层次分析法简单介绍

合集下载

层次分析法介绍

层次分析法介绍

层次分析法介绍我顶!一.层次分析法的基本原理1.引言层次分析法(Analytia1 Hierarchy Process,简称AHP)是美国匹兹堡大学教授A.L.Saaty于20世纪70年代提出的一种系统分析方法。

AHP是一种能将定性分析与定量分析相结合的系统分析方法。

AHP是分析多目标、多准则的复杂大系统的有力工具。

它具有思路清晰、方法简便、适用面广、系统性强等特点,便于普及推广,可成为人们工作和生活中思考问题、解决问题的一种方法。

将AHP引入决策,是决策科学化的一大进步。

它最适宜于解决那些难以完全用定量方法进行分析的决策问题,因此,它是复杂的社会经济系统实现科学决策的有力工具。

应用AHP解决问题的思路是:首先,把要解决的问题分层系列化,即根据问题的性质和要达到的目标,将问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将其分层聚类组合,形成一个递阶的、有序的层次结构模型。

然后,对模型中每一层次因素的相对重要性,依据人们对客观现实的判断给予定量表示,再利用数学方法确定每一层次全部因素相对重要性次序的权值。

最后,通过综合计算各层因素相对重要性的权值,得到最低层(方案层)相对于最高层(总目标)的相对重要性次序的组合权值,以此作为评价和选择方案的依据。

2.基本原理我们可以分析下面这个简单的例子,来说明AHP的基本原理。

二.层次分析法的步骤用AHP分析问题大体要经过以下五个步骤:(1)建立层次结构模型;(2)构造判断矩阵;(3)层次单排序;(4)层次总排序;(5)一致性检验。

其中后三个步骤在整个过程中需要逐层地进行。

1.建立层次结构模型运用AHP进行系统分析,首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的中间层和最低层的形式排列起来。

对于决策问题,通常可以将其划分成层次结构模型。

其中:最高层:表示解决问题的目的,即应用AHP所要达到的目标。

中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。

它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。

本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。

一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。

将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。

例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。

2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。

判断可以基于专家经验、问卷调查或实际数据。

对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。

如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。

3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。

通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。

4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。

一致性是指在两两比较中的逻辑关系的一致性。

通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。

5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。

在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。

二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。

假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。

我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。

2. 构造判断矩阵:对于每个子目标,可以进行两两比较。

层次分析法的概念

层次分析法的概念

层次分析法的概念层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策分析(Multi-Criteria Decision Analysis,简称MCDA)的方法,由美国运筹学家Thomas L. Saaty于20世纪70年代初提出。

