七年级数学平面直角坐标系PPT优质课件

合集下载

平面直角坐标系ppt优秀课件

平面直角坐标系ppt优秀课件
益。──高尔基 • ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 • ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列

• ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 • ● 完成工作的方法,是爱惜每一分钟。──达尔文 • ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 • ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 • ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
y
4
(4)单位长度一般
3 2
取相同的
1
-3 -2 -1-1 O1 2 3
x
-2
-3 -4
选择:下面四个图形中,是平面直角坐标系的是( D )
Y
Y
2
1
-3 -2 -1 O1 2 3
X
X
3 2 1 O -1 -2 -3 -1
-2
(A)
(B)
3Y 2 1
-3 -2 -1-1 O1 2 3 X
-2 -3
3Y 2 1
则a=_4__,b=_5___。
6.在平面直角坐标系内,已知点P ( a , b ), 且a b < 0 , 则点P的位置在__第__二__或__四__象__限。
7.如果同一直角坐标系下两个点的横坐标相同,
那么过这两点的直线( B )
(A)平行于x轴 (B)平行于y轴 (C)经过原点 (D)以上都不对
· 纵轴 y 5
B(0,5)
4
3 2
·A(5,2)
1
-4 -3 (-2,-3)D
-3
-4
·C(2,-3)
例3.在下面直角坐标系中描出下列各组点,
并将各组的点用线段依次连接起来.

人教初中数学七下 7.1.2 平面直角坐标系课件4 【经典初中数学课件 】

人教初中数学七下 7.1.2 平面直角坐标系课件4 【经典初中数学课件 】

划计 T
正正T 正正正正正
正正 正
频数 2 12 25 13 8 3
由表可看出,153~164cm (含164cm)的人数是50人
三、研读课文

识 点
4、画频数分布直方图
一 为了更直观形象地看出频数分布
画 的情况,可以根据频数分布表画
直 方 图 的
出频数分布__直__方_图______.
(1)以横轴表示__身__高__,纵轴 表示__频_数___与__组__距___的比值,
三、研读课文
2、决定组距与组数
(1)把所有的数据分成若干组,每个小组的两__个__端点
知 之间的距离(组内数据的取值范围)称为组距.
识 (2)如果我们决定组距是3㎝
点 一 画
∵∴将最 数大 据值 分组 成-距 -最 小 8值 组 .( 这 些23 3 组) 为= _:7___23
直 149≤x< 15;2 15≤2x< 1;55
告诉大家
本节课你的学会了 什么!
第十章 直方图 10.2 直方图 第三课时 直方图(一)
一、新课引入
1、考试考生约2万名,从中抽取500名考生的 成绩进行分析,这个问题的样本是_________ _从__中__抽__取__的__5_0_0_名__考. 生的成绩 2、了解一批炮弹的杀伤半径,必须进行爆炸试 验,在这个问题中,只能进行___抽__样__调查.
图书馆
宿舍
食堂 中心广场
教学楼
门卫
平面直角坐标系 第二象限
y y轴或纵轴
6
5
4 第一象限
3
2
1 原点
x轴或横轴
-6 -5 -4 -3 -2 -1-o1
-2

