《等腰三角形的性质》教学设计

合集下载

初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)

初中数学等腰三角形的性质教案(通用10篇)初中数学等腰三角形的性质教案篇1一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。

等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。

等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。

同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。

2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。

如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:重点:等腰三角形性质的探索与应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设启发性强、学生感兴趣、有利于自主学习和探索的问题情境,让学生在活动丰富、思维积极的状态下进行探究学习,组织合作学习,引导合作过程,使学生朝着有利于知识建构的方向发展。

二、学情分析刚进入二年级的学生,观察、操作、猜测能力较强,但演绎推理、归纳和数学意识的应用能力较弱,缺乏思维的广泛性、敏捷性、紧凑性和灵活性,自主探究和合作学习的能力需要在课堂教学中进一步加强和引导。

八年级数学上册《等腰三角形的性质》教案、教学设计

八年级数学上册《等腰三角形的性质》教案、教学设计
3.演示验证,巩固知识
-利用几何画板等教学工具,直观演示等腰三角形的性质,帮助学生加深理解。
-通过典型例题,引导学生运用等腰三角形的性质进行计算和证明,巩固所学知识。
4.实践应用,拓展提高
-设计具有挑战性的练习题,让学生在解决问题的过程中提高几何素养。
-鼓励学生将所学知识运用到实际生活中,如设计等腰三角形图案,培养他们的创新意识和实际操作能力。
4.结合教材,引导学生学习等腰三角形的相关定理和公式,如等腰三角形的面积公式、周长公式等。
(三)学生小组讨论
1.教师将学生分成若干小组,每组讨论一个问题,如等腰三角形的性质、判定方法、应用等。
2.学生在小组内交流观点,共同解决问题,教师巡回指导,给予提重难点和教学设想
(一)教学重难点
1.理解并掌握等腰三角形的定义及其性质,特别是等腰三角形的底角相等、底边上的高、中线和顶角的平分线相互重合。
2.学会运用等腰三角形的性质解决相关问题,如周长、面积的计算,以及几何证明。
3.培养学生的空间想象能力和逻辑推理能力,提高他们在几何领域的解题技巧。
(二)教学设想
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重启发式教学,激发学生的学习兴趣和求知欲,让他们在探索中发现问题,解决问题,从而提高他们的数学素养。
二、学情分析
八年级的学生已经具备了一定的几何知识基础,掌握了三角形的基本概念和性质,能够进行简单的几何推理和论证。在此基础上,学生对等腰三角形的性质进行学习,有利于他们巩固和拓展已有的几何知识体系。然而,学生在几何方面的空间想象能力和逻辑推理能力仍有待提高,对等腰三角形性质的理解和应用可能存在困难。针对这种情况,教师在教学过程中应注重启发引导,关注学生的认知发展,通过直观演示、动手操作等教学手段,帮助他们突破难点,提高几何素养。同时,教师要关注学生的情感态度,鼓励他们积极参与课堂讨论,培养他们的自信心和合作精神,使他们在轻松愉快的氛围中学习等腰三角形的性质。

