层次分析法的计算步骤.doc
层次分析法的计算
![层次分析法的计算](https://img.taocdn.com/s3/m/e7c74e5ac281e53a5802ffdb.png)
n i 1
( AW )i nWi
.
式中AWi表示向量AW的第i个分量。
例如
1 5
1/ 5 1
1/ 3
3
每行之乘积
1
1 5
1 3
0.7
51 3 15
3 1/ 3 1
3
11
1
3
0.412
0.105
球Mi的三次方根
2.466
标准化
0.637
,
1
0.258
即权系数为
W (0.105, 0.637, 0.258)T
.
式中(AW)i表示向量AW的第i个分量。
例 某厂准备购买一台计算机,希望功能强,
价格低,维护容易。现有A、B、C三种机型可供 选择。其中A的性能较好,价格一般,维护一般 水平;B的性能最好,价格较贵,维护也只需一 般水平;C的性能差,但价格便宜,容易维护。 试用层次分析法进行决策分析。
解:1、明确问题;2、建立层次结构;先构造层
4、层次单排序及其一致性检验(用方 根法计算这三个准则关于目标的排序权值)
M1 15, M 2 0.667, M3 1
w1 3 15 2.446, w2 3 0.667 0.405, w3 3 1 1
标准化:
2.446
2.446
W1 2.446 0.405 1 3.871 0.637
在具体计算中,当ek与ek-1接近到一定程度时, 我们就取e=ek
例如
1 1 1/ 5 1/ 3 A 1 1 1/ 3 , e0 1/ 3
5 3 1 1/ 3
1 1 1/ 5 1/ 3 0.733 e '1 Ae0 1 1 1/ 3 1/ 3 0.778 , e '1 0.733 0.778 3 4.511
层次分析法步骤解析—根法、和法、幂法
![层次分析法步骤解析—根法、和法、幂法](https://img.taocdn.com/s3/m/ed9393ede87101f69f3195c5.png)
层次分析法(AHP)AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。
它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。
这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。
AHP十分适用于具有定性的,或定性定量兼有的决策分析。
这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。
一、递阶层次结构的建立一般来说,可以将层次分为三种类型:(1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。
(2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。
(3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。
典型的递阶层次结构如下:总目标m一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到:(1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。
(2)整个结构不受层次限制。
(3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。
(4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。
二、构造比较判断矩阵设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a ij,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,简称判断矩阵,记作A=(a ij)m×m。
层次分析法的详细步骤.doc
![层次分析法的详细步骤.doc](https://img.taocdn.com/s3/m/90cf743d856a561253d36fb8.png)
层次分析方法问题1某工厂在扩大企业自主权后,厂领导正在考虑如何合理地使用企业留成的利润。
在决策时需要考虑的因素主要有(1) 调动职工劳动生产积极性;(2) 提高职工文化水平;(3) 改善职工物质文化生活状况。
请你对这些因素的重要性进行排序,以供厂领导作参考。
分析和试探求解这个问题涉及到多个因素的综合比较。
由于不存在定量的指标,单凭个人的主观判断虽然可以比较两个因素的相对优劣,但往往很难给出一个比较客观的多因素优劣次序。
为了解决这个问题,我们能不能把复杂的多因素综合比较问题转化为简单的两因素相对比较问题呢?运筹学家想出了一个好办法:首先找出所有两两比较的结果,并且把它们定量化;然后再运用适当的数学方法从所有两两相对比较的结果之中求出多因素综合比较的结果。
具体操作过程如下:1)进行两两相对比较,并把比较的结果定量化。