七年级数学下册教学课件《平面直角坐标系 单元解读课件》

七年级数学下册教学课件《平面直角坐标系 单元解读课件》

纵坐标为0 横坐标为0
知识结构
用坐标表示地理位置

标 方
用方向和距离表示平面内点的位置



左减右加(横坐标)
单 应 用
用坐标表 示平移
点的平移
转化
上加下减(纵坐标)
图形的平移
课时安排
平面直角坐标系架起了数与形之间的桥梁,使得我们可以用几何方法研究 代数问题,又可以用代数的方法研究几何问题,是解决数学问题的一个强有力 的工具.
学习目标 教学内容
学习目标
7.2 坐标方法的
简单应用
1. 能建立适当的平面直角坐标系描述物体位置.
2. 能用方向和距离刻画两个物体的相对位置.
3. 掌握平面直角坐标系中图形的平移与图形对应点的坐标 的变化规律,感受数与形相互转化的过程,体会平面直 角坐标系的作用.
内容要点
7个概念:有序数对,平面直角坐标系,横轴,纵轴,原点,坐标, 象限
通过这一节内容的学习,可以帮助学生 更好的理解点与坐标的对应关系,顺利 实现由一维到二维的过渡.
教材内容
7.2 坐标方法的简单应用 联系实际,提出“地图上是怎样利用坐标表示一个地点的地理位置?”的问题,使学生联想 到坐标系再来学习如何建立直角坐标系,然后让同学们了解另一种描述物体位置的方法—— 用方向和距离表示平面内物体的位置.最后分析点及图形平移前后点的坐标的变化来归纳相关 规律.
2种确定点的位置方法:用坐标表示点的位置, 方向+距离表示点的位置
3类点的特征:不同象限点的坐标特征,坐标轴上点的坐标特征, 与坐标轴平行的直线上点的坐标特征
2个关系:点的坐标与位置之间的对应关系,点的平移与坐标的变 化规律之间的对应关系

人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)

人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)

-3 -2 -1 0 1 2 3 4
A: -3; B: 2. 点C. 思考2 : 由(1)你发现数轴上的点与实数是什么关系?
一一对应. ①数轴上的每个点都对应一个实数(这个实数叫作这个
点在数轴上的坐标); ②反过来,知道一个数, 这个数在数轴上的位置就确定了.
新课导入
1596-1650
数学家笛卡儿潜心研究能否用代数中的 计算来代替几何中的证明. 有一天, 在梦中他 用金钥匙打开了数学宫殿的大门, 遍地的珠 子光彩夺目, 他看见窗框角上有一只蜘蛛正 忙着结网, 顺着吐出的丝在空中飘动, 一个念 头闪过脑际: 眼前这一条条的横线和竖线不 正是自己全力研究的直线和曲线吗?
5 N
A
平面内的点就可以用一个
4
x轴上的点的
(3, 4)
有序数对来表示了.
纵坐标为0; y 3
轴上的点的 2 C 例如, 由点 A 分别向 x 轴、横坐标为0. 1
原点O的坐标 为(0, 0)
y轴作垂线, 垂足M 在 x 轴 上的坐标3, 垂足 N 在 y 轴 -4 -3
-2
-1 O
M 1 2 3456
y
D (0, 6)
6
C(6, 6)
5
4
3
2
1
A(O) (0,10)2 3 4 5 B (6, 0)
x
新知探究
请另建立一个平面直角坐标系, 这时正方形的顶点A, B, C, D 的坐标又分别是什么?与同学们交流一下.
y
D (-3,3)
C (3,3)
A (-3,-3)
B (3,-3)
x
新知探究
由上得知, 建立的平面直角坐标系不同, 则各点的坐标也 不同. 你认为怎样建立直角坐标系才比较适当?

平面直角坐标系课件

平面直角坐标系课件
y (2,3)
(-3,0)
(0,0)
(3,0)
x
(3,-3)
2、春天到了,初一某班组织同学到人民公园春游.张明、 王丽二位同学和其他同学走散了.同学们已经到了中心广
场,而他们仍在牡丹园赏花,他们对着景区示意图在电 话中向老师告知了他们的位置.
张明:“我这里的坐标是(300,300)”
王丽:“我这里的坐标是(200,30y0)”. y
图3-5
解 如图3-5,先在x 轴上找到表示5的点,再在y 轴 上找出表示4 的点,过这两个点分别作x 轴,y
轴的垂线,垂线的交点就是点A. 类似地,其他
各点的位置如图所示.点A 在第一象限,点B 在 第二象限,点C在第三象限,点D在第四象限.
图3-5
写出平面直角坐标系中的A、B、C、E、F、G、H、O、T
2叫做点A的纵坐B(标2,3) A点在平面内的坐标为(3, 2) 记作:A(3,2)
·
·A(3,2)
方法:先横后纵
-4 -3 -2 -1 0 -1
1 2 3 4 5 x 横轴
平面直角坐标系上-2的点和有序实数对一一对应
-3
D
-4
E
(-3,-3)
(5,-4)
笛卡尔,法国数学家、 科学家和哲学家.早在 1637年以前,他受到了 经纬度的启示.(地理上 的经纬度是以赤道和本 初子午线为标准的,这 两条线从局部上看可以 看成平面内互相垂直的 两条线.)发明了平面直 角坐标系,又称笛卡尔 坐标系.
我们把北偏西60°,南偏东60°这样的角称为方位角.
例4 如图3-10,12 时我渔政船在H 岛正南方向, 距H岛30海里的A 处,渔政船以每小时40 海 里的速度向东航行, 13 时到达B处,并测 得H 岛的方向是北偏西53°6′. 那么此时渔 政船相对于H岛的位置怎样描述呢?

