高一数学集合练习题及答案-经典

合集下载

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅2.已知集合{2,3,1}A =-,集合2{3,}B m =.若B A ⊆,则实数m 的取值集合为( ) A .{1} B .{}3 C .{1,1}- D .{}3,3- 3.已知集合U =R ,则正确表示集合U ,1{}1M =-,,{}²|0N x x x =+=之间关系的维恩图是( )A .B .C .D .4.若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B =( ) A .(]0,9 B .[)4,9 C .[]4,6 D .[]0,9 5.若集合302x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x <<B .{}3x x >C .{}2x x >-D .{}3x x >-6.已知集合{}1,0,1A =-,(){}20B x x x =-≤,那么A B =( )A .{}1-B .{}0,1C .{}0,1,2D .{}01x x ≤≤ 7.设集合{}{}123235M N ==,,,,,,则M N ⋃=( ) A .{2,3} B .{1,2,3,5} C .{1,2,5} D .{1,5}8.已知集合{}22A x x x =<,集合{}1B x x =<,则A B =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()0,29.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1} B .{1,2} C .{0,2} D .{0,1,2} 10.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( )A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<11.已知集合{|A x y ==,集合{|1}B x x =<,则A B =( )A .[)1,1-B .(1,1)-C .(,1)-∞D .(0,1)12.已知集合{}2,3,4A =,{}28120B x Z x x =∈-+<,则A B 中元素的个数是( ) A .4 B .5 C .6 D .713.已知集合{}2320A x x x =-+>,{}1,B m =,若A B ⋂≠∅,则实数m 的取值范围是( )A .()1,2B .()(),12,-∞+∞C .[]1,2D .()2,+∞ 14.已知集合1|2,[,4]2x A x B a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( ) A .2B .1-C .2-D .5- 15.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( )A .{0,1,2,3,4}B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3- 二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.记关于x 的不等式220x x a a -+-≤的解集为A ,集合{}12B x x =-≤<,若A B ,则实数a 的取值范围为___________.19.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题: ①{} 2,3,5,6,8,9,A B =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数;③A 、B 两个集合元素个数相等;④n A ∀∈,22n n ≥.其中真命题序号是______.20.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______.21.已知集合{}2320A xx x =-+=∣,{06,}B x x x N =<<∈∣,则满足条件A ⊂C B ⊆的集合C 的个数为_________个22.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________. 23.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.24.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________.25.设P 、Q 为两个非空实数集合,定义集合{},,b P Q z z a a P b Q *==∈∈,若{}1,2P =,{}1,0,1Q =-,则集合P Q *中元素的个数为______个.三、解答题26.已知集合*N M ⊆,且M 中的元素个数n 大于等于5.若集合M 中存在四个不同的元素a ,b ,c ,d ,使得a b c d +=+,则称集合M 是“关联的”,并称集合{,,,}a b c d 是集合M 的“关联子集”;若集合M 不存在“关联子集”,则称集合M 是“独立的”.(1)分别判断集合{2,4,6,8,10}与{1,2,3,5,8}是“关联的”还是“独立的”?(2)写出(1)中“关联的”集合的所有的“关联子集”;(3)已知集合{}12345,,,,M a a a a a =是“关联的”,且任取集合{},i j a a M ⊆,总存在M 的“关联子集”A ,使得{},i j a a A ⊆.若12345a a a a a <<<<,求证:1a ,2a ,3a ,4a ,5a 是等差数列.27.已知集合{}3A x x =≤,{}31B x a x a =-<<+.(1)当4a =时,求()A B R ;(2)若A B A =,求实数a 的取值范围.28.如图所示阴影部分角的集合.29.已知集合{}4222x A x =<≤,{}122B x a x a =-<≤+(1)当0a =,求A B ;(2)若A B =∅,求a 的取值范围.30.已知集合A ={x |2a <x <a +1},B ={|1x -<x <5},求满足A ⊆B 的实数a 的取值范围.【参考答案】一、单选题1.A【解析】【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂.【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-,所以{|14}M N x x ⋂=-≤<.故选:A2.C【解析】【分析】根据B 是A 的子集列方程,由此求得m 的取值集合.【详解】由于B A ⊆,所以211m m =⇒=±,所以实数m 的取值集合为{1,1}-.故选:C3.A【解析】【分析】先求得集合N ,判断出,M N 的关系,由此确定正确选项.【详解】∵{}{}2|1,00N x x x =-=+=,1{}1M =-,, ∴{1}M N ⋂=-,故A 正确,BCD 错误.故选:A.4.A【解析】【分析】先解出集合A 、B,再求A B .【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .5.C【解析】【分析】解分式不等式确定集合A ,再由并集的定义计算.【详解】 解:依题意,{}30232x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C .6.B【解析】【分析】先化简集合B ,再求A B【详解】()20x x -≤02x ⇒≤≤,所以{}|02B x x =≤≤所以{}0,1A B =故选:B7.B【解析】【分析】依据并集的定义去求M N ⋃即可解决.【详解】{}{}{}1232351235M N ⋃=⋃=,,,,,,,故选:B8.C【解析】【分析】解一元二次不等式,求得集合A ,根据集合的交集运算,求得答案.【详解】{}22{|02}A x x x x x =<=<<, 故{|01}A B x x =<<,故选:C.9.C【解析】【分析】 先求{}2,B k k n n Z ==∈,再求交集即可.【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =.故选:C .10.B【解析】【分析】由集合的交运算求A B 即可.【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<,所以{}1,2,3,4A B ⋂=.故选:B11.A【解析】【分析】求出集合A ,根据集合的交集运算即可求得答案.【详解】由题意得:{|{|1}A x y x x ===≥-,故{|11}A B x x ⋂=-≤<,故选:A12.A【解析】【分析】求出集合B ,再根据并集的定义即可求出答案.【详解】{}()(){}{}{}28120260263,4,5B x Z x x x Z x x x Z x =∈-+<=∈--<=∈<<=, 所以{}2,3,4,5A B ⋃=.所以A B 中元素的个数是4.故选:A.13.B【解析】【分析】根据一元二次不等式的解法求出集合A ,结合交集的概念和运算与空集的概念即可得出结果.【详解】由题可知,{}()(){}{}232012012A x x x x x x x x x =-+>=-->=或. 因为A B ⋂≠∅,所以m A ∈,即1m <或2m >,所以实数m 的取值范围是()(),12,-∞+∞.故选:B14.C【解析】【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案.【详解】 解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+, 又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-, 故选:C.15.C【解析】【分析】求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解.【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<,又由集合{4,3,2,1,0,1,2,3,4}A =----,所以A B ={2,1,0,1,2}--.故选:C.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++= 所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.[)3,+∞【解析】【分析】根据A B ⊆列出不等式即可求解.【详解】 因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意.故答案为:[)3,+∞.18.()1,2-【解析】【分析】首先将不等式变形,再对a 与1a -分三种情况讨论,分别求出集合A ,根据集合的包含关系得到不等式组,即可求出参数a 的取值范围;【详解】解:原不等式220x x a a -+-≤可变形为()()10x a x a -+-≤,当1a a ,即12a =时,12A ⎧⎫=⎨⎬⎩⎭,满足题意; 当1a a <-,即12a <时,{}1A x a x a =≤≤-,所以112a a ≥-⎧⎨-<⎩,解得1a >-,所以112a -<<; 当1a a ,即12a >时,{}1A x a x a =-≤≤,所以21112a a a ⎧⎪<⎪-≥-⎨⎪⎪>⎩,解得122a <<. 综上可得1a 2-<<,即()1,2a ∈-;故答案为:()1,2-19.①②③【解析】【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立.【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31A B n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③.20.5m ≥【解析】【分析】由交集和空集的定义解之即可.【详解】(),5P =-∞,[),Q m =+∞由P Q =∅可知,5m ≥故答案为:5m ≥21.7【解析】【分析】化简集合A ,B ,根据条件A C B ⊂⊆确定集合C 的个数即可.【详解】因为{}2320{1,2}A x x x =-+==∣,{06,}{1,2,3,4,5}B x x x N =<<∈=∣,因为A C B ⊂⊆,所以1,2都是集合C 的元素,集合C 中的元素还可以有3,4,5,且至少有一个,所以集合C 为:{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5},共7个.故答案为:722.{1,2,3,4,6,8}【解析】【分析】先化简集合B ,再求两集合的并集. 【详解】因为B ={x x 是6的正因数}{1,2,3,6}=, 所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.23.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 24.{x |2<x <3}【解析】【分析】解二次不等式可得集合B ,再求交集即可.【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3},∴A ∩B ={x |2<x <3}.故答案为:{x |2<x <3}25.3【解析】【分析】分别对a 、b 进行赋值,求出z 的所有可能取值即可求解.【详解】由题意,得当1a =时,1b z a ==;当2a =且1b =-时,12b z a ==; 当2a =且0b =时,1b z a ==;当2a =且1b =时,2b z a ==;所以P Q *含有的元素有:1、2、12,即P Q *中元素个数为3个.故答案为:3. 三、解答题26.(1){2,4,6,8,10}是“关联的”,{1,2,3,5,8}是“独立的”;(2){2,4,6,8},{2,4,8,10},{4,6,8,10};(3)证明见解析.【解析】【分析】(1)根据给定定义直接判断作答.(2)由(1)及所给定义直接写出“关联子集”作答.(3)写出M 的所有4元素子集,再利用反证法确定“关联子集”,然后推理作答.(1)集合{2,4,6,8,10}中,因2846+=+,所以集合{2,4,6,8,10}是“关联的”,集合{1,2,3,5,8}中,不存在某两个数的和等于另外两个数的和,所以集合{1,2,3,5,8}是“独立的”.(2)由(1)知,有2846+=+,21048+=+,41068+=+,所以{2,4,6,8,10}的“关联子集”有:{2,4,6,8},{2,4,8,10},{4,6,8,10}.(3)集合M 的4元素子集有5个,分别记为:1234521345{,,,},{,,,}A a a a a A a a a a ==, 312454123551234{,,,},{,,,},{,,,}A a a a a A a a a a A a a a a ===,因此,集合M 至多有5个“关联子集”,若21345{,,,}A a a a a =是“关联子集”,则12345{,,,}A a a a a =不是“关联子集”,否则12a a =,矛盾,若21345{,,,}A a a a a =是“关联子集”,同理可得31245{,,,}A a a a a =,41235{,,,}A a a a a =不是“关联子集”,因此,集合M 没有同时含有元素25,a a 的“关联子集”,与已知矛盾,于是得21345{,,,}A a a a a =一定不是“关联子集”,同理41235{,,,}A a a a a =一定不是“关联子集”,即集合M 的“关联子集”至多为12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =, 若12345{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素35,a a 的“关联子集”,与已知矛盾,若31245{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素15,a a 的“关联子集”,与已知矛盾,若51234{,,,}A a a a a =不是“关联子集”,则集合M 一定不含有元素13,a a 的“关联子集”,与已知矛盾,因此,12345{,,,}A a a a a =,31245{,,,}A a a a a =,51234{,,,}A a a a a =都是“关联子集”, 即有25345432a a a a a a a a +=+⇔-=-,15245421a a a a a a a a +=+⇔-=-,14234321a a a a a a a a +=+⇔-=-,从而得54433221a a a a a a a a -=-=-=-,所以1a ,2a ,3a ,4a ,5a 是等差数列.