.1 逻辑代数的基本定律和恒等式 1 基本关系 加运算规则: 0+0=0 ,0+1=1 ,1+0=1,1+1=1 A+0 =A,A+1 =1,A+A A+A =1 =A, 乘运算规则: 0•0=0 0•1=0 1•0=0 1•1=1

基本和常用逻辑运算

基本和常用逻辑运算

逻辑符号真值表逻辑函数式逻辑变量:量逻辑山山亠亠川畐隸■」「逻垢弯量亚值逻辑匿变量的取值不是1就是爨。

删8[]反血皿■ 3丄山兀砂的称加逻辑函数:如果输入逻辑变量丛B、O 啲取值确定之后,输出逻辑变量丫的值也被唯尋确^■u称疑八、zk门…菊Y2的真值表=(5)同或逻辑(异或非)I 刖mm曲g—闯“叭尋__ ■ B鉉O章鉉O章鉉o章^■□11 Er s三三三方法二:真值表法(将变量的各;=r 二‘y f一 -—^――"W^ + _ ■将y式中"・〃换成"+〃,"+"换成"・〃_ I "0〃换成"1" , "i n换成"0"原变量换成反变量,反变量换成原变量注意:将y 式中"・"换成"+",换成"・〃"0"换成"1" , "1〃 换成"0"原变量换成反变量,反变量换成原变量运算顺序:=A (B +C )+CD J 七暂"V 亠入右i 尊不属于单个变量上例如:已知 括号i 与i 或_______________________ 丿已知的反号应保留不变S ____________ _________ 7偶式也一定相等。

将丫中"・”换成"+”,"+"换成"・""0"换成"1〃,"1〃换成"0"例如X = MT? id I门〃—人・(A + 1KJ)心+“)臺y -4ff+c + n+r —» rj =(?i+fi)c D(M对偶规则的应用:证明等式成立0 * 0 ■ 0 ■运算顺序:括号i与i或__ _____ yI0 + P H G +P )W + P )IIII H H E )IR +P ^l ■■®o ®推——■ AB+AC + 〃C£> = A〃+AC芹M AH・AR =(A + ")fA + yn 尋同理WHE精品课件V1 ••r精品课件V1 ••r■w===■[□Mi=5律律律和量变和。

逻辑代数中的三种基本运算

逻辑代数中的三种基本运算

& ≥1
Y3
(真值表略)
(4) 异或逻辑 A
=1
(Exclusive—OR) B
Y4 A B AB AB
(5) 同或逻辑 (异或非)
(Exclusive—NOR)
Y5 A B
A B
=1
AB AB
= A⊙B
Y4
A B Y4 00 0
01 1
10 1
11 0
A B Y5
) A
公式 (4) 证明: AB AC BC AB AC
左 AB AC ( A A) BC A AB A AB AC ABC ABC AB AC
推论
AB AC BCD AB AC
公式 (5) 证明: AB AB A B AB
左 AB AB ( A B) ( A B)
A A A B AB B B A B AB 即 A B = A⊙B 同理可证 A⊙B A B
六、关于异或运算的一些公式
异或 A B AB AB A B = A⊙B 同或 A⊙B AB A B A⊙B A B (1) 交换律 A B B A
(2) 结合律 ( A B) C A ( B C ) (3) 分配律 A ( B C) AB AC
(4) 常量和变量的异或运算 A 1 A A 0 A
(5) 因果互换律
如果 A B C
A A 0 A A 1
则有 A C B BC A
电源
开关B
灯Y

或逻辑关系
辑A 符B
≥1
Y

或门(OR gate)

逻辑代数的基本定律及规则

逻辑代数的基本定律及规则

逻辑代数的基本定律及规则文章来源:互联网作者:佚名发布时间:2012年05月26日浏览次数: 1 次评论:[已关闭] 功能:打印本文一、逻辑代数相等:假定F、G都具有n个相同变量的逻辑函数,对于这n个变量中的任意一组输入,如F和G都有相同的输出值,则称这两个函数相等。

