人工神经网络概述

合集下载

人工神经网络的原理和应用

人工神经网络的原理和应用

人工神经网络的原理和应用人工神经网络(Artificial Neural Network,ANN)是一种模拟生物神经网络的计算模型。

它由大量的人工神经元(Artificial Neurons)相互连接而成,并通过加权和激活函数来模拟神经元之间的信息传递。

人工神经网络模型是一种在计算机中模拟信息处理和知识获取方式的数学模型,它能够通过学习自适应调整神经元间的连接权值,从而实现对数据的分类、识别、预测等功能。

在人工神经网络中,每个人工神经元接收多个输入信号,并将这些输入信号进行加权求和后经过激活函数处理得到输出信号。

神经元之间的连接权值决定了不同输入信号对输出信号的影响程度。

而激活函数则用于对神经元的输出进行非线性映射,增加人工神经网络的模拟能力。

人工神经网络的学习过程是通过反向传播算法(Backpropagation)来进行的。

反向传播算法基于梯度下降法的思想,通过计算输出误差对连接权值的偏导数来调整连接权值,使得神经网络的输出尽可能接近于所期望的输出。

反向传播算法通常需要大量的训练数据和反复迭代的过程才能得到较好的结果。

人工神经网络的应用非常广泛,以下是几个常见的应用领域:1. 图像识别:人工神经网络能够通过学习大量的图像数据,实现对图像的识别和分类。

例如,人工神经网络可以通过学习大量的猫的图片,实现对新的图片是否为猫的判断。

2. 语音识别:人工神经网络可以通过学习大量的语音数据,实现对语音的识别和转录。

例如,语音助手中的语音识别功能就是基于人工神经网络实现的。

3. 自然语言处理:人工神经网络可以通过学习大量的文本数据,实现对自然语言的理解和处理。

例如,机器翻译、情感分析等领域都可以使用人工神经网络进行处理。

4. 数据挖掘:人工神经网络可以通过学习大量的数据,实现对数据的分类、聚类、预测等任务。

例如,人工神经网络可以通过学习用户的历史行为数据,预测用户的购买行为。

5. 控制系统:人工神经网络可以通过学习环境和控制信号之间的关系,实现对复杂控制系统的建模和控制。

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

《人工神经网络》课件

《人工神经网络》课件

拟牛顿法
改进牛顿法的不足,使用正定矩阵近 似Hessian矩阵,提高优化效率。
共轭梯度法
结合梯度下降法和共轭方向的思想, 在每一步迭代中选择合适的共轭方向 进行搜索。
遗传算法
模拟生物进化过程的优化算法,通过 选择、交叉、变异等操作寻找最优解 。
正则化技术
L1正则化
对权重参数的绝对值进行惩罚总结词
自然语言处理是利用人工神经网络对自然语言文本进行分析和处理的技术。
详细描述
自然语言处理是实现人机文本交互的关键技术之一,通过训练神经网络对大量文本数据进 行学习,可以实现对文本的自动分类、情感分析、机器翻译等功能。
具体应用
在社交媒体领域,自然语言处理技术可以用于情感分析和舆情监控;在新闻媒体领域,可 以用于新闻分类和摘要生成;在机器翻译领域,可以用于实现多语言之间的自动翻译。
06
人工神经网络的未 来展望
新型神经网络模型的研究
持续探索新型神经网络模型
随着技术的不断发展,新型神经网络模型的研究将不断涌现,以解决传统模型无法处理 的复杂问题。这些新型模型可能包括更复杂的拓扑结构、更高效的参数优化方法等。
结合领域知识进行模型设计
未来的神经网络模型将更加注重与领域知识的结合,以提高模型的针对性和实用性。例 如,在医疗领域,结合医学影像和病理学知识的神经网络模型能够更准确地辅助医生进
THANKS
感谢您的观看
文字、人脸等目标的技术。
02 03
详细描述
图像识别是人工神经网络应用的重要领域之一,通过训练神经网络对大 量图像数据进行学习,可以实现对图像的自动分类、目标检测、人脸识 别等功能。
具体应用
在安防领域,图像识别技术可以用于人脸识别和视频监控;在医疗领域 ,可以用于医学影像分析;在电商领域,可以用于商品图片的自动分类 和检索。

