发电机励磁系统原理(三)

合集下载

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。

励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。

一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。

由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。

二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。

励磁电源提供直流电源,用于激励发电机的磁场。

而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。

三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。

一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。

4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。

在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。

一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。

手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。

五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。

稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。

六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。

它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。

总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。

通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。

良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。

3同步发电机励磁PSS原理-无删减范文

3同步发电机励磁PSS原理-无删减范文

3同步发电机励磁PSS原理3同步发电机励磁PSS原理介绍在电力系统中,发电机是电能转换的重要设备。

为了确保系统稳定运行,需要对发电机进行励磁控制,以维持其电压稳定性。

励磁系统旨在保持发电机的电压,并改善其动态响应特性。

在励磁控制中,PSS(Power System Stabilizer)扮演着重要的角色,它通过对发电机的励磁信号进行调节,以抵消功率系统中潜在的不稳定振荡。

励磁系统概述发电机励磁系统的主要任务是为发电机提供适当的励磁电流,以确保其在运行过程中维持所需的电压水平和功率因数。

励磁系统通常由励磁变压器、稳压器、调速器和其他控制元件组成。

励磁系统的性能是确保发电机维持稳定运行、抵抗系统扰动的关键因素。

励磁PSS系统励磁PSS系统是励磁系统的一部分,用于抑制调节器和励磁系统的潜在不稳定振荡。

它通过引入一个额外的负反馈回路,通过调整励磁信号来抑制系统的振荡。

三同步发电机励磁原理三同步发电机励磁原理是一种广泛应用于电力系统中的发电机励磁控制策略。

它利用了三个同步机的励磁调节器之间的相互作用,以提高系统的稳定性。

原理概述三同步发电机励磁原理的基本思想是,在三个同步发电机励磁系统中引入相互影响,通过调整励磁系统的信号来实现系统的稳定性。

这种原理基于三机之间的频率扫描特性和互相受到的相互作用。

励磁系统互联在三同步发电机励磁原理中,三个发电机的励磁系统通过相互连接的方式进行协调。

这种互联通常通过互相传递信号来实现,以实现系统的稳定性和抗扰动能力。

励磁PSS的设计三同步发电机励磁PSS设计是根据系统需求和发电机特性进行的。

设计中需要考虑发电机的励磁系统参数、传递函数以及系统的稳定性需求。

典型的励磁PSS设计包括选择合适的控制策略、调整PSS参数以及实施系统的测试和评估。

总结三同步发电机励磁PSS原理是一种有效的电力系统稳定控制策略。

它通过利用三个同步发电机励磁系统之间的相互作用,实现对系统不稳定振荡的抑制。

发电厂励磁系统原理

发电厂励磁系统原理

发电机励磁系统的基本配置
发电机电压静差率 指在自动电压调节器投入,调差单元退出,电压给定值不变,发电机在额
定功率因数下,负载从额定视在功率值减少到零时,发电机机端电压的 变化率。
式中:UGO——视在功率值为零时的发电机机端 电压 UGN——额定视在功率值时的发电机机端电压
发电机励磁系统的作用2

步,自动恢复到起始运行状态的能力。

• 判据:发电机输出电磁功率对功角的微分dPe/dδ是否大于0 。


• 由于采用自动励磁调节,可使发

电机运行于δ大于90°的区域

(人工稳定区),静态稳也就是提高了电力系统

静态稳定能力。
静稳定破坏举例:
某电厂#2机(额定有功200MW)通过220kV送电。因励磁调节器自动 通道有问题,发电机处于手动调节励磁的状态下运行。发电机于 130MW状态下已稳定运行很长时间,发电机励磁电流(转子电流) 约为1000A。当电厂运行人员根据调度要求把发电机有功出力增加到 170MW后,发电机与系统失去同步,发电机失步保护动作后,由于 种种原因,造成机组超速,汽轮机严重损坏而报废。事故调查得知 ,运行人员在增加发电机的有功时(直到失步)没有同时增加发电 机的励磁电流,事故后的仿真研究证明,(1)发电机为1000A时的 静稳定极限就是170MW,(2)如果发电机是在自动励磁调节的状态 下运行,其静稳定极限大于200MW,(3)即使发电机处于手动调节 励磁的状态下运行,如果在增加有功出力的同时,运行人员能适当 增加发电机的励磁,也可以避免发电机与系统失步的事故发生。
发电机励磁系统的作用2
调差的设置: ➢ 发变组单元高压侧并联:
变压器电抗调差(正调差)+ 发电机调 差(负调差)