首先我们把各个因素标记为B i:调动职工劳动生产积极性;B2:提高职工文化水平;B3:改善职工物质文化生活状况。
根据心理学的研究,在进行定性的成对比较时,人们头脑中通常有5种明显的等级:相同、稍强、强、明显强、绝对强。
因此我们可以按照下表用1〜9尺度来定量化。
假定各因素重要性之间的相对关系为:B2比B i的影响强,B3比B i的影响稍强,B2比B3的影响稍强,则两两相对比较的定量结果如下:B1: B =1:1;B1: B2= 1:5; B*B3=1:3B?:B I =5:1; B2 : B^- 1: 1;B2: B^ = 3:1B3: B i = 3:1; B3: B^ = 1:3; B3: B3= 1:1为了便于数学处理,我们通常把上面的结果写成如下矩阵形式,称为成对比较矩阵。
B1B2B3(11/51/3*(1)B25132)综合排序B3<31/31」为了进行合理的综合排序,我们把各因素的重要性与物体的重量进行类比。
设有n件物正比,即a1,2III%n ',Z W1/W1W1 / W2III W1 /W 'a2,1a2,2III a2,n W2/则W2 / W2III W2 /W nA ==fit III III III III III III III®,1a n,2III a n,n j<Wn/W1W n / W2III Wn/Wn」体:A1, A2,…,A n,它们的重量分别为:W1, W2,…,W n。
层次分析法的计算步骤
![层次分析法的计算步骤](https://img.taocdn.com/s3/m/b1541b7766ec102de2bd960590c69ec3d5bbdb1b.png)
层次分析法的计算步骤
一、定义层次分析法
层次分析法(Analytic Hierarchy Process,AHP)是由梅尔·拉斯
菲尔德(M.L. Saaty)于1977年提出的一种多层结构和多维度的层次分
析方法。
它是一种评估决策者面临复杂决策的基于层次结构逻辑的决策分
析方法,可以很轻松地将复杂的主观问题转换为客观的量化问题,从而求
解复杂的决策问题。
二、层次分析法计算流程
(1)决策问题的分类和层次结构的确定
首先,根据决策者的要求,将决策问题确定为一个有层次结构(AHP)和深度(hierarchy)的问题,将决策问题的内容分为n个层次。
(2)建立层次分析矩阵
将决策问题中的n个层次按从上至下的顺序,建立起一个n×n的层
次分析矩阵,称之为层次分析矩阵。
(3)确定层次分析矩阵的元素
在层次分析矩阵中,每一对元素的值都由决策者给出,即根据决策者
的判断,确定每个元素在n个层次层次中的比较的优劣。
(4)计算层次分析矩阵的均值尺度指数
均值尺度指数是由每行元素进行加权求和结果和n相除而得到的。
它
表示每个元素在此行的平均相对权重。
(5)分析层次分析矩阵
一旦层次分析矩阵计算完毕。
层次分析法(AHP)
![层次分析法(AHP)](https://img.taocdn.com/s3/m/3c452583c67da26925c52cc58bd63186bceb92ee.png)
aij
n
aij
i 1
i,j 1,2,, n
2 ) 再按行相加得和
n
wi aij j 1
3)再规范化,得权重系数:
wi
wi
n
wi
i 1
方根法
这种方法的步骤是:
1) 按行元素求积,再求1/n次幂,得
n
wi
aij i,j 1,2,, n
j 1
2)规范化,即得权重系数
wi
wi
n
wi
用ANP进行决策的基本步骤
▪ (1) 构造ANP的典型结构: A:首先是构造控制层次.将决策目标界定,将决策准则界 定,这是问题的基本,各个准则决策目标的权重用AHP方法 得到. B:再则是构造网络层次.要归类确定每一个元素,分析其 网络结构和相互影响关系,分析元素之间的关系可用多种 方法进行. 一种是内部独立的递阶层次结构,即层次之间相 互独立;一种是内部独立,元素之间存在者循环的ANP 网络层次结构;另一种是内部依存,即元素内部存在循环 的ANP网络层次结果,这几种情况都是ANP的特例情况。 在实际决策问题中面临的基本都是元素间不存在内部独立, 既有内部依存,又有循环的ANP网络层次结构。
P4:建 图书馆
P5:引进 新设备
C1对p1 p2 p3 p4 p5的权重计算
c1 P1
p2
p3
p4
p5 w
p1 1
3
5
4
7 0.491
p2 1/3 1
3
2
5 o.232
p3 1/5 1/3 1
½
3 0.092
p4 ¼ ½
2
1
3 0.138
p5 1/7 1/5 1/3 1/3 1 0.046
层次分析法步骤解析—根法、和法、幂法
![层次分析法步骤解析—根法、和法、幂法](https://img.taocdn.com/s3/m/ed9393ede87101f69f3195c5.png)
层次分析法(AHP)AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。
它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。
这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。
