数据的采集与语音信号的频谱分析..

合集下载

语音信号的采集和频谱分析

语音信号的采集和频谱分析

语音信号的采集和频谱分析:[y,fs,bits]=wavread('voice'); %读取音频信息(双声道,16位,频率44100Hz)sound(y,fs,bits); %回放该音频Y=fft(y,4096); %进行傅立叶变换subplot(211);plot(y);title('声音信号的波形');subplot(212)plot(abs(Y));title('声音信号的频谱');窗函数设计低通滤波器:fp=1000;fc=1200;as=100;ap=1;fs=22000;wp=2*fp/fs;wc=2*fc/fs;N=ceil((as-7.95)/(14.36*(wc-wp)/2))+1;beta=0.1102*(as-8.7);window=Kaiser(N+1,beta);b=fir1(N,wc,window);freqz(b,1,512,fs);结果:滤波:[y,fs,bits]=wavread('voice');d=filter(b,a,y);D=fft(d);subplot(211)plot(d);title('滤波后的声音波形')subplot(212)plot(abs(D))title('滤波后的声音频谱')回放:sound(d,fs,bits)与滤波之前相比,噪音明显降低了许多。

过零率的计算要用下面的代码:zcr = zeros(size(y,1)1);delta= 0.02;for i=1:size(y,1)x=y(i,:);for j=1;length(x)-1if x(j)*x(j+1)<0 &abs(x(j)-x(j+1))>deltazcr(i)=zcr(i)+1;endendend其中设置了门限delta=0.02。

这是个经验值,可以进行细微的调整。

语音信号的采集与分析

语音信号的采集与分析

南昌工程学院《语音信号的采集与分析》课程设计题目语音信号的采集与分析课程名称语音信号处理系院信息工程学院专业通信工程班级 10通信工程2班学生姓名刘敏学号 2010103362设计地点电子信息楼指导教师邹宝娟设计起止时间:2013年12月9日至2013年12月20日目录一、需求分析 (4)1.1选题背景及意义 (4)1.2设计要求 (4)二、系统总体设计 (4)2.1 系统设计思路 (4)2.2 功能结构图及功能说明 (4)2.3 工作原理 (6)三、系统详细设计 (6)3.1 语音信号的matlab仿真的数据分析 (6)3.2 程序代码分析 (12)四、调试与维护 (14)4.1 调试过程的问题与维护 (14)五、结束语 (15)六、参考文献 (16)七、指导教师评阅(手写) (17)一、需求分析1.1选题背景及意义该设计主要是介绍语音信号的采集与分析方法,通过PC机录制自己的一段声音,运用Matlab提供的函数进行仿真分析,并画出采样后语音信号的时域波形和频谱图,对所采集的语音信号加入干扰随机高斯噪声,对加入噪声的信号进行播放,并进行时域和频谱分析;对比加噪前后的时域图和频谱图,分析讨论采用什么样的滤波器进行滤除噪声。

1.2设计要求(1)通过PC机录制自己的一段声音“南昌工程学院刘敏”;(2)运用MATLAB中信号处理相关的函数对语音信号进行时域、频域上的分析,如短时能量,短时平均过零率,语谱图等;(3)运用MATLAB对语音信号进行综合与分析,包括语音信号的调制,叠加,和滤波等。

二、系统总体设计2.1 系统设计思路系统的整体设计思路包括语音信号的录制,语音信号的采集,语音信号的分析,其中语音信号的分析又包括了语音信号的时域分析和频域分析,语音信号的加噪处理和滤噪设计分析。

2.2 功能结构图及功能说明实际工作中,我们可以利用windows自带的录音机录制语音文件,声卡可以完成语音波形的A/D转换,获得WAVE文件,为后续的处理储备原材料。

语音信号采样和频谱分析

语音信号采样和频谱分析

语音信号采样和频谱分析一.实验目的(1)掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵;(2)了解MATLAB 对声音信号的处理指令;(3)了解计算机存储信号的方式及语音信号的特点;(4)加深对采样定理的理解;(5)加深学生对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力。

二.实验内容本实验利用MATLAB 指令录制一段语音信号,观察其时域波形并进行傅里叶变换,观察其频域的频谱。

根据该信号的频谱构成,选择三种不同的采样频率重新录制该语音信号,并试听回放效果,进行比较,以验证采样定理,并了解MATLAB 对声音信号的处理指令,加深对采样定理的理解。

关键词:傅里叶变换 信号采样三、实验原理语音信号是一种连续变化的模拟信号,而计算机只能处理和记录二进制的数字信号,因此,由自然音而得的音频信号必须用计算机的声音编辑工具,先进行语音采样,然后利用了计算机上的A/D 转换器,将模拟的声音信号变成离散的量化了的数字信号量化和编码,变成二进制数据后才能送到计算机进行再编辑和存储。

语音信号输出时,量化了的数字信号又通过D/A 转换器,把保存起来的数字数据恢复成原来的模拟的语音信号。

(1)应用MATLAB 进行声音的录制 (2)应用MATLAB 进行声音的播放 (3)语音信号的频谱分析 。

傅里叶变换建立了信号频谱的概念。

所谓傅里叶分析即分析信号的频谱(频率构成)、频带宽度等。

对语音信号的分析也不例外,也必须采用傅里叶变换这一工具。

对于连续时间信号)(t f ,其傅里叶变换)(ωF 为:⎰∞∞--=dt e t f F t j ωω)()(四、实验任务(1)应用MATLAB 进行声音的录制在MATLAB 命令窗口中键入“y=wavrecord(8000,8000,1)”,并按回车键,此时刻以后的1(8000/8000)秒时段内的声音信号将以y 为文件名,以数字声音信号.wav 格式存储在MATLAB 的工作空间里。

语音信号的采集与频谱分析(附代码)

语音信号的采集与频谱分析(附代码)
First,I compare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.
After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make comparison between the before and after frequency domain.
本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比较加噪前后的差别,
最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。再次试听回放效果,得出结论。
关键词:语音、FFT、频谱图、噪声、滤波器
Abstract
This design is based on the general function of Matlaband Adobeedition to deal with Audio signals. The original signals are collected by iPhone’s built-in recording equipment.
Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.