励磁系统基本原理

励磁系统基本原理

电力系统稳定器(PSS)可以增加电力系统正阻尼,用于抑制电力系统低频振荡 。
ΔTs
ΔTD
ΔTE
Pe/ΔPe、Δδ
Δω
Pm、ΔPa
ΔTD′
ΔTE′
发电机电气功率Pe/ΔPe、机械功率Pm、加速功率ΔPa、同步转矩ΔTs、阻尼转矩ΔTD、电磁转矩ΔTE、转子角Δδ、转子角速度Δω的正方向相位关系如下图所示:
自动方式AVR控制的整体模型描述
励磁系统的组成:
自动电压调节器AVR、ECR/FCR(励磁调节器)
励磁电源(励磁机、励磁变压器)
整流器(AC/DC变换,SCR、二极管)
灭磁与转子过电压保护
按励磁电源分类:
直流励磁机励磁系统
交流励磁机励磁系统
无刷励磁系统
自并励励磁系统
按响应速度分类:
慢速励磁系统
快速励磁系统
高起始励磁系统
二、励磁系统的几种主要类型
功角稳定比喻
碗中放置一个球,且受到外部的一个小外力,它就偏离原来的位置。如果这个碗的高度很矮,像一个盘子,该球就有可能从碗中掉下来。此时,我们就说这个系统静稳不足。提高碗的高度最经济的办法就是采用自动电压调节器。 当碗中的球受到一个大的外力,怎样保证该球不飞出,最主要措施就是快速的继电保护。继保的作用就相当于减少这个外部力量的作用时间,继保越快,外力的作用时间就越短,这个球就不会一下子掉下来。自动电压调节器此时作用相当于自动改变这个碗的坡度,当这个球上升时增加坡度,当这个球下降时就减少这个坡度,使这个球在碗中滚动幅度迅速减小。 如果这个碗和球之间的摩擦很小,这个球受到扰动后在碗中来回滚动时间就很长,特别是,如果这个扰动的外力不断的来回施加,就比如我们不断的荡秋千,这个球就永远不停的来回滚动甚至掉下来,我们就说这个系统的动态稳定性差。这里的摩擦阻力相当于电力系统的阻尼,这个来回不断施加的外部力量就相当于自动电压调节器产生的负阻尼。一般来说,自动电压调节器在电力系统的动态稳定中起坏作用,产生负阻尼,使整个系统阻尼减少。当我们在自动电压调节器中增添PSS装置,PSS就把自动电压调节器原来所产生的负阻尼变为正阻尼,相当于增加碗和球的摩擦系数,使球的滚动幅度快速减小,于是这个系统的动态稳定性就满足要求。

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理及运行1.(发电机励磁系统图:)励磁系统构成及优缺点:励磁电源由励磁变引自发电机机端,通过可控硅整流元件直接控制发电机的励磁,这种励磁方式即为自并励可控硅整流励磁,其特点如下:(1)因采用可控硅整流器和无需考虑同轴励磁机时间常数的影响,故可获得较高的电压响应速度。

(2) 励磁变压器接到发电机端不受厂用电压的影响,但需起励电源。

(3)缺点:其一整流输出的直流顶值电压受发电机或电力系统短路故障形式和故障点远近的影响,缺乏足够的强励能力。

其二由于自并励可控硅整流励磁系统的发电机短路电流衰减较快,对发电机带延时的后备保护可靠动作不利。

为此,过流保护可采用电流启动记忆,由复合电压或低电压闭锁的延时保护。

2. 发电机励磁装置:(1) 励磁装置组成:并联励磁变、可控整流装置、励磁调节器、灭磁及转子过电压保护、起励回路。

(2) 并联励磁变压器:型号:SCLLB-1800KVA / 容量:1800kVA一次电压15.75KV 二次电压:0.6kv接线Y/△ -11••••• 自并励励磁系统的励磁变压器不设自动开关,只设有隔离刀闸。

励磁变装设过流保护,该保护动作引跳出口油开关及灭磁开关。

励磁变接在主变底压侧,不受系统及厂用电影响。

•(3) 可控硅整流回路:(整流回路原理图:)以单相半波整流电路为例说明可控硅整流电路的工作原理。

要使可控硅导通,必须在可控硅的阳极及控制极同时加正向电压,并且使流过可控硅的阳极电流大于它的维持电流。

当阳极加反响电压,或流过可控硅阳极的电流小于维持电流时,可控硅截止。

从可控硅承受正向电压开始,到可控硅导通为止,这一段区间为控制角。

改变控制角的大小,可调整可控硅输出电压的大小。

可控硅整流电路可输出连续可调的直流电压。

主整流器采用三相全控桥,2个功率柜并列运行。

整流元件采用晶闸管整流,•每个功率柜额定功率输出2000A。

整流柜为强迫风冷式。

风机设有主、备用电源,互为备用(•主、备用电源:均用机旁I II段电源)。

图解发电机励磁原理共4文档

图解发电机励磁原理共4文档
自动励磁调节器
可根据发电机负载的变化自动调节励磁电流,保持发电机输出电 压的稳定。
直流发电机励磁特点分析
励磁方式多样
直流发电机可采用他励、并励、 串励和复励等多种励磁方式,可
根据实际需求选择。
磁场可控性强
通过调节励磁电流的大小和方向, 可以灵活控制发电机的磁场强度 和方向。
输出特性稳定
在负载变化时,通过自动调节励 磁电流可以保持发电机输出电压 和电流的稳定。
作用
励磁系统的主要作用是维持发电机端电压在给定水平,同时控制并列运行各发 电机间无功功率的合理分配,以满足电力系统正常运行和发电机安全运行的要 求。
励磁系统组成部分
励磁功率单元
向同步发电机转子提供直流励磁电流,主要包括交流励磁机、整流器 等部分。
励磁调节器
根据发电机端电压、无功功率等信号,自动调节励磁功率单元输出的 励磁电流,以维持发电机端电压稳定并控制无功功率分配。
经验总结
总结故障排除过程中的经验教训,完 善维护流程,提高设备维护水平。
THANKS
感谢您的观看
对比法
将故障设备与正常设备进行对比, 分析差异,找出故障原因。
03
02
测量法
使用万用表、示波器等工具测量电 路参数,判断故障点。
替换法
用正常元件替换疑似故障元件,观 察设备是否恢复正常。
04
预防性维护策略制定
定期检查
制定详细的检查计划,对发电机励磁系统进行定期检查。
清洁保养
保持设备清洁,定期清理灰尘和杂物,确保散热良好。
紧固接线
检查所有接线端子是否松动,及时紧固。
预防性试验
定期进行预防性试验,检测设备的绝缘性能、电气性能等。
故障排除后性能恢复验证