AHP方法通过对多个准则进行层级划分和比较,并运用数学计算方法来确定各准则的重要性和不同方案的优先级,从而帮助决策者做出合理的决策。

AHP的基本思想是将复杂的决策问题分解为多个层次,从上到下逐级进行划分,形成一个层次结构模型。

在层次结构模型中,最顶层为目标层,下面的层次依次为准则层和方案层。

目标层描述了整体决策的目标,准则层描述了实现目标所需要的具体准则,方案层描述了可选方案。

每个层次都有若干个元素,分别构成了一个层次结构的树状图。

AHP方法的核心是构建准则间的判断矩阵,并计算出准则的权重。

判断矩阵用来比较和度量层次结构中的元素之间的重要性和优先级,它的维数等于层次中元素的个数,矩阵元素表示了两个元素之间的相对重要性。

决策者通过对每对元素进行两两比较,根据自己的主观判断,利用语义比例尺(由1到9的9个数值构成)对元素的相对重要性进行评价。

评价结果填入判断矩阵中,形成一个与层次结构对应的判断矩阵。

然后,通过计算判断矩阵的特征向量和最大特征值,可以得到准则的权重。

AHP方法还可以计算各个方案的优先级。

在方案层构建判断矩阵的过程中,同样可以通过两两比较不同方案,评价它们的优先级。

根据方案的判断矩阵,结合准则的权重,运用数学计算方法,可以得到每个方案的优先级权重。

这样,决策者可以根据方案的优先级权重,评估和比较各个方案的可行性和优劣程度,作出决策。

AHP方法的主要优势在于能够将复杂的决策问题进行层次化的细分,从而使决策问题更加清晰和可操作。

它考虑了决策者的主观权重评估和相对重要性比较,充分考虑了不同准则和方案之间的相互关系。

此外,AHP方法还能够处理不确定性和模糊性的问题,对决策者的专业知识和经验有较高的要求,同时也可以用来解决多个决策者之间的决策问题。

层次分析法

层次分析法

4.层次总排序 为了得到层次结构中某层元素对于总体目标组合权重 和它们与上层元素的相互影响,需要利用该层所有层次单 排序的结果,计算出该层元素的组合权重,这个过程称为 层次总排序。 层次总排序这一步,需要从上到下逐层排序进行,最 终计算结果得到最低层次元素,即要决策方案优先次序的 相对权重。 一般来说,对于最高层之下的第二层次单排序即为总 排序。假设上一层所有元素A1,A2 ,…Ak的层次单排序已 完成,得到的权重为a1, a2,…ak,与Ai(1≤i≤k)对应的本层次元 素为B1,B2,…Bm单排序结果为
五、应用实例
某工厂有一笔企业留成利润,要由厂领导和职代会 决定如何利用,可供选择的方案有:发奖金、扩建福利设 施、引用新设备,为进一步促进企业发展,如何合理利用 这笔利润? 第一步 对于这个问题采用层次分析法进行分析,所 有措施的目的都是为了更好地调动职工生产积极性,提高 企业技术水平和改善职工生活,当然最终目的是为了促进 企业的发展,因此,建立的递阶层次结构如图所示。
5.进行一致性检验。
七、应用层次分析法的注意事项 如果所选的要素不合理,其含义混淆不清,或要素 间的关系不正确,都会降低AHP法的结果质量,甚至导 致AHP法决策失败。 为保证递阶层次结构的合理性,需把握以下原则: 1.分解简化问题时把握主要因素,不漏不多; 2.注意相比较元素之间强度关系,相差太悬殊的要 素不能在同一层次比较。
A
A , A ,, A 1 2 n
w1 / w1 A2 w2 / w1 A An wn / w1
A 1

w1 / w2 w1 / wn w2 / w2 w2 / wn wn / w2 wn / wn
A 称为判断矩阵。若取重量向量 W (w1, w2 ,, wn )T ,则有 AW n W 于是 W 是判断矩阵 A 的特征向量, n是 A 的一个特征值。

常用综合评价方法介绍

常用综合评价方法介绍

常用综合评价方法介绍常用的综合评价方法有很多种,每种方法都有其特点和适用范围。

下面将介绍几种常用的综合评价方法。

1.层次分析法层次分析法是一种定性与定量相结合的综合评价方法,它将复杂的问题分解成多个相对简单的子问题,通过构建层次结构,运用专家判断和统计分析,确定各个层次指标的权重,最终得到综合评价结果。

层次分析法适用于评价对象多指标多层次的情况,例如企业绩效评价、项目优选等。

2.主成分分析法主成分分析法是一种将多个相关指标转化为少数几个无关综合指标的方法。

它通过线性变化将原始指标进行降维处理,使得新的综合指标能够尽量表征原始指标的信息。

主成分分析法适用于多指标多层次的综合评价问题,例如社会经济发展水平、企业形象评价等。

3.灰色关联度分析法灰色关联度分析法是一种通过比较样本序列与参考序列的演化趋势,确定各个指标之间的相关度,从而进行综合评价的方法。

该方法适用于评价对象历史数据不完备、发展不平衡的情况,例如经济增长速度评价、产品市场竞争力评价等。

4.评价树方法评价树方法是一种将繁杂的评价体系分解为多个子问题的树状结构,通过权重计算和综合评分,得到最终的综合评价结果。

评价树方法适用于评价对象多指标多层次的情况,例如职业发展评价、环境质量评价等。

5.熵权法熵权法是一种基于信息熵理论的综合评价方法,它通过计算指标的熵值和权重,综合考虑各个指标的重要程度和发展状况。

熵权法适用于评价指标数量大、权重不确定的情况,例如学生综合素质评价、城市发展评价等。

以上是常用的几种综合评价方法,每种方法都有其适用的场景和特点。

在实际应用中,可以根据具体的评价对象和问题进行选择,或者根据不同方法的结果进行对比,以得到更准确和全面的评价结论。

层次分析法 (3)

层次分析法 (3)