语音信号采集和分析报告

语音信号采集和分析报告

语音信号的采集与分析一、背景介绍1、语音信号处理的相关内容通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音内容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。

语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话内容,进行语音增强等.语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系.语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值.2、工作流程:相关的信号与系统知识:傅里叶变换在信号处理中具有十分重要的作用,它通常能使信号的某些特性变得很明显,而在原始信号中这些特性可能含糊不清或至少不明显.在语音信号处理中,傅里叶表示在传统上一直起主要作用.其原因一方面在于稳态语音的生成模型由线性系统组成,此系统被一随时间作周期变化或随机变化的源所激励.因而系统输出频谱反映了激励与声道频率响应特性.另一方面,语音信号的频谱具有非常明显的语音声学意义,可以获得某些重要的语音特征(如共振峰频率和带宽等).根据语音信号的产生模型,可以将其用一个线性非时变系统的输出表示,即看作是声门激励信号和声道冲激响应的卷积.在语音信号数字处理所涉及的各个领域中,根据语音信号求解声门激励和声道响应具有非常重要的意义.例如,为了求得语音信号的共振蜂就要知道声道传递函数(共振峰就是声道传递函数的各对复共轭极点的频率).又如,为了判断语音信号是清音还是浊音以及求得浊音情况下的基音频率,就应知道声门激励序列.在实现各种语音编码,合成,识别以及说话人识别时无不需要由语音信号来求得声门激励序列和声道冲激响应. 3、相关MATLAB知识:MATLAB 语言是一种数据分析和处理功能十分强大的计算机应用软件 ,它可以将声音文件变换为离散的数据文件 , 然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等, 信号处理是MATLAB 重要应用的领域之一。

声音信号的FFT谱分析

声音信号的FFT谱分析
的点来表征,这种平面图在语音信号处理中被称为“语谱 图”。
信号处理与系统
Frequency
声音信号的语谱图
4000 3500 3000 2500 2000 1500 1000
500 0 0
2
4
6
8
10
Time
某乐曲的语谱图
信号处理与系统
参考文献
王艳芬等.《数字信号处理》.人民邮电出版社,2010.08
0 0
0.5
1
幅度谱
1.5
2
x 105
0.5
1
1.5
2
2.5
x 104
信号处理与系统
声音信号的频谱分析
声音文件 时域波形及频谱图
explo.wav
1
时域波形
0
-1
0
1
2
3
4
4000
幅度谱
2000
0
0
0.5
1
1.5
5
6
4
x 10
2
2.5
4
x 10
信号处理与系统
声音信号的频谱分析
声音文件 时域波形及频谱图
splwater.w
av
1
0
时域波形
-1
0
0.5
1
1.5
幅度谱 100
50
0
0
0.5
1
1.5
2
2.5
x 104
2
2.5
4
x 10
信号处理与系统
分段傅里叶分析
语音是分节的,不同时间段上的频谱特性不同,应该对它进 行分段分析。 以上表中的文件“bird.wav”为例进行分析。

数据的采集与语音信号的频谱分析

数据的采集与语音信号的频谱分析

中北大学课程设计说明书学生姓名:吕涛学号:10050644X23 学生姓名:王丽学号:10050644X09学生姓名:赵芳学号:10050644X15 学生姓名:孟庆慧学号:10050644X05 学院:信息商务学院专业:电子信息工程题目:信息处理综合实践:数据的采集与语音信号的频谱分析指导教师:金永职称: 副教授2013 年 6 月 28 日中北大学课程设计任务书12/13 学年第二学期学院:信息商务学院专业:电子信息工程学生姓名:吕涛学号:10050644X23 学生姓名:王丽学号:10050644X09学生姓名:赵芳学号:10050644X15 学生姓名:孟庆慧学号:10050644X05 课程设计题目:信息处理综合实践:数据的采集与语音信号的频谱分析起迄日期:2013年6月7日~2013年6月28日课程设计地点:学院楼201、510、608实验室指导教师:金永系主任:王明泉下达任务书日期: 2013 年6月7 日1.设计目的:(1)掌握USB总线或PCI总线的基本结构,了解基于USB总线或PCI总线A/D卡的通用结构;(2)掌握数据采集卡采集数据的过程和原理;(3)了解MATLAB的信号处理技术;(4)掌握MATLAB 实现音乐信号的读取、保存、拼接与频谱分析。

2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):(1)查阅相关资料,撰写关于基于USB总线或PCI总线A/D卡的报告;(2)采用麦克采集本组各个同学的语音信号;(3)采用MATLAB读取采集的语音信号,截取各信号中的一段进行拼接,并进行频谱分析;(4)保存拼接后的语音信号,并进行播放证实存储的正确性,同时对拼接后信号与原有信号的频谱作对比;(5)提高内容:编写语音采集数据程序。

3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:(1)要求设计组的每个成员都要了解设计的要求和思路;(2)MATLAB数据处理部分要求有正确的运行结果及结果分析;(3)总线部分和A/D采集卡部分要求每位同学有自己的理解;(4)每位同学针对上述内容撰写设计说明书(每人1份)。

matlab对语音信号的频谱分析及滤波资料

matlab对语音信号的频谱分析及滤波资料

一.综合实验题目应用MatLab对语音信号进行频谱分析及滤波二.主要内容录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号;课程设计应完成的工作:1、语音信号的采集;2、语音信号的频谱分析;3、数字滤波器的设计;4、对语音信号进行滤波处理;5、对滤波前后的语音信号频谱进行对比分析;三.具体要求1、学生能够根据设计内容积极主动查找相关资料;2、滤波器的性能指标可以根据实际情况作调整;3、对设计结果进行独立思考和分析;4、设计完成后,要提交相关的文档;1)课程设计报告书(纸质和电子版各一份,具体格式参照学校课程设计管理规定),报告内容要涵盖设计题目、设计任务、详细的设计过程、原理说明、频谱图的分析、调试总结、心得体会、参考文献(在报告中参考文献要做标注,不少于5篇)。

2)可运行的源程序代码(电子版)四.进度安排在基本要求的基础上,学生可根据个人对该课程设计的理解,添加一些新的内容。

五.成绩评定(1)平时成绩:无故旷课一次,平时成绩减半;无故旷课两次平时成绩为0分,无故旷课三次总成绩为0分。

迟到15分钟按旷课处理(2)设计成绩:按照实际的设计过程及最终的实现结果给出相应的成绩。

(3)设计报告成绩:按照提交报告的质量给出相应的成绩。

课程设计成绩=平时成绩(30%)+设计成绩(30%)+设计报告成绩(40%)目录第一节实验任务 (3)第二节实验原理 (3)2.1 采样频率、位数及采样定理 (3)2.2 时域信号的FFT分析 (4)2.3 IIR数字滤波器设计原理 (4)2.4 FIR数字滤波器设计原理 (4)第三节实验过程 (5)3.1原始语音信号采样后的时域、频域分析 (5)3.2采样后信号的FFT变换分析 (7)3.3双线性变换法设计IIR数字滤波器 (8)3.4窗函数法设计FIR数字滤波器 (11)第四节心得体会 (14)第五节参考文献 (15)应用MatLab对语音信号进行频谱分析及滤波第一节实验任务录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法和双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号的变化;回放语音信号。