AHP十分适用于具有定性的,或定性定量兼有的决策分析。
这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。
一、递阶层次结构的建立一般来说,可以将层次分为三种类型:(1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。
(2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。
(3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。
典型的递阶层次结构如下:总目标m一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到:(1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。
(2)整个结构不受层次限制。
(3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。
(4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。
二、构造比较判断矩阵设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a ij,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,简称判断矩阵,记作A=(a ij)m×m。
13_05层次分析法
![13_05层次分析法](https://img.taocdn.com/s3/m/9280a4fc910ef12d2af9e700.png)
用和积法计算其最大特征向量为:
W=( W1, W2…… Wn)T
=(0.16,0.18,0.20,0.05,0.16,0.25) T
即为所求的特征向量的近似解。
o计算判断矩阵最大特征根max
w1
w2 w3 w4 w5 w6
子 目 标
健 康 状 况
业 务 水 平
写 作 水 平
口 才
政 策 水 平
工 作 作 风
方案层
甲
乙
丙
2 求出目标层的权数估计
用和积法计算其最大特征向量
B
p1
p1 p2 p3 p4 p5 p6
1
1 1
1
1 1/2
1
2 1
4
4 5
1
1 3
1/2
1/2 1/2
判 断 矩 阵
B
p1 p2
p1
p2
p3
p4
p5
p6
W
0.16
0.16 0.17 0.15 0.20 0.14 0.13 0.16 0.17 0.30 0.20 0.14 0.13
0.18 0.20
0.05 0.16 0.25
p3
p4 p5 p6
0.16 0.09 0.15 0.25 0.42 0.13
0.04 0.04 0.03 0.05 0.05 0.09 0.16 0.17 0.05 0.15 0.14 0.26 0.32 0.34 0.30 0.15 0.14 0.26
层次分析法(AHP)具体步骤: 建立两两比较的判断矩阵 判断矩阵表示针对上一层次 某单元(元素),本层次与它有关 单元之间相对重要性的比较。一般 取如下形式:
Cs
(完整word版)层次分析法步骤
![(完整word版)层次分析法步骤](https://img.taocdn.com/s3/m/d5f5138258fafab068dc02d2.png)
利用层次分析进行风险分析的过程共有5个步骤: 1、建立递阶层次结构模型自上而下通常包括目标层、准则层和方案层,其中目标层是指层次结构中的最高层次,是管理者所追求的最高目标。
准则层是指评判方案优劣的准则,可再细分为子准则层、亚准则层.方案层是指可实行的方案等。
2、就用两两比较法构造比较判断矩阵比较判断矩阵是层次分析的核心,是以上一层某个要素Hs 作为判断标准,对下一层次要素进行两两比较确定的元素值。
例如,在Hs 判断标准下有n 个要素,是对于Hs 准则可得到阶的比较判断矩阵A=(aij )nXn.()()()。
,,,,,,,,。
须进行一致性检验进行决策前利用估计的判断矩阵因此第四条性质不一定满足也就是比较判断矩阵的而存在估计误差一致性不可能做到判断的完全制评价者知识和经验的限由于采用两两比较时因素然而人们对复杂事物各性则该矩阵具有完全一致具有如下性质比较判断矩阵因此的重要性的权重目标一准则个要素对于上一层次某表示某层第即要性的相对重对要素的角度考虑要素表示从判断准则比较判断矩阵中元素jkik ijijjiijii s jijiij j i s ij a a ;a;a a ;aa :A ,。
H j i w ,w w w a ,A A H a =≥===011((1)确定判断准则(九级标度两两比较评分标准)(2)构造判断矩阵3、确定项目风险要素的相对重要性,并进行一致性检验专家对各风险因素进行两两比较评分后,需要知道A 关于HS 的相对重要度,即A 关于HS 的权重、排序和一致性检验,计算如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=......................)1(21222211nn n n n n 1211a a a a a a a a a A ,A 设比较判断矩阵重这也是各因素的相对权的特征向量首先确定判断矩阵()()[]()[]()()[]。