发电机的励磁方法及工作原理

发电机的励磁方法及工作原理

.发电机的励磁方法及工作原理同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。

根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。

一、发电机获得励磁电流的几种方式1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。

这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。

缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用。

2、交流励磁机供电的励磁方式代大容量发电机有的采用交流励磁机提供励磁电流。

交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。

交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。

为了提高励磁调节速度,交流励磁机通常采用100——200HZ的中频发电机,而交流副励磁机则采用400——500HZ的中频发电机。

这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点。

缺点是噪音较大,交流电势的谐波分量也较大。

3、无励磁机的励磁方式:在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。

自励式静止励磁可分为自并励和自复励两种方式。

自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点。

2024版图解发电机励磁原理

2024版图解发电机励磁原理

高可靠性设计
提高发电机励磁系统的可靠性是未 来的重要发展方向,通过采用冗余 设计、故障预测与健康管理等技术
手段降低系统故障率。
绿色环保
随着环保意识的提高,未来发电机 励磁系统将更加注重绿色环保,采 用低能耗、低污染的材料和技术,
降低系统对环境的影响。
对未来学习和工作的建议
深入学习专业知识
继续深入学习电力电子、控制理 论等相关专业知识,为从事发电 机励磁相关领域的工作打下坚实
案例分析:某大型水电站励磁调节器设计
• 设计背景:某大型水电站采用水轮发电机组,装机容量大、运行工况复杂,对励磁调节器性能要求高。 • 设计目标:设计一款高性能、高可靠性的励磁调节器,满足水电站运行要求。 • 设计方案:采用基于DSP的数字式励磁调节器设计方案,实现快速、精确的电压调节和功率分配功能;同时采
基础。
关注前沿技术动态
关注发电机励磁技术的最新发展 动态,了解新技术、新方法的应 用情况,不断提升自己的专业素 养。
加强实践动手能力
通过参与实验、项目等方式加强 实践动手能力,培养解决实际问 题的能力。
拓展跨学科知识
学习与发电机励磁相关的跨学科 知识,如电力系统分析、电机学 等,提升综合分析和解决问题的
如失磁、励磁不稳、励磁过流等故障,通过 案例分析学习相应的处理方法和预防措施。
发电机励磁技术发展趋势预测
数字化与智能化
随着电力电子技术和控制理论的发 展,未来发电机励磁系统将更加数 字化和智能化,实现更精确的控制 和优化。
多功能集成化
为满足不同应用场景的需求,发电 机励磁系统将向多功能集成化方向 发展,如集成无功补偿、谐波治理 等功能。
提高发电机并列运行的稳定性。
功能