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案;(2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > , 当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .28.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】【分析】观察图形, 按图索骥即可.【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈,}{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+ ()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ ,故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.29.(1){12}A B xx ⋂=<≤∣ (2)1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦ 【解析】【分析】(1)首先求出集合,A B ,然后根据集合的交集运算可得答案; (2)分B =∅、B ≠∅两种情况讨论求解即可.(1)因为0a =,所以{12}B xx =-<≤∣ 因为{}4222{14}x A x x x =<≤=<≤∣, 所以{12}A B xx ⋂=<≤∣. (2)当B =∅,即122a a -≥+,3a ≤-时,符合题意当B ≠∅时可得12214a a a -<+⎧⎨-≥⎩或122221a a a -<+⎧⎨+≤⎩, 解得5a ≥或132a -<≤-. 综上,a 的取值范围为1,[5,)2⎛⎤-∞-⋃+∞ ⎥⎝⎦. 30.1,2⎡⎫-+∞⎪⎢⎣⎭ 【解析】【分析】根据集合之间的关系,列出相应的不等式组,解不等式组即可求解.【详解】由题意,集合{|21}{|15}A x a x a B x x =<<+=-<<,,因为A B ⊆,若=A ∅,则21a a ≥+,解得1a ≥,符合题意;若A ≠∅,则212115a a a a <+⎧⎪≥-⎨⎪+≤⎩,解得112a -≤<, 所求实数a 的取值范围为1,2⎡⎫-+∞⎪⎢⎣⎭.。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}111,202xA x xB x ⎧⎫⎪⎪⎛⎫=+<=-≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()AB =R( )A .()2,1--B .(]2,1--C .()1,0-D .[)1,0-3.已知集合{A x y ==,{}0,1,2,3B =,则A B =( ) A .{}3B .{}2,3C .{}1,2,3D .{}0,1,2,34.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x <<B .{}32x x -<<C .{}35x x -<<D .{}3x x <-5.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3B .{}3,7,8C .{}1,3,7,8D .{}1,3,6,7,86.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.已知集合{}220A x x x =--≤,{}2log B x x k =>.若A B =∅ ,则实数k 的取值范围为( ) A .02k <≤ B .04k << C .2k ≥D .4k ≥9.已知集合{}14A x x =-≤≤,{}260B x N x x =∈--≤ ,则A B =( )A .[]1,3-B .[]2,4-C .{}1,2,3D .{}0,1,2,3 10.集合M ={x |x =i n +1,n ∈N}(i 为虚数单位)的真子集的个数是( )A .1B .15C .3D .1611.已知集合(){}2log 2A x y x ==-,{}2xB y y ==,则A B =( )A .()0,2B .()1,2C .[)1,2D .(),2-∞12.设集合A 实数 ,{}B =纯虚数,{}C =复数,若全集SC ,则下列结论正确的是( ) A .A B C = B .A B = C .()S A B ⋂=∅D .SSABC13.已知集合{}82A xx =-<<∣,{}1B x x =≤-,则()R A B ⋂=( ) A .{}1x x <- B .{}12x x -<< C .{}8x x >-D .{}28x x <≤14.等可能地从集合{}1,2,3的所有子集中任选一个,选到非空真子集的概率为( ) A .78B .34C .1516 D .1415.已知集合{}2|20,A x x x x R =--≤∈,{}|14,B x x x Z =-<<∈,则A B =( )A .(1,2]-B .(1,2)-C .{}0,2D .{}0,1,2二、填空题16.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.17.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.18.已知a 、R b ∈,若不等式20ax x b -+<的解集为112A x x ⎧⎫=<<⎨⎬⎩⎭,不等式210ax bx +-≤的解集为B ,则()R A B ⋂=______.19.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ; (3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 20.若{}31,2a ∈,则实数=a ____________.21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.集合{12}A =,的非空子集是________________. 23.已知集合{}{}214,0,1,2,4A x x B =≤<=,则A B ⋂=___________. 24.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.25.以下各组对象不能组成集合的是______(用题号填空). ①中国古代四大发明 ②地球上的小河流 ③方程210x -=的实数解 ④周长为10cm 的三角形 ⑤接近于0的数三、解答题26.已知集合{|124}x A x =≤≤,{|()(1)0}B x x a x =--≤. (1)求A ;(2)若A B B =,求实数a 的取值范围.27.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.28.设集合(){}1A x x x a a =+-≤,{}260B x x x =+-<,{}260C x x x =--≤.(1)求B C ⋃.(2)若()R A B ⋂=∅,求实数a 的取值范围.29.已知集合{}2430M x x x =-+<,{}12N x x =-<<.(1)求()RM N ⋃;(2)若集合()(){}20P x x m x =+-≤,且“x ∈N ”是“x P ∈”的充分不必要条件,求m 的取值范围.30.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.C 【解析】 【分析】由绝对值不等式的解法求出集合A ,再利用指数函数的单调性求解集合B ,最后根据集合的补集、交集的定义即可求解. 【详解】解:由题意,{}{}|111|20A x x x x =-<+<=-<<,{}{}|22|1xB x x x -=≥=≤-,∴{}1R B x x =>-,∴(){}()|101,0R A B x x ⋂=-<<=-. 故选:C . 3.C 【解析】 【分析】根据定义域的求法解出集合A ,然后根据交集的运算法则求解. 【详解】 解:由题意得:{{}|1A x y x x ===≥ {}1,2,3A B ∴⋂= 故选:C 4.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<.故选:A 5.C 【解析】 【分析】先求A B ,再求()A B C ⋂⋃. 【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=.故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 8.D 【解析】 【分析】由于A B =∅ ,B 集合所表示的区间在A 集合之外. 【详解】由220x x --≤ ,解得12x -≤≤ ,即[]1,2A =- ,A B =∅ ,2log 2k ∴≥ ,4k ≥ ;故选:D. 9.D【解析】 【分析】由题知{}0,1,2,3B =,再根据集合交集运算求解即可. 【详解】解:解不等式260x x --≤得23x -≤≤,所以{}{}2600,1,2,3B x N x x =∈--≤=,因为{}14A x x =-≤≤ 所以A B ={}0,1,2,3 故选:D 10.B 【解析】 【分析】先根据虚数单位i 的性质确定集合M 的元素个数,再由n 元集合的真子集个数为21n -可得. 【详解】当n ∈N 时,x =i n +1的值只有i ,-i ,1,-1,故M 中有4个元素,所以M 共有24-1=15个真子集. 故选:B 11.A 【解析】 【分析】由对数函数定义域和指数函数值域可求得集合,A B ,由交集定义可得结果. 【详解】由20x ->得:2x <,(),2A ∴=-∞;由20x >得:()0,B =+∞;()0,2A B ∴⋂=.故选:A. 12.D 【解析】 【分析】根据集合A ,B ,C 的关系求解即可. 【详解】集合A ,B ,C 的关系如下图,由图可知只有SSABC 正确.故选:D.13.B 【解析】 【分析】根据补集的运算,求得{}R |1B x x =>-,结合交集的概念及运算,即可求解. 【详解】由题意,集合{}1B x x =≤-,可得{}R |1B x x =>-又由{}82A xx =-<<∣,所以(){}R 12A B x x ⋂=-<<. 故选:B. 14.B 【解析】 【分析】写出集合{}1,2,3的所有子集,再利用古典概率公式计算作答. 【详解】集合{}1,2,3的所有子集有:{}{}{}{}{}{}{},1,2,3,1,2,1,3,2,3,1,2,3∅,共8个,它们等可能,选到非空真子集的事件A 有:{}{}{}{}{}{}1,2,3,1,2,1,3,2,3,共6个, 所以选到非空真子集的概率为63()84P A ==. 故选:B 15.D 【解析】 【分析】 解不等式后求解 【详解】220x x --≤,解得[1,2]A =-,{0,1,2}A B ⋂=故选:D二、填空题16.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x <17.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .18.3122x x ⎧-≤≤⎨⎩或}1x =【解析】 【分析】分析可知x 的方程20ax x b -+=的两根分别为12、1,利用韦达定理求出a 、b 的值,然后解不等式210ax bx +-≤可得集合B ,利用补集和交集的定义可求得()A B R . 【详解】由题意可知,关于x 的方程20ax x b -+=的两根分别为12、1,所以11121120a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得2313a b ⎧=⎪⎪⎨⎪=⎪⎩, 不等式210ax bx +-≤即为2211033x x +-≤,即2230x x +-≤,解得312x -≤≤,则312B x x ⎧⎫=-≤≤⎨⎬⎩⎭,因为112A x x ⎧⎫=<<⎨⎬⎩⎭,则R12A x x ⎧=≤⎨⎩或}1x ≥,因此,()R 3122A B x x ⎧⋂=-≤≤⎨⎩或}1x =.故答案为:3122x x ⎧-≤≤⎨⎩或}1x =.19. ⊆ = ⊇ ⊆ 【解析】 【分析】根据集合子集的定义及集合相等的概念求解. 【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆ 20.5##32【解析】 【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果. 【详解】 因为{}31,2a ∈, 所以23a =,解得32a =. 故答案为:32.21.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂22.{}{}12{12},,, 【解析】 【分析】结合子集的概念,写出集合A 的所有非空子集即可. 【详解】集合{1,2}A =的所有非空子集是{}{}12{12},,,. 故答案为:{}{}12{12},,,. 23.{}1【解析】 【分析】根据集合的交集的定义进行求解即可【详解】当0x =时,不等式214x ≤<不成立, 当1x =时,不等式214x ≤<成立, 当2x =时,不等式214x ≤<不成立, 当4x =时,不等式214x ≤<不成立, 所以{}1A B ⋂=, 故答案为:{}124.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >. 25.②⑤ 【解析】 【分析】利用集合元素的基本特征判断. 【详解】①中国古代四大发明是造纸术,指南针,火药和印刷术,是确定的,能构成集合; ②地球上的小河流,不确定,不能构成集合;③方程210x -=的实数解是1或-1,是确定的,能构成集合; ④周长为10cm 的三角形,是确定的,能构成集合; ⑤接近于0的数,不确定,不能构成集合. 故答案为:②⑤三、解答题26.(1)[]0,2A = (2)[]0,2 【解析】 【分析】(1)结合指数不等式求得集合A .(2)对a 进行分类讨论,由此求得B ,根据A B B =来求实数a 的取值范围 (1)2122,02x x ≤≤≤≤,所以[]0,2A =.(2)A B B B A ⋂=⇒⊆当1a =时,{}1B A =⊆;当1a <时,{}|1B x a x A =≤≤⊆,则01a ≤<;当1a >时,{}|1B x x a A =≤≤⊆,则12a <≤;综上:a 的取值范围是[]0,2.27.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 28.(1){}33B C x x ⋃=-<≤(2)23a -<<【解析】【分析】(1)先解出集合,B C ,再计算B C ⋃即可;(2)由()R A B ⋂=∅得A B ⊆,再按照两根的大小分类讨论解不等式即可.(1){}32B x x =-<<,{}23C x x =-≤≤,则{}33B C x x ⋃=-<≤;(2)()(){}10A x x a x =+-≤,由()R A B ⋂=∅得A B ⊆, ①当<1a -时,即1a >-时,{}1A x a x =-≤≤,只需3a ->-,即13a -<<; ②当1a -=时,即1a =-时,{}1A x x ==,满足条件;③当1a ->时,即1a <-时,{}1A x x a =≤≤-,只需2a -<,即21a -<<-; 综上可得:a 的取值范围是23a -<<.29.(1){1x x ≤-或}3x ≥(2)[)1,+∞【解析】【分析】(1)求出集合M ,再根据补集和并集的定义求解;(2)由题意得N P ,再根据包含关系列不等式求解. (1) 由已知{}{}243013M x x x x x =-+<=<<, 所以{}13M N x x ⋃=-<<,则(){1R M N x x ⋃=≤-或}3x ≥.(2)由题意得N P , 则1m -≤-,解得1m ≥.故m 的取值范围是[)1,+∞.30.0≤m ≤4.【解析】【分析】先由一元二次不等式的解法化简集合P ,再由必要条件得到两集合间包含关系,结合非空集合S 和包含关系建立关于m 的不等关系,最后取交集解出范围.【详解】由x 2-x -20≤0,得-4≤x ≤5,∴P ={x |-4≤x ≤5}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P .∴1415m m -≥-⎧⎨+≤⎩解得m ≤4. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0.综上,若x ∈P 是x ∈S 的必要条件,则0≤m ≤4.。