等腰三角形的性质教案

等腰三角形的性质教案

等腰三角形的性质教案### 等腰三角形的性质教案#### 教学目标1. 学生能够理解等腰三角形的定义和基本性质。

2. 学生能够掌握等腰三角形的底角相等、顶角平分线、底边高线、底边中线和顶角的外角平分线五条线段重合的性质。

3. 学生能够运用等腰三角形的性质解决实际问题。

#### 教学重点1. 等腰三角形的性质。

2. 等腰三角形性质的应用。

#### 教学难点1. 等腰三角形性质的推导和证明。

2. 等腰三角形性质在实际问题中的应用。

#### 教学方法1. 启发式教学法。

2. 讨论法。

3. 练习法。

#### 教学准备1. 几何图形工具(如三角板、直尺、量角器等)。

2. 多媒体课件。

#### 教学过程1. 通过展示生活中的等腰三角形图片(如自行车的三角形车架、等腰梯形的屋顶等),激发学生兴趣。

2. 提问学生对等腰三角形的初步认识,引出等腰三角形的定义。

##### 讲解新知1. 等腰三角形的定义:- 等腰三角形是指有两边长度相等的三角形。

- 通过多媒体展示等腰三角形的图形,让学生观察并指出哪两边相等。

2. 等腰三角形的性质:- 底角相等:等腰三角形的两个底角相等。

- 顶角平分线、底边高线、底边中线重合:等腰三角形的顶角平分线、底边高线和底边中线是同一条线段。

- 顶角的外角平分线:等腰三角形顶角的外角平分线与底边平行。

3. 性质的推导和证明:- 通过几何证明,展示如何证明等腰三角形的底角相等。

- 通过构造辅助线,证明顶角平分线、底边高线和底边中线的重合。

##### 课堂练习1. 给出几个等腰三角形的图形,让学生找出底角、顶角平分线、底边高线和底边中线。

2. 设计几个简单的等腰三角形问题,让学生运用性质解决问题。

##### 课堂讨论1. 组织学生讨论等腰三角形性质在实际生活中的应用,如建筑设计、家具制作等。

2. 讨论等腰三角形性质与其他三角形性质的联系和区别。

1. 总结等腰三角形的性质和应用。

2. 强调等腰三角形性质在解决几何问题中的重要性。

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇

八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。

以下是我为大家整理的,感谢您的欣赏。

八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。

等腰三角形的性质教案

等腰三角形的性质教案

等腰三角形的性质教案教案标题:等腰三角形的性质一.教学目标1.掌握等腰三角形的定义。

2.了解等腰三角形的性质。

3.能够运用等腰三角形的性质解决相关问题。

二.教学重点1.掌握等腰三角形的定义。

2.了解等腰三角形的性质。

三.教学准备1.教师准备:教案、课件、黑板、粉笔、直角尺、三角板。

2.学生准备:学生课本、笔记、作业。

四.教学过程1.导入(5分钟)教师通过讲解案例或问题引出等腰三角形的概念,例如:“在日常生活中,你们是否见过等腰三角形?它是一种什么样的三角形呢?请向前来板上画出一个等腰三角形。

”2.学习等腰三角形的定义(10分钟)学生根据教师的引导,回答等腰三角形的定义:“当一个三角形的两条边的长度相等时,我们称这个三角形为等腰三角形。

”3.探究等腰三角形的性质(20分钟)1.教师通过引导,让学生在教室里寻找等腰三角形,并观察和记录它们的性质。

2.学生将观察到的性质进行总结和归纳。

4.等腰三角形的性质讲解(30分钟)教师利用多媒体或黑板,依次讲解等腰三角形的性质,包括:1.等腰三角形的底角(底边对应的角)相等。

2.等腰三角形的两边相等。

3.等腰三角形的高线(从顶点到底边的垂线)平分底边。

5.练习与巩固(25分钟)学生通过教师出示的练习题,进行练习与巩固,巩固等腰三角形的性质。

六.课堂小结(5分钟)教师对本节课的重点内容进行梳理,确保学生掌握了等腰三角形的定义和性质。

七.作业布置(5分钟)教师布置巩固练习题,要求学生运用等腰三角形的性质解决问题。

八.教学反思通过本节课的教学,学生对等腰三角形的定义和性质有了初步的认识与了解。

通过巩固练习的训练,学生能够运用等腰三角形的性质解决相关问题。

在后续教学中,需要通过更多的例题和练习来巩固学生的理解和应用能力。

湘教版八年级上册等腰三角形的性质教学设计

湘教版八年级上册等腰三角形的性质教学设计

等腰(边)三角形的性质的教学设计教学目标:1.通过制作、折叠、测量等腰三角形、合作探究等学习活动,学生能够掌握等腰(边)三角形的性质;2.在折叠操作活动中,学生能够通过“折叠、观察、猜想、论证”探索等腰(边)三角形的性质;3.通过教学活动和自主探究,学生能够感悟变换思想,和直观几何,发展合理推理和演绎推理能力,养成严谨规范的推理论证习惯;4.学生能够运用等腰(边)三角形的性质解决实际的问题。

教学准备:PPT、板书、教具(等腰三角形卡纸若干)、三角板教学过程:一、创设情境,引入新知(一)创设情境教师:三角形作为基础的几何图形,与我们的生活密不可分。

不知道同学们在平常是否观察过建筑工人在盖房子时的情景,他们通常会用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,他们就说此时的房梁是水平的。

你知道这是为什么吗?教师:我们这节课将会深入了解等腰三角形,看看学完之后,大家能否找到答案。

(二)复习旧知教师提问:同学们,等腰三角形的相关概念你还记得吗?请学生回答。

教师:相等的两条边我们称它为等腰三角形的腰,第三边为等腰三角形的底边,两条腰的夹角叫顶角,腰与底边的夹角是底角。

请学生回答。

教师提问:大家是否还记得三角形有哪些性质?请学生回答填空。

教师提问:那么等腰三角形除了具备以上三角形的一般性质以外,是否还具备哪些特殊性质呢?板书:等腰三角形的性质二、合作探究,获得新知(一)等腰三角形的性质1.剪一剪,制作等腰三角形教师:请同学们拿出提前准备好的长方形纸片,动手剪一剪,先把长方形纸片按图中的红线对折,然后在相邻两条边上各取一点,连接成线段,形成一个直角三角形,并剪下来,就像这样。