人工神经网络概述

人工神经网络概述

2.1 感知器
单层感知器的学习法:
2.1 感知器
多层感知器:
在输入层和输出层之间加入一层或多层隐单元,构成 多层感知器。提高感知器的分类能力。
两层感知器可以解决“异或”问题的分类及识别任一凸 多边形或无界的凸区域。
更多层感知器网络,可识别更为复杂的图形。
2.2 BP网络
多层前馈网络的反向传播 (BP)学习算法,简称BP 算法,是有导师的学习,它 是梯度下降法在多层前馈网 中的应用。
基本感知器
是一个具有单层计算神经元的两层网络。 只能对线性可分输入矢量进行分类。
n个输入向量x1,x2, …, xn 均为实数,w1i,w2i,…,wni 分别是n个输入 的连接权值,b是感知器的阈值,传递函数f一般是阶跃函数,y 是感 知器的输出。通过对网络权值的训练,可以使感知器对一组输入矢量 的响应成为0或1的目标输出,从而达到对输入矢量分类识别的目的。
网络结构 见图,u、y是网络的输
入、输出向量,神经元用节 点表示,网络由输入层、隐 层和输出层节点组成,隐层 可一层,也可多层(图中是 单隐层),前层至后层节点 通过权联接。由于用BP学习 算法,所以常称BP神经网络 。
2.2 BP网络
已知网络的输入/输出样本,即导师信号 。
BP学习算法由正向传播和反向传播组成 :
net.trainparam.goal=0.00001;
网络可能根本不能训
% 进行网络训练和仿真:
练或网络性能很差;
[net,tr]=train(net,X,Y);
若隐层节点数太多,
% 进行仿真预测
虽然可使网络的系统
XX1=[0.556 0.556 0.556 0.556 0.556 0.556 0.556] 误差减小,但一方面

人工神经网络是什么

人工神经网络是什么

⼈⼯神经⽹络是什么⽬录⼀、⼈⼯神经⽹络⼈⼯智能的主流研究⽅法是连接主义,通过⼈⼯构建神经⽹络的⽅式模拟⼈类智能。

⼈⼯神经⽹络(Artificial Neural Network,即ANN ),是20世纪80 年代以来⼈⼯智能领域兴起的研究热点。

它从信息处理⾓度对⼈脑神经元⽹络进⾏抽象,建⽴某种简单模型,按不同的连接⽅式组成不同的⽹络。

⼈⼯神经⽹络借鉴了⽣物神经⽹络的思想,是超级简化版的⽣物神经⽹络。

以⼯程技术⼿段模拟⼈脑神经系统的结构和功能,通过⼤量的⾮线性并⾏处理器模拟⼈脑中众多的神经元,⽤处理器复杂的连接关系模拟⼈脑中众多神经元之间的突触⾏为。

⼆、⽣物神经⽹络⼈脑由⼤约千亿个神经细胞及亿亿个神经突触组成,这些神经细胞及其突触共同构成了庞⼤的⽣物神经⽹络每个神经元伸出的突起分为树突和轴突。

树突分⽀⽐较多,每个分⽀还可以再分⽀,长度⼀般⽐较短,作⽤是接受信号。

轴突只有⼀个,长度⼀般⽐较长,作⽤是把从树突和细胞表⾯传⼊细胞体的神经信号传出到其他神经元。

⼤脑中的神经元接受神经树突的兴奋性突触后电位和抑制性突触后电位,产⽣出沿其轴突传递的神经元的动作电位。

⽣物神经⽹络⼤概有以下特点:1. 每个神经元都是⼀个多输⼊单输出的信息处理单元,神经元输⼊分兴奋性输⼊和抑制性输⼊两种类型2. 神经细胞通过突触与其他神经细胞进⾏连接与通信,突触所接收到的信号强度超过某个阈值时,神经细胞会进⼊激活状态,并通过突触向上层神经细胞发送激活细号3. 神经元具有空间整合特性和阈值特性,较⾼层次的神经元加⼯出了较低层次不具备的“新功能”4. 神经元输⼊与输出间有固定的时滞,主要取决于突触延搁外部事物属性⼀般以光波、声波、电波等⽅式作为输⼊,刺激⼈类的⽣物传感器。