在实际中,可以通过列真值表来判断。

二、逻辑代数的基本定律:在逻辑代数中,三个基本运算符的运算优先级别依次为:非、与、或。

由此推出10个基本定律如下:1.交换律A+B=B+A;A·B=B·A2.结合律A+(B+C)=(A+B)+C;A·(BC)=(AB)·C3.分配律A·(B+C)=AB+AC;A+BC=(A+B)·(A+C)4.0-1律A+0=A;A·1=AA+1=1 ;A·0=05.互补律A+=1 ;A·=06.重叠律A·A=A;A+A=A7.对合律=A8.吸收律A+AB=A;A·(A+B)=AA+B=A+B;A·(+B)=ABAB+B=B;(A+B)·(+B)=B9.反演律=·;=+10.多余项律AB+C+BC=AB+C;(A+B)·(+C)·(B+C)=(A+B)·(+C)上述的定律都可用真值表加以证明,它们都可以用在后面的代数化简中。

三、逻辑代数的基本规则:逻辑代数中有三个基本规则:代入规则、反演规则和对偶规则。

1.代入规则:在任何逻辑代数等式中,如果等式两边所有出现某一变量(如A)的位置都代以一个逻辑函数(如F),则等式仍成立。

利用代入规则可以扩大定理的应用范围。

例:=+,若用F=AC代替A,可得=++2.反演规则:已知函数F,欲求其反函数时,只要将F式中所有的“·”换成“+”,“+”换成“·”;“0”换成“1”,“1”换成“0”时,原变量变成反变量,反变量变成原变量,便得到。

逻辑函数的运算和卡诺图

逻辑函数的运算和卡诺图
逻辑函数的最小项表示法,它们具有惟一性。而逻辑表达式和逻辑图 都不是惟一的。使用这些方法时,应当根据具体情况选择最适合的一 种方法表示所研究的逻辑函数。
当前您浏览到是第二十四页,共二十五页。
本章小结
本章介绍了两种逻辑函数化简法。公式化简法是利用逻辑
代数的公式和规则,经过运算,对逻辑表达式进行化简。它的优点是 不受变量个数的限制,但是否能够得到最简的结果,不仅需要熟练地
普通代数结 果如何?
(3)与普通代数相似的定理
交换律 A·B = B·A
A+B=B+A
结合律 A·(B·C)=(A·B)·C A +(B+C)=(A+B)+C
分配律 A·(B+C)=A·B + A·C A+(BC)=(A+B)(A+C)
当前您浏览到是第四页,共二十五页。
(4)特殊的定理
反演律:P14注意
若规定:代表一个最小项的小方格叫做“0”维块。
“0”维块: 表示四个变量一个也没有被消去。
将相邻“0”维块相加,可以将两项合 AB
并为一项,并消去一对因子。
CD 00 01 11 10
相邻项
“0”维块相加“1”维块“2”维“块3”维块00ABmC0D
ABC D
m4
ABCDABC
m12 m8
D
m0+m1 ABC D ABCD ABC
m2 m6 m14 m10
二个“0”维块相加,可合并为一项,并消去一对有 0,1变化因子。 四个“0”维块相加,可合并为一项,并消去二对有 0,1变化因子。
八个“0”维块相加,可合并为一项,并消去三对有 0,1变化因子。
当前您浏览到是第十七页,共二十五页。