高一集合测试题及答案

高一集合测试题及答案

高一集合测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},集合B={3,4,5},求A∪B。

A. {1,2,3,4,5}B. {1,2,3,4}C. {3,4,5}D. {1,2,3}2. 若集合M={x|x<0},N={x|x>0},则M∩N等于:A. {x|x<0}B. {x|x>0}C. 空集D. {0}3. 集合P={y|y=x^2, x∈R},求P的元素范围。

A. y≥0B. y>0C. y≤0D. y<04. 设集合Q={x|x^2-4=0},求Q的元素个数。

A. 1B. 2C. 3D. 45. 集合R={x|-1≤x≤1},S={x|x>0},求R∩S。

A. {x|0<x≤1}B. {x|-1≤x≤0}C. {x|-1<x≤1}D. {x|-1≤x<0}6. 集合T={y|y=2x, x∈Z},求T的元素性质。

A. 所有元素都是偶数B. 所有元素都是奇数C. 元素既有偶数也有奇数D. 元素不能确定7. 若集合U={x|x^2-4x+3=0},求U的元素。

A. {1,3}B. {-1,3}C. {1,-3}D. {-1,1}8. 设集合V={x|x^2+2x+1=0},求V的元素。

A. {-1}B. {1}C. {-1,1}D. 空集9. 集合W={x|-3≤x≤3},X={x|x>0},求W∩X。

A. {x|0<x≤3}B. {x|-3≤x≤0}C. {x|-3<x≤3}D. {x|-3≤x<0}10. 集合Y={y|y=x^2, x∈N},求Y的元素范围。

A. y≥0B. y>0C. y≤0D. y<0二、填空题(每题2分,共20分)11. 集合A={1,2,3},B={2,3,4},A∩B=______。

12. 若集合C={x|x是偶数},D={x|x是奇数},则C∪D=______。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.已知集合{}2log 4A x x =<,{}22B x x =-<<,则()R A B ⋂=( ) A .(]2,0- B .[)0,2 C .()0,2D .[)2,0-2.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R3.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂ B .()UMNC .()U N M ⋂D .()()U U M N4.设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为( )A .2B .4C .8D .165.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}6.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A .∅B .{}1,2,3C .{}2D .{}38.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( ) A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<9.已知集合{}21A x x =≤,{}01B x x =<<,则A B =( )A .()1,1-B .[)1,1-C .[]1,1-D .()0,110.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( )A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-11.设集合{}02A x x =≤≤,B={1,2,3},C={2,3,4},则()A B C =( ) A .{2}B .{2,3}C .{1,2,3,4}D .{0,1,2,3,4}12.集合{}220M x x x =-<,{}lg 0N x x =>,则MN =( )A .()0,2B .()1,+∞C .()1,2D .()0,∞+13.已知集合*1|2cos ,,|24232x n A x x n B x π⎧⎫⎧⎫==∈=≤≤⎨⎬⎨⎬⎩⎭⎩⎭N ,则A B =( ) A .{}1,1- B .{}0,1,2 C .{}1,1,2-D .1,0,1,214.已知集合{}1,2,3,4,5U =,{}1,2A =,{}2,3,4B =,则集合()UA B =( )A .{}1B .{}2C .{}1,2,5D .{}1,2,3,415.()Z M 表示集合M 中整数元素的个数,设{}1|8A x x =-<<,{}|527B x x =-<<,则()Z A B =( )A .5B .4C .3D .2二、填空题16.设()1,2,3i a i =均为实数,若集合{}123,,a a a 的所有非空真子集的元素之和为12,则123a a a ++=__________17.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.18.集合A =[1,6],B ={x |y =x a -},若A ⊆B ,则实数a 的范围是________________. 19.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.20.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则A B =___________.21.已知T 是方程()22040xpx q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.22.若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.23.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)24.设集合1,2x A y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,集合12,0B y y x x ⎧⎫⎪⎪==≥⎨⎬⎪⎪⎩⎭,则A B =________.25.如图所示,U 为全集,A U ⊆,B U ⊆,用A 、B 表示图中的阴影部分的集合是______.三、解答题26.定义:Leistra 序列是一个由1a ,2a ,…,1n a -,()*,2n a n n ∈≥N 组成的有限项序列,有如下性质:①每项1a ,2a ,…,1n a -,n a 都是正偶数;②每项2a ,3a ,…,1n a -,n a 通过将序列中的前一项除以一个10-50(包含10和50)之间的整数得到(对于一个特定序列,使用的除数不一定都相同);③10-50(包含10和50)之间没有整数m 使得na m是一个偶数(其中n a 为数列的最后一项).(1)试判断序列1000、100、4和序列1000、200、4是否为Leistra 序列?并说明理由; (2)是否存在以首项1216a =,末项2n a =的Leistra 序列?如果有,请写出所有的Leistra 序列;如果没有,请说明理由;(3)首项为350123a =⋅的Leistra 序列有多少个?并说明理由.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈.(1)求A B ; (2)若全集为U ,求U()A B ⋂.29.已知全集为R ,集合{}26A x x =<≤,集合{}310B x x =≤<,{}2340D x x x =--≤.(1)求A B ; (2)求()B D ⋂R30.设函数()()21,R f x ax a x =-∈的不动点(满足()f x x =)、稳定点(满足()()f f x x =)的集合分别为A 、B .若A B =≠∅,求实数a 的取值范围.【参考答案】一、单选题 1.A 【解析】 【分析】求解对数不等式得到集合A ,进而结合补集和交集的概念即可求出结果. 【详解】因为{}016A x x =<<,所以(){}R 20A B x x ⋂=-<≤, 故选:A. 2.C 【解析】 【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 3.B 【解析】 【分析】化简集合N ,然后由集合的运算可得. 【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=-- {}()1U MN ∴=-故选:B.4.B 【解析】 【分析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果. 【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=. 故选:B. 5.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.C 【解析】 【分析】由交集的定义直接求解即可 【详解】因为{}1,2M =,{}2,3N = 所以{}2MN =,8.B 【解析】 【分析】由集合的交运算求A B 即可. 【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<, 所以{}1,2,3,4A B ⋂=. 故选:B 9.D 【解析】 【分析】根据一元二次不等式解法求出集合A ,再根据交集的定义即可求解. 【详解】解:因为集合{}{}2111A x x x x =≤=-≤≤,{}01B x x =<<,所以()0,1A B =, 故选:D. 10.D 【解析】 【分析】先求出集合B 的元素,进行并集运算即可. 【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤{}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-. 故选:D. 11.C 【解析】 【分析】根据集合交、并的定义,直接求出()A B C . 【详解】因为集合{}02A x x =≤≤,B={1,2,3},所以{}1,2A B =, 所以()A B C ={1,2,3,4}. 故选:C 12.C 【解析】 【分析】根据解一元二次不等式的方法、对数函数的单调性,结合集合交集的定义进行求解即可.因为()0,2M =,()1,N =+∞, 所以()1,2M N ⋂=, 故选:C 13.C 【解析】 【分析】首先根据余弦函数的性质求出集合A ,再根据指数函数的性质求出集合B ,最后根据交集的定义计算可得; 【详解】 解:因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n π⎧⎫==∈=--⎨⎬⎩⎭N ,由122x ≤≤512222x -≤≤,所以512x -≤≤,所以15|2|122xB x x x ⎧⎧⎫=≤≤=-≤≤⎨⎨⎬⎩⎩⎭,所以{}1,1,2A B =-; 故选:C 14.A 【解析】 【分析】 求出UB ,计算求解即可.【详解】根据题意得,{}1,5U B =,所以(){}1UA B =.故选:A. 15.B 【解析】 【分析】先求得A B ,再根据()Z M 的定义求解. 【详解】解:因为{}1|8A x x =-<<,{}57|527|22⎧⎫=-<<=-<<⎨⎬⎩⎭B x x x x , 所以7|12⎧⎫=-<<⎨⎬⎩⎭A B x x ,所以()4=Z A B , 故选:B二、填空题 16.4【解析】 【分析】列举出集合{}123,,a a a 的所有非空真子集,根据题意可求得123a a a ++的值. 【详解】集合{}123,,a a a 的所有非空真子集为:{}1a 、{}2a 、{}3a 、{}12,a a 、{}13,a a 、{}23,a a , 由题意可得()123312a a a ++=,解得1234a a a ++=. 故答案为:4.17.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.18.(,1]-∞【解析】 【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围 【详解】由0x a -≥,得x a ≥, 所以[,)B a =+∞, 因为A =[1,6],且A ⊆B , 所以1a ≤,所以实数a 的范围是(,1]-∞, 故答案为:(,1]-∞19.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8.20.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭21.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2622.2a ≥【解析】 【分析】根据含绝对值不等式的解法,求解不等式的解集,结合充分条件,列出关系式,即可求解. 【详解】 由不等式||x a <,当0a ≤时,不等式||x a <的解集为空集,显然不成立; 当0a >时,不等式||x a <,可得a x a -<<,要使得不等式||x a <的一个充分条件为20x -<<,则满足{|20}{|}x x x a x a -<<⊆-<<, 所以2a -≥-,即2a ≥ ∴实数a 的取值范围是2a ≥. 故答案为:2a ≥.23.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂ 24.{}0y y >##()0,∞+ 【解析】 【分析】根据指数函数与幂函数的性质,先求出集合A 、B ,然后根据交集的定义即可求解. 【详解】解:因为集合{}1,02x A y y x y y ⎧⎫⎪⎪⎛⎫==∈=>⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,{}12,00B y y x x y y ⎧⎫⎪⎪==≥=≥⎨⎬⎪⎪⎩⎭,所以{}{}{}000A B y y y y y y ⋂=>⋂≥=>, 故答案为:{}0y y >. 25.A B ⋂##B A ⋂ 【解析】 【分析】根据集合的运算法则求解. 【详解】阴影部分是集合A 与集合B 的补集的公共部分,因此表示为:A B ⋂. 故答案为:A B ⋂.三、解答题26.(1)序列1000、100、4是Leistra 序列,序列1000、200、4不是Leistra 序列,理由见解析 (2)不存在,理由见解析 (3)187个,理由见解析 【解析】 【分析】(1)看两个序列是否满足题干中的三个条件,得到1000、100、4是Leistra 序列,1000、200、4不是Leistra 序列;(2)将216拆解为3323⨯,得到{}218,12,6a ∈,故不能得到末项2n a =,从而证明出不存在;(3)首先得到{}2,6,18,4,12,8n a ∈,根据末项和除数进行分类讨论,求出不同情况下的Leistra 序列个数,相加即为答案.(1)序列1000、100、4每项都是正偶数,而除数依次为10,25,且10-50(包含10和50)之间没有整数m 使得n a m 是一个偶数(其中n a 为数列的最后一项),故序列1000、100、4是Leistra 序列;1000、200、4不是Leistra 序列,因为10005200=不在10-50(包含10和50)之间; (2)因为33121623a ==⨯,则216在10-50(包含10和50)之间的正约数有12,18,24,36, 若1216a =,则{}218,12,6a ∈(9不是偶数,舍去),而此时不存在10-50(包含10和50)之间的正数能再进一步计算使得末项2n a =,所以不存在这样的Leistra 序列.(3)因为350123a =⋅,则在10-50(包含10和50)之间的正约数有27,18,12,36,且每一项()231,k a k n k N αβ*=⋅≤≤∈,其中1,2,3,50αβ=≤且N β∈,再结合10-50(包含10和50)之间没有整数m 使得n a m是一个偶数(其中n a 为数列的最后一项),则末项20n a <,所以{}2,6,18,4,12,8n a ∈,下面根据末项和除数分别进行研究:①当382n a ==时,则5013na a =,所以每个除数只含有因子3,即全是27,当50不能被3整除,所以无法由27相乘得到,即不存在这种情况;②当242n a ==时,则50123na a =⋅,所以除数中因子2仅出现1次,只能是21823=⨯,剩下除数全是27,又因为剩下除数乘积为()16483163327==,即有17个除数(18出现一次,27出现16次),一共有17种;③当21232n a ==⨯,则49123na a =⋅,所以除数中因子2仅出现了1次,只能是21823=⨯,剩下除数全是27,但因为剩下除数乘积为473,其中47不能被3整除,所以无法由27相乘得到,即不存在这样的情景;④当2n a =时,则250123na a =⋅,所以除数中因子2出现了2次,即18出现2次或12出现1次或36出现1次,剩下的除数全是27,而对应的剩下除数乘积依次为4549483,3,3,其中()16483163327==,其余两种情况(46和49)都不能被3整除,所以有17个除数(36出现1次,27出现16次),共有17种;⑤当632n a ==⨯时,则249123na a =⋅,所以除数中因子2出现2次,即18出现2次或12出现1次,或36出现1次,剩下除数全是27,而对应的剩下除数乘积依次为4548473,3,3,其中()15453153327==,()16483163327==,而47不能被3整除,所以第一种情况有17个除数(18出现2次,27出现15次),一共有217C 136=种,第二种情况有17个除数(12出现1次,27出现16次),一共有17种;⑥当21823n a ==⨯时,248123na a =⋅,所以除数中因子2出现了2次,即18出现了2次或12出现一次或36出现一次,剩下除数全是27,而对应 的剩下除数乘积依次为4447463,3,3三个数都不能被3整除,故无法由27相乘得到,即不存在这种情形;综上:一共有17+17+136+17=187个Leistra 序列.【点睛】对于定义新数列的问题,要能正确阅读理解题干信息,抓住关键信息,转化为我们熟悉的问题解决.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2) 因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >.28.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 29.(1){}210x x <<; (2){}410x x <<.【解析】【分析】(1)根据并集的计算方法计算即可;(2)求出集合D ,并求出其补集,再根据交集的运算方法运算即可.(1){}210A B x x ⋃=<<;(2){}14D x x =-≤≤,∴{1D x x =<-R 或}4x >,∴(){}410D B x x ⋂=<<R .30.13,44⎡⎤-⎢⎥⎣⎦ 【解析】【分析】根据函数的不动点、稳定点的定义结合题意分别求出集合A 、B , 再结合结合A B =≠∅即可求解.【详解】由题意可知,()21f x ax x =-=, {}210A x ax x -=-=,由()()f f x x =,得()()342222221110a x a x x a ax x a xax a --+-=--+-+=, (){}2211B x a ax x =--={}3422210x a x a x x a =--+-=. ()(){}222110x ax x a x ax a =--+-+=. 当0a =时,()1f x =-.则集合{}1A B ==-,满足题设要求.当0a ≠时,当A B =≠∅时,方程210ax x --=有解, 对方程2210a x ax a +-+=根的情况进行分类讨论 若方程2210a x ax a +-+=有两个不相等的实数根,则 22 1+40-4(1-) >0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a >, 此时两个方程没有公共解,集合B 中有四个元素,不合题意,舍去. 若方程2210a x ax a +-+=有两个相等的实数根,则 22 1+40-4(1-) =0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得34a = 此时方程210ax x --=的两根分别为2,23-, 方程2210a x ax a +-+=的根为1223x x ==-. 验证得2,23A B ⎧⎫==-⎨⎬⎭⎩ 若方程2210a x ax a +-+=无实数根,此时A B =,则 22 1+40-4(1-) <0 0 a a a a a ≥⎧⎪⎨⎪≠⎩,解得1344a -≤<且0a ≠ 综上所述,实数a 的取值范围为13,44⎡⎤-⎢⎥⎣⎦.。

高一数学集合练习题及答案

高一数学集合练习题及答案

高一数学集合练习题及答案高一数学集合练题及答案1.设全集 $U=\{1,2,3,4\}$,$A=\{1,3\}$,$B=\{4\}$,则$(U-A) \cap B=$ ()A。

$\{2,4\}$ B。

$\{4\}$ C。

$\varnothing$ D。

$\{1,3,4\}$2.已知集合 $A=\{x|y=x-1\}$,$B=\{x|x<2\}$,则 $A \cap B=$ ()A。

$\varnothing$ B。

$\{1\}$ C。

$[1,2)$ D。

$(1,2)$3.已知集合 $M=\{(x,y)|y=x^2-x,x\in R\}$,$N=\{y|x^2-x,y\in R\}$,则 $M \cap N=$ ()___{(0,0),(2,2)\}$ C。

$(0,2]$ D。

$[-1,+\infty)$4.已知全集 $U=\{1,2,3,4,5\}$,集合 $A=\{1,2\}$,$B=\{2,3\}$,则 $(A \cup B)=$ ()A。

$\{4,5\}$ B。

$\{1,2\}$ C。

$\{2,3\}$ D。

$\{1,2,3,4\}$5.设 $U=R$,$A=\{x|2x1\}$,则 $B \cap (U-A)=$ ()A。

$\{x|x1\}$ C。

$\{x|0<x<1\}$ D。

$\{x|0\leq x\leq 1\}$6.已知集合 $A=\{-1,0,1\}$,$B=\{x|x(x-2)\leq 0\}$,则 $A \cap B=$ ()A。

$\{-1\}$ B。

$\{0,1\}$ C。

$\{0,1,2\}$ D。

$\{x|-1\leqx\leq 1\}$7.已知集合 $A=\{x|1\leq x\leq 5,x\in N\}$,$B=\{x|x<5,x\in N\}$,则 $A \cup B=$ ()A。