实验二 用FFT分析语音信号的频谱

实验二  用FFT分析语音信号的频谱

实验二用FFT分析语音信号的频谱
一、实验目的
1、分析实际工程中一个语音信号的频谱。

2、掌握FFT反变换的意义。

二、实验内容
1、实际中通过一个语音信号进行采样,获得数字信号对频谱信号进行FFT进行
分析。

2、去除频谱中幅值小于1的系数进行反变换,重构原来语音进行对比分析。

3、
三、实验用设备仪器及材料
P4计算机MATLAB软件
四、实验原理
实验程序如下:
[x,f,n,o]=wavread(‘bird.wav’);
subplot(2,2,1);plot(x);title(‘原始语音信号’);
y=fft(x);subplot(2,2,2);plot(abs(y));title(‘FFT变换’);
y(abs(y)<1)=0;x=ifft(y);
subplot(2,2,3);plot(abs(y));title(‘去掉幅值小于1的FFT变换值’);
subplot(2,2,4);plot(real(x));title(‘重构语音信号’);
wavwrite(x,f,’bird1.wav’);
五、实验步骤和及方法
1、对一个语音进行FFT,画出其频谱。

2、去掉幅值小于1的系数,进行傅立叶变换。

3、给出一个语音信号,用MATLAB进行FFT分析。

六、实验报告要求
1、对FFT变换及IFFT有一定的认识。

2、了解数据压缩的意义。

3、画出语音信号时频图、及重构语音图。

数据的采集与语音信号的频谱分析综述

数据的采集与语音信号的频谱分析综述

中北大学课程设计说明书学生姓名:吕涛学号:10050644X23 学生姓名:王丽学号:10050644X09学生姓名:赵芳学号:10050644X15 学生姓名:孟庆慧学号:10050644X05 学院:信息商务学院专业:电子信息工程题目:信息处理综合实践:数据的采集与语音信号的频谱分析指导教师:金永职称: 副教授2013 年 6 月 28 日中北大学课程设计任务书12/13 学年第二学期学院:信息商务学院专业:电子信息工程学生姓名:吕涛学号:10050644X23 学生姓名:王丽学号:10050644X09学生姓名:赵芳学号:10050644X15 学生姓名:孟庆慧学号:10050644X05 课程设计题目:信息处理综合实践:数据的采集与语音信号的频谱分析起迄日期:2013年6月7日~2013年6月28日课程设计地点:学院楼201、510、608实验室指导教师:金永系主任:王明泉下达任务书日期: 2013 年6月7 日1.设计目的:(1)掌握USB总线或PCI总线的基本结构,了解基于USB总线或PCI总线A/D卡的通用结构;(2)掌握数据采集卡采集数据的过程和原理;(3)了解MATLAB的信号处理技术;(4)掌握MATLAB 实现音乐信号的读取、保存、拼接与频谱分析。

2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):(1)查阅相关资料,撰写关于基于USB总线或PCI总线A/D卡的报告;(2)采用麦克采集本组各个同学的语音信号;(3)采用MATLAB读取采集的语音信号,截取各信号中的一段进行拼接,并进行频谱分析;(4)保存拼接后的语音信号,并进行播放证实存储的正确性,同时对拼接后信号与原有信号的频谱作对比;(5)提高内容:编写语音采集数据程序。

3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:(1)要求设计组的每个成员都要了解设计的要求和思路;(2)MATLAB数据处理部分要求有正确的运行结果及结果分析;(3)总线部分和A/D采集卡部分要求每位同学有自己的理解;(4)每位同学针对上述内容撰写设计说明书(每人1份)。

音乐信号频谱分析

音乐信号频谱分析
等处理
利用双线性变换设 计IIR滤波器( 巴特 沃斯数字低通滤波 器的设计)",首先 要设计出满足指标
要求的模拟滤波器 的传递函数Ha(s), 然后由Ha(s)通过双 线性变换可得所要 设计的IIR滤波器的
系统函数H(z)
如果给定的指标为 数字滤波器的指标, 则首先要转换成模 拟滤波器的技术指 标,这里主要是边 界频率Wp和Ws的转 换,对ap和as指标
2.语音信号的采集
但过高的采样频率并不可取,对固定长 度(T)的信号,采集到过大的数据量 (N=T/△t),给计算机增加不必要的计算 工作量和存储空间
若数据量(N)限定,则采样时间过短,会 导致一些数据信息被排斥在外
采样频率过低,采样点间隔过远,则离 散信号不足以反映原有信号波形特征, 无法使信号复原,造成信号混淆
3.低通滤波器的设计
plot(x2)
subplot(2,1,2)
title('IIR低通滤波器 滤波后的时域波形')
%画出滤波前的时域图 plot(fl) sound(fl, 44100)
title('IIR低通滤波器 滤波前的时域波形')
%画出滤波后的时域图
%播放滤波后的信号
3.低通滤波器的设计
1 散的数字语音信号
采样也称抽样,是信号在时间上的离散化,即按照一定时间间隔△t在模拟信号x(t)上逐点采取其瞬时
2值
采样时必须要注意满足奈奎斯特定理,即采样频率fs必须以高于受测信号的最高频率两倍以上的速度进
3 行取样,才能正确地重建波它是通过采样脉冲和模拟信号相乘来实现的 4 在采样的过程中应注意采样间隔的选择和信号混淆:对模拟信号采样首先要确定采样间隔 5 如何合理选择△t涉及到许多需要考虑的技术因素 6 一般而言,采样频率越高,采样点数就越密,所得离散信号就越逼近于原信号

Matlab对语音信号进行频谱分析及滤波

Matlab对语音信号进行频谱分析及滤波

实验报告(题目)信号处理算法课程设计专业电子信息科学与技术班级电子09-1班学生陈年兴学号 09 指导教师刘利民完成时间 2012 年 6 月 14 日信号处理算法课程设计一、设计内容设计一:Matlab对语音信号进行频谱分析及滤波1、语音信号的采集录制了一段声音,在C盘保存为WAV格式(也可以利用已有的音乐)。

然后在Matlab软件平台下.利用函数wavread对语音信号进行采样,并记录下了采样频率和采样点数,在这里我们还通过函数sound引入听到采样后自己所录的一段声音。

2、语音信号的频谱分析首先画出语音信号的时域波形;然后对语音信号进行频谱分析,在Matlab 中,我们利用函数fft对信号进行快速傅里叶变换,得到信号的频谱特性性。

3、设计数字滤波器和画出其频谱响应设计一个数字滤波器:F c =1000 Hz,Fb=1200 Hz,Ap= 1dB,As=15dB,利用Matlab中的函数freqz画出了该滤波器的频率响应。