层次分析法1. 介绍层次分析法(Analytic Hierarchy Process,AHP)是一种用于多准则决策分析的方法。

该方法由美国运筹学家托马斯·L·塞蒂在1970年代初开发并广泛应用于各个领域。

层次分析法通过将复杂的决策问题分解成多个层次,并对不同层次的准则进行比较和评价,帮助决策者做出科学、合理的决策。

2. 基本原理层次分析法的基本原理是将一个复杂的决策问题层层分解为若干个层次。

这些层次由目标层、准则层、方案层等组成,形成一个层次结构。

在每个层次上,决策者需要对不同的元素进行比较和评价,以确定它们之间的重要性和优先级。

层次分析法的核心是通过建立成对比较矩阵,从而将主客观因素相结合,实现准则之间的比较和权重的确定。

在层次分析法中,决策者需要对每个准则对两两进行比较,根据重要性进行两两判断。

这些判断形成了一个判断矩阵。

然后,通过特征向量法计算各个准则的权重。

最后,将这些权重进行归一化处理,得到每个准则的相对重要性。

3. 应用步骤层次分析法的应用可以按照以下步骤进行:3.1 确定决策目标首先,需要明确决策的目标是什么。

目标是整个决策过程的核心,决策者需要明确目标才能有针对性地进行后续的决策分析。

3.2 构建层次结构根据决策问题的特点和要求,构建一个包含目标层、准则层和方案层的层次结构。

目标层表示决策的最终目标,准则层表示影响目标实现的各种准则,方案层表示可供选择的各种方案。

3.3 构建比较矩阵对于每个层次的准则,决策者需要对其进行两两比较,并判断各个准则之间的重要性。

通过构建比较矩阵,可以很直观地展示各个准则之间的相对重要性。

3.4 计算权重通过特征向量法,根据比较矩阵计算各个准则的权重。

特征向量法是一种数学方法,可以根据比较矩阵的特征向量,得到每个准则的权重。

3.5 归一化处理将准则的权重进行归一化处理,得到每个准则的相对重要性。

归一化处理可以使不同准则的权重在同一尺度上进行比较,更加公平合理。

层次分析法

层次分析法

1. 层次分析法(The analytic hierarchy process, 简称AHP)用于解决评价类问题,例如:选择那种方案最好、哪位运动员或者员工表现的更优秀。

评价类问题可以用打分解决。

层次分析法 (The Analytic Hierarchy Process即 AHP)是由美国运筹学家、匹兹堡大学教授T. L. Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法, 是在充分研究了人类思维过程的基础上提出来的, 它较合理地解决了定性问题定量化的处理过程。

AHP的主要特点是通过建立递阶层次结构, 把人类的判断转化到若干因素两两之间重要度的比较上, 从而把难于量化的定性判断转化为可操作的重要度的比较上面。

在许多情况下, 决策者可以直接使用AHP进行决策, 极大地提高了决策的有效性、可靠性和可行性, 但其本质是一种思维方式, 它把复杂问题分解成多个组成因素, 又将这些因素按支配关系分别形成递阶层次结构, 通过两两比较的方法确定决策方案相对重要度的总排序。

整个过程体现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避决策者主观判断的缺点。

1.1模型介绍1.1.1引例高考结束了,小明该选择华科还是五武大?小明最关心四个方面:学习氛围0.4、就业前景0.3、男女比例0.2、校园景色0.19(权重和为1)(1)学习氛围:经查阅资料查到“学在华工,玩在武大,爱在华师”一句话,因此在学习氛围方面给华科0.7,给武汉大学0.3.(2)就业前景:搜索两所学校就业率差不多,因此在就业前景方面对两所学校均赋予0.5的权重。

(3)男女比例:经查询,华科男女比例2:1,武大1.35:1,因此武大0.7分,华科0.3分(4)校园景色:华科0.25分,武大0.75分整理权重表格:指标权重华科武大学习氛围0.40.70.3就业前景0.30.50.5男女比例0.20.30.7校园景色0.10.250.75华科最终的得分:0.7*0.4+0.5*0.3+0.3*0.2+0.25+*0.1=0.515分武大最终得分:0.3*0.4+0.5*0.3+0.7*0.2+0.75*0.1=0.485分1.1.2 模型1、关键词:打分法、确定评价指标、形成评价体系2、解决评价类问题,首先确定以下三个问题:(1)评价的目标是什么(2)为了达到这个目标有哪几种可选的方案(3)评价的准则或者说指标是什么(我们根据什么东西来评价好坏)。