$\{2,3,4\}$ B。

$\{1,2,3,4,5\}$ C。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆B .M N ⊆C .M ND .M N ⋂=∅ 2.设集合{}230A x x x =->,则A =R ( )A .()0,3B .()(),03,-∞+∞C .[]0,3D .(][),03,-∞+∞ 3.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N4.已知集合{}{}2,,,,M y y x x x N y y x x y ==-∈==∈∈R R R ,则M N =( )A .∅B .{(0,0),(2,2)}C .}{0,2D .1[,)4-+∞ 5.已知集合{}220A x x x =+-<,{}1e ,R x B y y x -==∈,则A B =( ) A .()2,0- B .()2,1- C .()0,1 D .()1,+∞6.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合(){}2log 21M x y x ==-,103x N x x ⎧⎫+=≤⎨⎬-⎩⎭,则M N =( )A .1,2⎛⎫+∞ ⎪⎝⎭B .[)1,-+∞C .1,32⎛⎫ ⎪⎝⎭D .1,32⎛⎤ ⎥⎝⎦ 8.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3)B .[-1,3)C .[-2,3]D .[-1,3] 9.已知集合{}{01}A x x a B x x =<=<≤∣,∣,若A B =∅,则实数a 的取值范围是( )A .01a <≤B .0a >C .0a ≤D .0a ≤或1a ≥ 10.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2}11.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-12.已知集合{}ln 0A x x =>,{}221x B x -=<,则A B =( ) A .{}2x x <B .{}1x x <C .{}02x x <<D .{}12x x <<13.已知全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,则()U A B =( ) A .{}0B .{}2,4C .{}0,1,3,5D .{}0,1,2,414.已知集合{}21A x x =-<<,{}lg B x y x ==,则()R A B =( )A .(),1-∞B .[)1,+∞C .(]2,0-D .()0,115.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( ) A .∅ B .[)1,-+∞ C .[)1,5- D .()5,+∞二、填空题16.设集合A 为空间中两条异面直线所成角的取值范围,集合B 为空间中直线与平面所成角的取值范围,集合C 为二面角的平面角的取值范围,则集合A 、B 、C 的真包含关系是___________.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________;(2)点A 与平面α:___________;(3)直线AB 与平面α:___________;(4)直线CD 与平面α:___________.18.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.满足{}{},,a M a b c ⊆⊆的所有集合M 共有__________ 个.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______.22.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.23.若{}231,13a a ∈--,则=a ______.24.若{}0,1,2U =,{}220,M x x x x =-=∈R ,则M =______. 25.设集合{}|2A x x =>,{}|B x x a =≤,若A B =R ,则实数a 的取值范围是______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1.(1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.设集合{}2230A x x x =--<,集合{}22B x a x a =-<<+. (1)若2a =,求()R A B ⋃; (2)设命题:p x A ∈,命题:q x B ∈,若p 是q 成立的必要不充分条件,求实数a 的取值范围.28.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x =>(1)求()U A B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.29.已知集合{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,U =R .(1)当3a =时,求A B ,()U A B ⋃;(2)若A B =∅,求实数a 的取值范围.30.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.【参考答案】一、单选题1.A【解析】【分析】利用集合的基本关系求解【详解】 解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z , 当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆.故选:A .2.C【解析】【分析】利用集合的补集运算求解.【详解】 因为{}230A x x x =->, 所以{}[]2300,3R A x x x =-≤=. 故选:C3.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U MN ∴=- 故选:B.4.D【解析】【分析】根据二次函数、一次函数的性质求出其值域,然后由交集定义可得.【详解】 因为22111()244y x x x =-=--≥-,所以1{|}4M y y =≥- 易知N =R ,所以1{|}4My N y ≥=-,即1[,)4-+∞ 故选:D5.C【解析】【分析】化简集合,A B 即得解.【详解】 解: {}{}22021A x x x x x =+-<=-<<,{}{}1e ,R 0x B y y x y y -==∈=>,所以()0,1A B =.故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】根据对数型函数定义域解法求出集合M ,根据分式不等式解法求出集合N ,再根据集合交集概念即可求得结果.【详解】由题意知(){}21log 21,2M x y x ∞⎛⎫==-=+ ⎪⎝⎭,[)101,33x N x x ⎧⎫+=≤=-⎨⎬-⎩⎭, 所以1,32M N ⎛⎫⋂= ⎪⎝⎭. 故选:C .8.B【解析】【分析】先化简集合B ,再利用交集运算求解.【详解】解:因为集合{|1}A x x =≥-,41|28{|23}x B x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭, 所以{}|13A B x x ⋂=-≤<,故选:B9.C【解析】【分析】利用交集的定义即得.【详解】∵集合{}{01}A xx a B x x =<=<≤∣,∣, A B =∅, ∴0a ≤.故选:C.10.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B11.D【解析】【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.12.D【解析】【分析】解指数和对数不等式可求得集合,A B ,由交集定义可得结果.【详解】 {}{}ln 01A x x x x =>=>,{}{}{}221202x B x x x x x -=<=-<=<,{}12A B x x ∴⋂=<<. 故选:D.13.A【解析】【分析】根据集合的补集与交集的运算求解即可.【详解】解:因为全集{}0,1,2,3,4,5U =,集合{}1,3,5A =,{}0,1B =,所以{}0,2,4U A =,所以(){}{}{}0,2,40,10U A B ==.故选:A14.B【解析】【分析】求出定义域得到集合B ,从而求出补集和交集.【详解】 {}()212,1A x x =-<<=-,{}()00,B x x ∞=>=+,所以(][),21,R A =-∞-⋃+∞,所以()[)1,R A B ∞⋂=+. 故选:B. 15.B【解析】【分析】先解一元二次不等式,在根据并集定义计算.【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+, ∴[)1,A B =-+∞.故选:B.二、填空题16.A B C ##C B A【解析】【分析】根据空间中两条异面直线所成角的范围求出A ,根据空间中直线与平面所成角的取值范围求出B ,根据二面角的平面角的取值范围求出C ,根据A 、B 、C 角的范围即可判断它们的包含关系.【详解】集合A 为空间中两条异面直线所成角的取值范围,π(0,]2A ∴=, 集合B 为空间中直线与平面所成角的取值范围,π[0,]2B ∴=, 集合C 为直角坐标平面上直线的倾斜角的取值范围,[0,π]C ∴=,∴集合A 、B 、C 的真包含关系为:A B C .故答案为:A B C .17. C β∉ A α AB B α⋂= CD α⊂【解析】【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=.(4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂;18.28【解析】【分析】首先确定喜欢两项运动的人数,进而得到喜欢一项运动的人数.【详解】 6人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人;∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人;∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.19.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃20.4【解析】【分析】由题意列举出集合M ,可得集合的个数.【详解】由题意可得,{}M a =或{},M a b =或{},M a c =或{},,M a b c =,即集合M 共有4个 故答案为:421.0a ≤【解析】【分析】根据并集的运算结果列出不等式,即可得解.【详解】解:因为A B R =,所以0a ≤.故答案为:0a ≤.22.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.23.4-【解析】【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解.【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-.故答案为:4-.24.{}1【解析】【分析】解一元二次方程求出集合M ,进而根据补集的概念即可求出结果.【详解】 因为{}{}220,0,2M x x x x =-=∈=R ,且{}0,1,2U =, 则{}1M =,故答案为:{}1.25.[)2,+∞【解析】【分析】根据并集求解参数的范围即可.【详解】根据题意,{|2}R A x x =≤R A B ⋃=R A B ∴⊆2a ∴≥.故答案为[)2,+∞.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得; (2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2}, ∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1){1x x ≤-或}4x ≥(2)01a <≤【解析】【分析】(1)当2a =时,求出集合A 、B ,利用并集和补集的定义可求得集合()R A B ⋃; (2)根据已知条件可得出B A 且B ≠∅,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.(1) 解:{}{}223013A x x x x x =--<=-<<, 当2a =时,{}04B x x =<<,故{}14A B x x ⋃=-<<,因此,(){R 1A B x x ⋃=≤-或}4x ≥.(2)解:因为p 是q 成立的必要不充分条件,则B A 且B ≠∅, 所以,212223a a a a -≥-⎧⎪-<+⎨⎪+≤⎩,解得01a <≤, 当1a =时,{}13B x x =<< A ,合乎题意.因此,01a <≤.28.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1)因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞;(2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆;当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥,综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-.29.(1){11A B x x ⋂=-≤≤或}45x ≤≤,(){}15U A B x x ⋃=-≤≤(2)(),1-∞【解析】【分析】(1)将3a =代入集合A 中确定出A ,求出A 与B 的交集,求出B 的补集,求出A 与B 补集的并集即可;(2)由A 与B 以及两集合的交集为空集,对a 进行分类讨论,把分类结果求并集,即可求出结果.(1) 将3a =代入集合A 中的不等式得:{}15A x x =-≤≤,∵{|1B x x =≤或4}x ≥,∴{11A B x x ⋂=-≤≤或}45x ≤≤,{}14U B x x =<<,则(){}15U A B x x ⋃=-≤≤;(2)∵{}22A x a x a =-≤≤+,{|1B x x =≤或4}x ≥,当0a <时,A =∅;此时满足A B =∅,当0a =时,{}2A =,此时也满足A B =∅, 当0a >时,A ≠∅,若A B =∅,则2124a a ->⎧⎨+<⎩,解得:01a <<; 综上所述,实数a 的取值范围为(),1-∞30.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤(2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A 是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A是B的真子集,故21231 mm+≤-⎧⎨+≥⎩即3 22m-≤≤-所以实数m的取值范围是3 2,2⎡⎤--⎢⎥⎣⎦.。