PPT呈现裁剪动图,老师示范,学生操作。

教师:裁剪下来后,我们再将原本折叠的两个三角形展开,形成一个大三角形,我们将三个顶点分别记作点A、点B、点C,将折痕与边的交点记作D,折痕就为AD。

请同学们也为自己制作的三角形同样标记好顶点。

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计

等腰三角形的性质的教学设计教学设计:等腰三角形的性质一、教学目标通过本堂课的学习,学生能够:1. 了解等腰三角形的定义和性质;2. 能够判断一个三角形是否为等腰三角形,并说明理由;3. 掌握等腰三角形的基本性质;4. 运用等腰三角形的性质解决问题。

二、教学准备1. 教师准备:(1) 相关教学课件;(2) 等腰三角形模型;(3) 图形板书。

2. 学生准备:(1) 笔记本和书写工具;(2) 教材和练习册。

三、教学过程步骤一:导入(5分钟)教师利用课件中的图片展示一些常见的图形,引出等腰三角形的概念。

并通过提问的方式,激发学生对等腰三角形的认知。

步骤二:概念讲解(10分钟)教师讲解等腰三角形的定义:在一个三角形中,如果两边边长相等,我们称这个三角形为等腰三角形。

然后,教师通过教材的例题,引导学生发现等腰三角形内部的角度特点。

步骤三:性质总结(15分钟)教师引导学生通过观察和分析,总结出等腰三角形的性质,并进行板书整理。

学生可以利用教材上的例题、练习题,并和同伴进行讨论,加深对等腰三角形性质的理解。

步骤四:性质应用(15分钟)教师通过一些实际问题,引导学生运用等腰三角形的性质解决问题。

学生可以在小组内探讨解题思路,并进行展示和讨论。

教师可以通过个别辅导,帮助学生理解和掌握解题方法。

步骤五:拓展延伸(10分钟)教师可以给学生一些较难的拓展题目,让学生运用所学等腰三角形的性质解决。

教师可以利用课件和实物模型进行演示,帮助学生理解和掌握。

步骤六:归纳总结(5分钟)教师和学生共同总结课堂所学内容,强化学生对等腰三角形的定义和性质的记忆。

四、课堂小结通过本堂课的学习,我们了解了等腰三角形的定义和性质。

我们已经学会如何判断一个三角形是否为等腰三角形,并且掌握了等腰三角形的基本性质。

我们还学会了如何运用等腰三角形的性质解决问题。

五、课后作业请完成教材上的相关练习题,加深对等腰三角形性质的掌握和运用。

六、教学反思教师在本节课中,通过引导学生观察和分析,让学生主动发现等腰三角形的性质。

等腰三角形的性质教案

等腰三角形的性质教案

等腰三角形的性质教案教案:等腰三角形的性质一、教学目标1. 知识与能力目标:学生能够理解等腰三角形的定义和性质,能够判断等腰三角形,能够根据等腰三角形的性质解决相关问题。

2. 过程与方法目标:通过引导学生观察、发现、描述等腰三角形的性质,培养学生的观察和归纳能力。

3. 情感态度价值观目标:培养学生对几何图形的兴趣和热爱,培养学生的逻辑思维能力和解决问题的能力。

二、教学重难点1. 教学重点:等腰三角形的定义和性质,判断等腰三角形的方法。

2. 教学难点:根据等腰三角形的性质解决相关问题。

三、教学过程与时间安排1. 导入(5分钟)教师通过提问引导学生回顾几何图形的定义和分类,引出本课的主题——等腰三角形。

2. 感知(10分钟)教师通过给出一些几何图形,引导学生观察并找出其中的等腰三角形,引导学生发现等腰三角形的性质,并引导学生用自己的话描述等腰三角形的特点。

3. 总结(10分钟)教师和学生共同总结等腰三角形的定义和性质,并让学生用符号语言写出等腰三角形的定义。

4. 拓展(15分钟)教师通过给出一些问题,让学生运用等腰三角形的性质解决问题,如求等腰三角形的周长、面积等。

教师引导学生通过计算和推理找到解决问题的方法。

5. 练习(15分钟)教师布置一些练习题,要求学生判断给出的三角形是否为等腰三角形,如果是,说明理由;如果不是,说明理由,并分析其中的特点。

6. 课堂小结(5分钟)教师结合学生的表现总结本课的重点内容,强调等腰三角形的性质和应用。

四、教学手段和学具准备1. 教学手段:讲授、讨论、练习。

2. 学具准备:板书、几何图形模型。

五、教学反思通过本节课的教学,学生能够掌握并理解等腰三角形的性质和应用方法,能够熟练判断等腰三角形。

但在教学过程中,需要教师引导学生更多地思考和运用等腰三角形的性质解决问题,培养学生的思维能力和创新能力。

同时,教师还需及时发现学生的问题和困难,及时给予指导和帮助。

等腰三角形性质教学设计

等腰三角形性质教学设计

§等腰三角形的性质(第1课时)
教学流程安排
教学过程设计D
[ 活动2 ]问题
(1)如图,把一张长方形的纸片按图中虚线对折,并剪下阴影部分,再把它展开看看得到的三角形有什么特点?