发电机励磁系统工作原理

发电机励磁系统工作原理

发电机励磁系统工作原理
发电机励磁系统的工作原理如下:
1. 励磁电源:发电机励磁系统通常由励磁电源提供直流电能。

励磁电源可以是直流电源、电池或者其他的电源装置。

2. 励磁线圈:发电机中有一个称为励磁线圈的线圈,它通常由铜导线绕成,固定在发电机的定子上。

励磁线圈连接到励磁电源。

3. 励磁电流:当励磁电源接通时,电流将开始流经励磁线圈。

这会在发电机中产生一个磁场。

4. 磁场:励磁线圈产生的磁场通过铁芯传导到转子和定子之间的空间。

转子是发电机中旋转的部分,定子是固定的部分。

5. 感应电压:当发电机的转子旋转时,磁场也随之旋转。

由于电磁感应的原理,转子中的导线将产生感应电压。

这个感应电压会驱动绕在定子上的线圈产生电流。

6. 电流输出:通过定子上的线圈产生的电流输出到外部负载上,为外部负载提供电能供应。

总结起来,发电机励磁系统的工作原理就是通过励磁电源提供直流电能,产生磁场,使得转子中的线圈通过电磁感应产生电流,从而输出电能供应外部负载。

电力系统自动装置原理三同步发电机励磁自动控制系统PPT课件

电力系统自动装置原理三同步发电机励磁自动控制系统PPT课件

ub
uc
O t1
t
ud2
ⅠⅡ Ⅲ Ⅳ Ⅴ Ⅵ
ud
uab uac ubc uba uca ucb uab uac
O
t
id
O
t
ia
O
t
电路带阻感负载a =30时的波形
电力系统 自动装置原理
*自动调节励磁装置
1.硬件构成 变送器;同步电压检测电路;输入、输出通道电路;主机
电力系统 自动装置原理
*自动调节励磁装置
2.软件功能 @多种励磁限制。 @电压互感器断线检测及保护。 @手动/自动运行方式的相互跟踪。 @独立的后备通道,自动跟踪工作通道, 切换无波动。 @励磁系统(包括调节器)出现失磁、失 控故障或软件连续几次出轨而自复归无 效时,自动切换到备用通道工作。 @软件具有自诊断、自恢复功能。
id
a
负 b c载
ud
VT4 VT6 VT2 d2
UAV =1.35Up-pcosα =2.34 UPcosα
三相全控桥式整流电路在 0°<α﹤90°时,处于整流工作 状态,改变α角,可以调节发电 机励磁电流; 在90°<α< 180° 时,电路处于逆变工作状态,可 以实现对发电机的自动灭磁。
ud1 = 30°ua
电力系统 自动装置原理
二、对励磁系统的要求
维持电压水平和无功的合理分配 控制能力和调节范围 快速反应能力 结构简单,易于维护 足够的阻尼能力
高度的可靠性 快速性
电力系统 自动装置原理
自动调节励磁系统的基本构成
Ie.G. GLE
励磁功率
G
单元
~
自动调节励磁 装置AER
TA
.
UG

3同步发电机励磁PSS原理

3同步发电机励磁PSS原理

3同步发电机励磁PSS原理3同步发电机励磁PSS原理1.概述1.1 目的本文档旨在介绍同步发电机励磁PSS(Power System Stabilizer)原理及其应用。

1.2 背景同步发电机励磁是电力系统中保持电压稳定和动态性能的关键环节。

PSS是一种控制装置,通过调节发电机励磁系统,以提高发电机在电力系统中的稳定性和动态响应。

本文将详细介绍同步发电机励磁PSS的原理和应用。

2.同步发电机励磁系统概述2.1 励磁系统组成同步发电机励磁系统由励磁机组、调速器和励磁控制设备组成。

2.2 励磁系统功能励磁系统的主要功能是提供适当的发电机励磁电流,以维持发电机电压稳定并保证系统功率平衡。

3.PSS基本原理3.1 PSS的概念PSS是一种专门设计用于改善发电机振荡稳定性的控制系统。

其通过在发电机励磁系统中添加一个反馈环路来提供反馈控制,以抑制发电机振荡。

3.2 PSS工作原理PSS通过检测系统频率振荡和发电机转子振荡,调整发电机励磁系统的电流来实现功率和振荡的稳定性控制。

4.PSS的设计和实施4.1 PSS设计步骤4.1.1 系统分析和模型4.1.2 发电机振荡模式识别4.1.3 PSS参数选择和调试4.1.4 PSS性能评估和验证4.1.5 PSS实施和集成4.2 PSS调试和测试方法4.2.1 离线测试4.2.2 在线测试4.2.3 模拟测试5.PSS实际应用5.1 PSS在发电机振荡控制中的应用5.2 PSS在系统稳定性增强中的应用5.3 PSS在频率稳定性改善中的应用5.4 PSS在调度和调度控制中的应用附件:________1.频率振荡分析报告2.励磁控制系统设计方案3.PSS调试计划法律名词及注释:________1.励磁机组:________指发电机的励磁设备,包括励磁机和励磁控制装置。

2.调速器:________用于控制发电机的输出功率,以保持发电机与电网的频率同步。

3.励磁控制设备:________控制发电机励磁系统的装置,包括励磁机组、励磁调节器等。

励磁系统原理

励磁系统原理

发电机励磁系统原理一.励磁系统1.励磁系统基本原理同步发电机励磁电源一般采用直流电,励磁系统的作用主要就是供给发电机转子绕组的直流电源。

同步发电机励磁系统一般由励磁功率单元和励磁调节器两部分组成。

励磁功率单元包括整流装置及其交流电源,它向发电机的励磁绕组提供直流励磁功率;励磁调节器,感受发电机电压及运行工况的变化,自动地调节励磁功率单元输出励磁电流的大小,以满足系统运行要求。

整个励磁自动控制系统是由励磁调节器、励磁功率单元和发电机构成的一个反馈控制系统。

励磁系统大致可分为直流励磁机励磁系统和交流励磁机励磁系统以及自并励励磁(静止半导体励磁)系统。

2.励磁系统的任务1). 正常运行条件下,供给发电机励磁电流。

2). 根据发电机所带负荷的情况调整励磁电流,维持发电机机端电压。

3). 使并列运行的各同步发电机所带的无功功率得到稳定而合理的分配。

4). 增加并网运行发电机的阻尼转矩,以提高电力系统动态稳定性及输电线路的有功传输能力。

5). 电力系统发生短路故障造成发电机机端电压严重下降时,强行励磁,将励磁电压迅速提升到足够的顶值,以提高系统的暂态稳定性。

6). 发电机突然解列、甩负荷时,强行减磁,将励磁电流迅速降到安全值,以防止发电机电压过高。

7). 发电机内部发生短路故障时,快速灭磁,将励磁电流迅速减到零值,经减小故障损坏程度。

8). 不同的运行工况下,根据要求对发电机实行过励限制和欠励限制,以保证发电机机组的安全稳定运行。

3.励磁系统的励磁方式.1).直流励磁机励磁系统直流励磁机是用于供给发电机励磁的直流发电机,过去机组容量不大,采用由直流发电机组成的励磁系统,励磁机与发电机同轴旋转,由于直流励磁机具有电刷和整流子等接触部件,需定期更换电刷和换向器,特别是当其容量随发电机容量而增大时换向问题很难解决,一般只在单机容量100MW以下的机组上采用。