i AW AW nW AW :D 、W W W W ,,,,n ,i WW WW W W W C 、,,,,n ,i ,b B 、,,,,n ,i ,aa b :A A 、i ni iiTn ni iiiTnnj iji ni ijijij 分量的第为向量矩阵征值计算判断矩阵的最大特即为所求的特征向量则归一化将向量判断矩阵按行相加每一列经过归一化后的的每一列归一化将判断矩阵和积法∑∑∑∑=============1max 2112111...21:,...2121*λW :.,,1.0.........\..,.,.,,,.,,1.0..,,..;,0..,1..)2(maxmax 判断否则重新进行两两比较可以接受认为判断矩阵的一致性即只要指标的为衡量判断矩阵一致性并取更为合理的见下表于是引入修正值致性的要求故应放宽对高维矩阵一判断一致性将越差判断矩阵的维数越大判断否则重新进行两两比较可以接受认为判断矩阵的一致性要一般只越差判断矩阵的完全一致性值越大为完全一致当即计算一致性指标须进行一致性检验因此每一个要素满足阵并不能使得比较判断矩不是很精确由于判断矩阵是估计的如前所述一致性判断≤=≤==--==R C I R I C R C R C I R I C I C I C n n nI C :,,,a aa ,,,jkik ij λλ4、计算综合重要度以上分析只得出相对重要度,因此在层次分析法中,还需要计算同一层次所有要素对最高层次(总标准)进行排序,方法是从最上层开始,自上而下地求出各层要素关于总体的综合重要度。
层次分析法AHP.doc
![层次分析法AHP.doc](https://img.taocdn.com/s3/m/64fba1482cc58bd63086bd25.png)
第一单元 层次分析法—AHP 介绍(The Analgtic Hierarachy Process----AHP)前言最优化技术在决策分析中占着极重要的位置,数学模型在最优化技术中占着统治地位;由于系统越来复杂,数学模型也越来越复杂,掌握运用困难很多,并且随着复杂性增加,模型解与实际要求距离也在增加。
事实上,数学模型也非万能,决策中大量因素无法定量表示,所以,有时人们不得不回到决策的起点和终点:——人的选择和判断,需要认真地研究选择和判断的规律,这就是AHP 产生的背景。
匹兹堡大学Saaty 教授于七十年代中期提出层次分析法A HP 。
于80年代初由Saaty 的学生介绍到我国。
层次分析AHP 的特点:1. 输入信息主要是决策者的选择和判断。
决策过程充分反映了决策者对决策问题的认识;2. 简洁性:基于高中知识,可不用计算机完成计算;3. 实用性:能进行定量分析,也可定性分析;而通常最优化方法只能用于定量分析;4. 系统性:人们决策大致分三种:(因果判断、概率推断和系统推断),AHP 把问题看作一个系统属于第三种,真正要搞清楚AHP 原理,需要深刻的数学背景。
好在我们只重应用,并不过多涉及AHP 的数学背景。
AHP 的主要不足在于: 1. AHP 只能用于选择方案,而不能生成方案;主观性太强,从层次结构建立,判断矩阵的构造,均依赖决策人的主观判断,选择,偏好,若判断失误,即可能造成决策失误。
规划论——采用较严格的数学计算,把人的主观性降到最低程度;但有些决策结果令决策人难以接受。
AHP ——从本质上讲是试图使人的判断条理化,所得结果基本上依据人的主观判断,当决策者的判断因受个人偏好影响对客观规律歪曲时,AHP 的结果显然靠不住,所以,AHP 中通常是群组判断方式。
尽管AHP 在理论上尚不完善,应用中也有缺陷;但由于AHP 简单、实用,仍被视为是多目标决策的有效方法,至今仍被广泛应用的一种无结构决策方法。
层次分析法的计算
![层次分析法的计算](https://img.taocdn.com/s3/m/51895e4a0640be1e650e52ea551810a6f524c881.png)
最小二乘法
总结词
该方法通过最小化误差平方和来求解元素的权重。
详细描述
最小二乘法是一种数学优化技术,用于求解线性方程组。在层次分析法中,最小 二乘法通过最小化误差平方和来求解元素的权重。首先,构建一个判断矩阵,然 后利用最小二乘法求解该矩阵的解,得到各元素的权重。
和积法
总结词
该方法通过将判断矩阵的元素相加并归一化来求解元素的权 重。
判断一致性是否满足要求
根据一致性指标的大小,判断总排序的一致性是否满足要求,如果不满足则需要进行调整。
层次总排序的计算步骤
构建层次结构模型
将问题分解为不同的层次,明确各层次之 间的关系。
检验一致性
对层次总排序权重的一致性进行检验,确 保权重的合理性。
构造判断矩阵
根据专家打分或数据,构造各层次的判断 矩阵。
3 层次单排序及一致性检验
将决策问题分解成不同的组成因素,并根据因素间的相 互关联影响以及隶属关系将因素按不同的层次聚集组合 ,形成一个多层次的分析结构模型。