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典

高一数学集合练习题及答案经典一、单选题1.设集合{|04}A x x =<<,{2,3,4,5,6}B =,则A B =( ) A .{2}B .{2,3}C .{3,4}D .{2,3,4}2.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,23.设集合104x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()RA B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x >4.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂ B .()UMNC .()U N M ⋂D .()()U U M N5.设全集U =R ,集合{}0,1,2A =,{}2B x x =≥,则()UA B =( )A .{}0,1,2B .{}0,1C .{}2D .{}2x x <6.已如集合{}2A x x =>,{}35B x x =-<<,则A B =( ) A .{}25x x << B .{}32x x -<<C .{}35x x -<<D .{}3x x <- 7.已知集合2{|4120}A x x x =+-<,{|13}B x x =<≤,则A B =( )A .()1,2-B .()1,2C .(]1,3-D .(]1,38.已知集合{|1}A x x =≥-,1{|28}4x B x =≤<,则A B =( ) A .[-2,3) B .[-1,3)C .[-2,3]D .[-1,3]9.设集合{}0,1S =,{}0,3T =,则S T ⋃=( )A .{}0B .{}1,3C .{}0,1,3D .{}0,1,0,310.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅11.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3B .[]3,3-C .(]1,3D .[]3,1-12.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,213.已知集合{}0A x x =≥,{}11,B x x x Z =-≤≤∈,则A B =( ) A .{}0,1 B .{}1,2 C .[]0,2 D .[]1,214.已知集合{|03}A x x =<<,集合2{|0log 1}B x x =<<,则A ∩B =( )A .{|13}x x <<B .{|12}x x <<C .{|23}x x <<D .{|02}x x <<15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.若{}31,3,a a ∈-,则实数a 的取值集合为______.18.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________. 19.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则A B =___________.20.已知T 是方程()22040xpx q p q ++=->的解集,1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,,则p q +=_____.21.已知(],0A =-∞,[),B a =+∞,且A B R =,则实数a 的取值范围为______. 22.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.23.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.24.设集合{}2,3,4U =,对其子集引进“势”的概念;①空集的“势”最小;②非空子集的元素越多,其“势”越大;③若两个子集的元素个数相同,则子集中最大的元素越大,子集的“势”就越大.最大的元素相同,则第二大的元素越大,子集的“势”就越大,以此类推.若将全部的子集按“势”从小到大顺序排列,则排在第6位的子集是_________.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E b ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,2P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.27.设全集U R =,已知集合{}1,2A =,{|03}B x x =≤≤,集合C 为不等式组10240x x +≥⎧⎨-≤⎩的解集.(1)写出集合A 的所有子集; (2)求UB 和BC ⋃.28.已知集合{}3A x x =≤,{}31B x a x a =-<<+. (1)当4a =时,求()A B R ; (2)若A B A =,求实数a 的取值范围.29.已知集合{}24120A x x x =--<,集合{}239B x m x m =-<<-.现有三个条件:条件①A B B =;条件②R ()B A ⊆;条件③A B B ⋃=.请从上述三个条件中任选一个,补充在下面横线上,并求解下列问题: (1)若4m =,求R ()B A ⋂; (2)若______,求m 的取值范围.注:如果选择多个条件分别解答,按第一个选择的解答计分.30.已知集合A ={x |2≤|x |≤m },B ={3|x x -26x +8x >0},C ={2|x x -2x -15=0}. (1)若A C =A ,求实数m 的最小值; (2)若A B =∅,求实数m 的取值范围.【参考答案】一、单选题 1.B 【解析】 【分析】根据交集的概念可得答案. 【详解】A B ={2,3}.故选:B 2.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 3.C 【解析】 【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集 【详解】由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<, 所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<, 所以{}1B y y =<, 所以{}4A B x x ⋃=<, 所以(){}R4A B x x ⋃=≥,故选:C 4.B 【解析】 【分析】化简集合N ,然后由集合的运算可得. 【详解】{}sin ,cos0}0,1 {N π==, {}2,1,2,U N ∴=-- {}()1U MN ∴=-故选:B.5.B 【解析】 【分析】根据补集、交集的定义计算可得; 【详解】解:因为{}2B x x =≥,所以{}U 2B x x =<,又{}0,1,2A =; 所以(){}0,1UA B =;故选:B6.A 【解析】 【分析】应用集合的交运算求A B . 【详解】{|2}{|35}{|25}A B x x x x x x ⋂=>⋂-<<=<<. 故选:A 7.B 【解析】 【分析】求出集合A 的解集,即可求出A B 的结果.因为{}()()2|4120{|620}{|62}A x x x x x x x x =+-<=+-<=-<<,{|13}B x x =<≤,所以{|12}A B x x =<<,故选:B. 8.B 【解析】 【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{|1}A x x =≥-,41|28{|23}xB x x x ⎧⎫=≤<=-≤<⎨⎬⎩⎭,所以{}|13A B x x ⋂=-≤<, 故选:B 9.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 10.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解. 【详解】由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D 11.A 【解析】 【分析】利用集合交集定义计算即可 【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A 12.A 【解析】 【分析】根据集合的交集概念即可计算.∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 13.A 【解析】 【分析】先化简集合B ,然后由交集运算可得答案. 【详解】由集合{}{}|111,0,1B x x x Z =-≤≤∈=-,, {}0A x x =≥ 所以{}0,1A B = 故选:A 14.B 【解析】 【分析】化简集合B ,再求集合A,B 的交集即可. 【详解】∵集合{|03}A x x =<<,集合2{|0lo {|}g 121}B x x x x =<<<<=, ∴A B ={|12}x x <<. 故选:B. 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误; 空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题 16.4a >【解析】 【分析】结合数轴图与集合包含关系,观察即可得到参数的范围. 【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.{}0,1,3【解析】 【分析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,318.(,3][6,)-∞-⋃+∞【解析】 【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可. 【详解】因为()22()4321f x x x x =-+=--, 所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-. 由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数, 所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+ 由题意知,BA所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥.当0m <时,()52g x mx m =+-在[]1,4上是减函数, 所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-, 由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-.综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞. 故答案为: (,3][6,)-∞-⋃+∞ 【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.19.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭20.26【解析】 【分析】由题知{}4,10T =,再结合韦达定理求解即可. 【详解】解:因为240p q ->,所以方程()22040x px q p q ++=->的解集有两个不相等的实数根,因为1379147{{1}}0A B ==,,,,,,,且T A T B T ⋂=∅⋂=,, 所以{}4,10T =所以由韦达定理得14p =-,40q = 所以26p q += 故答案为:2621.0a ≤【解析】 【分析】根据并集的运算结果列出不等式,即可得解. 【详解】解:因为A B R =, 所以0a ≤. 故答案为:0a ≤.22.3 【解析】 【分析】由集合定义,及交集补集定义即可求得. 【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()AAB .又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4AA B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3.23.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >.24.{}2,4【解析】 【分析】根据题意依次按“势”从小到大顺序排列,得到答案. 【详解】根据题意,将全部的子集按“势”从小到大顺序排列为:∅,{}2,{}3,{}4,{}2,3,{}2,4,{}3,4,{}2,3,4.故排在第6的子集为{}2,4. 故答案为:{}2,4 25.{}12x x -<<## ()1,2- 【解析】 【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可. 【详解】因为{}2A x x =<{|22}x x =-<<,101B xx ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω.(2)证明见解析(3)14【解析】【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1A B ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩; 当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾.所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =.(3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14},则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=. 当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457810111314{,,,,,,,,,}3333333333A B =. 集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数,因此,令123A A A A C =,123B B B B =,则A B =∅,且14P A B =.综上,所求n 的最大值为14.27.(1)∅,{1},{2},{1,2};(2)U B {|0x x =<或3}x >,{|13}B C x x ⋃=-≤≤.【解析】【分析】(1)直接写出集合A 的所有子集即可;(2)直接写出U B ,求得C ,再求B C ⋃即可. (1)因为{}1,2A =,故A 的所有子集为∅,{}{}{}1,2,1,2.(2)因为{}|12C x x =-≤≤,U B ={|0,x x <或3}x >,{|13}B C x x ⋃=-≤≤. 28.(1){}35x x <<(2)(6,)+∞【解析】【分析】(1)求出集合A ,进而求出A 的补集,根据集合的交集运算求得答案;(2)根据A B A =,可得A B ⊆,由此列出相应的不等式组,解得答案.(1){}{}333A x x x x =≤=-≤≤,则R {|3A x x =<-或3}x > ,当4a =时,{}15B x x =-<<,(){}R =35A B x x ∴⋂<< ;(2)若A B A =,则A B ⊆,3313a a -<-⎧∴⎨+>⎩, ∴实数a 的取值范围为6a >,即(6,)a ∈+∞ .29.(1){|67}x x ≤<;(2)选择条件,答案见解析.【解析】【分析】(1)解一元二次不等式化简集合A ,再求出其补集,再利用交集的定义计算作答.(2)选择条件①,③,利用交集、并集的结果转化为集合的包含关系,再讨论求解作答;选择条件②,利用集合的包含关系,讨论求解作答.(1)集合()(){}{}26026A x x x x x =+-<=-<<,R {|2A x x =≤-或6}x ≥,当4m =时,{}17B x x =<<,则()R {|67}A B x x ⋂=≤<.(2)选择条件①:A B B =,则B A ⊆,若B =∅,则239m m -≥-,解得23m -≤≤,若B ≠∅,则22393296m m m m ⎧-<-⎪-≥-⎨⎪-≤⎩,解得3m <≤综上得:2m -≤≤所以m的取值范围是2m -≤≤选择条件②:R ()B A ⊆,由(1)知,R {|2A x x =≤-或6}x ≥,若B =∅,则239m m -≥-,解得 23m -≤≤,若B ≠∅,则223992m m m ⎧-<-⎨-≤-⎩或23936m m m ⎧-<-⎨-≥⎩,解得2m ≤<-或9m ≥,综上得:3m ≤或9m ≥,所以m的取值范围是3m ≤或9m ≥.选择条件③:A B B ⋃=,则A B ⊆,于是得:22393296m m m m ⎧-<-⎪-≤-⎨⎪-≥⎩,解得m ≤ 所以m的取值范围是m ≤30.(1)5(2)(],4∞-【解析】【分析】(1)由并集结果得到{3,5}A -⊆,从而得到不等式组,求出m 的取值范围,得到m 的最小值;(2)由交集结果分A =∅与A ≠∅进行分类讨论,求出m 的取值范围.(1)由题有{3,5}C =-,若A C A ⋃=,则{3,5}A -⊆,则 可知2325m m ⎧≤-≤⎪⎨≤≤⎪⎩,解得:5m ≥,所以m 的最小值为5. (2)()()()(){|240}0,24,B x x x x =-->=⋃+∞,由A B =∅,则①当A =∅时,2m <;②当A ≠∅时,2m ≥,有{|22}A x m x x m =-≤≤-≤≤或,从而有24m ≤≤综上:数m 的取值范围是(],4∞-.。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( ) A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,32.已知集合{}{}0,11,A xx B x x x =≥=-≤≤∈Z ∣∣,则A B =( ) A .[]0,1B .{}1,2C .{}0,1D .[]1,23.设集合{}{lg 1},2A xx B x x =<=≤∣∣,则A B ⋃=( ) A .{02}xx <≤∣ B .{}2xx ≤∣ C .{10}x x <∣ D .R4.已知集合{}260A x R x x =∈+-<,集合1133x B x R -⎧⎫=∈≥⎨⎬⎩⎭,则A B =( )A .{}32x x -<<B .{}02x x <≤C .{}02x x ≤<D .{}3x x >-5.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .M B .NC .u MD .u N6.已知集合2,1,0,1,2U ,{}1,2A =,{}1,1B =-,则()U A B ⋂=( ) A .{}1B .{}2C .{}1,2D .{}1,1,2-7.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤8.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}9.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()UA B =( ) A .{}1B .{}3C .{}2,4D .{}1,2,4,510.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,211.设全集{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =,则下图中的阴影部分表示的集合为( )A .{}4B .{}5C .{}1,2D .{}3,512.已知集合[)2,4A =,[]3,5B =,则()R A B =( ) A .(]4,5B .[]4,5C .()[),23,-∞⋃+∞D .(][),23,-∞⋃+∞13.已知集合{}2log 1M x x =<,{}21N x x =≤,则M N ⋃=( )A .(],1-∞B .(),2-∞C .[)1,2-D .(]0,114.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}315.已知集合{}2280,Z A x x x x =--<∈,则A 的非空子集的个数为( )A .32B .31C .16D .15二、填空题16.从集合{}123,,,,n U a a a a =⋅⋅⋅的子集中选出4个不同的子集,需同时满足以下两个条件:①∅、U 都要选出;②对选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇.则选法有___________种.17.如图,设集合,A B 为全集U 的两个子集,则A B =____________.18.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.19.等差数列{}n a 中15141024a a a a ++=+,513a a =. 若集合{}*122nn n N a a a λ∈<+++∣中仅有2个元素,则实数λ的取值范围是______.20.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.21.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 22.满足{}1,2A ⊆的集合A 的个数是______________23.若非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P ,则M P =________.24.从集合M={}1,2,3,4,,2021中去掉所有3的倍数和5的倍数,则剩下的元素个数为______25.已知集合{}1,2,4,8A =,集合B ={x x 是6的正因数},则A B ⋃=__________.三、解答题26.设集合{|16}A x x =-≤≤,{|121}B x m x m =-≤≤+,且B A ⊆. (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.27.已知函数()()4log 5f x x =-+()g x x α=(α为常数),且()g x 的图象经过点(P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .28.已知集合{}22A x a x a =-≤≤,{}31B x x =-<<. (1)若2a =-,求()R A B ⋃; (2)若A B A =,求a 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣.(1)求A B ;(2)若A C C =,求实数m 的值取范围.30.用描述法写出下面这些区间的含义:[]2,7-;[),a b ;()123,+∞;(],9-∞-.【参考答案】一、单选题 1.B 【解析】 【分析】由交集运算求解即可. 【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣故选:B 2.C 【解析】 【分析】根据交集的定义和运算直接得出结果. 【详解】 由题意得,{1,0,1}B =-,又{}0A x x =≥,所以{0,1}A B =. 故选:C. 3.C 【解析】【分析】先化简集合A ,再求A B 【详解】lg 1lg lg10010x x x <⇔<⇔<<,即{}010|A x x =<<,所以{}|10A B x x =< 故选:C 4.C 【解析】 【分析】本题首先通过解不等式260x x +-<得出{}32A x x =-<<,然后通过解不等式1133x -≥得出{}0B x x =≥,最后通过交集的相关性质即可得出结果.【详解】260x x +-<,()()320x x +-<,32x -<<,{}32A x x =-<<,1133x -≥,11x -≥-,0x ≥,{}0B x x =≥, 则{}02A B x x ⋂=≤<, 故选:C. 5.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 6.B 【解析】 【分析】根据集合补集和交集的定义进行求解即可. 【详解】 因为2,1,0,1,2U ,{}1,1B =-,所以{}2,0,2UB =-,又因为{}1,2A =,所以()U A B ⋂={}2, 故选:B 7.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 8.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=. 故选:B. 9.D 【解析】 【分析】利用交集和补集的定义可求得结果. 【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5UA B ⋂=.故选:D. 10.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 11.D 【解析】 【分析】图中阴影部分表示()U A B ⋂,再根据交集和补集的定义即可得出答案. 【详解】解:图中阴影部分表示()U A B ⋂,因为{}1,2,3,4,5,6U =,集合{}1,2,4A =,{}3,4,5B =, 所以{}3,5,6UA =,所以(){}3,5U A B =. 故选:D. 12.B 【解析】 【分析】先求出集合A 的补集,再由交集运算可得答案. 【详解】集合[)2,4A =,[]3,5B =,则()()[),24,R A =-∞⋃+∞ 所以()[]4,5R A B ⋂=, 故选:B. 13.C 【解析】 【分析】求出集合M ,N ,然后进行并集的运算即可. 【详解】∵{}02M x x =<<,{}11N x x =-≤≤, ∴[1,2)M N ⋃=-. 故选:C . 14.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 15.B 【解析】 【分析】求出集合A ,利用集合的非空子集个数公式可求得结果. 【详解】{}{}{}2280,Z 24,Z 1,0,1,2,3A x x x x x x x =--<∈=-<<∈=-,即集合A 含有5个元素,则A 的非空子集有52131-=(个). 故选:B.二、填空题16.3323n n -⋅+【解析】 【分析】分析出当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;再进行求和即可. 【详解】因为∅、U 都要选出;故再选出两个不同的子集,即为M ,N , 因为选出的任意两个子集A 和B ,必有A B ⊆或A B ⊇,故各个子集所包含的元素个数必须依次增加,且元素个数多的子集包含元素个数少的子集,当一个子集只含有1个元素时,另外一个子集可以包含2,3,4()1n -个元素,所以共有()()111221111C C C C C 22n n n n n n n -----⨯+++=⨯-种选法; 当一个子集只含有2个元素时,另外一个子集可以包含3,4,()1n -个元素,所以共有()()221232222C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;当一个子集只含有3个元素时,另外一个子集包含4,5,()1n -个元素,所以共有()()331243333C C C C C 22n n n n n n n -----⨯+++=⨯-种选法;……当一个子集只含有m 个元素时,另外一个子集可以包含()1m +,()2m +,(),1n -个元素,所以共有()()121C C C C C 22n mm n m m n n m n m n m n ------⨯+++=⨯-种选法;……当一个子集有()2n -个元素时,另外一个子集包含()1n -个元素,所以共有()22C 22n n -⨯-种选法;当一个子集有()1n -个元素时,另外一个子集包含有n 个元素,即为U ,不合题意,舍去;故共有()()()()122122C 22C 22C 22C 22n n n mm n n n n n ----⨯-+⨯-++⨯-++⨯-()1122122C 2C 22C C C n n n n n n n n ---=⋅++⋅-+++()()122212223323nn n n n n n =+------=-⋅+. 故答案为:3323n n -⋅+ 【点睛】对于集合与排列组合相结合的题目,要能通过分析,求出通项公式,再结合排列或组合的常用公式进行化简求解.17.{}1,2,3,4,5【解析】【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可. 【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==, 所以{}1,2,3,4,5A B =. 故答案为:{}1,2,3,4,518.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z , ∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒19.924⎡⎫⎪⎢⎣⎭,【解析】 【分析】设等差数列{}n a 的公差为d ,由题设列出d 与1a 的方程组,解出d 与1a ,从而可得到212322n n n a a a n n ++⋯++=,令23()2n n n f n +=,得出()f n 的单调性,即可求出λ的取值范围. 【详解】解:设等差数列{}n a 的公差为d ,由题设可知:11111141392443a a d a d a d a d a ++++=++⎧⎨+=⎩,解得:14a =,2d =,212(1)4232n n n a a a n n n -+++=+⨯=+, ∴212322n n na a a n n++⋯++=,令23()2n n n f n +=,则22211(1)3(1)34(1)()222n n n n n n n n n f n f n +++++++-+-=-=-, 当2n <时,()()10f n f n +->, 当2n ≥时,()()10f n f n +-<,f ∴(1)f <(2)f >(3)f >(4)>,又f (1)2=,f (2)52=,f (3)94=,f (4)74=, 集合{}*12N |2n n n a a a λ∈<++⋯+中有2个元素,即集合*12N |2n n a a a n λ++⋯+⎧⎫∈<⎨⎬⎩⎭中有2个元素, [2λ∴∈,9)4.故答案为:924⎡⎫⎪⎢⎣⎭,.20.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-21.5【解析】【分析】直接求出集合A 、B ,再求出A B ,即可得到答案.【详解】因为集合{}{}352,1,0,1,2,3,4A x Zx =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =,所以A B 的元素个数为5.故答案为:5.22.4【解析】【分析】利用集合的子集个数公式求解即可.【详解】∵{}1,2A ⊆,∴集合A 是集合{}1,2的子集,∴集合A 的个数为22=4,故答案为:4.23.P【解析】【分析】推导出M N ⊆,N P ⊆,由此能求出MP P =. 【详解】 解:非空且互不相等的集合M ,N ,P 满足:M N M ⋂=,⋃=N P P , M N ∴⊆,N P ⊆,M P P ∴=.故答案为:P .24.1078【解析】【分析】剔除集合中是3的倍数,5的倍数的元素,即可得出结果.【详解】集合M 中,3的倍数有20216733⎡⎤=⎢⎥⎣⎦个,5的倍数有20214045⎡⎤=⎢⎥⎣⎦个,15的倍数有202113415⎡⎤=⎢⎥⎣⎦个, 则剩下的元素个数为2021(673404134)1078-+-=个.故答案为:1078.25.{1,2,3,4,6,8}【解析】【分析】先化简集合B ,再求两集合的并集.【详解】因为B ={x x 是6的正因数}{1,2,3,6}=,所以{1,2,3,4,6,8}A B =.故答案为:{1,2,3,4,6,8}.三、解答题26.(1){|2m m <-或502m ≤≤} (2)128【解析】【分析】(1)按照集合B 是空集和不是空集分类讨论求解;(2)确定集合A 中元素(个数),然后可得子集个数.(1)当121m m ->+即2m <-时,B =∅,符合题意; 当B ≠∅时,有12111216m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得502m ≤≤. 综上实数m 的取值范围是{|2m m <-或50}2m ≤≤;(2)当x ∈N 时,{0,1,2,3,4,5,6}A =,所以集合A 的子集个数为72128=个. 27.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R. 28.(1)()R A B ⋃{|2x x =≤-或1}x ≥ (2)()1,12,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)首先得到集合A ,再根据补集、并集的定义计算可得;(2)依题意可得A B ⊆,分A =∅与A ≠∅两种情况讨论,分别得到不等式,解得即可;(1)解:由题意当2a =-时得{}62A x x =-≤≤-,因为{}31B x x =-<<,所以{|3R B x x =≤-或1}x ≥,所以()R A B ⋃{|2x x =≤-或1}x ≥.(2)解:因为A B A =,所以A B ⊆,①当A =∅时,22a a ->,解得2a >,符合题意;.②当A ≠∅时,221223a a a a -≤⎧⎪<⎨⎪->-⎩,解得112a -<<. 故a 的取值范围为()1,12,2⎛⎫-+∞ ⎪⎝⎭.29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.{}27x x -≤≤;{}x a x b ≤<;{}123x x >;{}9x x ≤-.【解析】【分析】将区间转化为集合,用描述法写出答案.【详解】[]2,7-用描述法表示为:{}27x x -≤≤;[),a b 用描述法表示为:{}x a x b ≤<;()123,+∞用描述法表示为:{}123x x >;(],9-∞-用描述法表示为:{}9x x ≤-.。

高一数学集合测试题(含答案)

高一数学集合测试题(含答案)

高一数学集合测试题(含答案)一、单选题:1.设全集I={0, 1, 2, 3, 4}, 集合 A={0, 1, 2, 3},集合B={2,3,4}, 则 C(I-A)UC(I-B)= {0}2.方程组 {2x-3y=1,x-y=3 } 的解的集合是 {8,5}3.有下列四个命题:①ø是空集;②若a∈Z, 则-a∉N;③集合A= {x∈R|x∧2−2x+1=0}}是有两个元素;④集合B={x∈Q|x∈N}是有限集。