平面直角坐标系ppt

平面直角坐标系ppt

–3
–4
–5
–6 y(图1)
(–16, 5)
(5, 5)
5
D
C
4
3
1
x –6 –5 –4 –3 –2 –1 O 1 2 3 4 5 6 7
(–3, –2) –1
(3, –2)
–2
A
B
–3
–4
–5
–6 y (图2) 6
5
4
(–3, 3)D3来自(3, 3) C2
2
1
–7 –6 –5 –4 –3 –2 –1 O 1 2 3 4 5 6 7
A.平行于y轴 B.平行于x轴 C.与y轴相交 D.无法确定
4、P(-2,y)与Q(x,-3)关于x轴对称,则x-y的值为( B)
A.1 B.-5 C.5 D.-1 5、已知点P (x,y)在第四象限,它到x轴的距离为2,到y轴的距离为3,求P点的坐标。 6、若点P′ (m,-1)是点P(2,n)关于x轴的对称点,求m+n。
小结:
已知平面直角坐标系内一点M(4a+8,a+3),分别根据 下列条件求出点M的坐标。 (1)点M到x轴的距离为2 ; (2)点N的坐标为(3,-6),并且直线MN∥x轴。
学习需要团队的力量
一、利用已有知识,引入新课。 1、写出直角坐标系中点的坐标。 2、找出坐标轴上的点,并说说点的坐标有什么特征? ppt图1-7\图.gsp
点的坐标与线段的长度: 点p(x,y)到x轴的距离为∣y∣,到
y轴的距离为∣x∣。特别地,在x轴上 的点(x,0)到原点的距离为∣x∣, 在y轴上的点(0,y)到原点的距 离为∣y∣。
1、学生通过不同的建系方式可得出多种建立平面直 角坐标系的方法,从而找到最优方法。同时知道对于 不同的建系方法,同一个点的坐标是不同的。

《平面直角坐标系》PPT优质课件

《平面直角坐标系》PPT优质课件
3Y 2 1
-3 -2 -1-1O1 2 3 X
-2 -3
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
概念2
平面直角坐标系的象限
y 4
第二象限
3
2
1
第一象限
–4 –3 –2 –1 O 1 2 3 4 x –1
–2
第三象限
–3
第四象限
–4
坐标平面被两条坐标轴分成四个部分,每个部分称为 象限 ,
(2)能在给定的平面直角坐标系中根据点的坐标描出点的位 置,由点的位置写出点的坐标。
(3)运用平面内的点的坐标特征解决问题时要注意数形结合, 不宜死记硬背.
知识回顾 问题探究 课堂小结 随堂检测 作业布置
课本第68页练习题1、2题。
向右为正方向;竖直的数轴称为纵轴或
1
y轴,一般取向上为正方向;两坐标轴 –4 –3 –2 –1 O 1 2 3 4 x
–1
的交点为平面直角坐标系的原点。
–2
–3
–4
知识回顾 问题探究 课堂小结 随堂检测
探究一:平面直角坐标系的概念
重点、难点知识★
如何正确画出平面直角坐标系?
y
1.选原点
4
2.作两轴
思考:已知点的坐标确定点的位置
y
5
A(3,4)
4
已知平面直角坐标系内一点的坐标,分别 3 以点的横坐标、纵坐标在数轴上表示点的垂足 2
,作x轴、y轴的垂线,两垂线的交点即为要找
1
的点。
-2 -1 0 -1
-2
· A(3,4)
1 2 3 4x
知识回顾 问题探究 课堂小结 随堂检测