基本逻辑运算

基本逻辑运算

2.3.1 TTL与非门的基本结构及工作原理
+VCC( + 5V) R 3kΩ
D
Rc 1kΩ
D5 3 1
A B C
1
P
D
4
L
T 2
D2 D 3
R1 4.7kΩ
+VCC ( + 5V ) Rb1
+VCC ( +5V) R b1
A B C
N N N
P P P
P
N
1
3
A B C
T1
1. 电路基本结构
+V CC ( + 5V) Rc 2 R b1 4kΩ
1.输入低电平电流IIL——是指当门电路的输入端接低电平时,从 门电路输入端流出的电流。
可以算出:
I IL
VCC VB1 5 1 1(mA) Rb1 4
产品规定IIL<1.6mA。
2.输入高电平电流IIH ——是指当门电路的输入端接高电平时,流入 输入端的电流。
产品规定:IIH<40uA。
3 主要参数
(1)TTL与非门提高工作速度的原理
a.采用多发射极三极管加快了存储电荷的消散过程。
+VCC Rc 2 i B1 1V R b1 4kΩ
1
1.6kΩ
3.6V A B C 0.3V
3
1.4V
1
3
T1 β iB1 0.7V
T2 2
3 1
Vo T3 2
Re 2 1kΩ
b.采用了推拉式输出级,输出阻抗比较小,可迅速给负载电容充放电。
2.1
一、基本逻辑运算 1.与运算
设:开关闭合=―1‖ 开关不闭合=―0‖

基本逻辑运算有与运算(逻辑乘)、或运算(逻辑加)和非运算(解读

基本逻辑运算有与运算(逻辑乘)、或运算(逻辑加)和非运算(解读
(3)画圈 (4)化简 要画吗? 01 11
1
1 1 1
1 1 1
10 Y = ABC AC D ABC ACD
11 已知某逻辑函数的卡诺图如下所示,试写出其 最简与或式。
CD AB 00 01 11 10 00 1 1 01 1 1 1 11 1 1 1 10 1 1 1 0 0 方格很少且为相 邻项,故用圈 0 法先求 Y 的最简与或式。
逻辑符号对照
基本逻辑运算有与运算 ( 逻辑乘 ) 、或运算 ( 逻 辑加 ) 和非运算 ( 逻辑非 )3 种。常用复合逻辑 运算有与非运算、或非运算、与或非运算、异 或运算和同或运算。
与运算 或运算 非运算
Y=A· B 或 Y=AB 若有 0 出 0 若全 1 出 1
Y=A+B
若有 1 出 1 若全 0 出 0
4 CMOS门的输入端空接时会发生下面什么 情况? A 输入端为高电位 B 输入端为低电位 C 输入端空接对电路无影响 D 会造成输出不稳定现象 答案:D
判断题 1.TTL与非门的多余输入端可以接固定高电平。 2.当TTL与非门的输入端悬空时相当于输入为逻辑1。 3.普通的逻辑门电路的输出端不可以并联在一起,否则 可能会损坏器件。 4.CMOS或非门与TTL或非门的逻辑功能完全相同。 5.三态门的三种状态分别为:高电平、低电平、不高不 低的电压。 6.TTL集电极开路门输出为1时由外接电源和电阻提供 输出电流。 7.一般TTL门电路的输出端可以直接相连,实现线与。 8.TTL OC门(集电极开路门)的输出端可以直接相连,实 现线与。 错误:5、7
解:
Y=1
Y=0
OC 门输出 端需外接 上拉电阻
RC
7 分别采用与非门和或非门实现与门和或门。

第13讲(第20章逻辑代数)

第13讲(第20章逻辑代数)
0 m 1 m
12
只有一 项不同
φ m 1 m
13
1 0 m15 m14 1 0 m11 m10
几 何 函数取0、1均 相 可,称为无所 邻
10
8
9
谓状态。
几何相邻
输出变量Y的值
二、逻辑函数四种表示方式的相互转换 (1)、逻辑电路图↔逻辑代数式
A A
1 &
AB
B B
1
≥1
Y=A B+AB
&
AB
逻辑电路图到逻辑代数式原则: 逐级写出逻辑式,就是从输入端到输出端, 依次写出各个门的逻辑式,最后写出输出 量Y的逻辑式。 逻辑代数式到逻辑电路图原则: 逻辑乘用与门实现,逻辑加用或门实现, 求反运算用非门实现。
用卡诺图化简的规则: 对于输出为1的项
1)上、下、左、右相邻 2 (n=0,1,2,3)个项,可 组成一组。 2)先用面积最大的组合进行化简,利用吸收规则, 可吸收掉n个变量。n Nhomakorabea21
吸收掉1个变量;2 2
吸收掉2个变量...
3)每一项可重复使用,但每一次新的组合,至少包 含一个未使用过的项,直到所有为1的项都被使用后 化简工作方算完成。
逻辑代数的基本运算规则
A+B+C=(A+B)+C=A+(B+C) ABC=(AB)C=A(BC)
分配律:
A(B+C)=AB+AC A+BC=(A+B)(A+C)
分配律:
A(B+C)=AB+AC A+BC=(A+B)(A+C)
逻辑代数的基本运算规则
求证: (分配律第2条) 证明: 右边 =(A+B)(A+C)