教师利用多媒体演示剪法。

学生观看后动手剪纸、观察。

教师在学生观察的同时提
出问题。

学生观察思考后发现,上述过
程中剪刀剪过的两边是相等的,即
△ABC中,AB=AC。

展示学生作品。

提问:象
这样的三角形叫做什么三角形?
学生回忆等腰三角形的概念。

师利用多媒体出示概念,介
绍腰、底边、顶角、底角等概念。

本次活动中,教师应重点关
注学生是否积极参加到数学活
动中来。

为学生提供
参与数学活动的
时间和空间,让
学生动手剪纸,
获得图形的直观
感受,调动学生
的主观能动性,
激发学生的好奇
心和求知欲,并
为下面的折纸操
作做好铺垫。


时复习等腰三角
形的概念及其相
关的概念,加深
印象。

B
D
C A。

人教版数学八年级上册《 等腰三角形的性质》教学设计

人教版数学八年级上册《 等腰三角形的性质》教学设计

人教版数学八年级上册《等腰三角形的性质》教学设计一. 教材分析等腰三角形的性质是初中数学中的重要内容,人教版八年级上册《几何》第三单元“三角形”的第二节。

本节课的主要内容是让学生掌握等腰三角形的性质,并能够运用这些性质解决一些实际问题。

教材通过实例引入等腰三角形的性质,然后通过学生自主探究活动,让学生总结出等腰三角形的性质,最后通过巩固练习,让学生加深对等腰三角形性质的理解。

二. 学情分析学生在七年级已经学习了三角形的有关知识,对三角形的基本概念、性质有一定的了解。

但等腰三角形的性质较为抽象,需要学生通过动手操作、观察、推理等方法,自主探究并掌握。

此外,学生可能对等腰三角形的判定和性质容易混淆,需要老师在教学中进行区分和引导。

三. 教学目标1.知识与技能目标:让学生掌握等腰三角形的性质,并能够运用这些性质解决一些实际问题。

2.过程与方法目标:通过学生自主探究活动,培养学生的观察能力、推理能力、动手操作能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的运用。

四. 教学重难点1.重点:等腰三角形的性质。

2.难点:等腰三角形性质的推导和运用。

五. 教学方法1.情境教学法:通过实例引入等腰三角形的性质,让学生在实际问题中感受数学的价值。

2.自主探究法:让学生通过动手操作、观察、推理等方法,自主探究等腰三角形的性质。

3.合作学习法:学生在小组内进行讨论、交流,共同完成学习任务。

4.讲解法:老师对等腰三角形性质进行讲解,引导学生理解并掌握。

六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、剪刀、彩纸等。

2.学具:学生手册、练习册、彩笔、剪刀、彩纸等。

七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的等腰三角形图片,如:金字塔、蜡烛等,引导学生观察并提问:“这些图形有什么共同的特点?”学生通过观察,发现这些图形都是等腰三角形。

教师总结等腰三角形的定义,并提问:“等腰三角形有哪些性质呢?”从而引出本节课的主题。

等腰三角形的性质教学设计一等奖(精选13篇)

等腰三角形的性质教学设计一等奖(精选13篇)

等腰三角形的性质教学设计一等奖(精选13篇)等腰三角形的性质教学设计一等奖(精选一三篇)作为一名无私奉献的老师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

怎样写教学设计才更能起到其作用呢?以下是小编为大家收集的等腰三角形的性质教学设计一等奖(精选一三篇),希望对大家有所帮助。

等腰三角形的性质教学设计一等奖1一、教材分析1、教材的地位与作用:本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。

使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。

通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。

它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。

等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教学目标:知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。

由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。

5.3.1等腰三角形的性质(教案)