三、硅基智能与碳基智能⼈类智能建⽴在有机物基础上的碳基智能,⽽⼈⼯智能建⽴在⽆机物基础上的硅基智能。

碳基智能与硅基智能的本质区别是架构,决定了数据的传输与处理是否能够同时进⾏。

人工神经网络简介

人工神经网络简介

人工神经网络简介本文主要对人工神经网络基础进行了描述,主要包括人工神经网络的概念、发展、特点、结构、模型。

本文是个科普文,来自网络资料的整理。

一、人工神经网络的概念人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。

该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。

它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。

神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。

每个节点代表一种特定的输出函数,称为激活函数(activation function)。

每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。

网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。

而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

神经网络的构筑理念是受到生物的神经网络运作启发而产生的。

人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。

另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。

网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。

输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。

人工神经网络建模

人工神经网络建模

语音识别
总结词
语音识别是将人类语音转换成文本的过程, 利用人工神经网络进行语音特征提取和分类 。
详细描述
语音识别技术使得人机交互更加自然,广泛 应用于智能助手、语音搜索、语音翻译等领
域。
自然语言处理
要点一
总结词
自然语言处理是利用人工神经网络对人类语言进行分析、 理解和生成的过程。
要点二
详细描述
自然语言处理技术包括文本分类、情感分析、机器翻译等 ,使得计算机能够更好地理解人类语言,提高人机交互的 效率和自然度。
人工神经网络的应用领域
语音识别
利用循环神经网络(RNN)和 长短时记忆网络(LSTM)识 别语音并转换成文本。
推荐系统
利用深度神经网络为用户推荐 感兴趣的内容。
图像识别
利用卷积神经网络(CNN)识 别图像中的物体和特征。
自然语言处理
利用循环神经网络和注意力机 制处理自然语言任务,如机器 翻译、文本生成等。
训练算法
总结词
训练算法是指导神经网络学习和优化的算法,常用的有梯度下降法等。
详细描述
训练算法根据学习率和优化目标,不断迭代更新网络权重,使网络在训练数据上 获得更好的性能表现。
03
常见的人工神经网络模型
前馈神经网络
总结词
前馈神经网络是一种最基础的人工神 经网络模型,信息从输入层开始,逐 层向前传递,直至输出层。
数据清洗与预处理
去除异常值、缺失值,进 行数据标准化、归一化等 处理,以提高模型的准确 性和稳定性。
数据划分
将训练数据集划分为训练 集、验证集和测试集,以 便于模型训练、验证和评 估。
训练过程中的优化算法
梯度下降法
基于梯度下降的优化算法,通 过迭代更新权重和偏置项,最

人工神经网络

人工神经网络
最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、 自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了 良好的智能特性。
神经元
如图所示 a1~an为输入向量的各个分量 w1~wn为神经元各个突触的权值 b为偏置 f为传递函数,通常为非线性函数。以下默认为hardlim() t为神经元输出 数学表示 t=f(WA'+b) W为权向量 A为输入向量,A'为A向量的转置 b为偏置 f为传递函数
分类
根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。在监督学习中,将训练样本的数据 加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经 多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学 习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学 习阶段与工作阶段成为一体。此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb 学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。自组织映射、 适应谐振理论网络等都是与竞争学习有关的典型模型。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、 自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经 成为一大研究热点。由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可 以获得更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集 理论、分形理论、证据理论和灰色系统等的融合。