《平面直角坐标系》PPT课件

《平面直角坐标系》PPT课件
由CD长为6; CB长为4; 可得D ; B ; A的坐标分 别为D 6 ; 0 ; B 0 ; 4 ; A6;4
B 0;4
C 0;0
0
A 6;4
D 6;0
x
做一做
例2 如图;正三角形ABC的边长为 6 ; 建立适当的直角坐 标系 ;并写出各个顶点的坐标
y
解: 如图;以边AB所在 的直线为x 轴;以边AB 的中垂线y 轴建立直角 坐标系
布置作业
作业:
A类:课本习题5 5
B类:完成A类同时;补充:
1已知点A到x轴 y轴的距离均为4;求A点坐标;
2已知x轴上一点A3;0;B 3;b ;且AB=5;
求b的值
C类:建立坐标系表示右面图形各顶点的坐标
直角梯形上底3;下底5;底角60˚
y
o
x
练习提高
随堂练习:
课本 随堂练习
练习
1如图;某地为了发展城市群;在现有的四个中小城市A;B;C;D附近 新建机场E;试建立适当的直角坐标系;并写出各点的坐标
2点A1a;5;B3 ;b关于y轴对称;则 a + b =______
3在平面直角坐标系内;已知点P a ; b ; 且a b < 0 ; 则点P的位置 在________
在一次寻宝游戏中;寻宝人已
11 2
2
3
经找到了2和3;2的两个标志点;并
3
且知道藏宝地点的坐标为4;4;除4ຫໍສະໝຸດ 此外不知道其他信息 如何确定直
角坐标系找到宝藏 与同伴进行交

做一做
例1 如图; 矩形ABCD的长宽分别是6 ; 4 ; 建立适当的 坐标系;并写出各个顶点的坐标
y
解: 如图;以点C为坐标 原点; 分别以CD ; CB所 在的直线轴建 立直角坐标系 此时C点 坐标为 0 ; 0

平面直角坐标系初中数学经典课件

 平面直角坐标系初中数学经典课件

【注意】坐标轴上的点不属于任何象限。
第二象限
第一象限
第三象限
第四象限
观察坐标系,填写各象限内点的坐标的特征:
点的位置
横坐标 的符号
第一象限 + 第二象限 第三象限 第四象限 +
纵坐标 的符号
+ + -
y
5
A
B
4 3
2
1
-4
-3
-2 -1 O -1
1
2 3 4x
C
-2
D
-3
-4
不看平面直角坐标系,你能迅速说出 A(4,5),B(-2,3),
4.(2020·扬州)在平面直角坐标系中,点P(x2+2,-3)所在的象限是(
)
A.第一象限 B.第二象限
C.第三象限 D.第四象限
5.(2020·黄冈)在平面直角坐标系中,若点A(a,-b)在第三象限,则点B(-ab,b)
所在的象限是(

A.第一象限 B.第二象限
C.第三象限 D.第四象限
第七章 平面直角坐标系
7.1.2 平面直角坐标系
学习目标
1.理解平面直角坐标系以及横轴、纵轴、原点、坐 标等概念,认识并能画出平面直角坐标系。
2.理解各象限内及坐标轴上点的坐标特征。 3.会用象限或坐标轴说明直角坐标系内点的位置, 能根据横、纵坐标的符号确定点的位置。
情景引入
如图,是某城市旅游景点的示意图。能不能利用数轴来确定各个景点的位置?
x
确定平面直角坐标系内点的坐标
问题1 在平面直角坐标系中,能用有序数对来表示图中点A的
位置吗?
5y
由点A分别向 x轴,y轴作垂线,垂 足M在 x轴上的坐标是3,垂足N在