5.3.1等腰三角形的性质(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与等腰三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作一个等腰三角形模型,并验证其性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
实践活动环节,学生们在分组讨论和实验操作中表现得非常积极。他们通过合作交流,共同解决问题,不仅加深了对等腰三角形性质的理解,还提高了团队协作能力。但在实践操作过程中,我也发现有的小组在操作上还存在一定的困难,我需要在今后的教学中加强对这部分学生的指导。
在学生小组讨论环节,我尽量让自己成为一个引导者和协助者,让学生们充分发挥自己的主观能动性。他们提出了很多有趣的观点和想法,让我也收获颇丰。但同时,我也注意到有的学生在讨论中比较沉默,我需要在今后的教学中鼓励他们更加积极地参与进来。
5.3.1等腰三角形的性质(教案)
一、教学内容
本节课选自教材第五章第三节第一部分“5.3.1等腰三角形的性质”。教学内容主要包括以下三个方面:
1.等腰三角形的定义:两条边相等的三角形称为等腰三角形,相等的两边称为腰,另一边称为底边。
2.等腰三角形的性质:等腰三角形的两底角相等,即底边两侧的角是相等的;等腰三角形的底边中点到顶点的线段(高、中线、角平分线)是重合的。
3.等腰三角形在实际应用中的例子:通过分析生活中常见的等腰三角形实物,使学生了解等腰三角形在现实生活中的广泛应用。
本节课将围绕以上内容展开教学,旨在帮助学生掌握等腰三角形的性质,并能将其应用于解决实际问题。
二、核心素养目标
1.培养学生的几何直观能力,通过观察和分析等腰三角形的实物模型,让学生能够抽象出等腰三角形的定义及其性质,提高空间想象力和几何图形的认识。

初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇

初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。

2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。

3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。

教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。

)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。

想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。

)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。

能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

教学重点等边三角形的。

判定定理和直角三角形的性质定理。

教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。

等腰三角形性质教学设计(共5篇)

等腰三角形性质教学设计(共5篇)

第 1 篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标〔一〕、知识目标1、掌握等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行有关的论证和计算。

2、理解等腰三角形和等边三角形性质定理之间的联系。

〔2〕、能力目标1、培养学生“转化〞的数学思想及应用意识,初步掌握作辅助线的规律及“分类讨论〞的思想。

2、培养学生进行独立思量,提高独立解决问题的能力。

〔三〕、德育目标通过本节课教学,激发学生探索在现实生活中与数学有关的实际问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。

二、教学重难点1、教学重点:等腰三角形的性质定理及其证明。

2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。

三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。

四、教学过程课的导入:〔一〕、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形)〔二〕、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.〔三〕、普通三角形有那些性质?〔两边之和大于第三边.三个内角的和等于180°〕 . 〔四〕、图片展示等腰三角形在日常生活中的实例。

新课讲解〔一〕、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两个底角还有什么关系?〔二〕、〔电脑或者几何画板演示〕结论:折叠等腰三角形或者改变等腰三角形的腰长后,两底角之间依旧保持相等关系。

〔三〕、证明结论,得出性质1、性质定理的证明。

〔1〕学生找出文字命题的题设、结论、画图,换成符号语言。

〔2〕引导学生寻觅辅助线、如何添加辅助线。

〔3〕电脑显示证明过程。

〔4〕说明“等边对等角〞的作用。

2、推论 1 的证明。

〔1〕进一步启示学生得到“等腰三角形三线合一〞的性质。

〔2〕说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。

等腰三角形的性质教案

等腰三角形的性质教案

《等腰三角形的性质》教案教师:张锋课题:等腰三角形的性质课题:等腰三角形的性质 课 堂教学目标教 学 要 点 学 习 水 平 了解 理解 掌 握 灵活运用运用 思想思想 性 1.记住等腰三角形的性质定理及推论; 2.能解释等腰三角形“三线合一”的含义; 3.能运用等腰三角形的性质定理及推论进行简单的计算或证明;的计算或证明;4.体会由感性认识上升为理性认识的认知事物的思想。

思想。

教学重点教学重点 等腰三角形的性质定理及其证明过程等腰三角形的性质定理及其证明过程 教学难点教学难点 用文字语言叙述的几何命题的正确证明教 法 启发式、探究式教学启发式、探究式教学学法指导学法指导 通过学生动手、动脑、动口发现问题,提出问题,进而解决问题课型课型 新授课新授课 教具教具三角板、自制纸剪等腰三角形教具、小黑板板 书 设 计等腰三角形的性质等腰三角形的性质 A 一.等腰三角形的性质定理:一.等腰三角形的性质定理: 书写定理证明过程:书写定理证明过程:几何语言:几何语言: ; 例 1:(题目内容)(题目内容) B D C 二.推论一(三线合一性质): 解:解: A 几何语言:几何语言:B D C 三.推论二(等边三角形的性质):几何语言:几何语言: 学生解题处:学生解题处:教 学 过 程时间分 配 教 师 活 动 学 生 活 动 一.新课引入:一.新课引入:1.复习提问:什么叫做等腰三角形?.复习提问:什么叫做等腰三角形?结合图形指出等腰三角形的腰、底边、 顶角、底角。