直流励磁机通常采用自并励式,是利用励磁机电枢旋转切割剩磁来实现建压的,电枢绕组内的电势电流是交变的,借助换向装置将电枢内的交流电变成直流电。

同步发电机励磁系统

同步发电机励磁系统

同步发电机励磁系统引言同步发电机是一种将机械能转换为电能的设备,它通过励磁系统来生成磁场,使得转子能够与电网同步运行。

励磁系统在同步发电机的运行中起着至关重要的作用,它对发电机的稳定运行和输出电能的质量产生着重要影响。

本文将介绍同步发电机励磁系统的原理、常见的励磁系统类型以及其在电能发电中的作用。

一、同步发电机励磁系统的原理同步发电机的励磁系统的主要作用是在转子上产生磁场,使得转子与电网的磁场同步,从而使得发电机可以向电网输出电能。

励磁系统的原理可以通过法拉第定律来解释,该定律表明磁场的变化会产生感应电动势。

在同步发电机中,励磁系统的磁场可以通过直流电流在转子上产生。

当通过励磁绕组的电流改变时,绕组周围的磁场也会发生变化,从而在转子内感应出电动势。

这个感应电动势会引起一定的电流流动,从而通过励磁绕组将转子磁场与电网磁场同步。

二、常见的励磁系统类型1. 直流励磁系统直流励磁系统是最常见的励磁系统类型之一。

在直流励磁系统中,励磁绕组通常由一组电枢绕组和磁极绕组组成。

电枢绕组通过直流电流产生磁场,并与磁极绕组相互作用,从而产生所需的磁场分布。

直流励磁系统具有调节灵活性好、响应速度快等优点,被广泛应用于各种类型的发电机。

2. 恒功率励磁系统恒功率励磁系统是一种在同步发电机中常用的励磁系统类型。

恒功率励磁系统通过自动调节输出的励磁电流,使得同步发电机在负载变化时能够保持输出功率不变。

该励磁系统利用负载的反馈信号对励磁电流进行调整,从而实现恒功率输出。

恒功率励磁系统在电能供应系统中起到了稳定电能输出的重要作用。

3. 智能励磁系统随着电力系统的发展,智能励磁系统逐渐成为同步发电机励磁系统的研究重点。

智能励磁系统利用现代控制技术和计算机技术,可以实现对励磁电流和磁场的精确控制,从而提高同步发电机的运行效率和稳定性。

智能励磁系统具有较高的灵活性和可扩展性,能够适应不同负载和电网变化的要求。

三、同步发电机励磁系统在电能发电中的作用1. 稳定发电机输出电压和频率同步发电机励磁系统是保证电力系统稳定运行的关键之一。

图解发电机励磁原理

图解发电机励磁原理
现在励磁控制系统规律大多采用传统经典控制理论:PID+PSS 励磁控制系统科研主要内容:电力系统稳定器PSS;线性最优控制规律(华中科技大学);非线性最优控制规律(清华 大学 )。
电力系统励磁控制发展过程: PID 控制; PSS 控制 线性最优控制LO-PSS (Linear Optimal Control) 非线性最优控制NO-PSS (Nonlinear Optimal Control) 非线性鲁棒控制NR-PSS (Nonlinear Robust Control)
题); ❖ 暂态稳定是大扰动后系统在随后的1-2个周波的稳定性;(周期性振荡)(安稳切机问题、继电保护问题); ❖ 动态稳定是微小扰动或者是大扰动1-2周波后(暂稳后期),因自动调节作用产生的稳定性稳定(励磁PSS问
题)。
我国电力系统稳定导则定义
静态稳定是指电力系统受到小干扰后,不发生非周期性失步,自动恢复到起始运行状态的能力。稳定导则还规定,在有防止 事故扩大的相应措施的情况下,水电厂送出线路或次要输电线路下列情况下允许只按静态稳定储备送电。 暂态稳定是指电力系统受到大扰动后, 各同步电机保持同步运行并过渡到新的或恢复到原来稳态运行方式的能力。暂态稳定 的判据是电网遭受每一次大扰动后,引起电力系统各机组之间功角相对增大,在经过第一或第二个振荡周期不失步,作同步 的衰减振荡,系统中枢点电压逐渐恢复。 动态稳定是指电力系统受到小的或大的干扰后,在自动调节和控制装置的作用下,保持长过程的运行稳定性的能力。动态 稳定的判据是在受到小的或大的扰动后,在动态摇摆过程中发电机相对功角和输电线路功率呈衰减振荡状态,电压和频率能 恢复到允许的范围内。
励磁是发电机励磁,也是系统的励磁,但更重要的还是发电机励磁
励磁控制系统的主要任务