4 层次总排序
将决策问题分解成不同的组成因素,并根据因素间的相 互关联影响以及隶属关系将因素按不同的层次聚集组合 ,形成一个多层次的分析结构模型。
特点
简单实用,对数据要求不高,能够处理多目标、多准则、多时期等的复杂决策问题,特别适合于人的主观判断 起重要作用的决策。
应用领域
01
02
03
资源分配
在资源有限的情况下,如 何合多个备选方案中,如何 选择最优方案。
冲突分析
分析不同利益相关者之间 的冲突,并寻求解决方案。
详细描述
和积法是一种简单而常用的层次分析法计算方法。首先,构 建一个判断矩阵,然后将判断矩阵的每一列归一化,再将归 一化后的列相加得到一个总和向量,最后将总和向量归一化 即可得到各元素的权重。
层次分析法定义及步骤
![层次分析法定义及步骤](https://img.taocdn.com/s3/m/268c0235492fb4daa58da0116c175f0e7cd119bc.png)
层次分析法定义及原理所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
其用法是构造判断矩阵,求出其最大特征值。
及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。
层次分析法步骤美国运筹学家A.L.saaty于20世纪70年代提出的层次分析法(Analytic Hi~hyProcess,简称AHP方法),是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模型化、数量化。
应用这种方法,决策者通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案的权重,为最佳方案的选择提供依据。
运用AHP方法,大体可分为以下三个步骤:步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;步骤3:计算各层次对于系统的总排序权重,并进行排序。
最后,得到各方案对于总目标的总排序。
一、构造判断矩阵层次分析法的一个重要特点就是用两两重要性程度之比的形式表示出两个方案的相应重要性程度等级。
层次分析法原理及计算过程详解
![层次分析法原理及计算过程详解](https://img.taocdn.com/s3/m/5368ad0ef08583d049649b6648d7c1c708a10b2f.png)
层次分析法原理及计算过程详解写在前面:层次分析法是一个很早的决策算法了,它能够处理多目标多准则的决策问题,思维方式却很简单。
由于其系统性等优点,后续很多算法都有借鉴,所以这里写一写。
网上关于该方法的讲解很多也很详细,所以本篇都是在前辈的基础上进行整理加工。
文章尽量详细,然后加上一些我自己的理解,希望后面看到的人能够读起来更轻松,更容易接受。
注意:文中说的判断矩阵,又称成对比较阵目录:1.层次分析法概论1.2什么是决策1.3 决策分析法原理2.层次分析法的基本步骤2.1 层次分析法步骤2.2 建立层次结构模型2.3 构造判断矩阵2.4 计算单层权向量并做一致性检验2.5 计算组合权向量(层次总排序)并做一致性检验2.6 层次分析法基本步骤归纳3. 层次分析法的优缺点3.1 层次分析法的优点4.注意事项5.可应用的领域6. 完整例子分析6.1 旅游问题6.2 干部选择问题1.层次分析法概论1.1 什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代初期由美国匹兹堡大学运筹学家托马斯·塞蒂(T.L. Saaty)在为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”的课题时提出。
它是一种应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
是对社会、经济以及管理领域的问题进行系统分析时,面临的经常是一个由相互关联、相互制约的众多因素构成的复杂系统。
层次分析法则为研究这类复杂的系统,提供了一种新的、简洁的、实用的决策方法。
是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。
该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
9.2层次分析法的求解步骤
![9.2层次分析法的求解步骤](https://img.taocdn.com/s3/m/879ee4139b6648d7c1c746c0.png)
(3) (2)
其中W(p)是由第p层对第p-1
层权向量组成的矩阵
对于实际问题中不一致(但在允许范围内)的 成对比较阵A,我们可用对应于最大特征根
的特征向量作为权向量w ,即
Aw w
实际问题中,我们先进行一致性检验,判 断不一致是否在允许范围内
层次分析法的求解步骤
一致性检验 对A确定不一致的允许范围
已知:n 阶一致阵的唯一非零特征根为n
结论:n 阶正互反阵最大特征根 n, 且 =n时为一致阵
2
B 2
3
1
1/ 3
1/5 1/ 2 1
8 3 1