层次分析法

层次分析法
2.简洁实用的决策方法
这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结 合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难 以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关 系后,最后进行简单的数学运算。计算简便,并且所得结果简单明确,容易为决策者了解和掌握。
2.定量数据较少,定性成分多,不易令人信服
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世 界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑 的决策方式的方法,因此必然带有较多的定性色彩。
3.指标过多时,数据统计量大,且权重难以确定
谢谢观看
计算步骤
ห้องสมุดไป่ตู้
计算步骤
1.建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层, 绘出层次结构图。最高层是指决策的目的、要解决的问题。最低层是指决策时的备选方案。中间层是指考虑的因 素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。
2.构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出 一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较,对此时采用相对尺度,以尽可能减少性质不同 的诸因素相互比较的困难,以提高准确度。如对某一准则,对其下的各方案进行两两对比,并按其重要性程度评 定等级。为要素与要素重要性比较结果,表1列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的 矩阵称作判断矩阵。判断矩阵具有如下性质:

层次分析法介绍

层次分析法介绍

2 层次分析法2.1层次分析法的简单介绍层次分析法(Analytic Hierarchy Process 简称AHP),是20世纪80年代由美国运筹学教授T. L. Satty 提出的一种简便、灵活而又实用的多准则决策方法,它根据问题的性质和要达到的目标分解出问题的组成因素,并按因素间的相互关系将因素层次化,组成一个层次结构模型,然后按层分析,最终获得最低层因素对于最高层(总目标)的重要性权值。

在经营决策中经常会遇到多指标、多方案的综合比较问题, 由于经常出现多个方案互有好坏的情况。

因此要从成百上千个指标、方案中选择最佳的组合方案就成了一个较为麻烦的问题。

在实际应用中,尽管人们还不能解决多个方案的综合比较问题, 但是如果就2个方案之间进行比较还是可以判断出相对好坏的。

于是, 设法在数学上找到1种方法, 使之从多方案比较过渡到两两之间的比较,从而解决多方案比较的问题, 这就是AHP法的基本思想。

2.2层次分析法的基本层次结构第一类:最高层,又称顶层、目标层。

第二类:中间层,又称准则层。

第三类:最底层,又称措施层、方案层。

层次结构图(一)层次之间的支配关系是完全的结构模型层(二) 层次之间的支配关系是不完全的结构模型2.3 判断矩阵设要比较n 个因素)...,,(21n y y y y =对目标z 的影响,从而确定它们在z 中所占的比重,每次取两个因素i y 和j y 用ij a 表示i y 与j y 对z 的影响程度之比,按1~9的比例标度来度量ij a ,n 个被比较的元素构成一个两两比较(成对比较)的判断矩阵.)(n n ij a ⨯=A 显然,判断矩阵具有性质:⎪⎪⎪⎪⎪⎭⎫⎝⎛=A nn n n n n a a aa a a a a a212222111211 ,0>ij a ,1ijji a a =1=ii a )...,2,1,(n j i =所以又称判断矩阵为正互反矩阵(简称正互阵,又称成对比较阵)。

层次分析法

层次分析法

层次分析法1. 简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的定性与定量相结合的多标准决策分析方法。

它由美国学者托马斯·L·萨亨于1970年提出,被广泛应用于各种决策问题中。

2. 原理层次分析法的基本思想是将复杂的决策问题分解为一系列具有层次结构的子问题,然后通过对这些子问题的比较与权重评估,最终得出整体问题的决策结果。

2.1 层次结构在层次分析法中,决策问题被组织成一个层次结构。

层次结构通常包括三个层次:目标层、准则层和方案层。

•目标层:表示决策问题的最终目标,通常只有一个。

•准则层:用于评价方案的一组准则,通常包括两个或更多的准则。

•方案层:表示可选择的方案,每个方案都和准则层有关联。

每个层次下面还可以有更多的子层次,形成一个完整的层次结构。

2.2 权重评估层次分析法通过对准则层的权重评估,来确定各个准则的重要性。

权重评估通常采用两两比较的方式,即对准则层中的两个准则进行比较,判断它们的相对重要性。

对两个准则的比较通常使用1至9的九分比较法,其中1表示相同重要性,3表示轻微重要性差异,5表示中等重要性差异,7表示强烈重要性差异,9表示极端重要性差异。

通过两两比较得到的比较矩阵可以利用特征向量法计算权重向量,从而确定准则层的权重。

2.3 方案评估在确定了准则层的权重后,可以利用这些权重对方案进行评估和排序。

通常使用两两比较法将方案与准则进行比较,得到方案层的比较矩阵。

然后,利用准则层的权重和方案层的比较矩阵计算加权矩阵,最终得到方案层的权重。

3. 应用场景层次分析法在各个领域中都有广泛的应用,尤其适用于以下情况:•多准则决策问题:当决策问题涉及到多个准则时,层次分析法可以帮助决策者合理权衡各个准则的重要性,从而做出最佳决策。