发电机励磁系统原理

发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指将发电机所产生的电功率转化为磁能的过程。

通过励磁系统,将某种能量形式转化为磁场能量,从而激发转子产生电能,实现发电的过程。

下面将介绍发电机励磁系统的原理。

1. 励磁原理发电机励磁系统的原理就是利用外部的能源,如直流电源,将能量转化为磁场能量,使电机转子感应电动势,从而产生电能。

在发电机中,励磁线圈将直流电源的电能转化为磁场能量,在转子中感应电动势,形成电流,从而产生电能。

发电机励磁的原理是基于法拉第电磁感应定律,即在磁通量变化时,会在回路中产生感应电动势。

2. 励磁方式励磁系统根据不同的应用场景可以采用不同的方式进行励磁,常见的励磁方式包括直流励磁、交流励磁、恒磁励磁和变磁励磁。

其中,直流励磁和交流励磁是最常见的励磁方式。

(1)直流励磁在直流励磁系统中,直流电源连接到发电机绕组的一个极性,一般以正极为主极。

通过调节电阻,可以调节电流大小。

直流励磁的优点是输出电压稳定,容易控制,缺点是成本较高。

(2)交流励磁在交流励磁系统中,交流电源通过变压器变换,使其与发电机绕组进行耦合。

交流励磁可以通过调节变压器的变比来调节输出电压大小,具有成本低,调节容易的优点。

3. 励磁控制励磁控制是指通过控制励磁电流或电压来调节发电机的输出功率和电压稳定性。

针对不同的负载需求,可以采用不同的励磁控制方式,如手动调节、自动调节、恒压励磁等方式。

励磁控制的目的是维持发电机的稳定性能,确保输出电压和功率稳定,同时保证发电机及其附属设备的安全可靠运行。

4. 总结在发电机中,励磁系统是将外部能源转化为磁场能量,从而产生电能的关键部件。

根据不同的场景可以采用不同的励磁方式和励磁控制方式。

通过励磁系统的合理设计和优化控制,可以保证发电机的稳定性能,确保其安全可靠运行。

发电机静止硅整流器励磁系统工作原理

发电机静止硅整流器励磁系统工作原理

发电机静止硅整流器励磁系统工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言电力是现代社会不可或缺的重要资源之一,而发电机则是电力的重要生产工具之一。

chapter2-2同步发电机励磁系统

chapter2-2同步发电机励磁系统
比自励多用了一台副励磁机
第二节 同步发电机励磁系统
二、交流励磁机励磁系统
(一)他励交流励磁机励磁系统
交流副励磁机
交流励磁机
起励电源
400 Hz
AE 100Hz
V
磁场开关
交流发电机
G
TA
滑环
TV
可控整流器