数字电路的基本知识3

数字电路的基本知识3
与运算 A • 0 0 A •1 A A • A 0 A • A A
或运算 A 0 A A 1 1 A A 1 A A A
非运算 A A
(2) 逻辑代数的基本定律 交换律:A B B A A• B B• A 结合律:(A B) C A (B C) ( AB)C A(BC) 分配律: A(B C) AB AC A BC (A B)(A C) 反演律: A B A • B AB A B
提取公因子A
ABC A(B C ) 利用反演律
ABC ABC A(BC BC)
消去互为 反变量的因子
A
2) 吸收法 利用公式 A AB A 将多余项AB吸收掉 化简逻辑函数 F AB AC ABC
F AB AC ABC …提取公因子AC
AB AC(1 B) …应用或运算规律,括号内为1
最简与或式的一般标准是:表达式中的与项最少,每个与 项中的变量个数最少。代数化简法最常用的方法有: 1) 并项法
利用公式 AB AB A 提取两项公因子后,互非变量消去。 化简逻辑函数 F AB AC ABC
F AB AC ABC
A(B C BC) …提取公因子A
A(B C B C) …应用反演律将非与变换为或非 A …消去互非变量后,保留公因子A,实现并项。
AB AC 3) 消去法
利用公式 A AB A B 消去与项AB中的多余因子A 化简逻辑函数 F AB AC BC F AB AC BC …提取公因子C
AB C(A B)
AB C AB …应用反演律将非或变换为与非
AB C …消去多余因子AB,实现化简。
4) 配项法 利用公式A=A(B+B),为某一项配上所缺变量。
(3) 逻辑代数的常用公式 吸收律:A AB A A(A B) A A (AB) A B

三种基本的逻辑运算

三种基本的逻辑运算

11
也可以用图2.2.2表示与 逻辑,称为逻辑门或逻 辑符号,实现与逻辑运 算的门电路称为与门。
A B

Y
A B
Y
图2.2.2 与门逻辑符号
若有n个逻辑变量做与运算,其逻辑式可表示为
Y A1A2An
2.2.2 或运算
或运算也叫逻辑加或逻辑或,即当其中一个条 件满足时,事件就会发生,即“有一即可
如图2.2.3所示电路,两个 并联的开关控制一盏灯就是或 逻辑事例,只要开关A、B有 一个闭合时灯就会亮。
6.与或非运算 与或非运算是“先与后或再非”三种运算的组合。
以四变量为例,逻辑表达式为:
Y ( AB CD)
上式说明:当输入变量A、B A
同时为1或C、D同时为1时, B
Y
输出Y才等于0。与或非运算 C 是先或运算后非运算的组合。 D
在工程应用中,与或非运算 由与或非门电路来实现,其
A B C
& 1 Y
真值表见书P22表2.2.6所示, D
逻辑符号如图2.2.9所示
图 2.2.9 与 或 非 门 逻 辑 符 号
7. 异或运算 其布尔表达式(逻辑函数式)为
Y A B AB AB
符号“⊕”表示异或运算,即两个输入逻辑变量取值
不同时Y=1,即不同为“1”相同为“0”,异或运算
用异或门电路来实现
其真值表如表2.2.6所示 其门电路的逻辑符号如图2.2.10
表2.2.6 异或逻辑真值