顶角、底角。

2.引入新课主要语言:等腰三角形.引入新课主要语言:等腰三角形 作为三角形,它应该具有一般三角形的 性质,比如,三内角和为180。

,任意两边之和大于第三边等。

同时,等腰三角形是有两条边相等的特殊三角形,它抽一个学生口答抽一个学生口答是否应该还有其特殊性质呢?(引入课题:等腰三角形的性质,并板书在黑板上) 二.新课学习:二.新课学习:1. 等腰三角形的性质定理:等腰三角形的两底角相等(简单地说成:等边对等角)。

等腰三角形的性质教学设计一等奖(精选)

等腰三角形的性质教学设计一等奖(精选)

等腰三角形性质分析
等腰三角形底边上的垂直平分线到两 条腰的距离相等。
等腰三角形底边上任意一点到两腰距 离之和等于一腰上的高(需用等面积 法证明)。
等腰三角形的一腰上的高与底边的夹 角等于顶角的一半。
等腰三角形是轴对称图形,只有一条 对称轴,顶角平分线所在的直线是它 的对称轴,等边三角形有三条对称轴。
引导学生通过小组讨论,探讨等腰三角形在生活中的应用,例如建筑设 计、工程绘图等领域。
让学生分享自己对于等腰三角形性质的理解和应用经验,促进课堂交流 和互动。
教师总结本节课内容
回顾本节课所学的等腰三角形性 质,包括定义、性质定理及其证
明过程。
强调等腰三角形性质在几何学和 实际应用中的重要性,鼓励学生
等腰三角形在几何图形中的应用
研究等腰三角形在几何图形中的应用,例如在建筑设计、工程绘图等领域中的实际应用。 这有助于将数学知识与实际生活相结合,提高学生的数学应用能力。
06
课堂互动环节与小结
学生提问及讨论环节
鼓励学生提出对于等腰三角形性质的问题,如“等腰三角形的两条等边 和对应的两个等角有什么关系?”、“如何证明等腰三角形的底角相 等?”等。
等腰三角形的性质教 学设计一等奖(精选)
目录
• 课程介绍与目标 • 等腰三角形基本概念与性质 • 等腰三角形判定定理及应用 • 等腰三角形面积计算与拓展 • 等腰三角形相关数学问题探讨 • 课堂互动环节与小结
01
课程介绍与目标
课程背景与意义
01
等腰三角形是初中数学中的重要内 容,对于提高学生的几何思维能力 和解决问题的能力具有重要意义。
等腰三角形中的角度关系问题
01
等腰三角形两底角相等
在任何等腰三角形中,两个底角的大小总是相等的,这是由于等腰三角

等腰三角形的性质教学设计【优秀10篇】

等腰三角形的性质教学设计【优秀10篇】

等腰三角形的性质教学设计【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的性质教学设计【优秀10篇】作为一名优秀的教育工作者,时常需要编写教案,编写教案助于积累教学经验,不断提高教学质量。

八年级数学上册《等腰三角形的性质和判定定理》教案、教学设计

八年级数学上册《等腰三角形的性质和判定定理》教案、教学设计
1.结合学生的认知特点,通过直观的图形演示和实际操作,帮助学生理解等腰三角形的性质和判定定理。
2.注重培养学生的逻辑推理能力,引导他们在解题过程中运用所学知识进行分析、判断和证明。
3.针对学生个体差异,实施分层教学,使每个学生都能在原有基础上得到提高和发展。
4.创设生动活泼的课堂氛围,激发学生的学习兴趣,鼓励他们积极参与课堂讨论和交流,提高合作能力。
-利用几何画板等教学工具,动态展示等腰三角形的性质,增强学生的直观感受。
2.自主性质和判定定理。
-组织学生进行小组讨论,互相交流探究成果,提高合作能力。
3.精讲精练,突破难点
-对等腰三角形的性质和判定定理进行详细讲解,结合具体例题,使学生深入理解。
2.鼓励学生进行拓展学习,提高自主学习能力。
二、学情分析
八年级的学生已经具备了一定的几何图形认知基础,掌握了三角形的基本概念和性质,但对于等腰三角形的深入学习还较为陌生。在此阶段,学生的认知发展正处于从具体形象思维向抽象逻辑思维过渡的关键时期,他们需要通过具体实例和操作来理解和掌握抽象的数学概念。此外,学生在解决问题的过程中,对于几何证明的逻辑推理能力有待提高。因此,在本章节的教学中,应注重以下几点:
八年级数学上册《等腰三角形的性质和判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握等腰三角形的定义、性质及判定定理,能够运用这些知识解决相关问题。
2.学会使用等腰三角形的性质进行几何证明,提高逻辑思维能力和解题技巧。
3.能够运用等腰三角形的判定定理判断一般三角形的类型,培养观察能力和推理能力。
3.作业完成后,及时进行检查,确保答案正确,并对错题进行订正。
4.家长要关注孩子的学习情况,协助孩子完成作业,并给予适当指导。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等腰三角形的性质》教学设计
教学目标:
(一)教学知识点
1.等腰三角形的概念
2.等腰三角形的性质
3.等腰三角形的概念及性质的应用
(二)能力训练点
1.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的
特点。