励磁调节器


节 器
触发器
放大器
电压检测
调差
图 2-11 他励交流励磁机励磁系统原理接线
第二节 同步发电机励磁系统
建投资。 (3)直接利用晶闸管取得励磁能量,机端电压与机组转速
的一次方成正比,故静止励磁输出的励磁电压与机组转速 的一次方成比例。而同轴励磁机励磁系统输出的励磁电压 与转速的平方成正比。这样,当机组甩负荷时静态励磁系 统机组的过电压就低。
• (二)、无刷励磁系统
永磁发电机
旋转元件
N
AE
S
励磁开关
可控硅整流器
G
TA
TV
励磁调节器
图 2-17 无刷励磁系统原理接线图
第二节 同步发电机励磁系统
(1)无炭刷和滑环,维护工作量可大为减少。 (2)发电机励磁由励磁机独立供电,供电可靠性高。并且由于无刷,整
个励磁系统可靠性更高。 (3)发电机励磁控制是通过调节交流励磁机的励磁实现的,因而励磁系
第二节 同步发电机励磁系统
• 同步发电机的励磁电源实质上是一个可控 的直流电源
直流励磁机 换流困难 交流励磁机 缩短主轴长度 发电机自并励
去掉滑环和电刷 无刷励磁系
第二节 同步发电机励磁系统
一、直流励磁机励磁系统 (一)自励直流励磁机励磁系统 • 发电机转子绕组由专用的直流励磁机供电 • 调整励磁机磁场电阻,可改变励磁机励磁电流 (二)他励直流励磁机励磁系统 • 他励直流励磁机的励磁绕组是由副励磁机供电的,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欠励限制
欠励动作后按照Q闭环运行, 欠励动作后按照Q闭环运行,欠励设 定值与机端电压值相关的设计
发电机进相不能太深,否则定子绕组的端部、磁轭等部件可能过 热,将严重影响发电机的运行安全,失磁保护将动作停机。为了 保证机组的稳定运行,低励限制器必须在机组超过限制区之前将 定子电压升高,以使机组运行点回到允许的允许范围之内。
轴。副励磁机是自励式的,其磁场绕组由副励磁机机端电压经整流后供电。 也有用永磁发电机作副励磁机的,亦称三机它励励磁系统。
优点:它励,励磁电源不受系统电源的影响 缺点:调节速度慢,轴系长度长,易引发轴系振荡
交流励磁机系统(二机它励) 交流励磁机系统(二机它励)
同轴
组成:交流主励磁机经过可控硅整流装置向发电机转子回路提供励磁电
直流励磁机励磁系统 交流励磁机励磁系统 自并励励磁系统
按响应速度分类:
慢速励磁系统 快速励磁系统 高起始励磁系统
交流励磁机系统(三机它励) 交流励磁机系统(三机它励)
同轴
组成:交流主励磁机(ACL)和交流副励磁机(ACFL)都与发电机同 交流主励磁机(ACL)和交流副励磁机(ACFL)都与发电机同
建立δ-ω平面坐标系
T1:励磁产生的电磁力矩 T2:PSS产生的电磁力矩 ΔPSS:附加励磁控制信号 AVR(PID)+PSS产生的电磁力矩
PSS输入信号 Δω、Δδ、Pe、ΔP、Δf
测量轴转速Δω,测量和处理比较复杂, 轴系扭转的处理更加困难,使用较少 测量过剩功率ΔP,测量和处理更加复杂,输入信号多,使用也少 测量电功率Pe,在假定机械功率不变的情况下,可以得到过剩功率ΔP,使用广 泛,效果不错。但在原动机功率变化时会出现反调现象。 测量机端电压频率△f,克服了Δω测量处理上的困难,但由于发电机电抗的影 响,△f与频差Δω不完全一致,因而效果上稍差。 。
励磁调差原理与应用
全控桥强励与强减
按照Ud=1.35U2cosa 一般强励α 按照Ud=1.35U2cosa,一般强励α=150 ;强减α=1500 Ud=1.35U2cosa, 强减α 强励
强励限制与过励限制
1、电压强励能力取决于励磁变二次电压(阳极电压); 电压强励能力取决于励磁变二次电压(阳极电压); 电流强励能力取决于可控硅电流或者说是功率柜的数量; 2、电流强励能力取决于可控硅电流或者说是功率柜的数量; 强励限制是指电流限制倍数:1.5-2.0倍 功率柜故障取1.1 1.1倍 3、强励限制是指电流限制倍数:1.5-2.0倍;功率柜故障取1.1倍; 过励限制是励磁电流限制,大于1.1 1.1倍 反时限,励磁电流闭环; 4、过励限制是励磁电流限制,大于1.1倍,反时限,励磁电流闭环;
P
无功电流分量
当发电机电流超过 了限制区,如果此 时机组运行在进相 状态,则限制器动 作,增加励磁电流 ;如果此时机组在 迟相运行,则限制 动作,减少励磁电 流。总之,定子电 流限制器的作用是 调节发电机定子电 流中的无功分量, 使发电机电流回到 限制区以内运行。
伏赫限制以及其他辅助功能
设计U/F限制器是为了保护机组及与机组相连的变压器过激磁。 当机组频率降低的时候,为了使机组的机端电压保持恒定,励 磁系统将会增加励磁电流,此时,如果机组在低频率的情况下 使机端电压保持在额定值,那么对机组及所有与机组相连的变 压器而言,将有可能出现过磁通现象(尤其是主变压器),从 而对机组及变压器造成损坏。
定子电流限制(过无功限制、 定子电流限制(过无功限制、过励限制)
定子电流限制还可以采用根据发电机输 出的有功功率来确定发电机允许输出无 功功率的方式来实现,即过无功限制
功率因数=1附近没有操作
有功电流分量
进相运行超过限制区
QL
迟相运行超过限制区
QLG
发电机定子 电流
0 过励限制曲线
调节死区±10%
励磁调节器原理图
AVR(自动) 恒电压闭环 自动电压调节器 ECR(手动) ECR(手动) 恒电流闭环 励磁电流调节器 电压给定Ugref 电流给定Ifref PID调节计算 限制功能
移相触发器原理:Ut+Uk=触发脉冲 模拟式移相电路:余弦移相、锯齿波移相
控制电压Uk 恒无功闭环: 恒无功闭环:AVR的辅助控制 的辅助控制