•项目评估与选择:当需要评估和选择多个候选项目时,层次分析法可以通过对项目的多个准则进行比较和权重评估,为项目选择提供科学依据。

层次分析法

层次分析法

e1
1 4.511
0.778
0.172
,
3 0.665
0.4 6 7 e2 Ae1 0.565, e2 3.014,
1.9 9 1
01.55 0.471 e2 0.184, e3 0.559, e3 3.018,
0.661 1.988
0.156 0.473 e3 0.185, e4 0.561,
(4)定义未知参数 在这种问题中,运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程,产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。
例5 弹性系数的确定 经济学中有名的Cobb-Douglas生产函 数是
e (1,2,,n )T ,则权系数可取: wi i ,i 1,2,, n
在具体计算中,当
ek 与ek 1
接近到一定程度时,就取 e ek
例1 评价影视作品的水平, 用以下三个变量作评价指标 :
x1 教育性,x2 艺术性,x3 娱乐性
设有一名专家赋值:
x2 1, x3 5, x3 3
w1, w2 ,, wn
这 n 个常数便是权系数, 层次分析法给出了确定它们 的量化方法,其过程如下:
1.成对比较
从x1, x2,, xn中任取xi , xj ,比较它们
对y贡献的大小,给xi xj 赋值如下:
xi
xj
1,当认为“xi与x
贡献程度相同”时
j
xi
xj
3,当认为“xi比x
的贡献略大”时
x1
的概率估值为0.134+0.219+0.026=0.379,

层次分析法

层次分析法

层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。

本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。

一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。

它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。

顶层是目标层,中间层是准则层,最底层是方案层。

2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。

比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。

通过对各因素进行两两比较,得出相对重要性的判断。

3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。

特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。

4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。

一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。

5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。

综合评价值越高,方案越优。

二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。

下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。

2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。

3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。

4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。

层次分析法(AHP)

层次分析法(AHP)

aij
n
aij
i 1
i,j 1,2,, n
2 ) 再按行相加得和
n
wi aij j 1
3)再规范化,得权重系数:
wi
wi
n
wi
i 1
方根法
这种方法的步骤是:
1) 按行元素求积,再求1/n次幂,得
n
wi
aij i,j 1,2,, n
j 1
2)规范化,即得权重系数
wi
wi
n
wi
用ANP进行决策的基本步骤
▪ (1) 构造ANP的典型结构: A:首先是构造控制层次.将决策目标界定,将决策准则界 定,这是问题的基本,各个准则决策目标的权重用AHP方法 得到. B:再则是构造网络层次.要归类确定每一个元素,分析其 网络结构和相互影响关系,分析元素之间的关系可用多种 方法进行. 一种是内部独立的递阶层次结构,即层次之间相 互独立;一种是内部独立,元素之间存在者循环的ANP 网络层次结构;另一种是内部依存,即元素内部存在循环 的ANP网络层次结果,这几种情况都是ANP的特例情况。 在实际决策问题中面临的基本都是元素间不存在内部独立, 既有内部依存,又有循环的ANP网络层次结构。
P4:建 图书馆
P5:引进 新设备
C1对p1 p2 p3 p4 p5的权重计算
c1 P1
p2
p3
p4
p5 w
p1 1
3
5
4
7 0.491
p2 1/3 1
3
2
5 o.232
p3 1/5 1/3 1
½
3 0.092
p4 ¼ ½
2
1
3 0.138
p5 1/7 1/5 1/3 1/3 1 0.046

层次分析法简单介绍

层次分析法简单介绍

1

• 每次选取两个因素比较其对目 标A的影响权重;
判断矩阵元素的表示:
b11 b12
B
b21
b22
bn1 bn2
b1n
b2n
2
bnn
• 在 用 的影b影ij来响响表目程示标度yA之i与的比y因j值的素。比yi值、目yj中标,A
• n个被比较的因素构成一个两 两比较(成对比较)的判断 矩阵B
• 在20世纪70年代中期由美国运筹学家托马斯·塞 蒂(T.L.Saaty)正式提出。它是一种定性和定量 相结合的、系统化、层次化的分析方法。
• 应用已遍及经济计划和管理、能源政策和分配、 行为科学、军事指挥、运输、农业、教育、人 才、医疗和环境等领域。
层次分析法的基本思想
寻求层次分析法的生活背景:
综合的思维方式进行决策 。
2.实用型 • 层次分析法把定性和定量方法结合起来,能处理许多用传统
量化技术技术手段无法处理的实际问题。
3.简洁性 • 层次分析法的基本原理和步骤简洁明了,计算也非常简便,
并且所得结果简单明确,容易被决策者了解和掌握。
层次分析法的局限性
1.方案局限性 • 只能从原有的方案中优选一个出来,没有办法得出更好的新
致性检验。(即最下层对最 上层总排序的权向量)
层次结构的模型的建立
将复杂问题分解为被人们称之为元素的组成部分。
这些元素又按其属性分成若干组,形成不同层次。 同一层次的元素作为准则对下一层次的某些元素 起支配作用,同时它又受上一层次元素的支配。
层次分析法的模型
层次分析法的模型
第一类
最高层,又称顶层、目标层
mn
层次排序
层次单排序
• 当判断矩阵满足一致性时,或者判断矩阵不一致 程度可接受时也可以允许特征向量作为权重向量;