2.探索并掌握等腰三角形的性质。

(三)情感与价值观要求
通过学生的操作与思考,使学生掌握等腰三角形的相关概念,并在探究
等腰三角形性质的过程中培养学生认真思考的良好习惯。

教学重点:
1.等腰三角形的概念及性质
2.等腰三角形性质的应用
教学难点:
等腰三角形三线合一性质的理解及其应用
二、教学方法及教学手段
我采用探索发现法完成本节的教学,在教学中以学生参与为主,注重激发学生学习热情,使学生主动参与数学学习活动,让学生体验成功的喜悦,通过学生自己动手和教师直观的演示,使学生对知识的认识从感性认识上升到理性认识,同时,为了启发学生思维,激发学习兴趣,增强教学的直观性,我用以powerpoint 及几何画板软件相结合的课件,以多媒体与黑板相结合进行授课。

情景引入:
课件展示相关图片
设计意图:激发学习兴趣,引入新课
学生活动:观察,并说一说这些图片中有我们学习过的什么图形?
在这个图形中,AB=AC,是一个等腰三角形.
设计意图:
为学生提供参与数学活动的时间与空间,调动学生的主观能动性,激发好
奇心与求知欲
师生行为:
让学生跟着老师剪纸.剪完后教师在学生观察的同时提出问题
这节课我们来研究等腰三角形及其性质
复习提问:
1.什么叫等腰三角形?
2.你会用尺规作一个等腰三角形吗?
3.结合学生作出的等腰三角形,指出什么是等腰三角形的腰、底边、顶角、底角。

设计意图:
结合图形介绍等腰三角形有关概念,转化抽象为直观,这也为下面新知识的学 习作准备 师生行为:
做一做:
现在请同学们将准备好的等腰三角形对折, 使两腰 AB 、AC 重叠在一起,折痕为AD , 你能发现什么现象呢? 在学生动手操作之后,老师播放课件演示,学生进一步观察,验证自己看到的现象。

设计意图:
为学生提供参与数学活动的时间与空间,调动学生的主观能动性,激发好奇心与求 知欲,培养”探究”能力,以及合作交流习惯。

师生行为:
教师在学生充分发表自己想法的基础上给出画图方法,为了体现画图过程,因此在 黑板上画出图形,介绍腰,底,顶角,底角 师生交流之后引入新课
这节课我们来研究等腰三角形及其性质: 请大家尽可能多地写出前面观察到的结论! 设计意图:
通过学生的动手实践,观察思考,教师的引导,归纳出等腰三角形的性质,培养学生 合作探究学习的品质


师生行为:
教师把全班同学分成每四人分一组讨论得出结论,关注哪一组气氛最活跃.找 小组代表发言,交流讨论结果。

若答对,小组内每人奖励一个作业本,学生动 手操作,实践观察,分组讨论,说出自己的猜想,教师引导学生观察,完善,归纳出 性质,
1、等腰三角形是轴对称图形
2、∠ B =∠ C
3、BD = CD ,AD 为底边上的中线
4、∠ADB = ∠ADC = 90°,AD 为底边上的高
5、∠BAD = ∠CAD ,AD 为顶角平分线 等腰三角形的性质:
1 .等腰三角形的两个底角相等(简写“等边对等角”) 你能利用已有的公理和定理证明这些结论吗? 设计意图:
通过学生的动手实践,观察思考,,培养学生自主探究学习的能力,使用几何画板 课件演示能帮助学生更易理解和探索出这一性质 等腰三角形的两个底角相等
已知:∆ABC 中 , AB=AC. 求证: ∠ B=∠C.
证明一:作顶角的平分线A D.
证明二:作底边的中线AD
证明三:作底边的高AD.(待以后证明) 例1、已知:在△ABC 中,AB = AC ,
∠A = 50°, 求∠B 和 ∠C 的度数 。

变式练习1:
已知:在△ABC 中,AB = AC ,
∠A = 50°, 求∠B 和 ∠C 的度数。

变式练习2:
已知:在△ABC 中,AB = AC ,
∠B = 50°, 求∠A 和 ∠C 的度数。

变式练习3:
已知:等腰三角形的一个
内角为 50 °, 求另两个角的度数. 设计意图:
培养学生正确应用所学知识的能力,增强应用意识,参与意识,巩固所学性质 师生行为:
教师分析解题思路后,学生表达,教师板书
C
A
B
填空:
1、已知等腰三角形的顶角是70o ,则它的其它两角的度数是 。