电力系统低频振荡
本机振荡模式 地区性振荡模式(local model): 频率一般在0.5~2.0Hz; 区 域 间 振 荡 模 式 ( interarea model、tieline model):频率一 般在0.1~0.5Hz)。 小系统: 0.5~2.5Hz; 大系统: 0.2~2.5Hz; 全国联网: 0.1~2.0Hz;
模拟电路移相原理
励磁调节器输出脉冲
脉冲变压器作用
隔离 功率匹配
脉冲发展形式 宽脉冲 双脉冲 宽高频脉冲 双高频脉冲
励磁调节器功能简介
无功补偿(调差) 强励电流限制(快 速限制) 过励限制(励磁电 流慢速、反时限) 欠励限制(P-Q) 定子电流限制(过 无功限制) 伏赫限制(V/HZ、 U/F)(过激磁) 软起励功能 PSS功能 电制动功能 PT断线保护
发电机励磁系统原理 发电机励磁系统原理
第三部分
三峡电厂陈小明 Chen_xiaoming@
励磁系统的组成与分类
自动电压调节器AVR、ECR/FCR(励磁调节器) 自动电压调节器AVR、ECR/FCR(励磁调节器) 励磁电源(励磁机、励磁变压器) 整流器(AC/DC变换,SCR、二极管) 整流器(AC/DC变换,SCR、二极管) 灭磁与转子过电压保护 按励磁电源分类:
流;AVR控制可控硅的触发角,调整其输出电流,亦称为两机它励励磁系 统。励磁系统没有副励磁机,交流励磁机的励磁电源由发电机出口电压经 励磁变压器后获得,自动励磁调节器控制可控硅砖触发角,以调节交流励 磁机励磁电流,交流励磁机输出电压经硅二极管整流后接至发电机转子, 亦称为两机一变励磁系统。
优点:取消副励磁机,轴系长度缩短;缺点:调节速度慢
自励系统(并励、复励) 自励系统(并励、复励)
静止
自并励励磁系统 组成:励磁变压器、大功率可控 硅整流柜、灭磁及过电压保护、 起励设备、自动电压调节器 优点:结构简单、响应速度快 缺点:强励时系统电压变化复杂
交流侧串联自复激励磁系统
励磁电压变压器ZB(并联变)的副方 电压与励磁电流变压器 GLH(串联变) 的副方电压相联(相量相加),然后 加在可控硅整流桥KZ上。当发电机负 载情况变化时,例如电流增大或功率 数降低,则加到可控硅整流桥上的阳 极电压增大,故这种励磁方式具有相 复励作用。
解决励磁产生负阻尼,造成系统产生低频振荡的方法是附加控 制,即电力系统稳定器,线性最优励磁控制器,各种智能控制器。 依据F.D.迪米洛和C.康柯迪亚理论设计的电力系统稳定器(Power system stabilizer),简称PSS,即为抑制系统低频振荡和提高电 力系统动态稳定性而设置的。
电力系统稳定器原理
其他辅助控制功能 1、 PT断线保护功能; 2、软起励功能; 3、主开关容错功能; 4、同步电压断线保护
励磁产生负阻尼的原因
阻尼( 阻尼(正、零、负)VS惯性
动态稳定可以理解为机电振荡的阻尼问题。 动态稳定可以理解为机电振荡的阻尼问题。 可以理解为机电振荡的阻尼问题 AVR造成阻尼变弱 甚至变负(K5变负 造成阻尼变弱、 变负) AVR造成阻尼变弱、甚至变负(K5变负)。在 —定的运行方式及励磁系统参数下,AVR在维 定的运行方式及励磁系统参数下,AVR在维 恒定的同时,会产生负的阻尼作用。 持Ug恒定的同时,会产生负的阻尼作用。 扰动前后: 扰动前后:ΔP → Δδ1 → Δδ→ 摆动 → 阻尼 → Δδ2 →稳定 传统励磁:低增益慢速(没有能力管闲事) 传统励磁:低增益慢速(没有能力管闲事) Δδ→ ΔUg →AVR作用小、反应慢 → ΔUf小 → ΔIf小 → Δψ → ΔP(力矩 象限不明) → 对Δδ影响极小。 现代励磁:高增益快速(管闲事帮倒忙) 现代励磁:高增益快速(管闲事帮倒忙) Δδ→ ΔUg →AVR作用大、反应快 → ΔUf大 → ΔIf大 → Δψ → ΔP(力矩 第二象限) → 产生负阻尼使原来的阻尼变小,对Δδ负面影响。 AVR+PSS:高增益快速 附加控制系统(管闲事帮正忙) AVR+PSS:高增益快速+附加控制系统(管闲事帮正忙) 高增益快速+ Δδ→ ΔUg →AVR作用大、反应快 → ΔUf大 → ΔIf大, Δψ → ΔP(力矩第 一象限) →产生正阻尼使原来的阻尼变大,对Δδ正面影响。
无刷励磁系统
组成:主励磁机(ACL)
电枢是旋转的,它发出的三 相交流电经旋转的二极管整 流桥整流后直接送发电机转 子回路。 无刷励磁系统中的副励磁机
旋转
(PMG)是一个永磁式中频发电机,它与发电机同轴旋转。主励磁机 的磁场绕组是静止的,即它是一个磁极静止、电枢旋转的交流发电机。 无刷励磁系统彻底革除了滑环、电刷等转动接触元件,提高了运行可 靠性和减少了机组维护工作量。但旋转半导体无刷励磁方式对硅元件 的可靠性要求高,不能采用传统的灭磁装置进行灭磁,转子电流、电 压及温度不便直接测量等。这些都是需要研究解决的问题
PSS模型简介
PSS1A PSS2A
PSS2B
输入量、优缺点、反调 加速电功率型PSS
投退PSS负载阶跃试验录波 投退PSS负载阶跃试验录波
时域分析
待续
励磁调节器构成
移相原理
数字移相原理之一 1、首先计算α角; 、首先计算 角 2、将α角转换为计数器的 、 角转换为计数器的 计数时间T; 计数时间 ; 3、由同步点启动计数器, 、由同步点启动计数器, 计数时间就是α角 计数时间就是 角; 4、计数时间到,触发相应 、计数时间到, 的可控硅; 的可控硅; 5、每隔 0再触发下一个可 、每隔60 控硅, 个可控硅; 控硅,共6个可控硅; 个可控硅 6、每发一个脉冲,启动脉 、每发一个脉冲, 宽中断,控制脉冲宽度。 宽中断,控制脉冲宽度。
相关文档
最新文档