层次分析法

层次分析法

层次分析法简介层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。

这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

是对难以完全定量的复杂系统做出决策的模型和方法。

层次分析法的原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。

层次分析法的步骤,运用层次分析法构造系统模型时,大体可以分为以下四个步骤:(1)建立层次结构模型:将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。

最高层(目标层):决策的目的、要解决的问题;中间层(准则层或指标层):考虑的因素、决策的准则;最低层(方案层):决策时的备选方案;(2)构造判断(成对比较)矩阵;表指标之间比较量化值规定因素i比因素j量化值同等重要 1.00稍微重要 3.00较强重要 5.00强烈重要7.00极端重要9.00稍微不重要0.33较强不重要0.20强烈不重要0.14极端不重要0.11两相邻判断的中间值2、4、6、8(3)层次单排序及其一致性检验;(4)层次总排序及其一致性检验;举例:某市中心有一座商场,由于街道狭窄,人员车流量过大,经常造成交通堵塞。

市政府决定解决这个问题,经过有关专家会商研究,制订三个可行方案:a1:在商场附近修建一座环形天桥;a2:在商场附近修建地下人行通道;a3:搬迁商场决策的总目标是改善市中心交通环境,根据当地具体条件和情况,专家组织拟定五个目标作为对可行方案的评价准则:C1:通车能力;C2:方便群众;C3:基建费用不宜过高;C4:交通安全;C5:市容美观。

层次分析法分析方法

层次分析法分析方法

层次分析法分析方法简介层次分析法(Analytic Hierarchy Process,简称AHP)是一种常用的多标准决策分析方法,由美国运筹学家托马斯·L·赛蒂尔于20世纪70年代提出。

它通过将复杂的决策问题分解为层次结构,对各层次标准进行定量评估和权重分配,最终得到综合的决策结果。

层次分析法是一种基于专家经验和主观判断的定性与定量相结合的决策方法,适用于复杂的多因素多目标决策问题。

它以一种系统化和结构化的方式帮助决策者进行决策分析,提高决策的科学性和准确性。

方法步骤层次分析法主要包括以下几个步骤:1.建立层次结构:首先,需要将决策问题进行逐层分解,形成一个层次结构模型。

层次结构由目标层、准则层和方案层构成,决策问题从目标层开始,经过准则层逐步分解,最终得到方案层。

目标层表示整个决策问题的目标或要达到的结果,准则层表示实现目标所涉及的关键因素,方案层表示可行的解决方案。

2.构造判断矩阵:在层次结构的每一层中,需要对各个元素之间进行两两比较,得到一个判断矩阵。

判断矩阵的每个元素表示两个层次因素之间的相对重要性。

比较的方式可以是定性的,也可以是定量的。

常用的比较方法有9点量表法和1-9标度法。

3.确定权重向量:通过计算判断矩阵的特征向量,可以得到每个层次因素的权重。

特征向量即为判断矩阵的最大特征值对应的特征向量。

通常需要进行一致性检验,判断矩阵的一致性可以通过一致性指标和一致性比率来衡量。

4.计算综合评估值:根据各个层次因素的权重和方案的评价指标,可以计算得到每个方案的综合评估值。

综合评估值可以表示方案的优劣程度。

5.灵敏度分析:层次分析法可以进行灵敏度分析,通过改变判断矩阵中的比较数据,可以检测到不同因素权重发生变化时对决策结果的影响。

优点和应用范围层次分析法具有以下优点:•结构化:通过将决策问题分解成层次结构,使得问题更加清晰和易于理解。

•定量化:通过构造判断矩阵和计算权重向量,将主观因素定量化,提高了决策的科学性。

层次分析法的方法与原理

层次分析法的方法与原理

层次分析法的方法与原理层次分析法的方法和原理一、层次分析法简介层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