…B n
最大特征根 1
权向量
w (3) 1
2
w (3) 2
… n
… wn(3)
层次分析法的求解步骤
组合权向量 k1
第3层对第2层的计算结
果
2
3
4
5
0.595
w(3) 0.277 k 0.129
k
3.005
方案P1对目标的组合权重为0.5950.263+ …=0.300 方案层对目标的组合权向量为 (0.300, 0.246, 0.456)T
层次分析法的求解步骤
组合 权向量
第2层对第1层的权向量
w(2) (w(2) , , w(2) )T
1
n
第1层O 第2层C1,…Cn
第3层对第2层各元素的权向量
CIk 0.003
0.082 0.236 0.682
3.002
0.001
0.429 0.429 0.142
3
0
0.633 0.193 0.175
层次分析法的具体步骤
![层次分析法的具体步骤](https://img.taocdn.com/s3/m/712c664edcccda38376baf1ffc4ffe473368fd6c.png)
层次分析法的具体步骤
层次分析法是一种多因素决策方法,其具体步骤如下:
1. 确定决策目标:明确决策的目标,确定需要选择的方案或选项。
2. 列出准则:对于每个可选方案,列出与目标相关的准则或要素。
这些准则应该是可以量化的,例如成本、效益、质量等等。
3. 构建层次结构:将需要比较的准则按照层次结构排序。
通常情况下,决策目标位于最高层,准则位于下一级,再下一级是具体的备选方案。
这种结构可以用一个树状图表示。
4. 建立判断矩阵:对于每个准则与备选方案之间的重要程度或权重,依据专家意见和实际情况构建判断矩阵。
5. 计算权重向量:通过计算判断矩阵的特征向量,得到每个准则和备选方案的权重。
6. 一致性检验:对于每个准则和备选方案,验证其在判断矩阵中的数值是否一致。
若不一致,则需要对判断矩阵进行修正,重新计算权重向量,直至满足一致性要求为止。
7. 得出结论:根据各个备选方案的权重值,确定最优解或多个备选解,并进行评价和比较以做出最终决策。
总之,层次分析法可以帮助人们在复杂的多因素决策过程中,合理地评估各种因素的重要程度,提高决策的科学性和准确性。
层次分析法的计算步骤(可编辑修改word版)
![层次分析法的计算步骤(可编辑修改word版)](https://img.taocdn.com/s3/m/2fc7b76cdd3383c4ba4cd26d.png)
8.3.2 层次分析法的计算步骤一、建立层次结构模型运用AHP 进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。
这些层次大体上可分为3 类1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层;2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层;3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。
层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。
这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。
递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。
为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9 个,若多于9 个时,可将该层次再划分为若干子层。
例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1 所示的层次结构模型。
图8.1再如,国家综合实力比较的层次结构模型如图6 .2:图 6 .2图中,最高层表示解决问题的目的,即应用AHP 所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。
然后,用连线表明上一层因素与下一层的联系。
如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。
有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。
层次之间可以建立子层次。
子层次从属于主层次的某个因素。
它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.3.2 层次分析法的计算步骤一、建立层次结构模型运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,把问题条理化、层次化,构造层次分析的结构模型。
这些层次大体上可分为3类1、最高层:在这一层次中只有一个元素,一般是分析问题的预定目标或理想结果,因此又称目标层;2、中间层:这一层次包括了为实现目标所涉及的中间环节,它可由若干个层次组成,包括所需要考虑的准则,子准则,因此又称为准则层;3、最底层:表示为实现目标可供选择的各种措施、决策、方案等,因此又称为措施层或方案层。