2、已知等腰三角形的底角是70o ,则它的其它两角的度数是 。

3、已知等腰三角形的一个内角是70o ,则它的其它两角的度数是 。

4.等腰直角三角形的每一个锐角都等于 ( )。

等腰三角形的性质定理
推论1 等腰三角形顶角平分线平分底边、并且垂直于底边.
AD =BD
∠ADC =∠BDC
DC ⊥AB ①顶角平分线、
②底边上的中线、 ③底边上的高。

等腰三角形顶角平分线、底边上的中线、底边上的高互相重合。

简称“三线合一” 等腰三角形“三线合一”的性质 用符号语言表示为: 在△ABC 中
(1)∵AB=AC ,AD ⊥BC , ∴∠___=∠___,____=____;
(2)∵AB=AC ,AD 是中线, ∴∠_=∠_,____⊥____;
(3)∵AB=AC ,AD 是角平分线, ∴____⊥____,____=____。

推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。

由推论得:等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合。

等腰三角形顶角平分线 ,平分底边 ,垂直于底边。

等腰三角形底边上的中线, 平分顶角, 垂直于底边。

等腰三角形底边上的高 ,平分底边, 平分顶角 。

设计意图:
使学生学会把语言文字转化为几何语言,培养语言转换能力
师生行为:引导学生找出条件和结纶,转换成几何语言再引导学生用轴对称知识
认识等腰三角形
练习:
判断下列语句是否正确。

(1)等腰三角形的角平分线、中线和高互相重合。

()(2)有一个角是60°的等腰三角形,其它两个内角也为60 ()(3)等腰三角形的底角都是锐角. ()(4)钝角三角形不可能是等腰三角形. ()设计意图:
及时巩固所学知识,了解学习效果,增强学生应用知识的能力,同时培养学生分类讨论的思想
师生行为:
学生独立完成
教师找学生口答,点评
新知拓展:
(1)在△ABC中,AB=AC,外角∠ACD=100°,则∠B=____度
(2)如图, △ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。

设计意图:
为了使学生巩固基础知识,掌握基本技能,拓展提高思维能力,让每个学生都能尝到成功的喜悦,设计成三个档次去练习
师生行为:
学生独立完成
教师让学生板演,并点评
课堂小结:
等腰三角形:
1、等边对等角(性质定理)
(等腰三角形的两底角相等)
2、三线合一(推论1)
(等腰三角形顶角平分线、底边上的中线、底边上的高互相重合)
作业布置:
1.习题1,3。

2.以“我是等腰三角形”为题写一篇数学日记。

设计意图
巩固所学的知识,分三个档次,让不同的学生在数学上得到不同的发展
教学反思:
本节课我运用的是多媒体教学。

首先,让同学们看课件中的实物,找到图中的等腰三角形,并请找到的同学说出依据是什么,从而增强他们对等腰三角形的概念的记忆。

以轴对称图形为切入点,先让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角的知识加以论证。

使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的。

在教法设计上,我把重点放在了逐步展示知识的形成过程上,由个别形象到一般抽象,体现出了学生从感性认识到理性知识发生发展的认知过程。

在教学过程中,1、注意引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论数学思想。

2、注重培养学生形成积极探索主动学习的态度,关注学生学习兴趣和体验,充分体现数学教学主要是数学活动的教学。

3、注重培养学生之间的合作、交流意识与语言表达能力,增强小组合作意识。

本节课所存在的问题:
1、本课主要在学生知识的形成过程上,因此对腰三角形性质应用及知识的拓展方面较薄弱,显得深度不够。

2、课堂中虽有学生自主探索活动。

但放得还不够,仅局限于教材中的一些知识。

探索显得平淡无奇。

3、在时间安排上,过于注重了学生知识形成过程,导致等腰三角形的性质探索及论证过程太长,而知识应用及拓展部分时间仓促。

未能达到理想效果。

4、令人遗憾的是本节课由于教学过程中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往的“后遗症”是学生问题意识的淡化。

而在探索问题的关键时候,我也缺乏耐心急于把思路给出,这是缺乏对学生的信任,学生将因此产生思维惰性。

教学永远是一门遗憾的艺术,吹尽黄沙始现金,我们只有以“没有最好,力求更好”来不断改进我们的教学,才能实现真正意义上的与时俱进。

《等腰三角形的性质》教学设计
吉木萨尔县大有乡中心学校
马海燕。

相关文档
最新文档