4、对滤波前后的信号进行对比,分析信号的变化,并回放语音信号。

一、处理程序如下所示:[y, Fs, nbits] =wavread('E:\yinpin\luyin.wav'); %读取语音信号的数据sound(y,Fs); %播放语音信号y1=fft(y,1024); %对信号做1024点FFT变换f=Fs*(0:511)/1024;figure(1);plot(y) %做原始语音信号的时域图形title('原始语音信号');xlabel('时间t');ylabel('幅度n');figure(2);subplot(2,1,1);plot(f,abs(y(1:512)));title('原始语音信号频谱'); xlabel('频率');ylabel('幅度');subplot(2,1,2);plot(abs(y1(1:512))) %做原始语音信号的FFT频谱图title('原始语音信号FFT频谱'); xlabel('频率');ylabel('幅度');figure(3);freqz(y); %绘制原始语音信号的频率响应图title('频率响应图');二、设计一个数字滤波器:F c =1000 Hz,F b =1200 Hz,Ap= 1dB ,As=15dB 。

语音的频率、频率分辨率、采样频率、采样点数、量化、增益

语音的频率、频率分辨率、采样频率、采样点数、量化、增益

语⾳的频率、频率分辨率、采样频率、采样点数、量化、增益语⾳的频率、频率分辨率、采样频率、采样点数、量化、增益采样采样频率 每秒从连续信号中提取并组成离散信号的采样个数。

⽤Hz表⽰,采样频率的倒数是采样周期,即采样之间的时间间隔。

通俗的讲:采样频率是指计算机每秒钟采集的多少声⾳样本。

采样频率越⾼,即采样的间隔时间越短,则在单位时间内计算机得到的声⾳样本数据就越多,对声⾳波形的表⽰也越精确。

采样定理 也称作奈奎斯特采样定理,只有采样频率⾼于声⾳信号最⾼频率的两倍时,才能把数字信号表⽰的声⾳还原成为原来的声⾳。

所以采样定理确定了信号最⾼最⾼的频率上限,或能获取连续信号的所有信息的采样频率的下限。

举例:如果有⼀个20Hz的语⾳和⼀个20KHz的语⾳,我们以44.1KHz的采样率对语⾳进⾏采样,结果:20Hz语⾳每次振动被采样了40K20=200040K20=2000次;20KHz语⾳每次振动被采样了40K20K=240K20K=2次;所以在相同的采样率下,记录低频的信息远远⽐⾼频的详细。

上采样可以理解为信号的插值,下采样可以理解为信号的抽取。

带宽:采样频率的⼀半,最⾼频率等于采样频率的⼀半。

混叠 混叠也称为⽋采样,当采样频率⼩于最⼤截⽌频率两倍(奈奎斯特频率)的时候就会发⽣信号重叠,这⼀现象叫做混叠。

为了避免混叠现象,通常采⽤两种措施:1、提⾼采样频率,达到信号最⾼频率的两倍以上;2、输⼊信号通过抗混叠滤波器(低通滤波器)进⾏滤波处理,过滤掉频率⾼于采样率⼀半的信号。

语谱图和频谱图语⾳波形图 波形图表⽰语⾳信号的响度随时间变化的规律,横坐标表⽰时间,纵坐标表⽰声⾳响度,我们可以从时域波形图中观察语⾳信号随时间变化的过程以及语⾳能量的起伏频谱图 频谱图表⽰语⾳信号的功率随频率变化的规律,信号频率与能量的关系⽤频谱表⽰,频谱图的横轴为频率,变化为采样率的⼀半(奈奎斯特采样定理),纵轴为频率的强度(功率),以分贝(dB)为单位语谱图 横坐标是时间,纵坐标是频率,坐标点值为语⾳数据能量,能量值的⼤⼩是通过颜⾊来表⽰的,颜⾊越深表⽰该点的能量越强。

语音信号处理实验指导书

语音信号处理实验指导书

语音信号处理实验指导书实验一:语音信号的采集与播放实验目的:了解语音信号的采集与播放过程,掌握采集设备的使用方法。

实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 将麦克风插入电脑的麦克风插孔。

2. 打开电脑的录音软件(如Windows自带的录音机)。

3. 在录音软件中选择麦克风作为录音设备。

4. 点击录音按钮开始录音,讲话或者唱歌几秒钟。

5. 点击住手按钮住手录音。

6. 播放刚刚录制的语音,检查录音效果。

7. 将扬声器或者耳机插入电脑的音频输出插孔。

8. 打开电脑的音频播放软件(如Windows自带的媒体播放器)。

9. 选择要播放的语音文件,点击播放按钮。

10. 检查语音播放效果。

实验二:语音信号的分帧与加窗实验目的:了解语音信号的分帧和加窗过程,掌握分帧和加窗算法的实现方法。

实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段语音。

2. 将录制的语音信号进行分帧处理。

选择合适的帧长和帧移参数。

3. 对每一帧的语音信号应用汉明窗。

4. 将处理后的语音帧进行播放,检查分帧和加窗效果。

实验三:语音信号的频谱分析实验目的:了解语音信号的频谱分析过程,掌握频谱分析算法的实现方法。

实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段语音。

2. 将录制的语音信号进行分帧处理。

选择合适的帧长和帧移参数。

3. 对每一帧的语音信号应用汉明窗。

4. 对每一帧的语音信号进行快速傅里叶变换(FFT)得到频谱。

5. 将频谱绘制成图象,观察频谱的特征。

6. 对频谱进行谱减法处理,去除噪声。

7. 将处理后的语音帧进行播放,检查频谱分析效果。

实验四:语音信号的降噪处理实验目的:了解语音信号的降噪处理过程,掌握降噪算法的实现方法。

实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段带噪声的语音。

语音信号地采集与频谱分析报告(附代码)

语音信号地采集与频谱分析报告(附代码)

《信号与系统》大作业语音信号的采集与频谱分析——基于Matlab的语音信号处理学生某某:学号:专业班级:电子工程学院卓越班指导教师:2015年6月22日摘要本设计用苹果手机自带的录音设备采集了原始语音,并导入了电脑转成wav格式,然后用MATLAB和Adobe audition对其进展时域分析。