人工神经网络知识概述

人工神经网络知识概述

人工神经网络知识概述人工神经网络(Artificial Neural Networks,ANN)系统是20世纪40年代后出现的。

它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。

BP(Back Propagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。

BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。

而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。

人工神经元的研究起源于脑神经元学说。

19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。

人们认识到复杂的神经系统是由数目繁多的神经元组合而成。

大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。

但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。

细胞体内有细胞核,突起的作用是传递信息。

树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。

树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。

在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。

突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。

每个神经元的突触数目正常,最高可达10个。

各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。

什么是人工神经网络

什么是人工神经网络

什么是人工神经网络人工神经网络是一种基于机器学习的人工智能技术,它可以让计算机学习如何识别与处理复杂的数据,比如图像、音频和视频。

本文将专注介绍人工神经网络,深入讨论它的构成、工作原理以及它如今所扮演的角色。

人工神经网络是一种仿照生物神经系统的架构和功能而开发的计算机技术。

它最初的概念可以追溯到1957年,由包括Frank Rosenblatt、Marvin Minsky和John McCarthy等在内的几位科学家在系统思想和计算机科学领域开发,它实际上是受到脑神经网络结构启发而发展出来的一种技术。

人工神经网络能够以一种类似于人类“思考”的方式从大量数据中获取结果,比如分析情感、视觉识别、语音识别等。

它可以通过学习过去的经验和观察,来推断当前和未来的情况。

人工神经网络的组成主要有神经元,连接和权重。

每个神经元都有输入、激活函数和输出。

神经元是网络中不同组件的基本部分,它们可以接受、处理和转发信号,以触发期望输出。

连接则用于把不同的神经元连接起来传输信息,这些连接可以赋予不同的权值,影响输入信号的最终输出。

最后,人工神经网络的工作原理,是通过迭代输入数据,调整权重使输出更接近期望结果,并且能够通过反馈机制自我调整参数和权重,以达到期望的训练结果。

人工神经网络如今已经被许多公司和组织使用,用于处理各种任务,包括复杂的图像识别、语音识别、语言建模、自动驾驶以及计算机视觉等。

它们已经成为机器学习和自然计算中最流行的方法之一,并广泛应用于商业、政府以及军事等众多领域。

比如,人工神经网络用于语音识别,top07机器人使用神经网络解析语音,帮助用户进行语音识别;或者用于机器视觉,Google等公司使用深度学习神经网络识别图像,可以对不同的图像进行分类,有效地提升图像浏览的用户体验。

总的来说,人工神经网络是一项设计用来处理繁杂任务的数据处理技术,可以重现生物神经系统架构和功能以及学习能力。

它是一种可以从大量数据中快速获取结果的技术,如今已经得到了普遍应用,被用于各种场景中。

人工神经网络概述

人工神经网络概述

参考内容二
人工神经网络(Artificial Neural Network,简称ANN)是一种模拟人类 神经系统运作的数学模型,由多个简单计算单元(即神经元)组成,通过学习方 式从数据中提取模式并预测未来数据。
一、人工神经网络的基本结构
人工神经网络的基本结构包括输入层、隐藏层和输出层。输入层负责接收外 部输入的数据,隐藏层通过一系列复杂的计算将输入转化为有意义的特征,最后 输出层将隐藏层的结果转化为具体的输出。在隐藏层中,每个神经元都通过权重 和激活函数来对输入进行转换,以产生更有意义的输出。
根据任务的不同,人工神经网络可以分为监督学习、无监督学习和强化学习 三种。监督学习是指通过输入输出对之间的映射关系来训练模型;无监督学习是 指通过聚类或降维等方式来发现数据中的潜在规律;强化学习是指通过与环境的 交互来学习策略,以达到在给定的情况下采取最优行动的目标。
四、人工神经网络的未来发展
随着深度学习技术的不断发展,人工神经网络的性能和应用范围也在不断扩 大。未来的人工神经网络将更加注重模型的可解释性和鲁棒性,同时也将更加注 重跨领域的研究和应用。此外,随着计算机硬件的不断升级和算法的不断优化, 人工神经网络的训练速度和精度也将不断提高。
三、人工神经网络的种类
根据连接方式的不同,人工神经网络可以分为前馈神经网络和反馈神经网络 两种。前馈神经网络是一种层次结构,其中每个节点只与前一层的节点相连,每 个节点的输出都是前一层的加权输入。而反馈神经网络则是一种循环结构,其中 每个节点都与前一层的节点和后一层的节点相连,每个节点的输出不仅取决于前 一层的输入,还取决于后一层的输出。
反向传播算法是一种监督学习算法,它通过比较网络的输出和真实值来计算 误差,然后将这个误差反向传播到网络中,调整每个神经元的权重以减小误差。