其中正确命题的个数是24.如果集合.A={x|ax∧2+2x+1=0}中只有一个元素,则a的值是15.已知M={y|x∧2−4≤y≤x≤2},P={x|−2≤x≤2},则M∩P={-2,-1,0,1,2}6.已知全集I=N, 集合A={x|x=2n, n∈N}, B={x|x=4n,n∈N},则I=AUB7.设集合M={x|x=kl/k2,k∈Z},N={x|x=k1/k2+1/2,k∈Z}, 则McN8.设集合A={x|1<x<2}, B={x|x<a}满足 A ⊂B, 则实数 a 的取值范围是(2,+∞)9.满足{1,2, 3}⊂M ⊂{1, 2, 3, 4, 5, 6}的集合M 的个数是810.如右图所示, Ⅰ为全集,M 、P 、 S 为Ⅰ的子集。

则阴影部分所表示的集合为(M∩P)US二、 填空题:12.已知 M={a,b}, N={b,c,d}, 若集合P 满足 P ⊆N, M∩P=∅, 则P={c,d}13.设全集 U={a,b,c,d,e},A={a,c,d}, B={b,d,e}, 则 C(A∩CB)={b,e}14.已知 Sx|x ∧2+2013\cdot (a +2)x +a ∧2−4|=|x −a −2||x +a +2|S,则$a=-2$。

15.已知集合SA =\{x|−1<x <3}S,SA\capB =\varmotℎingS, SA\cupB =mathbb {R }S,,求集合$B=\{x|x\leq-1\text{或 }x\geq 3\}$。

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典

高一数学集合练习题及答案-经典一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( ) A .{}0 B .{}2,2- C .2,0,2 D .2,0,1,22.已知集合{|A x y ==,{}0B x x =>,则A B ⋃=( ) A .{|3}x x ≤ B .{|1}x x ≥- C .{}|3x x > D .{}|0x x >3.已知集合{}213A x x =+>,{}220B x x x =--<,则A B =( ) A .{}1x x >-B .{}11x x -<<C .{}211x x x -<或D .{}12x x <<4.已知全集为R ,集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,11B x x ⎧⎫=≥⎨⎬⎩⎭,则A B ⋂=R( ) A .{}0x x ≤ B .{}01x x <≤ C .{}1x x > D .∅5.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,56.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( )A .∅B .{}1,2,3C .{}2D .{}3 8.设集合{}{}(,)|20(,)|35A x y x y B x y x y =-==+=,,则A B =( ) A .{1,2}B .{1,2}x yC .(1,2)D .{(1,2)}9.设集合{A x y =,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂10.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .P B .Q C .∅D .U 11.已知全集{}1,2,3,4,5U =,{}2,3,4A =,{}3,5B =,则()U A B =( ) A .{}1 B .{}3 C .{}2,4 D .{}1,2,4,512.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1- 13.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--14.设集合{}220A x x x =-≤,{}1,2,3B =,{}2,3,4C =,则()A B C =( )A .{}2B .{}2,3C .{}1,2,3,4D .{}0,1,2,3,415.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞二、填空题16.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.17.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.18.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.19.已知集合{}2430A x x x =-+=,{}30B x mx =-=,且B A ⊆,则实数m 的取值集合为___________.20.若{}31,2a ∈,则实数=a ____________.21.若集合{}{}230,0,1,2,3A xx x B =-==∣,则满足A M B ⊆⊆的集合M 的个数是___________.22.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______. 23.若集合234|0A x x x ,{}|10B x ax =-=,且“x B ∈”是“x A ∈”的充分非必要条件,则实数a 组成的集合是______.24.若a 、b 、R x ∈且a 、0b ≠,集合b a B x x a b ⎧⎫⎪⎪==+⎨⎬⎪⎪⎩⎭,则用列举法可表示为______. 25.若集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则集合M 、N 之间的关系是______.三、解答题26.已知集合{}{}24121A x x B x m x m =-≤≤=-+≤≤-,.(1)若2m =,求R ,()A B A B ⋃⋂;(2)若A B A ⋃=,求m 的取值范围.27.对非空数集X ,Y ,定义X 与Y 的和集{},X Y x y x X y Y +=+∈∈.对任意有限集A ,记A 为集合A 中元素的个数.(1)若集合{}0,5,10X =,{}2,1,0,1,2Y =--,写出集合X X +与X Y +;(2)若集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且2X X X +<,求证:数列1x ,2x ,,n x 是等差数列;(3)设集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且()1,2,,i x i n ∈=Z ,集合{}B k Z m k m =∈-≤≤(2m ≥,N m ∈),求证:存在集合A 满足11n x x A B -≤+且X A B ⊆+.28.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.29.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-.(1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题1.C【解析】【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性.【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±,当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意.当1x =时,{}1,4,1M =,不满足集合的互异性.当2x =时,{}1,4,2M =,1,4N,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N,若N M ⊆,满足题意.故选:C.2.B【解析】【分析】由分式不等式求得集合A ,再根据并集的原则求解即可.【详解】 对于集合A ,满足1033x x x +⎧≥⎪-⎨⎪≠⎩,即()()3103x x x ⎧-+≤⎨≠⎩, 解得13x -≤<,即{}13A x x =-≤<, 又{}0B x x =>,所以{}1A B x x ⋃=≥-,故选:B3.D【解析】【分析】分别求出集合AB 、根据集合的交集运算可得答案. 【详解】{}{}2131=+>=>A x x x x ,{}{}22012=--<=-<<B x x x x x , ∴{}12A B x x ⋂=<<.故选:D .4.C【解析】【分析】根据题意解得集合{}|0A x x =>,{}|01B x x =<≤,由集合补集运算得到(](),01,B =-∞⋃+∞R ,再由集合交集运算得到最后结果.【详解】 集合115x A x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,解得{}|0A x x =>, 11B x x ⎧⎫=≥⎨⎬⎩⎭,()101110010x x x x x x x ⎧-≥-≥⇔≥⇔⇒<≤⎨≠⎩{}|01B x x ∴=<≤,(](),01,B =-∞⋃+∞R由集合交集运算得到:A B ⋂=R {}1x x >. 故选:C.5.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.C【解析】【分析】由交集的定义直接求解即可【详解】因为{}1,2M =,{}2,3N =所以{}2MN =,故选:C8.D【解析】【分析】联立方程求解即可.【详解】集合A 表示在直线2x -y =0上所有的点,集合B 表示3x +y =5上所有的点,所以联立方程2035x y x y -=⎧⎨+=⎩ ,解得x =1,y =2, ()1,2A B ⋂= ,即A 与B 的交集是点(1,2);故选:D.9.C【解析】【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解.【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集, 所以A C ⋂=∅,B C =∅,{}|2=<A x x R ,{}|2⋂=<B A x x R ,A B C =∅,故选:C10.B【解析】【分析】依题意可得U P Q ⊆,即可得到U Q P ⊆,从而即可判断; 【详解】解:因为U ()P Q P =∩,所以U P Q ⊆,所以U Q P ⊆,所以U ()P Q Q =∩; 故选:B11.D【解析】【分析】利用交集和补集的定义可求得结果.【详解】由已知可得{}3A B ⋂=,所以,(){}1,2,4,5U A B ⋂=.故选:D.12.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A13.B【解析】【分析】由交集定义可直接得到结果.【详解】由交集定义可知:{}1,0,1-.故选:B.14.C【解析】【分析】先求出集合A ,再按照交集并集的运算计算()A B C 即可.【详解】{}{}22002A x x x x x =-≤=≤≤,{}(){}1,2,1,2,3,4A B A B C ==. 故选:C.15.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围.【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭, 当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C二、填空题16.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,6 17.()3,0-【解析】【分析】 先求出{}3A x x =>-,进而求出交集.【详解】{}3A x x =>-,()3,0A B =-故答案为:()3,0-18.[1,1]-【解析】【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合,所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1x y a =+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<,综上,实数a 的取值范围是[1,1]-,故答案为:[1,1]-19.{}0,1,3【解析】【分析】讨论0m =和0m ≠两种情况,根据包含关系得出实数m 的取值集合.【详解】{}{}24301,3A x x x =-+==∣当0m =时,B =∅,满足B A ⊆; 当0m ≠时,3B m ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以31m =或33m =,解得3m =或1m = 即实数m 的取值集合为{}0,1,3.故答案为:{}0,1,320.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 21.4【解析】【分析】求出集合A ,由A M B ⊆⊆即可求出集合M 的个数.【详解】因为集合{}{}2300,3A xx x =-==∣,{}0,1,2,3B =, 因为A M B ⊆⊆,故M 有元素0,3,且可能有元素1或2,所以{}0,3M =或{}0,1,3M =或{}0,2,3M =或{}0,1,2,3M =故满足A M B ⊆⊆的集合M 的个数为4,故答案为:4.22.{1,0,1,2}-【解析】【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答.【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-,所以{1,0,1,2}A B =-.故答案为:{1,0,1,2}-23.10,1,4⎧⎫-⎨⎬⎩⎭【解析】【分析】解出集合A ,根据题意,集合B 为集合A 的真子集,进而求得答案.【详解】由题意,{}1,4A =-,因为“x B ∈”是“x A ∈”的充分非必要条件,所以集合B 为集合A 的真子集,若a =0,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,所以111a a =-⇒=-或1144a a =⇒=. 故答案为:10,1,4⎧⎫-⎨⎬⎩⎭. 24.2,0,2【解析】【分析】分别讨论,a b 正负即可求出.【详解】当0,0a b <<时,112b a x a b =+=--=-, 当0,0a b <>时,110b a x a b =+=-+=, 当0,0a b ><时,110b a x a b =+=-=, 当0,0a b >>时,112b a x a b =+=+=,所以用列举法可表示为2,0,2. 故答案为:2,0,2..M N【解析】【分析】从两个集合的元素特征入手整理化简,再判定两集合的包含关系进行求解.【详解】 因为121,Z ,Z 244k k M x x k x x k ⎧⎫⎧⎫+==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 1+2,Z =,Z 424k k N x x k x x k ⎧⎫⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭, 若x M ∈,则21(21)244k k x +-+==, 因为Z k ∈,所以21Z k -∈,所以x ∈N ,所以M N ⊆,又因为0N ∈,0M ∉,所以M N .故答案为:M N .三、解答题26.(1){}|24A B x x =-≤≤,{R ()|21A B x x ⋂=-≤<-或}34x <≤ (2)52⎛⎤-∞ ⎥⎝⎦, 【解析】【分析】(1)根据交集、并集和补集的定义即可得解;(2)A B A ⋃=,即B A ⊆,分B =∅和B ≠∅两种情况讨论,从而可得出答案.(1)解:若2m =,则{}13B x x =-≤≤, 所以{}24A B x x ⋃=-≤≤,{R 1B x x =<-或}3x >,所以{R ()|21A B x x ⋂=-≤<-或}34x <≤;(2)解:因为A B A ⋃=,所以B A ⊆,当B =∅时,则211m m -<-+,解得23m <,此时B A ⊆,符合题意,当B ≠∅时,则12112214m m m m -+≤-⎧⎪-+≥-⎨⎪-≤⎩,解得2532m ≤≤, 综上所述52m ≤, 所以若A B A ⋃=,m 的取值范围为52⎛⎤-∞ ⎥⎝⎦,. 27.(1){}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)详见解析;(3)详见解析.【解析】【分析】(1)利用和集的定义即得;(2)由题可得21X X n +=-,进而可得X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++,结合条件可得112210n n n n x x x x x x ----=-==->,即证; (3)设{}i a ()()1121,N*i a x m i m i =++-+∈,令集合{}121,,,q A a a a +=,{}Z B k m k m =∈-≤≤,进而可得11n x x A B -≤+,{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇,即得.(1) ∵集合{}0,5,10X =,{}2,1,0,1,2Y =--,∴{}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)∵111213123n n n n n x x x x x x x x x x x x x x +<+<+<<+<+<+<<+, ∴集合X X +中至少包含21n -个元素, 所以21X X n +≥-,又X n =, 由题可知2X X n +<,又X X +为整数, ∴21X X n +≤-, ∴21X X n +=-,∴X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++, 又1121222123,,,,,,,,n n n n n x x x x x x x x x x x x x x -+++++++是X X +中的21n -个元素,且1121222123n n n n n x x x x x x x x x x x x x x -+<+<+<<+<+<+<<+, ∴()1212,3,,j j x x x x j n -+=+=,即()1212,3,,j j x x x x j n --=-=, ∴112210n n n n x x x x x x ----=-==->,∴数列1x ,2x ,,n x 是等差数列;(3) ∵集合{}Z B k m k m =∈-≤≤, ∴21B m =+,设()121n x x m q r -=++,其中,N,02q r r m ∈≤≤, 设{}i a 是首项为1x m +,公差为21m +的等差数列,即()()1121,N*i a x m i m i =++-+∈, 令集合{}121,,,q A a a a +=, 则111111121n n n x x r x x r x x A q m B B -----=+=+=+≤++, ∴(){}1111,1,2,,212A B x x x x m q m +=+++++, 即(){}11Z 212A B t x t x m q m +=∈≤≤+++,∵()()1121212n x x m q r x m q m =+++≤+++, ∴{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇, 所以X A B ⊆+,故存在集合A 满足11n x x A B-≤+且X A B ⊆+. 【点睛】数学中的新定义题目解题策略:(1)仔细阅读,理解新定义的内涵;(2)根据新定义,对对应知识进行再迁移. 28.(,3]-∞【解析】【分析】 求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦, 因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B = 所以(3,5]A B =因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤ 综上可得:实数a 的取值范围是(,3]-∞29.B ={0,7,3,1}.【解析】【分析】解方程2427a a ++=即得解.【详解】解:由题得2427a a ++=, 解得1a =或5a =-.因为0a >,所以1a =.当1a =时, B ={0,7,3,1}.故集合B ={0,7,3,1}.30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解; (2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-, 又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆; 当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。

完整版)高一数学集合试题及答案

完整版)高一数学集合试题及答案

完整版)高一数学集合试题及答案1.已知集合M={-1,1,-2,2},N={y|y=x,x∈M},则M∩N是{1,-1}。

2.设全集U=R,集合A={x|x^2≠1},则C U A={-1,1}。

3.已知集合U={x|x>0},C U A={x|0<x<2},那么集合A={x|x≤0或x≥2}。

4.设全集I={0,-1,-2,-3,-4},集合M={0,-1,-2},N={0,-3,-4},则(I-M)∩N={-3,-4}。

5.已知集合M={x∈N|4-x∈N},则集合M中元素个数是3.6.已知集合A={-1,1},则如下关系式正确的是AA∈,AB∈,AC{}∈,AD∅。

7.集合A={-2<x<2},B={-1≤x<3},那么A∪B={-2<x<3}。

8.已知集合A={x|x^2-1=0},则下列式子表示正确的有①1∈A,②{-1}∈A,③∅⊆A,④{1,-1}⊆A。

9.已知U={1,2,a^2+2a-3},A={|a-2|,2},C U A={0},则a的值为-3或1.10.若集合A={6,7,8},则满足A∪B=A的集合B的个数是7.11.已知集合M={x≤-1},N={x>a},若MN≠∅,则有a<-1.12.已知全集U={0,1,2,4,6,8,10},A={2,4,6},B={1},则(C U A)∪B={0,1,8,10}。