接着利用傅里叶变换进展了频域分析,绘制频谱图,再录制一段加上歌曲的伴奏的语音与原唱进展了比照分析,得出了我与歌星在频域上的差异。

本设计给信号加了两种噪声并通过观察加噪后的频谱和试听回放效果比拟加噪前后的差异,最后,设计了FIR数字低通滤波器和带通滤波器,分析滤波前后的频谱。

再次试听回放效果,得出结论。

关键词:语音、FFT、频谱图、噪声、滤波器AbstractThis design is based on the general function of Matlab and Adobe edition to deal with Audio signals. The original signals are c ollected by iPhone’s built-in recording equipment.First,I pare the file generated by myself with that of thesame song sang by a famous singer.The emphasis is generally laid on analysing the difference in frequncy domain,but time domain will be included too.After that,two noise signals are added to the original signal respectively and let them pass a filter to analyse it.In the two process mentioned before,I make parison between the before and after frequency domain.Sampling Theorem is the base of my design.It is by sampling we can get discrete signals from the original one and draw the image in time domain.Also,fast fourier transform is employed(FFT)to get the signals in frequency domain.The ayalysis of frequency domain is the highlight of this design.Through this design,I can deepen my prehension of principles of audio signals and I have learnt how to deal with it.Through met with much hindrance,I improved my skills finally.Keywords: audio signal、TTT、noise、filter1 绪论语音信号处理属于信息科学的一个重要分支,它是研究用数字信号处理技术对语音信号进展处理的一门新兴学科,同时又是综合性的多学科领域和涉与面很广的交叉学科,因此我们进展语言信号处理具有时代的意义。

语音信号采集和频谱分析

语音信号采集和频谱分析

语音信号采集和频谱分析利用计算机中的录音设备,采集语音信号并采样,得到数据文件‘*.wav’。

方法为:[开始]→[程序]→[附件]→[娱乐]→[录音机]→‘*.wav’。

读取‘*.wav’。

[x,fs,bits] = wavread(‘F:\*\*.wav’); %用于读取语音,采样值放在变量x中,fs表示采样频率(Hz),bits表示采样位数。

sound(x,fs,bits); %放音得到声音变量x,同时也把x的采样频率fs = 8kHz和数据位bits = 8 bits 放进了MATLAB的工作空间。

对采集的语音数据做fs点快速傅立叶变换。

n = length (x) ; %求出语音信号的长度X=fft(x,n); %傅里叶变换subplot(2,1,1);plot(x);title('原始信号波形');subplot(2,1,2);plot(abs(X));title('原始信号频谱')图1语音数据的波形图和频谱图由图1 所示的频谱可清楚地看到:样本声音主要以低频为主,样本声音的能量大约集中在600Hz以内,2000Hz以外的高频部分很少。

所以信号宽度近似取为600Hz,由采样定理可得Fs >2F = 2*600=1200Hz。

重放语音后仍可较清晰地听出原声,不存在声音混叠现象。

(2)加入噪音给原始的语音信号加上一个高频余弦噪声,频率为3.8kHz。

画出加噪后的语音信号时域和频谱图,与原始信号对比,可以很明显的看出区别。

fs=11025;t=(0:length(x)-1)/11025;Au=0.05;d=[Au*cos(2*pi*3800*t)]'; %噪声为3.8kHz的余弦信号z=x+d;Z=fft(z,n);subplot(2,1,1);plot(z);title('加噪后的信号波形');subplot(2,1,2);plot(abs(Z));title('加噪后的信号频谱');图2添加噪声后的语音数据的波形图和频谱图Write a report and explain your experiment (In English).。

播音语音实验报告总结(3篇)

播音语音实验报告总结(3篇)

第1篇一、实验目的本次播音语音实验旨在通过一系列的语音处理和分析,深入了解语音信号的基本特性,掌握语音信号处理的基本方法,并学会使用相关软件进行语音信号的采集、处理和分析。

通过实验,提高对语音信号处理技术的认识和实际操作能力。

二、实验原理语音信号处理是现代通信、语音识别、语音合成等领域的基础技术。

实验过程中,我们主要学习了以下原理:1. 语音信号采集:通过麦克风采集语音信号,将其转换为数字信号。

2. 时域分析:分析语音信号的波形、幅度、频率等特性。

3. 频域分析:将时域信号转换为频域信号,分析信号的频谱特性。

4. 语音处理算法:如滤波、降噪、增强、压缩等,提高语音信号质量。

5. 语音识别:通过特征提取和模式识别技术,实现语音信号到文字的转换。

三、实验过程1. 语音信号采集:使用麦克风采集一段普通话语音信号,并将其保存为WAV格式。

2. 时域分析:- 使用MATLAB软件打开WAV文件,观察语音信号的波形。

- 计算语音信号的幅度、频率等参数。

- 分析语音信号的时域特性,如过零率、平均幅度等。

3. 频域分析:- 使用MATLAB软件进行快速傅里叶变换(FFT),将时域信号转换为频域信号。

- 分析语音信号的频谱特性,如频率成分、能量分布等。

4. 语音处理:- 使用MATLAB软件实现滤波、降噪、增强、压缩等处理算法。

- 观察处理前后语音信号的变化,评估处理效果。

5. 语音识别:- 使用现有的语音识别工具(如Google语音识别API)对处理后的语音信号进行识别。

- 分析识别结果,评估语音识别系统的性能。

四、实验结果与分析1. 时域分析:- 观察到语音信号的波形具有明显的周期性,频率成分集中在200Hz到4kHz之间。

- 语音信号的幅度随时间变化较大,具有非线性特性。

2. 频域分析:- FFT结果显示,语音信号的频谱具有明显的频带特性,主要集中在300Hz到3.5kHz之间。

- 频谱能量分布不均匀,存在明显的峰值,对应语音信号的基频及其谐波。

语音信号的频谱分析实验报告

 语音信号的频谱分析实验报告

综合设计实验语音信号的频谱分析一、实验内容录制一段个人自己的语音信号,并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;在语音信号中增加正弦噪声信号(自己设置几个频率的正弦信号),对加入噪声信号后的语音信号进行频谱分析;给定滤波器的性能指标,采用窗函数法和双线性变换设计数字滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比试听,分析信号的变化。

二、实现步骤1.语音信号的采集利用Windows下的录音机,录制一段自己的话音(“信号与系统”),时间在3s内。

然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,采样频率设置为4kHz。

[y,fs,bits]=wavread('j.wav',[1024 63500]);sound(y,fs,bits);2.语音信号的频谱分析要求首先画出语音信号的时域波形;然后对语音号进行傅里叶变换,得到信号的频谱特性。