人工神经网络

人工神经网络

人工神经网络人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model)目录[隐藏]∙ 1 人工神经网络概述∙ 2 人工神经网络的特点∙ 3 人工神经网络的特点与优越性∙ 4 人工神经网络的主要研究方向∙ 5 人工神经网络的应用分析人工神经网络概述人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。

人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。

国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。

” 这一定义是恰当的。

人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。

它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。

直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。

目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

人工神经网络是在现代神经科学的基础上提出来的。

它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。

人工神经网络简介

人工神经网络简介
4
Page 4
神经网络模型
神经元模型
输入输出关系:
xi jiu j i
j 1 n
ω是连接神经元的权值
θ是神经元的阈值
x可认为是神经元的净输入
5
yi f ( xi )
Page 5
神经网络模型
f ( x) 是传递函数,或称为激励函数,其作用有:
1. 控制输入对输出的激活作用; 2. 对输入输出进行函数转换; 3. 将可能的无限域输入转换成有限域的输出;
Page 17
17
BP神经网络
总结
BP网络实现了一个从输入到输出的非线性映射,即F: Rn→Rm,f(x)=y。对于样本集合:输入xi(xi∈Rn)和yi(yi∈Rm), 可认为存在某一映射g,使得: g(xi)=yi i=1,2,...n BP神经网络就是寻找逼近映射g的最佳映射f过程。
人工神经网络简介
刘章
人工神经网络
人工神经网络(artificial neural network,缩写 ANN),简称神经网络(neural network,缩 写NN),是一种模仿生物神经网络的结构 和功能的数学模型或计算模型。神经网络由 大量的人工神经元联结进行计算。大多数情 况下人工神经网络能在外界信息的基础上改 变内部结构,是一种自适应系统。
Page 10
10
神经网络的学习方式
神经网络的学习方法
2.无监督学习方法 神经网络仅仅是根据其输入调整神经元连接间的权
重和阈值,此时的学习评价标准隐含在内部。
Page 11
11
BP神经网络
反向传播网络(Back-Propagation Network),简称BP网络。

人工神经网络课件

人工神经网络课件
人工神经网络课件
目录
• 神经网络基本概念 • 前馈神经网络 • 反馈神经网络 • 深度学习基础 • 优化算法与技巧 • 实践应用与案例分析
01 神经网络基本概念
生物神经网络简介
01
02
03
生物神经网络组成
生物神经网络由大量神经 元通过突触连接而成,具 有并行处理、分布式存储 和自学习等特性。
信号传递方式
每次只利用一个样本的梯度信息进行参数更新,计算量小,收敛速度快,但容易受到噪声干扰, 陷入局部最优解。
小批量梯度下降法(Mini-Batch Gradie…
折中方案,每次利用一小批样本的梯度信息进行参数更新,兼具批量梯度下降法和随机梯度下降 法的优点。
正则化方法防止过拟合
L1正则化(Lasso)
01
RNN在自然语言处理领域有广泛应用,如机器翻译、文本生成、情感分析等,同时也可以应用于语音识别 和图像处理等领域。
05 优化算法与技巧
梯度下降法及其改进算法
批量梯度下降法(Batch Gradient Des…
利用整个数据集的梯度信息进行参数更新,计算量大,收敛速度慢,但能找到全局最优解。
随机梯度下降法(Stochastic Gradien…
03 反馈神经网络
反馈神经网络结构
01
02
03
04
神经元之间相互连接,形成反 馈回路。
网络中的每个神经元都接收来 自其他神经元的信号,并产生
输出信号。
输出信号会再次作为输入信号 反馈到网络中,影响其他神经
元的输出。
通过不断调整神经元之间的连 接权重,网络可以学习并适应
不同的输入模式。
Hopfield网络模型与算法
批处理、随机梯度下降等优化策略