《平面直角坐标系》ppt课件

《平面直角坐标系》ppt课件

坐标系的建立
确定原点
选择平面内的任意一点作为原点,作为两条数轴 的公共起点。
确定正方向
在水平数轴上选取正方向,通常以向右为正;在 垂直数轴上选取正方向,通常以向上为正。
单位长度
根据实际需要确定数轴上的单位长度,通常以厘 米或毫米为单位。
坐标系的分类
绝对坐标标 系。
平面直角坐标系
目录
• 平面直角坐标系的基本概念 • 平面直角坐标系中的点 • 平面直角坐标系中的直线 • 平面直角坐标系中的距离公式 • 平面直角坐标系的应用
01
平面直角坐标系的基本 概念
定义与性质
定义
平面直角坐标系是由两条互相垂直、 原点重合的数轴构成的平面几何图形。
性质
具有方向性、单位性、正交性等性质, 是描述平面内点位置的重要工具。
05
平面直角坐标系的应用
在几何中的应用
确定点位置
01
通过平面直角坐标系,可以确定平面内任意点的位置,并描述
其坐标。
计算距离和角度
02
利用坐标系,可以方便地计算两点之间的距离和两点之间的夹
角。
绘制图形
03
通过坐标系,可以绘制各种几何图形,如直线、圆、椭圆等。
在代数中的应用
代数方程表示
平面直角坐标系可以将代数方程表示为图形,便于理解和解决代 数问题。
点到直线的距离公式
总结词
点到直线最短距离的平方
详细描述
给定点$P(x_0, y_0)$和直线$Ax + By + C = 0$,则点到直线的距离公式为:$d^2 = frac{|Ax_0 + By_0 + C|^2}{A^2 + B^2}$。

人教版初一数学 7.1.2 平面直角坐标系PPT课件

人教版初一数学 7.1.2 平面直角坐标系PPT课件

探究新知
引导学生思考在平面直角坐标系内确定已知点坐标 的方法.学生能通过刚才的实例联想到平面内的已知点, 可以通过做垂线来找到其横、纵坐标.设点E的横坐标 为-3,纵坐标为1,教师进一步指出点的坐标的记作方法: 记作E(-3,1).
探究新知
根据坐标描出点的位置. 提出问题:点E的坐标能记作(1,-3)吗?它与点E是同 一个点吗?如果不是,它在哪里呢?引导学生联想用坐标 表示平面内的已知点的过程回放,寻求到由点的坐标描 点的方法.让学生观察、思考:一个已知点对应几个坐 标,一个坐标能描出几个点?引导学生总结:平面内的点 与有序实数对是一一对应的.让学生在理解的基础上, 突破难点.
探究新知
小组合作,寻求规律 1.探究坐标轴上点的特点: 提出问题:x轴上的点的坐标有什么特点?y轴呢? 引导学生利用所学,先独立思考,再小组交流,让学生 去发现规律,进而自然寻求到原点的坐标特点,并通过 后面的练习加以巩固.
探究新知
2.认识象限并探究规律: 象限的概念先由学生通过阅读自己找出来,教师引 导学生认识各象限,让学生总结每个象限分别是由坐标 轴的哪两个半轴组成,再利用“由特殊到一般”的方法 去探究每个象限内点的坐标符号特点,从而发现规律, 并结合练习使所学得以巩固.教师归纳探究规律的一般 方法,在学习方法上给予指导.
探究新知 学生活动二【典例精讲】 1.如图所示,点A的坐标是 ( B )
A.(3,2) B.(3,3) C.(3,-3) D.(-3,-3)
探究新知
2.如图所示,在平面直角坐标系中,描出以下各点:A (4,3),B(-2,3),C(-3,-1),D(2,-2),E(0, -1),F(-1,0),G(0,0).并指出各点所在的象 限或坐标轴.
第七章 平面直角坐标系 7.1 平面直角坐标系