在采集得到的语音信号中加入正弦噪声信号(频率为10kHz),然后对加入噪声信号后的语音号进行傅里叶变换,得到信号的频谱特性。

并利用sound试听前后语音信号的不同。

3. 设计滤波器设计一个理想低通滤波器,滤除正弦噪声信号,得到信号的频谱特性。

要求采样卷积计算的方式滤除噪声,并利用sound试听滤波前后语音信号的不同。

1、语音信号的采集[y,fs,bits]=wavread('j.wav',[1024 63500]);sound(y,fs,bits);2、语音信号的频谱分析Y=fft(y,4096);figure(1);plot(y);title('语音信号的时域波形');figure(2);plot(abs(Y));title('语音信号的频谱特性');IIR 数字滤波器低通clear;close all;[y,fs,bits]=wavread('j.wav',[1024 63500]);Y=fft(y,4096);fb=1000;fc=1200;As=100;Ap=1;fs=22050;wc=2*fc/fs; wb=2*fb/fs;[n,wn]=ellipord(wc,wb,Ap,As);[b,a]=ellip(n,Ap,As,wn);figure(1);freqz(b,a,512,fs);x=filter(b,a,y);X=fft(x,4096);figure(2);subplot(2,2,1);plot(y);title('滤波前信号波形');subplot(2,2,2);plot(abs(Y));title('滤波前信号频谱');Subplot(2, 2 ,3);plot(x);title('滤波后信号波形');Subplot(2, 2 ,4);plot(abs(X));title('滤波后信号频谱');sound(x,fs,bits);IIR 高通wp=2*pi*4800/18000;wr=2*pi*5000/18000;Ap=1;Ar=15;T=1[N,wn]=buttord(wp/pi,wr/pi,Ap,Ar);[b,a]=butter(N,wn,'high');[db,mag,pha,grd,w]=freqz_m(b,a);subplot(211);plot(w/pi,mag);title('数字巴特沃茨高通滤波器幅度响应|Ha(J\Omega)|'); subplot(212);plot(w/pi,db);title('数字巴特沃茨高通滤波器幅度响应(db)');[y,Fs,nbite]=wavread('j.wav',[1024 63500]);Y=fft(y,4096);x=filter(b,a,y);X=fft(x,4096);figure(3)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(4)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);IIR 带通wp=[1200*pi*2/9000,3000*2*pi/9000];wr=[1000*2*pi/9000,3200*2*pi/9000];Ap=1;Ar=10 0;[N,wn]=buttord(wp/pi,wr/pi,Ap,Ar);[b,a]=butter(N,wn,'bandpass');[db,mag,pha,grd,w]=freqz_m(b,a);subplot(211);plot(w/pi,mag);title('数字巴特沃茨带通滤波器幅度响应|Ha(J\Omega)|');subplot(212);plot(w/pi,db);title('数字巴特沃茨带通滤波器幅度响应(db)');[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=filter(b,a,y);X=fft(x,4096);figure(3)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(4)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);FIR 数字滤波器FIR 低通fsamp=8000;rp=1;rs=100;fcuts=[1000 1200];d1=(10^(rp/20)-1)/(10^(rp/20)+1);d2=10^(-rs/20);mags=[1 0];devs=[d1 d2];[n,wn,beta,ftype]=kaiserord(fcuts,mags,devs,fsamp); hh=fir1(n,wn,ftype,kaiser(n+1,beta),'noscale'); freqz(hh);[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(hh,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形'); figure(3)subplot(211);plot(abs(Y));title('原频谱频谱'); subplot(212);plot(abs(X));title('滤波后信号频谱'); sound(x,Fs);FIR 高通wc=2*pi*4800;wp=5000*2*pi/18000;f=[0.5333,0.5556]; m=[0,1];rp=1;rs=100;d1=(10^(rp/20)-1)/(10^(rp/20)+1);d2=10^(-rs/20); rip=[d2,d1];[N,fo,mo,w]=remezord(f,m,rip);N=N+2;hn=remez(N,fo,mo,w);[hw,w]=freqz(hn,1);plot(w/pi,20*log10(abs(hw)));[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(hn,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(3)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);FIR 带通wp1=2*pi*1200/8000;wp2=3000*2*pi/8000;wc1=2*pi*1000/8000;wc2=2*pi*3200*8000; f=[0.25,0.30,0.75,0.80][n,wn,bta,ftype]=kaiserord([0.25,0.30,0.75,0.80],[0 1 0],[0.01 0.1087 0.01]);h1=fir1(n,wn,ftype,kaiser(n+1,bta),'noscale');[hh1,w1]=freqz(h1,1,256);figure(1);plot(w1/pi,20*log10(abs(hh1)));grid;[y,Fs,nbite]=wavread('j.wav');Y=fft(y,4096);x=fftfilt(h1,y);X=fft(x,4096);figure(2)subplot(211);plot(y);title('原时域波形');subplot(212);plot(x);title('滤波后信号波形');figure(3)subplot(211);plot(abs(Y));title('原频谱频谱');subplot(212);plot(abs(X));title('滤波后信号频谱');sound(x,Fs);设计结果分析(1)语音分析图1图2Fs=22050; n=4096(2)IIR 低通图3滤波器在通带内平滑,通带截止频率为 1000hz,最大衰减 0dB;阻带起始频率为1200hz,最小衰减 100dB;相位不是线性变化, 基本满足性能要求.图4语音信号经过低通滤波器后,基本没发生变化(3) IIR 高通图5数字滤波器在通带内平滑,通带截止频率为0. 5π,最大衰减 0dB;阻带起始频率为 0. 48π,最小衰减 100dB;相位不是线性变化, 基本满足性能要求.语言信号经过高通滤波器后,低频分量基本被衰减。