人工神经网络算法(基础精讲)

人工神经网络算法(基础精讲)
兴奋和抑制状态,当细胞膜电位升高超过阈值时,细胞进入兴奋状态,产生神经冲动;当膜电位低于阈值时,细胞进入抑制状态。
*
1.6激活函数
神经元的描述有多种,其区别在于采用了不同的激活函数,不同的激活函数决定神经元的不同输出特性,常用的激活函数有如下几种类型:
*
1.6激活函数
当f(x)取0或1时,
阈值型激活函数 阈值型激活函数是最简单的,前面提到的M-P模型就属于这一类。其输出状态取二值(1、0或+1、-1),分别代表神经元的兴奋和抑制。
突触结构示意图
1
2
1.3生物神经元的信息处理机理
神经元的兴奋与抑制 当传入神经元冲动,经整和使细胞膜电位升高,超过动作电位的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出。当传入神经元的冲动,经整和,使细胞膜电位降低,低于阈值时,为抑制状态,不产生神经冲动。
*
1.4生物神经元的特点
*
2.2学习方法
无导师学习也称无监督学习。在学习过程中,需要不断地给网络提供动态输入信息(学习样本),而不提供理想的输出,网络根据特有的学习规则,在输入信息流中发现任何可能存在的模式和规律,同时能根据网络的功能和输入调整权值。
②无导师学习
灌输式学习是指将网络设计成记忆特别的例子,以后当给定有关该例子的输入信息时,例子便被回忆起来。灌输式学习中网络的权值不是通过训练逐渐形成的,而是通过某种设计方法得到的。权值一旦设计好,即一次性“灌输给神经网络不再变动,因此网络对权值的”“学习”是“死记硬背”式的,而不是训练式的。
*
1.6激活函数
概率型激活函数 概率型激活函数的神经元模型输入和输出的关系是不确定的,需要一种随机函数来描述输出状态为1或为0的概率,设神经元输出(状态)为1的概率为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连接主义认为: 智能活动的基本元素是神经元; 智能活动的过程是大量的相联结的神经元的 并行作用的过程。
二、人工神经网络的历史
❖ 早期阶段(~1960’s)
1943 McCulloch和Pitts 提出神经元的数学模型(MP模型 )
1949 Hebb 提出权重加强的学习机理 1957 Rosenblatt 感知机(perceptron)有认知学习功能 1969 Mingsky 专著“perceptron” 证明线性(单层)感知
二、人工神经网络的历史
❖ 高潮(1980~)
1982 加州理工 Hopfield提出结点全互联ANN模型(Hop模 型),用单层ANN解决了TSP问题
1987.6 ICNN(International Conference on NN)召开 1987 加州理工 Abn-mostafa,Psaitis 2D联想存储输入残
第8章 人工神经网络
8.1 人工神经网络概述 8.2 神经元模型 8.3 ANN的学习算法 8.4 应用举例
一、生物神经网的构成
树突(Dendrite)
胞体(Soma)
轴突(Axon)
突触(Synapse )
x1 w1
二、MP模型
x2 w2
F
y