层次分析结构中各项称为此结构模型中的元素,这里要注意,层次之间的支配关系不一定是完全的,即可以有元素(非底层元素)并不支配下一层次的所有元素而只支配其中部分元素。
这种自上而下的支配关系所形成的层次结构,我们称之为递阶层次结构。
递阶层次结构中的层次数与问题的复杂程度及分析的详尽程度有关,一般可不受限制。
为了避免由于支配的元素过多而给两两比较判断带来困难,每层次中各元素所支配的元素一般地不要超过9个,若多于9个时,可将该层次再划分为若干子层。
例如,大学毕业的选择问题,毕业生需要从收入、社会地位及发展机会方面考虑是否留校工作、读研究生、到某公司或当公务员,这些关系可以将其划分为如图8.1所示的层次结构模型。
图8.1再如,国家综合实力比较的层次结构模型如图6 .2:图6 .2图中,最高层表示解决问题的目的,即应用AHP所要达到的目标;中间层表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等;最低层表示解决问题的措施或政策(即方案)。
然后,用连线表明上一层因素与下一层的联系。
如果某个因素与下一层所有因素均有联系,那么称这个因素与下一层存在完全层次关系。
有时存在不完全层次关系,即某个因素只与下一层次的部分因素有联系。
层次之间可以建立子层次。
子层次从属于主层次的某个因素。
它的因素与下一层次的因素有联系,但不形成独立层次,层次结构模型往往有结构模型表示。
二、构造判断矩阵任何系统分析都以一定的信息为基础。
AHP的信息基础主要是人们对每一层次各因素的相对重要性给出的判断,这些判断用数值表示出来,写成矩阵形式就是判断矩阵。
判断矩阵是AHP工作的出发点,构造判断矩阵是AHP的关键一步。
当上、下层之间关系被确定之后,需确定与上层某元素(目标A或某个准则Z)相联系的下层各元素在上层元素Z之中所占的比重。
假定A层中因素Ak与下一层次中因素B1,B2,…,Bn有联系,则我们构造的判断矩阵如表8.16所示。
Ak B1 B2 …BnB1B2Bn b11 b21 ┇ bn1 b12 b22 ┇bn2……┇ …b1n b2n ┇ bnn 判断矩阵表示针对上一层次某因素而言,本层次与之有关的各因素之间的相对重要性。
填写判断矩阵的方法是:向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少。
对重要性程度Saaty 等人提出用1-9尺度赋值,见下表8.17重要性标度 含 义1 表示两个元素相比,具有同等重要性 3 表示两个元素相比,前者比后者稍重要 5 表示两个元素相比,前者比后者明显重要 7 表示两个元素相比,前者比后者强烈重要 9 表示两个元素相比,前者比后者极端重要 2,4,6,8 表示上述判断的中间值倒数若元素i 与元素j 的重要性之比为ij b , 则元素j 与元素i 的重要性之比为ji b =ijb 1 设填写后的判断矩阵为()nn ij ⨯,则判断矩阵具有如下性质:(1) ij b >0,(2) ji b =ijb 1,(3) ii b =1 .,.2,1n i = 根据上面性质,判断矩阵具有对称性,因此在填写时,通常先填写ii b =1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。
在特殊情况下,判断矩阵可以具有传递性,即满足等式:ik jk ij b b b =⋅ ,当上式对判断矩阵所有元素都成立时,则该判断矩阵为一致性矩阵。
采用1~9的比例标度的依据是:(1)心理学的实验表明,大多数人对不同事物在相同属性上差别的分辨能力在5~9级之间,采用1~9的标度反映了大多数人的判断能力;(2)大量的社会调查表明,1~9的比例标度早已为人们所熟悉和采用;(3)科学考察和实践表明,1~9的比例标度已完全能区分引起人们感觉差别的事物的各种属性。
因此目前在层次分析法的应用中,大多数都采用尺度。
当然,关于不同尺度的讨论一直存在着。
三、层次单排序所谓层次单排序是指根据判断矩阵计算对于上一层某因素而言本层次与之有联系的因素的重要性次序的权值。
它是本层次所有因素相对上一层而言的重要性进行排序的基础。
层次单排序可以归结为计算判断矩阵的特征根和特征向量问题,即对判断矩阵B ,计算满足BW =m ax λ W (8. 18)的特征根与特征向量。
式中,m ax λ为B 的最大特征根;W 为对应于m ax λ的正规化特征向量;W 的分量iw 即是相应因素单排序的权值。
为了检验矩阵的一致性,需要计算它的一致性指标CI ,CI 的定义为CI =1max --n n λ (8.19)显然,当判断矩阵具有完全一致性时,CI=0。
n -max λ越大,CI 越大,判断矩阵的一致性越差。
注意到矩阵B 的n 个特征值之和恰好等于n, 所以CI 相当于除m ax λ外其余 n-1个特征根的平均值。
为了检验判断矩阵是否具有满意的一致性,需要找出衡量矩阵B 的一致性指标CI 的标准,Saaty 引入了随机一致性指标表8.18。
表8.18 1~9矩阵的平均随机一致性指标总是完全一致的。