语音信号实验报告

语音信号实验报告

一、实验目的1. 理解语音信号的基本特性和处理方法。

2. 掌握语音信号的采样、量化、编码等基本过程。

3. 学习使用相关软件对语音信号进行时域和频域分析。

4. 了解语音信号的降噪、增强和合成技术。

二、实验原理语音信号是一种非平稳的、时变的信号,其频谱特性随时间变化。

语音信号处理的基本过程包括:信号采集、信号处理、信号分析和信号输出。

三、实验仪器与软件1. 仪器:计算机、麦克风、耳机。

2. 软件:Matlab、Audacity、Python。

四、实验步骤1. 信号采集使用麦克风采集一段语音信号,并将其存储为.wav格式。

2. 信号处理(1)使用Matlab读取.wav文件,提取语音信号的采样频率、采样长度和采样数据。

(2)将语音信号进行时域分析,包括绘制时域波形图、计算信号的能量和过零率等。

(3)将语音信号进行频域分析,包括绘制频谱图、计算信号的功率谱密度等。

3. 信号分析(1)观察时域波形图,分析语音信号的幅度、频率和相位特性。

(2)观察频谱图,分析语音信号的频谱分布和能量分布。

(3)计算语音信号的能量和过零率,分析语音信号的语音强度和语音质量。

4. 信号输出(1)使用Audacity软件对语音信号进行降噪处理,比较降噪前后的效果。

(2)使用Python软件对语音信号进行增强处理,比较增强前后的效果。

(3)使用Matlab软件对语音信号进行合成处理,比较合成前后的效果。

五、实验结果与分析1. 时域分析从时域波形图可以看出,语音信号的幅度、频率和相位特性随时间变化。

语音信号的幅度较大,频率范围一般在300Hz~3400Hz之间,相位变化较为复杂。

2. 频域分析从频谱图可以看出,语音信号的能量主要集中在300Hz~3400Hz范围内,频率成分较为丰富。

3. 信号处理(1)降噪处理:通过对比降噪前后的时域波形图和频谱图,可以看出降噪处理可以显著降低语音信号的噪声,提高语音质量。

(2)增强处理:通过对比增强前后的时域波形图和频谱图,可以看出增强处理可以显著提高语音信号的幅度和频率,改善语音清晰度。

应用FFT实现信号频谱分析

应用FFT实现信号频谱分析

应用FFT实现信号频谱分析FFT(快速傅里叶变换)是一种用于将时域信号转换为频域信号的算法。

它通过将信号分解成多个正弦和余弦波的组合来分析信号的频谱。

频谱分析是一种常用的信号处理技术,用于确定信号中存在的频率成分以及它们的强度。

FFT的应用广泛,包括音频分析、图像处理、通信系统等领域。

下面将介绍一些常见的应用场景和具体实现。

1.音频分析在音频领域,频谱分析可以用于确定音乐中的各种音调、乐器和声音效果。

通过应用FFT算法,可以将音频信号转化为频谱图,并从中提取音频的频谱特征,如基频、谐波倍频等。

这对于音频处理、音乐制作以及语音识别等任务非常重要。

2.图像处理在图像处理中,频谱分析可以用于图像增强、图像去噪、图像压缩等方面。

通过将图像转换为频域信号,可以对不同频率的成分进行加权处理,以实现对图像的调整和改善。

例如,可以使用FFT将图像进行频谱滤波,降低噪声或突出一些特定频率成分。

3.通信系统在通信系统中,频谱分析用于信号调制、信道估计和解调等任务。

通过分析信号的频谱,可以确定信道的衰减和失真情况,从而进行信号调整和校正。

此外,FFT还可以用于信号的多路径传播分析,以提高信号通信质量和可靠性。

如何实现FFT信号频谱分析?1.数据采集首先,需要采集信号数据。

可以使用传感器或任何可以捕捉信号的设备来获取时域信号。

2.数据预处理接下来,需要对采集到的数据进行预处理。

例如,可以对信号进行去直流操作,以消除直流分量对频谱分析的影响。

3.数值计算使用FFT算法对预处理后的数据进行频谱分析。

FFT的实现可以使用现有的库函数或自己编写。

在计算FFT之前,通常需要对数据进行零填充,以提高频率分辨率。

4.频谱分析通过计算FFT结果的幅度谱或功率谱,可以得到信号的频谱信息。

幅度谱表示信号不同频率成分的相对强度,而功率谱则表示信号在不同频段上的能量分布。

5.结果可视化最后,将频谱分析的结果可视化。

可以绘制幅度谱或功率谱的图表,以显示信号中的频率成分和它们的强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中北大学课程设计说明书学生姓名:吕涛学号:10050644X23 学生姓名:王丽学号:10050644X09学生姓名:赵芳学号:10050644X15 学生姓名:孟庆慧学号:10050644X05 学院:信息商务学院专业:电子信息工程题目:信息处理综合实践:数据的采集与语音信号的频谱分析指导教师:金永职称: 副教授2013 年 6 月 28 日中北大学课程设计任务书12/13 学年第二学期学院:信息商务学院专业:电子信息工程学生姓名:吕涛学号:10050644X23 学生姓名:王丽学号:10050644X09学生姓名:赵芳学号:10050644X15 学生姓名:孟庆慧学号:10050644X05 课程设计题目:信息处理综合实践:数据的采集与语音信号的频谱分析起迄日期:2013年6月7日~2013年6月28日课程设计地点:学院楼201、510、608实验室指导教师:金永系主任:王明泉下达任务书日期: 2013 年6月7 日1.设计目的:(1)掌握USB总线或PCI总线的基本结构,了解基于USB总线或PCI总线A/D卡的通用结构;(2)掌握数据采集卡采集数据的过程和原理;(3)了解MATLAB的信号处理技术;(4)掌握MATLAB 实现音乐信号的读取、保存、拼接与频谱分析。

2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等):(1)查阅相关资料,撰写关于基于USB总线或PCI总线A/D卡的报告;(2)采用麦克采集本组各个同学的语音信号;(3)采用MATLAB读取采集的语音信号,截取各信号中的一段进行拼接,并进行频谱分析;(4)保存拼接后的语音信号,并进行播放证实存储的正确性,同时对拼接后信号与原有信号的频谱作对比;(5)提高内容:编写语音采集数据程序。

3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕:(1)要求设计组的每个成员都要了解设计的要求和思路;(2)MATLAB数据处理部分要求有正确的运行结果及结果分析;(3)总线部分和A/D采集卡部分要求每位同学有自己的理解;(4)每位同学针对上述内容撰写设计说明书(每人1份)。

4.主要参考文献:要求按国标GB 7714—87《文后参考文献著录规则》书写,例:1 傅承义,陈运泰,祁贵中.地球物理学基础.北京:科学出版社,1985(5篇以上)5.设计成果形式及要求:课程设计说明书程序运行结果6.工作计划及进度:2013年6月7日~ 6月15日:查资料,了解基于USB总线或PCI总线A/D卡的通用结构以及A/D采集卡的应用;6月15日~ 6月25日:MATLAB 实现语音信号的读取、保存、拼接与频谱分析;6月26日~ 6月27日:撰写课程设计说明书;6月28日:答辩系主任审查意见:签字:年月日目录摘要 (2)1基于USB总线A/D卡的报告 (2)1.1 USB总线介绍 (2)1.2 USB接口电路设计 (3)1.3 接口的数据采集系统的设计实现 (3)1.4 A/D转换电路 (4)2 设计方案简介 (5)3 语音信号的采集 (5)4 语音信号的分析 (6)4.1语音信号时域分析 (6)4.2语音信号频域分析 (6)5 程序设计及仿真图 (7)6语音信号的读取、拼接、保存与频谱分析 (9)6.1设计条件及主要参数表 (9)6.2设计主要参数计算 (11)6.3设计结果 (12)7设计体会 (13)8 参考文献 (14)摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。

该设计主要介绍语音信号的采集与分析方法,通过PC机录制自己的一段声音,运用Matlab提供的函数进行仿真分析,并画出采样后语音信号的时域波形和频谱图,对所采集的语音信号加入干扰随机高斯噪声,对加入噪声的信号进行播放,并进行时域和频谱分析;对比加噪前后的时域图和频谱图,分析讨论采用什么样的滤波器进行滤除噪声。