13.设U={三角形},A={锐角三角形},则C U A={直角三角形,钝角三角形}。

14.已知A={0,2,4},C U A={-1,1},C U B={-1,2},则B={1,2}。

15.已知全集U={2,4,a^2-a+1},A={a+1,2},C U A={7},则a=3.16.集合{}是空集。

1.集合B= {-1,0,2}2.已知全集U=R,集合A={x|1≤2x+1<9},则C UA={x|x<1或x≥5}3.实数a的取值范围为a≥419.因为AB=A,所以5∈B,即5²+5m+n=0,代入A={3,5}得到两个方程:9+15m+n=0,25+25m+n=0,解得m=-2,n=-39或m=-2,n=-23.因此,m=-2,n=-39或m=-2,n=-23.20.A={1,2},因此,B的两个根都必须是1或2,即(m-1)²-2(m-1)+m-2=0,解得m=2或m=4.因此,实数m的取值范围为m=2或m=4.21.A∩B={x|a-1<x<1},因此,若AB=∅,则A与B的交集为空集,即a-1≥1或2a+1≤-1,解得a≤0或a≤-1.因此,实数a的取值范围为a≤-1.22.A={a。

高一数学集合练习题及答案-百度文库

高一数学集合练习题及答案-百度文库

高一数学集合练习题及答案-百度文库一、单选题1.设集合104x A x x ⎧⎫+=≤⎨⎬-⎩⎭,{}1e ,R x B y y x ==-∈,R 为实数集,则()R A B ⋃=( )A .{1x x <-或}1x ≥B .{1x x ≤-或}1x >C .{}4x x ≥D .{}4x x >2.集合{}06A x Z x =∈<<,集合{}ln 1B x x =>,求A B ( )A .{}6x e x <<B .{}1,2,3e e e +++C .{}3,4,5D .{}2,3,4,53.若全集为R ,集合{2x A x =≤∣,{ln(2)0}B x x =-<∣,则()A B =R ( ) A .3,2⎛⎤-∞ ⎥⎝⎦ B .30,2⎛⎤ ⎥⎝⎦ C .3,22⎛⎫ ⎪⎝⎭ D .()2,+∞4.已知集合A 是集合B 的真子集,下列关于非空集合A 、B 的四个命题:①若任取x A ∈,则x B ∈是必然事件.②若任取x A ∉,则x B ∈是不可能事件. ③若任取x B ∈,则x A ∈是随机事件.④若任取x B ∉,则x A ∉是必然事件. 其中正确的命题有( ).A .0个;B .1个;C .2个;D .3个. 5.已知集合{}1,2M =,{}2,3N =,那么M N ⋂等于( ) A .∅B .{}1,2,3C .{}2D .{}36.已知集合112A x x ⎧⎫=≥⎨⎬-⎩⎭,{B y y =,则A B =( ) A .∅ B .(]2,3 C .[]2,3 D .(]2,4 7.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-8.已知集合,P Q 均为R 的子集,且()R Q P R ⋃=,则( )A .P Q R ⋂=B .P Q ⊆C .Q P ⊆D .P Q R =9.设集合{}{}13,33A xx B x x =≤≤=-≤≤∣∣,则A B =( ) A .[]1,3 B .[]3,3- C .(]1,3 D .[]3,1- 10.已知集合{}1,2,3,4,5U =,{}1,2A =,{}2,3,4B =,则集合()U AB =( ) A .{}1B .{}2C .{}1,2,5D .{}1,2,3,4 11.已知集合{1,2,3,4,5}A =,{|3}B x x =<,则A B =( )A .{1,2}B .{1,2,3}C .{4,5}D .{3,4,5}12.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<13.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1 B .{}01,C .{}123,,D .{}0123,,, 14.已知不等式231x x m->+的解集为M ,若1M ∈,则实数m 的取值范围为( ) A .(),3-∞- B .(),1-∞- C .()3,-+∞ D .()3,1-- 15.①{}00∈,②{}0∅⊆,③{}(){}0,10,1=,④(){}(){}(),,a b b a a b =≠,其中正确的个数为( )A .1B .2C .3D .4二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.18.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______. 21.已知函数()94sin 3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.22.已知集合{}{}2560,A x x x B x x x =--<==-,则A B =__________. 23.给出下列关系:①1R 2;Q ;③3N ∈;④0Z ∈.其中正确的序号是______.24.设{}|11A x x =-<<,{}|0B x x a =->若A B ⊆,则a 的取值范围是_____. 25.若集合{}|21A x x =-<≤,{}|13B x x =<≤,{}|2C x x =>,则()A B C =______.三、解答题26.已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2x g x k =-.(1)求实数m 的值;(2)当(]1,2x ∈时,记(),()f x g x 的值域分别为集合,A B ,若A B A ⋃=,求实数k 的取值范围.27.已知集合{}211A x m x m =-<<+,{}24B x x =<. (1)当2m =时,求,A B A B ⋃⋂;(2)若“x A ∈”是“x B ∈”成立的充分不必要条件,求实数m 的取值范围.28.请从下面三个条件中任选一个,补充在下面的横线上,并解答. ①A B B =;②A B A ⋃=;③()A B =∅R ;若集合A ={x |2x -2x -3>0},B ={x |a -1<x <2a +3}设全集为R .(1)若a =-1,求()A B ⋂R ;(2)若 ,求实数a 的取值范围.注:如果选择多个条作分别解答,则按第一个解答计29.已知集合{}A x x =是平行四边形,{}B x x =是矩形,{}C x x =是正方形,{}D x x =是菱形,求集合A ,B ,C ,D 之间的关系.30.设{}24,21,A a a =--,{}5,1,9B a a =--,已知{}9A B ⋂=,求a 的值.【参考答案】一、单选题1.C【解析】【分析】先求出集合A ,B ,再求两集合的并集,然后再求其补集【详解】 由104x x +≤-,得(1)(4)040x x x +-≤⎧⎨-≠⎩,解得14x -≤<, 所以{}14A x x =-≤<,因为当R x ∈时,e 0x >,所以1e 1x -<, 所以{}1B y y =<, 所以{}4A B x x ⋃=<,所以(){}R 4A B x x ⋃=≥,故选:C2.C【解析】【分析】先化简出结合,A B ,然后再求交集.【详解】由{}1,2,3,4,5A =,ln 1x > 则x e >,所以集合(),B e =+∞所以{}3,4,5A B =故选:C3.C【解析】【分析】先求出集合A ,B ,再根据补集交集的定义即可求出.【详解】 因为32A x x ⎧⎫=≤⎨⎬⎩⎭∣,{}12B x x =<<,所以()322R A B x x ⎧⎫⋂=<<⎨⎬⎩⎭∣. 故选:C .4.D【解析】【分析】由随机事件、不可能事件、必然事件的定义逐一判断即可得出答案.【详解】因集合A 是集合B 的真子集,故A 中的任意一个元素都是B 中的元素,而B 中至少有一个元素不在A 中,因此①正确,②错误,③正确,④正确.故选:D .5.C【解析】【分析】由交集的定义直接求解即可【详解】因为{}1,2M =,{}2,3N =所以{}2MN =,故选:C6.B【解析】【分析】首先解分式不等式求出集合A ,再求出集合B ,最后根据交集的定义计算可得;【详解】 解:由112x ≥-,即1102x -≥-,即1202x x -+≥-, 等价于()()23020x x x ⎧--≤⎨-≠⎩,解得23x <≤,即{}11232A x x x x ⎧⎫=≥=<≤⎨⎬-⎩⎭,因为20x ≥,所以21616x -≤,所以04≤,所以{{}04B y y y y ==≤≤,所以{}|23A B x x ⋂=<≤. 故选:B.7.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C8.C【解析】【分析】利用韦恩图,结合集合的交集、并集和补集的运算,即可求解.如图所示,集合,P Q 均为R 的子集,且满足()R Q P R ⋃=,所以Q P ⊆.故选:C.9.A【解析】【分析】利用集合交集定义计算即可【详解】[1,3],[3,3],[1,3]A B A B ==-⋂=故选 :A10.A【解析】【分析】求出U B ,计算求解即可.【详解】根据题意得,{}1,5U B =,所以(){}1U AB =.故选:A.11.A【解析】【分析】根据集合的交集运算,即可求得答案.【详解】集合{1,2,3,4,5}A =,{|3}B x x =<,则{1,2}A B =,故选:A12.B【解析】【分析】根据集合的并集计算即可.【详解】 {}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,13.D【解析】【分析】先求出集合B ,再由并集运算得出答案.【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃=故选:D14.D【解析】【分析】利用1M ∈可构造关于m 的不等式,解不等式可得结果.【详解】1M ∈,21311m-∴>+,即301m m +<+,解得:3<1m -<-, 即实数m 的取值范围为()3,1--.故选:D.15.B【解析】【分析】根据元素与集合的关系、集合与集合的关系即可判断.【详解】{}00∈正确;{}0∅⊆正确;{}(){}0,10,1=不正确,左边是数集,右边是点集;(){}(){}(),,a b b a a b =≠不正确,左边是点集,右边是点集,但点不相同.故正确的有①②,共2个.故选:B.二、填空题16.4a >【解析】【分析】结合数轴图与集合包含关系,观察即可得到参数的范围.【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.[1-,6)【解析】【分析】直接利用并集运算得答案.【详解】[2A =,6),[1B =-,4),[2A B ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6).18.{}1,3【解析】【分析】由交集定义直接得到结果.【详解】由交集定义知:{}1,3A B =.故答案为:{}1,319.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20. 2a =-或23a =或0 30k -<≤ 【解析】【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】 已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-= 当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭, 因为B A ⊆,故得到21a =-或23a = 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立, 当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<<综上结果为:30k -<≤.故答案为:2a =-或23a =或0;30k -<≤ 21.35,88⎡⎤⎢⎥⎣⎦ 【解析】【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围.【详解】因为()()294sin 32311644x x x f x π-⋅+-+==,又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦. 因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤. 故答案为:35,88⎡⎤⎢⎥⎣⎦ 22.{}|10x x -<≤【解析】【分析】求出集合A ,B ,依据交集的定义求出A B .【详解】集合{}2560{|16}A x x x x x =--<=-<<,{}{}|0B x x x x x ==-=≤,{}|10A B x x ∴=-<≤.故答案为:{}|10x x -<≤.23.①③④【解析】【分析】根据数的分类直接判断. 【详解】由题可得1R 2,2Q ∉,3N ∈,0Z ∈,故①③④正确. 故答案为:①③④.24.(],1-∞-【解析】【分析】由数轴法可得到A B ⊆,则只要1a ≤-即可.【详解】根据题意作图:由图可知,A B ⊆,则只要1a ≤-即可,即a 的取值范围是(],1-∞-. 故答案为:(],1-∞-.25.{}|23x x <≤【解析】【分析】先求得A B ,然后求得()A B C .【详解】{}23A B x x =|-<≤,()A B C ={}|23x x <≤.故答案为:{}|23x x <≤三、解答题26.(1)0m =(2)[]0,1【解析】【分析】(1)由幂函数定义列出方程,求出m 的值,检验函数单调性,舍去不合题意的m 的值;(2)在第一问的基础上,由函数单调性得到集合,A B ,由并集结果得到B A ⊆,从而得到不等式组,求出k 的取值范围.(1)依题意得:2(1)1m -=,∴0m =或2m =.当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去.当0m =时,2()f x x =在(0,)+∞上单调递增,符合要求,故0m =.(2)由(1)可知2()f x x =,当(]1,2x ∈时,函数()f x 和()g x 均单调递增.∴集合(](]1,4,2,4A B k k ==--,.又∵A B A ⋃=,∴B A ⊆,∴2144k k -≥⎧⎨-≤⎩, ∴01k ≤≤,∴实数k 的取值范围是[]0,1.27.(1){}{}25,12A B x x A B x x ⋃=-<<⋂=<<, (2){}11m m -<≤【解析】【分析】(1)根据交集和并集的定义即可求出;(2)由x A ∈是x B ∈成立的充分不必要条件,可得A B ,进而得出实数m 的取值范围.(1)(1)当m =2时,{}15A x x =<<,{}22b x x =-<< , ∴{}{}25,12A B x x A B x x ⋃=-<<⋂=<<;(2)由x A ∈是x B ∈成立的充分不必要条件,得A B ,当A =∅时,即211m m -≥+时,此时m 无解,∴A ≠∅,∴212,12m m -≥-⎧⎨+≤⎩解得11m -≤≤, 当1m =-时,()2,2A B ==-,不成立.故实数m 的取值范围为{}11m m -<≤.28.(1){}|11x x -≤<(2){4a a ≥或2}a ≤-【解析】【分析】(1)由集合的交集和补集运算求解即可;(2)①②③均等价于B A ⊆,讨论B =∅,B ≠∅两种情况,结合集合的包含关系得出实数a 的取值范围.(1){3A x x =>∣或1}x <-当1a =-时,{21}B x x =-<<∣,{13}A x x =-≤≤R ∣所以(){11}A B x x ⋂=-≤<R ∣ (2)①②③均等价于B A ⊆当B =∅时,123a a -≥+,解得4a ≤-;当B ≠∅时,有12313a a a -<+⎧⎨-≥⎩或123231a a a -<+⎧⎨+≤-⎩ 解得4a ≥或42a -<≤-综上,实数a 的取值范围{4a a ≥或2}a ≤-.29.答案见解析【解析】【分析】直接利用四边形的关系,判断即可.【详解】解:因为矩形、正方形、菱形都是特殊的平行四边形,所以B A ,C A ,D A ; 又正方形是特殊的矩形、特殊的菱形,所以C B ,C D ;30.-3【解析】【分析】根据{}9A B ⋂=,分219a -=和29a =,讨论求解.【详解】解:因为{}24,21,A a a =--,{}5,1,9B a a =--,且{}9A B ⋂=,所以当219a -=时,解得5a =,此时{}{}4,9,25,0,4,9A B =-=-,不符合题意; 当29a =时,解得3a =或3a =-,若3a =,则{}{}4,52,9,9,,2B A =--=-,不成立;若3a =-,则{}{}4,7,9,8,4,9A B =--=-,成立;所以a 的值为-3.。