当阶数大于2时,判断矩阵的一致性指标CI ,与同阶平均随机一致性的指标RI 之比RICI称为判断矩阵的随机一致性比率,记为CR 。
当CR=RICI<0.01时,判断矩阵具有满意的一致性,否则就需对判断矩阵进行调整。
四、层次总排序利用同一层次中所有层次单排序的结果,就可以计算针对上一层次而言本层次所有因素重要性的权值,这就是层次总排序。
层次总排序需要从上到下逐层顺序进行,设已算出第k-1层上n 个元素相对于总目标的排序为Tk n k k w w w),,()1()1(1)1(---= , 第k 层kn 个元素对于第1-k 层上第j 个元素为准则的单排序向量Tk j n k j k j k jk u u u u ),,()()(2)(1)( = .,.2,1n j =k n k ,,2,1 =其中不受第j 个元素支配的元素权重取零,于是可得到nn k ⨯阶矩阵)(k U =)()()(2)(1,,,k n k k u u u =⎪⎪⎪⎪⎪⎭⎫⎝⎛)()(21)(2)(22)(21)(1)(12)(11k n n k n n k n k k k n k k k k ku u u u u u u u u 其中)(k U 中的第j 列为第k 层k n 个元素对于第1-k 层上第j 个元素为准则的单排序向量。
记第k 层上各元素对总目标的总排序为:Tk n k k w w w ),,()()(1)( =则=)(k w)(k U =-)1(k w ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛)()(21)(2)(22)(21)(1)(12)(11k n n k n n k n k k k nk k k k ku u u u u u u u u⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---)1()1(2)1(1k n k k w w w = ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∑∑∑=-=-=-n j k j k j n n j k j k j n j k j k j w u wu w u k 1)1()(1)1()(21)1()(1即有∑=-=nj k j k ij k iw u w1)1()()(,k n i ,,2,1 =五、一致性检验为评价层次总排序的计算结果的一致性如何,需要计算与单排序类似的检验量。
由高层向下,逐层进行检验。
设第k 层中某些因素对k-1层第j 个元素单排序的一致性指标为)(k j CI ,平均随机一致性指标为)(k j RI ,(k 层中与k-1层的第j 个元素无关时,不必考虑),那么第k 层的总排序的一致性比率为:∑∑=-=-=kkn j k j k j n j k j k j k RI wCI w CR 1)()1(1)()1()(同样当)(k CR≤ 0.10时,我们认为层次总排序的计算结果具有满意的一致性。
售后服务方案(赠送)1.售后服务概述公司长期以来一直致力于提供高质量、完善的支持服务,确保用户的系统稳定运行。
公司拥有一批资深的施工人员,具有丰富的经验,能够很好的解决设备各类故障,强大的用户支持队伍和良好的用户满意度是我们的一大优势。
维护计划及承诺一、 项目售后服务内容承诺我公司贯彻执行:“诚信正直、成就客户、完善自我、追求卓越”的宗旨,对于已经竣工、验收合格的项目进行质量跟踪服务,本着技术精益求精的精神,向用户奉献一流的技术和一流的维护服务。
我公司如果承接了端拾器项目,将严格遵循标书及合同的规定,在保证期内向业主提供该项目的责任和义务。
在保修期之后,考虑到设备维护的连续性,建议业主与我公司签订维护合同,以确保此系统项目的正常运行所必需的技术支持和管理支持。
二、 服务与保证期在项目验收合格之日起,开始进行售后服务工作,包括以下几个方面:1、售后服务期; 2、维护人员; 3、售后服务项目; 4、服务响应时间。
三、 售后服务期 在项目验收合格之日起,即进入了售后服务期。
售后服务期=质量保证期+质量维护期质量保证期:在质量保证期内,如因质量问题造成的故障,实行免费更换设备、元器件及材料。
如因非质量因素造成的故障,收取更换设备、元器件及材料成本费。
质量维护期:在质量保证期之后,即自行进入质量维护期。
我方对所承担端拾器项目提供终身质量维护服务,以不高于本合同设备单价的优惠价格提供所需更换的元器件及材料,另收维护人员工本费。
四、 具体措施承诺1、首先在签订项目合同的同时与客户签订售后服务保证协议书,排除客户的后顾之忧,对客户做出实事求是的、客观的承诺。
2、对已经验收合格交付用户的端拾器项目,在合同期内与用户进行联系,记录用户使用情况,系统运行状况等进行质量跟踪调查,变被动服务为主动服务。
3、对已交工的端拾器项目建立系统运行档案,并进行质量跟踪。
4、系统运行档案记录其端拾器项目运行情况、各类设备使用情况、操作人员操作水平情况及人员流动情况。
5、针对各用户单位操作人员出现的代表性问题,定期对操作人员进行技术培训或到现场培训及指导。
6、正在使用中的系统、设备出现故障时,公司维修服务人员接到报告后及时赴现场处理、维修。