关键词:语音信号;采集与分析;Matlab一基于USB总线A/D卡的报告B总线介绍USB总线为通用串行总线,USB接口位于PS/2接口和串并口之间,允许外设在开机状态下热插拔,最多可串接下来127个外设,传输速率可达480Mb/S,P它可以向低压设备提供5伏电源,同时可以减少PC机I/O接口数量。

USB是基于通用连接技术,实现外设的简单快速连接,达到方便用户、降低成本、扩展PC连接外设范围的目的。

数据采集就是把来自各种传感器的信号数据实时地、准确地测量或汇集起来,用计算机进行实时处理或记录存储,实时完成测试和控制功能。

数据采集系统结构通过微机的标准接口连接各种功能模块、仪器仪表和传感器,组成测量系统。

2.USB接口电路设计R3是上拉电阻器,它可使USB口的D+端上拉到DS2490S的VB端,表示USB主机系统是高速设备,同时这个上拉电阻器告诉主机有USB设备插入。

该上拉电阻器的设置对适配器的影响很大,它的负载值和1-Wire网络的总长决定1-Wire总线电压上升到5 V的速度。

经过实验测试选择R3的阻值为27 Ω±lO%。

R1、R2为USB数据线保护电阻器。

L、L2具有禁止高频干扰并且减弱EMI辐射的功能。

LF33CV为3.3 V电压稳压器,与周围元件C1、C2组成强上拉部分,给EEPROM 或温度传感器等器件提供额外的电源。

B接口的数据采集系统的设计实现数据采集系统使用采集卡进行数据采集,然后经过A/D转换器供计算机加工处理。

基于USB接口的数据采集与频谱分析系统本系统结构由硬件部分和软件部分组成,硬件部分主要有计算机、I/ O 接口设备. 计算机作为硬件平台的核心可采用台式机,系统采用的I/ O 设备为A/ D 数据采集卡,该采集卡是一种基于USB 总线数据采集产品,可与带USB 接口的各种台式计算机、笔记本电脑、工控机连接构成高性能的数据采集测量系统.整个系统主要由4部分组成:USB接口芯片及外围电路、控制电路、数据缓冲电路和A/D转换电路。

USB接口芯片选择了Cypress公司的EZ-USB 2131Q,该芯片内嵌8051控制器,因此整个系统以EZ-USB控制器为核心,由EZ-USB经控制电路实现对A/D 转换电路和数据缓冲电路的控制,模拟信号转换后的数据送入数据缓冲器,当数据缓冲器存满之后,通知EZ-USB控制器,由主机取出数据。

整个系统框图如图1所示。

4.A/D转换电路声卡是计算机对语音信号进行加工的重要部件,它具有对信号滤波、放大、采样保持、A/D和D/A转换等功能。

系统中A/D转换芯片采用了MAXIM公司的MAX122,该芯片是12 b的高速的A/D转换器。

在完全转换模式下,他的转换时间可以达到2.6&mu;s,采样率为333 kS /s。

MAX122有5种工作模式,在数据采集系统中,采用了模式2即连续转换模式。

在这种模式下,每次转换需要13~14个时钟脉冲节拍,转换可以不间断地进行,但是需要提供开始转换使能信号,并且要保证使能信号和时钟信号同步,读信号和片选始终处于有效状态。

数据输出使能信号一直有效,在转换结束时产生新的数据。

二设计方案简介本实验通过应用MATLAB软件实现音乐信号的读取、拼接、保存与频谱分析。

将信号源发出的信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律,称为频谱分析。

频谱分析主要分析信号是由哪些频率的正弦信号叠加得到的,以及这些正弦信号的振幅。

分析和处理音频信号,首先要对声音信号进行采集,MATLAB 的数据采集工具箱提供了一整套命令和函数,通过调用这些函数和命令,可直接控制声卡进行数据采集。

Windows自带的录音机程序也可驱动声卡来采集语音信号,并能保存为W A V格式文件,供MATLAB相关函数直接读取、写入或播放。

本实验以W A V格式音频信号作为分析处理的输入数据,用MATLAB处理音频信号的基本流程是:先将W A V格式音频信号经wavread 函数转换成MATLAB列数组变量;再用MATLAB强大的运算能力进行数据分析和处理,如时域分析、频域分析、数字滤波、信号合成、信号变换、识别和增强等等;处理后的数据如是音频数据,则可用wavwrite转换成W A V格式文件或用sound函数直接回放。

三语音信号的采集配置好数据采集设备的参数后,使用start命令便可启动声卡开始语音信号的采集。

采集到的数据被暂时存放在PC机的内存里,理论上可采集的最大数据量是由PC机的内存容量决定的,这一点相对于一般的数据采集系统而言有较强的优势。

MATLAB还可以记录采集过程中出现错误,如出错的时间、错误产生的来源以及数据采集设备的状态等信息都会被记录下来作为以后工作的参考。

Matlab自带的数据采集工具箱里面,提供了专门用于语音采集的命令和函数。

数据采集的硬件设备的内部特性对Matlab的接口完全是透明的,通过调用Matlab提供的语音采集函数和命令可以对其进行访问。

而且,Matlab可以对其采集的数据进行实时的分析,也可在存储后再进行处理。

四语音信号的分析1.语音信号时域分析MATLAB数据采集箱中提供的函数命令进行图像分析的函数命令:wavread :wavread 用于读取Microsoft 的扩展名为“.wav”的声音文件。

其调用形式为: y = wavread (file) 。

其作用是从字符串file 所指的文件路径读取wave 文件,将读取的采样数据送到y 中。

Y的取值范围: [ -1 ,1 ] 。

sound:音频信号是以向量的形式表示声音采样的。

sound 函数用于将向量转换为声音,其调用形式为:sound (y ,fs) ,作用是向扬声器送出向量y 中的音频信号(采样频率为fs) 。

将向量转换为声音,其调用形式为:sound (y ,fs) ,作用是向扬声器送出向量y 中的音频信号(采样频率为fs) 。

通过Wavread和plot(x)函数即可显示图像的时域波形。

2.语音信号频域分析FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。

在MATLAB的信号处理工具箱中函数FFT和IFFT用于快速傅立叶变换和逆变换。

函数FFT用于序列快速傅立叶变换,其调用格式为y=fft(x),其中,x是序列,y是序列的FFT,x可以为一向量或矩阵,若x为一向量,y是x的FFT且和x相同长度;若x为一矩阵,则y 是对矩阵的每一列向量进行FFT。

如果x长度是2的幂次方,函数fft 执行高速基-2FFT算法,否则fft执行一种混合基的离散傅立叶变换算法,计算速度较慢。

函数FFT的另一种调用格式为y=fft(x,N),式中,x,y意义同前,N为正整数。

相关文档
最新文档