高一数学集合练习题一及答案3篇

高一数学集合练习题一及答案3篇

高一数学集合练习题一及答案第一篇:集合初步概念及运算1. 下列说法中正确的是:()A.空集是任何集合的子集B.空集是任何集合的真子集C.单集是有限集D.全集的子集个数是1答案:A2. 若集合A={1,2,4},B={1,2,3},C={2,3},则A∩B∪C的结果为()A. {1,3}B. {1,2}C. {2,3,4}D. {1,2,3,4}答案:D3. 若A∪B={-2,-1,0,3,4},则A∩B的结果为()A. {-2,-1}B. {0,3,4}C. {-2,-1,0,3,4}D. 无法确定答案:D4. 已知A={x|0≤x<5},B={x|x²-4x+3<0},则A∪B 的结果为()A. {1,2,3,4,5}B. {x|x²-4x+3≥0}C. [3,5)D. [1,5)答案:A5. 下列说法中正确的是:()A. A={0,1,2},|A|=2B. A={0,x,2},x为实数,|A|=2C. A={0,1,2},P(A)的元素个数是3D. A={0},P(A)的元素个数是2答案:D6. 下列说法中正确的是:()A. A∩B=∅,则A=BB. A∩B=A,则A包含于BC. A∪B=B,则A包含于BD. 若A=B,则A∩B=A答案:B7. 下列说法中正确的是:()A. A×B的元素个数是|A||B|B. A×∅=∅C. |P(A)|=2^|A|D. A∩B=A∪B答案:C8. 下列说法中正确的是:()A. 不交集的交集是空集B. 空集和任何集合的并集是空集C. 任何集合和全集的交集是原集合D. 全集和空集的交集是全集9. 集合A、B的笛卡尔积为{(x,y)|x∈A,y∈B},则A×B 的结果为()A. {AB}B. A+BC. {(x,y)|x∈A,y∈B}D. AB答案:C10. 下列说法中正确的是:()A. A⊂B,B⊂C,则A⊂CB. A⊂B,B∩C=∅,则A⊂CC. A∩B=A,A⊂C,则B⊂CD. A∩B=A,A⊂C,则B包含于C答案:D第二篇:复合函数与反函数1. 函数f(x)=x²,g(x)=3-x,则复合函数(f∘g)(x)的结果为()A. x²-3x+9B. 3x²-x+9C. 9-6x+x²D. x²-6x+9答案:D2. 已知函数f(x)=x³,则函数f的反函数为()A. f⁻¹(x)=x³B. f⁻¹(x)=∛xC. f⁻¹(x)=x²D. f⁻¹(x)=x³/33. 函数y=2x-1,它的反函数为()A. y=2x+1B. y=(x+1)/2C. y=(x-1)/2D. y=2(x+1)答案:C4. 函数f(x)=log₃(x+2),则它的反函数为()A. f⁻¹(x)=3ⁿ-2B. f⁻¹(x)=log₃(x)-2C. f⁻¹(x)=3ⁿ+2D. f⁻¹(x)=log₃(x+2)-2答案:B5. 已知函数f(x)=2x+1,g(x)是f(x)的反函数,则g(-2)的值为()A. -1/2B. -3/2C. 0D. 3答案:B6. 设函数f(x)=x³,g(x)是函数f(x)在[0,+∞)上的反函数,则g(8)的值为()A. 0B. 2C. 3D. 4答案:B7. 函数f(x)=(x-1)/(x+2),则f(f(x))的分母为()A. x²B. (x-1)²C. (x+2)²D. (x²+1)答案:C8. 函数f(x)=log₃x,则它的反函数f⁻¹(x)为()A. f⁻¹(x)=3ⁿB. f⁻¹(x)=3/xC. f⁻¹(x)=3log(x)D. f⁻¹(x)=log₃(x)答案:D9. 函数f(x)=log₃x,g(x)=x-2,则(f∘g)(x)的结果为()A. log₃(x-2)B. log₃(x-2)/3C. log₃x-2D. log₃(x+2)答案:C10. 已知函数f(x)=3x²-4,函数g(x)为f(x)的反函数,则g(5)的值为()A. 1B. 2C. 3D. 4答案:C第三篇:不等式和函数的性质1. 若a>b,则a²≤3a+b+2的条件是()A. b≤a-2B. b≥a-2C. b≤-a-2D. b≥-a-2答案:B2. 若x>0,x+1/x≥2,则x的取值范围为()A. [0,1)B. [1,∞)C. (0,1)D. (1,∞)答案:B3. 已知函数f(x)的值域为[1,2],则方程f(x)=1/2的解集为()A. {1}B. (0,1)C. ∅D. (1,2)答案:C4. 已知函数f(x)=3x-1,g(x)=2x-3,则fg(x)和gf(x)的符号相反,x的取值范围是()A. (-∞,1)B. (1,∞)C. [1,3/5]D. (3/5,1)答案:A5. 若函数f(x)在区间[a,b]上单调递减,则f(x)在区间[a,b]上的最大值出现在()A. x=aB. x=bC. x=(a+b)/2D. x未知答案:A6. 若函数f(x)=3x+c的解析式是f(x)的导函数,则常数c为()A. -2B. -1C. 0D. 1答案:B7. 函数f(x)=x/(5-x),则函数f(x)在[0,5)上的值域是()A. (-∞,1/5)B. (-∞,-1/5)C. (1/5,∞)D. (-∞,∞)答案:C8. 若函数f(x)的值域为[1,2),则函数g(x)为f(x)的反函数的值域为()A. [1,2)B. (-∞,2)C. (1,∞)D. ∅答案:B9. 函数f(x)=2x(1-x)的最大值为()A. 1B. 1/4C. 1/2D. 1/8答案:B10. 若函数f(x)满足f(x)+f(1-x)=x,则f(1/2)的值为()A. 1/2B. 1/4C. -1/4D. -1/2答案:B。

完整版)高一数学集合练习题及答案-经典

完整版)高一数学集合练习题及答案-经典

完整版)高一数学集合练习题及答案-经典升腾教育高一数学满分150分姓名一、选择题(每题4分,共40分)1、下列四组对象,能构成集合的是()A某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数答案:D解析:只有倒数等于它自身的实数可以构成集合。

2、集合{a,b,c }的真子集共有个()A。

7.B。

8.C。

9.D。

10答案:D解析:真子集不包含原集合,所以共有2^3-1=7个真子集。

3、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是()A。

6.B。

7.C。

8.D。

9答案:A解析:集合A中的元素可以是1,2,也可以是1,2,3,或者1,2,3,4,或者1,2,3,4,5,共有6种情况。

4、若U={1,2,3,4},M={1,2},N={2,3},则CUM∪N)=()A。

{1,2,3}。

B。

{2}。

C。

{1,3,4}。

D。

{4}答案:A解析:M∪N={1,2,3},所以CUM∪N)={1,2,3}∪{4}={1,2,3,4}。

5、方程组x y1的解集是(。

)A。

{x=0,y=1}。

B。

{0,1}。

C。

{(0,1)}。

D。

{(x,y)|x=0或y=1}答案:C解析:将方程组化简得到y=x+1,所以解集为{(x,y)|y=x+1}={(x,x+1)}。

6、以下六个关系式:3Q,N。

a,b b,ax|x220,x Z是空集中,错误的个数是()A。

4.B。

3.C。

2.D。

1答案:B解析:第一个关系式中,应该是∈而不是;第二个关系式中,应该是∉而不是。

第三个关系式中,应该是={a,b}而不是;第四个关系式中,应该是x∈Z而不是x Z,所以错误的个数为3个。

8、设集合A=x1x2,B=xx a,若A B,则a的取值范围是()Aaa2Baa1Caa1Daa 2答案:D解析:由题意可得x1<a<x2,即1<a<2,所以a的取值范围是a<2.9、满足条件M11,2,3的集合M的个数是()A。

高一集合的试题及答案

高一集合的试题及答案

高一集合的试题及答案一、选择题1. 已知集合A={x|x=2n, n∈Z},B={x|x=2n+1, n∈Z},则A∩B=()A. {x|x=2n, n∈Z}B. {x|x=2n+1, n∈Z}C. {x|x=n, n∈Z}D. ∅答案:D2. 已知集合A={x|x^2-3x+2=0},B={x|x^2-4x+3=0},则A∪B=()A. {1, 2}B. {1, 2, 3}C. {1, 3}D. {2, 3}答案:A3. 已知集合A={x|x=2n, n∈Z},B={x|x=2n+1, n∈Z},则A∩B=()A. {x|x=2n, n∈Z}B. {x|x=2n+1, n∈Z}C. {x|x=n, n∈Z}D. ∅答案:D4. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∩B=()A. {1, 2}B. {2, 3}C. {1, 3}D. {2}答案:D5. 已知集合A={x|x^2-4x+4=0},B={x|x^2-5x+6=0},则A∪B=()A. {1, 2, 3}B. {2, 3}C. {1, 2}D. {2}答案:B二、填空题1. 已知集合A={x|x=2n, n∈Z},B={x|x=2n+1, n∈Z},则A∪B=______。

答案:{x|x∈Z}2. 已知集合A={x|x^2-3x+2=0},B={x|x^2-4x+3=0},则A∩B=______。

答案:{1}3. 已知集合A={x|x=2n, n∈Z},B={x|x=2n+1, n∈Z},则A∩B=______。

答案:∅4. 已知集合A={x|x^2-5x+6=0},B={x|x^2-3x+2=0},则A∪B=______。

答案:{1, 2, 3}5. 已知集合A={x|x^2-4x+4=0},B={x|x^2-5x+6=0},则A∩B=______。

答案:{2}三、解答题1. 已知集合A={x|x^2-3x+2=0},B={x|x^2-4x+3=0},求A∪B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每题4分,共40分)
1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数
2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10
3、若{1,2}⊆A ⊆{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9
4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4}
5、方程组 1
1x y x y +=-=- 的解集是 ( )
A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0⊇∅,Q ∉3.0, N ∈0, {}{},,a b b a ⊂ ,
{}2
|20,x x
x Z -=∈是空集中,错误的个数是 ( )
A 4
B 3
C 2
D 1
8、设集合A=}
{
12x x <<,B=}
{
x x a <,若A ⊆B ,则a 的取值范围是 ( ) A }
{
2a a ≥ B }
{
1a a ≤ C }
{
1a a ≥ D }
{
2a a ≤
9、 满足条件M U }{1=}{
1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4
二、填空题
11、若}4,3,2,2{-=A ,},|{2
A t t x x
B ∈==,用列举法表示B 12、集合A={x| x 2
+x-6=0}, B={x| ax+1=0}, 若B ⊂A ,则a=__________
13、设全集U={
}
2
2,3,23a a +-,A={}2,b ,C U A={}
5,则a = ,b = 。

14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ⋂=____________. 三、解答题
17、已知集合A={x| x 2
+2x-8=0}, B={x| x 2
-5x+6=0}, C={x| x 2
-mx+m 2
-19=0}, 若B ∩C ≠Φ,A∩C=Φ,求m 的值
18、已知二次函数f (x )=2
x ax b ++,A=}{
}{
()222x f x x ==,试求 f ()x 的解析式
19、已知集合{}1,1A =-,B=}
{
2
20x x ax b -+=,若B ≠∅,且A B A ⋃= 求实数
a ,
b 的值。

20、设,x y R ∈,集合{}
23,A x xy y =++,{}
21,3B x xy x =++-,且A=B ,求实数x ,y 的值
答 案 一、选择题(每题4分,共40分)
二、填空题(每题3分,共18分)
11、 {}4,9,16 12、 11
,
,032
- 13、 a=2或-4;b=3 14、 {}|34x x x <->或 15 、 1
4
m >
16、 25 三、解答题(每题10分,共40分)
17、解:由题意得{}{}4,2,2,3A B =-=根据B ∩C ≠Φ,A∩C=Φ,得3C ∈,则:
293190m m -+-=,解得m 1=5,m 2= —2经检验m 2= —2
18、由}{
}{
()222x f x x ==得方程2
2x ax b x ++=有两个等根22
根据韦达定理
1212244484
x x a x x b +=-=== 解得
42484
a b =-= 所以f (x )=x 2
-42x+484
19解:由A B A ⋃=,B ≠∅得{}{}{}111,1B =--或或
当{}1B =时,方程2
20x ax b -+=有两个等根1,由韦达定理解得
11
a b ==
当B ={}1-时,方程2
20x ax b -+=有两个等根—1,由韦达定理解得
11a b =-=
当{}1,1B =-时,方程2
20x ax b -+=有两个根—1、1,由韦达定理解得
1
a b ==-
20、由A=B 得
22
1,33
x xy y x xy x ++=++-=解得
32x y ==- 或
1
6
x y =-=-小学二
(2)班班规
一、 安全方面
1、 每天课间不能追逐打闹。

2、 中午和下午放学要结伴回家。

3、 公路上走路要沿右边走,过马路要注意交通安全。

4、 不能在上学路上玩耍、逗留。

二、学习方面
1、每天到校后,不允许在走廊玩耍打闹,要进教室读书。

2、每节课铃声一响,要快速坐好,安静地等老师来上课。

3、课堂上不做小动作,不与同桌说悄悄话, 认真思考,积极回答问题。

4、养成学前预习、学后复习的好习惯。

每天按时完成作业,保证字迹工整,卷面整洁。

5、考试时做到认真审题,不交头接耳,不抄袭,独立完成答卷。

三、升旗排队和两操方面
1、升旗时,要快速出教室排好队,做到快、静、齐,安静整齐地排队走出课室门,班长负责监督。

2、上午第二节后,快速坐好,按要求做好眼保健操。

3、下午预备铃声一响,在座位上做眼保健操。

四、卫生方面
1、每组值日生早晨7:35到校做值日。

2、要求各负其责,打扫要迅速彻底,打扫完毕劳动工具要摆放整齐。

3、卫生监督员(剑锋,锶妍,炜薪)要按时到岗,除负责自己的值日工作外,还要做好记录。

五、一日常规
1、每天学生到齐后,班长要检查红领巾。

2、劳动委员组织检查卫生。

3、每天负责领读的学生要督促学生学习。

4、上课前需唱一首歌,由文娱委员负责。

5、做好两操。

6、放学后,先做作业,然后帮助家长至少做一件家务事。

7、如果有人违反班规,要到老师处说明原因。

班训:
坐如钟站如松快如风静无声
班规:
课堂听讲坐如钟,精神集中认真听;排队升旗站如松,做操到位展雄风;做事迅速快如风,样样事情记得清;自习课上静无声,踏实学习不放松;个人努力进步快,团结向上集体荣;我为领巾添光彩,标兵集体记我功。

扣分标准
9 课间操、眼保健操不认
-1
真做
10 升旗时违反纪律-2
-1
11 来学校不进教室,在走
廊聊天打闹
12 体育课打闹说话、排队
-2
不整齐
注:每人基本分60分起,学期末核算总分,作为学期评先依据。

相关文档
最新文档