xn wn
x in1wixi y F(x) F(in1wixi ) F特❖ 计算输出与应有输出之误差
❖ 反向传播,逐层修正权值,使误差减小
❖ 重复以上步骤,直至整个训练集误差最小。
总结 ANN的学习算法
学习 无 有导 导师 师 二 二 连 连进 进 续 续制 制 值 值值 值A H H B-RoePb网 p网 T、 bfiK、 e网lod统 ho计 n网 en网
机不能解决XOR问题,ANN进入低潮
二、人工神经网络的历史
❖ 过渡期(1970’s) 低潮中,许多学者深入研究ANN理论、模型。 MIT的Marr提出视觉模型 Boston Univ的Grossbery全面研究ANN理论,提
出ART1,ART2,ART3自适应谐振理论模型。 甘利俊一 ANN的数学理论 Fuknshima 神经认知网络理论 芬兰的Kohonen 自组织联想记忆
人工神经网络概述
第8章 人工神经网络
8.1 人工神经网络概述 8.2 神经元模型 8.3 ANN的学习算法 8.4 应用举例
一、人工神经网络的提出
AI研究的两大学派: ❖ 符号主义——用计算机从外特性上模仿人脑
宏观的功能 ❖ 连接主义——在微观内部结构上模仿人脑的
神经
一、人工神经网络的提出
符号主义认为: 智能活动的基本元素是符号; 智能活动的过程是符号处理的过程。


第8章 人工神经网络
8.1 人工神经网络概述 8.2 神经元模型 8.3 ANN的学习算法 8.4 应用举例
8.3 ANN的学习算法
ANN的学习算法可分为 ❖ 有导师学习 ❖ 无导师学习
自学习、自组织
一、Hebb学习规则
两个细胞同时兴奋,则它们之间连接(权) 应加强。
w i jw i( j n 1 ) w i( j n ) y iy j 属于无导师学习
二、反向传播算法
(Back-Propagation, B-P算法)
(有导师学习)
用于前馈网络
❖ 从训练范例集中取一训练时,输入网络
❖ 正向传播求输出
Y1
F
(
3 i 1
w
i1
xi
S1
1 )
Y4
F(
3 i 1
w
i
4
xi
S4
4)
Z1
F
(
4 j1
w
' j1
y
j
S1'
1' )
Z2
F(
4 j1
w
' j2
yj
S
二、MP模型
❖ 线性函数 y=kx+c
y
c x
o
二、MP模型
❖ 阈值函数
y 10
x x
θ
二、MP模型
❖ S形函数(Sigmoid Function)
y
y
1 1 ex
x 0
二、MP模型
考虑偏置与阈值,神经元模型
x1 w1
x2 w2 … xn wn
F s
y
yF ( in 1w ixi)S
w
41
w 42
w 43
w
44
w
w
' 31
' 41
学习的过程——不断修改权值的过程
w
' 12
w
' 22
w w
' 32
' 42
三、ANN连接模型
❖ 反馈型网络
x1 x2
…… xn
输入层
w
W



隐藏层
z1 z2
zm 输出层
三、ANN连接模型
❖ 反馈型网络
层间反馈——非线性动力系统 层内反馈——横向抑制、竞争 Hopfield网是单层节点全互连的反馈网
第七章 人工神经网络
8.1 人工神经网络概述 8.2 神经元模型 8.3 ANN的学习算法 8.4 应用举例
三、ANN连接模型
❖ 前馈型网络
x1
w
W’
z1
x2
z2
…… xn
输入层


隐藏层
zm 输出层
三、ANN连接模型
❖ 前馈型网络
输入/输出:二值(0,1)或连续值
权值:可正可负
权值矩阵: w11 w12 w13 w14
w
' 11
w
21
w 22
w 23
w
24
w
' 21
w 31 w 32 w 33 w 34
缺图案也可识别 1988 AT&T Bell lab 120*120元件的ANN 1989 三菱 光学ANN芯片,32个神经元识别26个字母
1989 日立 5“硅片集成576个神经元 1990 Bell Lab 黄庭钰 数字光学处理器 1990 IBM AS400 提供ANN仿真开发环境 1992 SGI 将ANN用于航天飞机控制臂 ANN已在专家系统、智能控制等领域广泛应用
相关文档
最新文档