尤其适合于对决策结果难于直接准确计量的场合在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升学志愿的问题等等。

在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。

比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游地的景色、景点的居住条件和饮食状况以及交通状况等等。

这些因素是相互制约、相互影响的。

我们将这样的复杂系统称为一个决策系统。

这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。

层次分析法是解决这类问题的行之有效的方法。

层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析、决策提供定量的依据。

所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。

二、层次分析法的定义所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法,称为层次分析法。

层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。

层次分析法简介

层次分析法简介

三、层次分析法的用途举例

例如,某人准备选购一台电冰箱,他对市场上的
6种不同类型的电冰箱进行了解后,在决定买那一款式
是,往往不是直接进行比较,因为存在许多不可比的
因素,而是选取一些中间指标进行考察。例如电冰箱
的容量、制冷级别、价格、型式、耗电量、外界信誉、
售后服务等。然后再考虑各种型号冰箱在上述各中间
层次分析法(AHP)应用简介
• 一、层次分析法概述 • 二、层次分析法的基本思路 • 三、层次分析法的用途举例 • 四、层次分析法应用的程序 • 五、应用层次分析法的注意事项 • 六、层次分析法应用实例
一、层次分析法概述
• 层次分析法是美国运筹学家Saaty教授于二 十世纪80年代提出的一种实用的多方案或多目 标的决策方法。其主要特征是,它合理地将定 性与定量的决策结合起来,按照思维、心理的 规律把决策过程层次化、数量化。问题该方法 自1982年被介绍到我国以来,以其定性与定量 相结合地处理各种决策因素的特点,以及其系 统灵活简洁的优点,迅速地在我国社会经济各 个领域内,如能源系统分析、城市规划、经济 管理、科研评价等,得到了广泛的重视和应用。
• RI为平均随机一致性指标,是足够多个 根据随机发生的判断矩阵计算的一致性 指标的平均值。 n为判断矩阵的阶数。
• 1—10阶矩阵的RI取值见下表:
• 矩阵阶数n 1 2 3 4 5
• RI
0 0 0.58 0.90 1.12
• 矩阵阶数n 6 7 8 9 10
• RI
1.24 1.32 1.41 1.45 1.49
• 一般而言CR愈小,判断矩阵的 一致性愈好,通常认为CR0.1时, 判断矩阵具有满意的一致性。
• 1、建立国民素质评价系统的递阶层次结构;

层次分析法在住房消费中的分析及应用

层次分析法在住房消费中的分析及应用

层次分析法在住房消费中的分析及应用一、层次分析法介绍层次分析法(Analytic Hierarchy Process,AHP)由美国运筹学家托马斯·塞谷德提出,是一种通过分层结构和对各层次因素之间的配对比较来确定因素权重,从而进行决策的方法。

层次分析法的基本思想是将复杂的决策问题分解成若干个层次,建立成因素间的层次结构,并对因素进行两两比较,最终得到最优的决策结果。

在住房消费中,考虑因素众多,包括房屋价格、地段、交通、教育资源、生活设施等等。

而这些因素又具有一定的层次性和相互关联性,因此层次分析法可以帮助个人更清晰地了解自己的需求,权衡各项因素,最终作出更为科学的决策。

1. 确定层次结构在使用层次分析法进行住房选择时,首先需要确定决策层、准则层和方案层。

决策层即为住房选择这个最终目标,准则层包括影响住房选择的各项因素,如价格、地段、交通、教育资源等,方案层则是候选的住房选项。

2. 建立判断矩阵在确定了层次结构后,需要建立准则层的判断矩阵,对各项因素进行两两比较,确定它们之间的相对重要性。

比较的结果按照定量标准进行评分,以便后续计算权重。

3. 计算权重通过层次分析法可以计算出各个因素的权重,从而得到不同准则对于决策层的影响力大小。

这有助于个人更加清晰地了解自己的需求,并能够更加科学地进行住房选择。

4. 选择最优住房根据各项因素的权重和具体的候选住房方案,结合自身实际情况,选择最优的住房。

三、层次分析法在住房消费中的优势1. 科学决策层次分析法能够帮助个人更加科学地权衡各项因素,避免主观偏见对决策的影响。

2. 考虑全面通过建立层次结构和两两比较,层次分析法能够全面考虑各项因素的重要性,避免偏重某一方面而忽略其他因素。

3. 适用性广层次分析法适用于各种复杂的决策问题,包括住房选择,能够帮助个人更好地理清自己的需求。

四、层次分析法的扩展应用除了在住房消费中的应用,层次分析法还可以在其他方面得到广泛的应用。

层次分析法

层次分析法

1.层次分析法层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。

层次分析法是在20世纪70年代初,由美国著名的运筹学专家萨蒂教授提出的,萨蒂教授在进行"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题研究时,提出了一种层次权重分析的方法。