输入
输出
A
BY
所示
0
00
A B
=1 YA B
Y
0
11
1
01
1
10
图2.2.10 异或门逻辑符号

与或非

与或非

逻辑符号:
A B
1
Y
A B
+
Y
ABY 000 011 101 111
在函数式中,用+ 表示或 运算,记做
Y=A+B
8
3.非门
真值表
R
AY
01
Y A
10
在函数式中,用_ 表示非
该图代表的逻辑关系是:决 运算,记做
定事件的条件满足时,事件不
Y=A
发生——这就是非逻辑关系。 国外符号:
逻辑符号:
A
1
Y
A B
C D
ABCD Y
0000
1
0 0 01
1
0010 1
0011 0
0100 1
0101 1
0110 1
0111 0
1000 1
1001 1
1010 1
1011 0
1100 0
1101 0
1110 0
1111
0 11
第三节 逻辑代数的基本公式和常用公式
一、基本公式
关于常数之间的运算在真值表中已给出。下面的公式中都有变量:
0 m0 1 m1 2 m2 3 m3 4 m4 5 m5
以三变量为例, 如表。
ABC 1 1 0 ABC 1 1 1
6 m6 7 m7
此时AB、A都不是最小项。
21
2.最小项的性质:
(1)对应输入变量的任何取值,都会有一个最小项,且仅有一 个最小项的值为1;
(2)全体最小项之和为1;
(3)任意两个最小项之积为0; ABC.ABC=0
模拟量:随着时间的连续变化其值作连续变化的(时
间上和物理量数值均连续变化)物理量叫模拟量。 连续信号(模拟信号):表示模拟量的信号。 模拟电路:工作在模拟信号下的电子电路 。 数字量:在时间上和数值上均是离散的物理量 。

数字逻辑

数字逻辑
数字电路中主要用到的是:二极管三极管的开关特性
集成们电路关键是掌握它的外部原理,内部原理了解就可以,
逻辑函数表达式中的因子可以多次利用,
具有无关项的逻辑函数的化简:
可以把无关项当1处理,也可以当0来处理,如何处理起决于化简能消去互补因子为主,但是当0、1处理的结果是不同的
有三个逻辑变量最多可以圈四个最小项,假设圈了六个(每两个消去一个变量)则结果还是正确的
卡诺图的运算:
(1)判断函数的关系,若卡诺图一致则相等
(2)用卡诺图进行或运算
数字逻辑:重在逻辑,不是运算
数字逻辑的基础:五个逻辑符号(0、1、与、或、非)+基本公式+逻辑代数的三个规则(代入规则、对偶规则、反演规则)
1.减法运算转化为加法运算(即两个数的补码进行加法运算,减号加入到第二个数字中,最前的进位舍去)
2.A·A=A,A·A·A=A。A·0=0,A·1=A。与运算中符合:有0出0,全1才1,注意与的逻辑符号&:
如果线段不允许拖动或不容易放到字符上方或者画出的线段线型不合理,那么可以选中此线段,点击右键,在弹出的菜单中点击“设置自选图形格式”命令,打开“设置自选图形格式”对话框。点击“颜色与线条”选项卡,可以指定线条的颜色、线型、粗细等。点击“版式”选项卡,选中“浮于文字上方”选项,如图1所示,确定后就可以随意拖动线条且不影响字符的正常排版了。
相邻项:(它的前提是最小项)
只有一个变量互补,其余变量均相同的两个最小项,ABC的最小项为ABC、ABC、ABC、
对于n个变量的最小项都有n个相邻项
相邻项的作用:化简函数
任何两个相邻项相或均可合并成一项并消去一个互补因子
最小项标准表达式:由最小项组成的与或逻辑表达式,从真值表中直接写出的与或逻辑表达式就是最小项标准表达式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本逻辑函数及运算规律(与或非)
基本的逻辑关系有与逻辑、或逻辑、非逻辑,与之对应的逻辑运算为与运算(逻辑乘)、或运算(逻辑加)、非运算(逻辑非)。