全国优质课一等奖人教版初中七年级数学下册《平面直角坐标系》课件

全国优质课一等奖人教版初中七年级数学下册《平面直角坐标系》课件
T
E
A
C
H
I
N
G
A
N
D
L
E
A
R
N
I
N
G
第七章
7.1.2. 平面直角坐标系(第2课时)
y轴或
纵轴
y
【温故知新】
6
平面直角坐标系是由两条
互相 垂直 、 原点 重合的
数轴所组成
5
4
3
原点2
x轴或
横轴
1
-6 -5 -4 -3 -2 -1 0
-1
-2
-3
-4
-5
-6
1
2 3
4
5
6
X
【温故知新】
y
6
5
第二象限
-6
J
若直线l//y轴,则直线上
所有点的横坐标相同。
【初步总结】
平行于坐标轴上的点
1、若直线l//x轴,则直线上所有
点的纵坐标相同。
2、若直线l//y轴,则直线上所有
点的横坐标相同。
【深入思考】
y
5
6
A1
5
A
B2
4
3
B
2
1
C
C3
2
-6 -5 -4 -3 -2 -1 0 1
-1 D
D4
-2
-3
解得m=3.5
n,3 。.
(2)∵点M到x轴,y轴距离相等。
∴m-2=2m-7 或(m-2)+(2m-7)=0
解得m=5或3
在平面直角坐标系中,已知点 M m 2, 2m 7 ,点N
(1)若M在x轴上,求m的值;
(2)若点M到x轴,y轴距离相等,求m的值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)连接AB, BC, CD, DA, EF, HG.
(2)观察所得到的图形,你觉得它象什么?
作业:书本P65 2,3,6,9
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
2021/02/25
2、在直角坐标中,A点的位置为(-3,2),B 点的位置是(3,2),连接A、B两点所成的线 段与 x轴 平行。
3、若点N(a+5,a-2)在x轴上,则点N的 坐标为(7,0)。
4、已知点M(2,-3),则M到x轴的距离为 3 , 到y轴的距离为 2 。
5、已知点P到x轴和y轴的距离分别是2和5, 求P点的坐标。
(2,5)或(-2,5)或(-2,-5)或(2,-5)
6、点M位于x轴下方,距x轴3个单位长,且位于y轴 左方,距y轴2个单位长,则M点坐标是(-2,-3) 。
7、若点P(x,y)的坐标满足xy=0,则点p在( D ) A 原点 B x轴上 C y轴上 D x轴上或y轴上
8、已知A(6,0),B(2,1),O(0,0),则
△ABO的面积是

9、已知A(-4,3),0(0,0),B(-2,-1), 求△ABO的面积。
10、已知A(-2,0),B(4,0),C(x,y); (1)若点C在第二象限,且|x|=4,|y|=4,求点C的 坐标,并求三角形ABC的面积; (2)若点C在第二、四象限的角平分线上,且三角 形ABC的面积=9,求点C的坐标。
10
11、说出已知坐标的点所在的象限或坐标 轴。
⑴A(-3,0); ⑵B(2,-4);⑶C(1,2); ⑷D(-1,-3);⑸E(0,2);⑹F(-1.2,+1)
12、点P在第二象限,它的横坐标与纵坐标的和为1,
点P的坐标上
(只要写出一个符合条件的坐
标即可)。
13、已知点P(1,b)在第四象限, 求点Q(-b,1)所在象限。
P3
坐标为__(_-2_,_-_5_)_;
(a,-b) (-a,-b)
P1(x1,y1),P2(x2,y2)
1、若P1与P2关于x轴对称,则x1=x2,y1+y2=0。
2、若P1与P2关于y轴对称,则x1+x2=0,y1=y2。
3、若P1与P2关于原点对称,则x1+x2=0,y1+y2=0。
巩固练习: 1、点A(0,-1)的位置在平面直角坐标系的 y轴上。
6.1.2平面直角坐标系(3)
特殊位置点的特殊坐标:
Байду номын сангаас
坐标轴上点 P(x,y)
连线平行于坐 标轴的点
点P(x,y)在各象 限的坐标特点
象限角平分 线上的点
x轴 y轴 原点 平行于 平行于 第一 第二 第三 第四 一三 二四象 x轴 y轴 象限 象限 象限 象限 象限 限
纵坐标 横坐标 (x,0) (0,y) (0,0) 相同 相同
x>0 x>0 x<0 x<0 (m,m) (m,-m) y>0 y<0 y>0 y<0
(a,b)y P
(-a,b) 点A的坐标为(2,5)
P2 • 点A关于x轴的对称点
的坐标是_(_2_,_-5_)__;
• 点A关于y轴的对称点
O
的坐标是_(_-2__,5_)__;
x
• 点A关于原点对称点的
P1
14、若点B(a,b)在第三象限,则点
C(-a+1,3b-5)在第
象限。
15、如果x·y>0,且x+y<0,则点P(x,y)在( )
A、第四象限 C、第二象限
B、第三象限 D、第一象限
16、在平面直角坐标系中,描出下列各点:
A(-1,5)
B(-1,1) C(5,1) D(5,5)
E(-1,3) F(5,3) G(2,5) H(2,-2)
相关文档
最新文档