层次分析法简单来说,就是将需要解决的问题,归为一个系统。

并且将整个要解决的问题进行目标分解,从而形成多个层次指标通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。

在进行层次分析法使用的过程中,需要根据问题按照总目标—子目标—评价准备的层次进行分解,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,最终权重最大的就是此问题的最优解决方案。

同时分析法的基本原理就是将问题进行系统化处理,汇总成一个总的目标,并且根据问题的不同以及因素的不同,再将问题进行分解,按照问题之间的关系形成一个彼此相连接的层次,在进行问题解决时逐层分析最终将问题分解到最低层,从而找出最优解。

层次分析法的应用比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。

因此层次分析法多被应用于社会、经济及管理领域的各种问题,因为这些领域的问题多是由许多相互关联,相互制约的因素所构成的在进行分析解决事很难有明确的判断,而通过层次分析法研究者可以将复杂的系统进行层次分解,使得问题更加的简洁从而帮助研究者找出解决问题的方法。

在安全科学和环境科学领域,层次分析法也被经常使用。

在安全生产科学方面,层次分析法常被应用于煤矿的安全研究、危化品评价、油库安全评价、城市灾害应急能力研究以及交通安全评价等。

在环境保护研究中的应用主要包括:水安全评价、水质指标和环境保护措施研究、生态环境质量评价指标体系研究以及水生野生动物保护区污染源确定等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法
层次分析法(AHP)又称多层次权重分析法,是一种用于定性分析的多目标分析方法。

它能有效地分析指标体系各层次之间排序关系,有效地综合衡量和判断评价者的意图.适用于多目标、多准则、多因素、难以量化的大型复杂系统,已广泛应用于资源系统分析、建设管理、交通、评标、经济评价等各个社会领域。

层次分析法解决复杂问题的基本思想是:首先,将总目标进行分层,并根据各个指标之间隶属关系和相关影响,将各个指标按不同层次进行分类。

形成指标层、准则层和目标层,然后利用层次分析法,求本各层次的指标对上一层次指标的权重,然后利用最大特征值方法依次归并,最终求出总目标权重系数。

指标越重要,其指标权重系数越大.
因此,层次分析方法的计算需要以下步骤:
(1)建立层次结构模型
首先,将问题分解为不同的组成部分,并根据各个指标之间的相互影响和隶属关系,对各指标进行分组和组合,形成多层次结构,相对于确定最高层的综合相对重要性系数,即相对优序,系统分析被简化到最底层。

(2)调查问卷设计
,对同一层次的指标将进行重要性等级进行两两访问对比,确定其重要性,然后利用比例标度法,。

构成比较判断矩阵。

表1-1 比例标度法
Table4-1 Proportionalscalingmethod
两指标影响比较相等稍微重要明显重要非常重要极其重要δ1113579
(3)调查对象的构成
在选择范围上,主要选择具有绿色施工、绿色建筑、节能环保等研究领域的高校专家和学者、建设单位项目管理人员、工程项目施工单位工作人员和涉及环保监督政府人员。

(4)整理分析问卷并构建判断矩阵
整理出问卷中的信息,并将问卷中信息进行汇总分析,计算出各因素的要性程度,建立判断矩阵。

见表1-2.
表1—2 各因素相对重要性判断矩阵
Table4—2 Relative importance judgment matrix
B k B1B2B n
B1δ11δ12。

.. δ1n
B2δ21δ22..。

δ2n
......... ..。

...
Bnδn1δn2... δnn其中,δij是对于A k而言,Bi对B j的相对重要性的数值表示,δij是δi与δj 的比值.
(5)排序一致性检验
层次分析法最主要的优点就是将调查问卷专家的主观定性思维过程定量化,因为不同方面的专家信息具有主观片面性以及层次分析法本身所存在的主观性,即使九级标度也无法完全保证每个判断矩阵都具有完全一致性,所以对各项指标的权重间是否存在着矛盾性还要经过一致性的检验。

检验一致性的步骤如下。

相关文档
最新文档