1.与运算
只有当决定一件事情的条件全部具备之后,这件事情才会发生。

把这种因果关系称为与逻辑,其逻辑关系、真值表及逻辑符号如图6.7所示。

若用逻辑表达式来描述,则可写为:B A Y ⋅=
(a)电路 (b)真值表 (c)逻辑符号
图6.7 与运算
下图6.8为实现与运算的二极管与门电路。

A 、B 为输入端,F 为输出端。

A 、B 输入端中只要有一个为低电平,则与该输入端相连的二极管会反相偏置导通,使输出端为低电平。

只有输入端同时为高电平时,二极管会反向偏置截止,输出才是高电平。

图 6.8 与运算的二极管与门电路
2.或运算
当决定一件事情的几个条件中,只要有一个或一个以上条件具备,这件事情就发生。

把这种因果关系称为或逻辑,其逻辑关系、真值表及逻辑符号如图6.9所示。

若用逻辑表达式来描述,则可写为:B A Y +=
(a)电路 (b)真值表 (c)逻辑符号
图6.9 或运算
下图6.10为实现与运算的二极管或门电路。

A、B为输入端,F为输出端。

A、B输入端中只要有一个为高电平,则输出端为高电平。

只有当A、B同时为低电平,输出端才会输出低电平。

图 6.10或运算的二极管与门电路
3.非运算
某事情发生与否,仅取决于一个条件,而且是对该条件的否定,即条件具备时事情不发生;条件不具备时事情才发生,其逻辑关系、真值表及逻辑符号如图6.11所示。

(a)电路(b)真值表(c)逻辑符号
图6.11 或运算
Y
若用逻辑表达式来描述,则可写为:A
下图6.12为晶体管非门电路。

当输入为高电平,晶体管饱和,输出为低电平;当输入为电平,晶体管截止,输出为高电平,实现了非门功能。

图 6.12 非运算的二极管与门电路
二、常用逻辑运算
1.与非运算
下图6.13为2输入与非运算的电路、逻辑符号及真值表。

它由二极管与门和晶体管非门串接而成,当输入中至少有一个为低电平,P点输出为低电平,晶体管截止,F输出为高电平;当输入全为高电平时,P点输出为高电平,晶体管饱和,F输出为低电平,实现了与
非的逻辑功能。

与非关系表达式为:AB Y =
(a)电路 (b) 逻辑符号 (c)真值表
图6.13 与非运算
2.或非运算
下图6.14为2输入或非运算的电路、逻辑符号及真值表。

它由二极管与门和晶体管非门串接而成,当输入中至少有一个为高电平,P 点输出为高电平,晶体管饱和,F 输出为低电平;当输入全为低电平时,P 点输出为低电平,晶体管截止,F 输出为高电平,实现了或非的逻辑功能。

(a)电路 (b) 逻辑符号 (c)真值表
图6.14 或非运算
3. 与或非门
与或非门电路相当于两个与门、一个或门和一个非门的组合,可完成与或非运算。

与或非门电路用图 6.15(a)所示的逻辑符号表示,其逻辑表达式为:D C B A Y ⋅+⋅=。

由与或非门完成的运算分析可知,与或非门的功能是将两个与门的输出或起来后变反输出。

与或非门电路也可以由多个与门和一个或门、一个非门组合而成,具有更强的逻辑运算功能。

(a) 与或非门 (b) 异或门 (c) 同或门
图6.15逻辑符号
4.异或门
异或是一种二变量逻辑运算,当两个变量取值相同时,逻辑函数值为0;当两个变量取值不同时,逻辑函数值为1。

其逻辑符号如图6.15(b)所示。

异或的逻辑表达式为:B A B A B A Y +=⊕=
5.同或门
同或运算符号是⊙。

当两个变量取值不同时,逻辑函数值为0;当两个变量取值相同时,逻辑函数值为1,即输入相异时为0。

其逻辑符号如图6.15(c)所示。

同或运算的逻辑表达式为:Y =A ⊙B =B A AB +。

相关文档
最新文档