第27章 《二次函数》小结与复习(1)(第15课时)

合集下载

第26章小结二次函数的复习课件

第26章小结二次函数的复习课件

2、抛物线 y = 3x 2 + 2 的开口向
坐标为
.
, 顶点
3、抛物线 y =2( x +1)2 - 4 的顶点坐标为
对称轴为
.
4、当a 为最高点.
时,抛物线 y =(a +2)x 2 的顶点
5、抛物线 y = ( x - 2) 2 + 3 的开口向 ,对称
轴为
,在对称轴左侧,y 随 x 的增大而
2
1
A
-8 -7 -6 -5 -4 -3 -2 -1
1
-1
D B
2 3 4 56 7
8x
1、本课主要复习了哪些内容? 2、通过复习,你有什么体会或收获呢?
二次函数 y x2 2x 3
1)用配方法求其顶点D的坐标; 2)求其与y轴的交点C的坐标、与x轴交点A、B (且点A在点B的左边)的坐标。
y x2 2x 1
y
9
8 y=x2-2x+3
7
6
y x2 4x 3
5
4
3
2
1
-8 -7 -6 -5 -4 -3 -2 -1
1 2 3 4 5 6 7 8x
-1
知识点回顾四:
二次函数一般式与顶点式的转化
一般式
y ax2 bx c
配方
顶点式
y ax m2 k
y ax2 bx c

大 a >0 致 图 象 a<0
函 数
a >0
变 化 a<0
在对称轴左侧,y 随 x 的增大而减小. 在对称轴右侧,y 随 x 的增大而增大. 在对称轴左侧,y 随 x 的增大而增大. 在对称轴右侧,y 随 x 的增大而减小.
由a、b、c

二次函数小结与复习教案

二次函数小结与复习教案

二次函数小结与复习教案一、教学目标1. 理解二次函数的定义、性质及图象特征。

2. 掌握二次函数的解析式、顶点式及标准式之间的转换。

3. 能够运用二次函数解决实际问题,提高解决问题的能力。

4. 培养学生的逻辑思维能力和团队协作能力。

二、教学内容1. 二次函数的定义与性质1.1 二次函数的定义:一般式为y=ax^2+bx+c(a≠0)1.2 二次函数的性质:开口方向、对称轴、顶点、单调性等。

2. 二次函数的图象特征2.1 开口方向:a>0时,开口向上;a<0时,开口向下。

2.2 对称轴:x=-b/(2a)2.3 顶点:(-b/(2a), c-b^2/(4a))2.4 与y轴的交点:x=0时,y=c。

3. 二次函数的解析式3.1 一般式:y=ax^2+bx+c3.2 顶点式:y=a(x-h)^2+k3.3 标准式:y=a(x-α)^2+β4. 二次函数的转换4.1 一般式与顶点式的转换:4.2 顶点式与标准式的转换:5. 实际问题中的应用5.1 抛物线与坐标轴的交点问题5.2 实际问题转化为二次函数问题,求最值等。

三、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质及图象特征。

2. 利用数形结合法,让学生直观地理解二次函数的图象与性质之间的关系。

3. 运用小组合作探究法,培养学生的团队协作能力和解决问题的能力。

4. 结合实际例子,让学生感受二次函数在生活中的应用。

四、教学准备1. PPT课件:二次函数的性质、图象、实际应用等。

2. 练习题:涵盖本节课的主要知识点。

3. 小组讨论:分组安排。

五、教学过程1. 导入:复习一次函数和反比例函数,引出二次函数。

2. 讲解:介绍二次函数的定义、性质、图象特征等。

3. 演示:利用PPT展示二次函数的图象,让学生直观地感受开口方向、对称轴等。

4. 练习:让学生完成一些简单的练习题,巩固所学知识。

5. 小组讨论:布置一道实际问题,让学生分组讨论,运用二次函数解决问题。

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。

三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。

函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。

2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。

函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。

五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。

向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。

向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。

六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。

《二次函数》知识点梳理与总结

《二次函数》知识点梳理与总结

《二次函数》知识点梳理与总结
一、定义
二次函数是一类二元多项式函数,其一般形式如下:
f(x)=ax2+bx+c
其中a≠0,且a,b,c为常数。

它是一阶导数连续可微的函数。

二、性质
1.二次函数的图象是一个双曲线,其有两条对称轴,分别为y轴和其他对称轴,其上还有一个坐标原点称为顶点。

2.关于y轴的对称性:f(-x)=f(x)
3.关于其他对称轴的对称性:f(x+b/2a)=f(x-b/2a)
4.关于顶点:顶点坐标为(-b/2a,f(-b/2a))
5.当a>0时,双曲线凹,即顶点在第四象限。

6.当a<0时,双曲线凸,即顶点在第一象限。

7.函数的单调性:除两端点外,双曲线上任一点,函数值都在顶点极值线的两侧。

8.二次函数的极值:极值点在二次函数在顶点处,y值为f(-b/2a) 9.函数的凹凸:当a>0时,双曲线是凹函数;当a<0时,双曲线是凸函数。

三、解法
1.利用顶点标准格式求二次函数的顶点:
顶点坐标:(-b/2a,f(-b/2a))
2.利用极值定理求二次函数的极值:
极值点在二次函数在顶点处,y值为f(-b/2a)
3.利用对称性求双曲线的轴的对称性:
1)关于y轴的对称性:f(-x)=f(x)
2)关于其他对称轴的对称性:f(x+b/2a)=f(x-b/2a)。

二次函数小结课件

二次函数小结课件

1.顶点坐标与对称轴
二次函数y=ax2+bx+c(a≠0)的图象和 性质
2.位置与开口方向
3.增减性与最值 根据图形填表: 抛物线
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a b 直线 x 2a
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a b 直线 x 2a
的图象和x轴交点
有两个交点 有一个交点 没有交点
b2-4ac > 0 b2-4ac = 0 b2-4ac < 0
“二次函数应用” 的思路
解决“最值问题”如:“最大利润”和“最大面 积” 此类问题的基本思路:
1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系,建立 好平面直角坐标系; 3.把现实中的数转化为坐标.用数学的方式表示出它 们之间的关系; 4.做数学求解; 5.检验结果的合理性,拓展,注重逆向思维,提高能力等.
b 4ac b 2 当x 时, 最大值为 2a 4a
小结
拓展
回味无穷
函数y=ax2+bx+c(a≠0)与y=ax² 的关系
1.相同点: (1)形状相同(图像都是抛物线,开口方向相同). (2)都是轴对称图形. (3)都有最(大或小)值. (4)a>0时, 开口向上,在对称轴左侧,y都随x的增 大而减小,在对称轴右侧,y都随 x的增大而增大. a<0时,开口向下,在对称轴左侧,y都随x的增大而 增大,在对称轴右侧,y都随 x的增大而减小 .
顶点坐标
对称轴 位置 开口方向
由a,b和c的符号确定

人教版九年级数学《二次函数》知识点梳理与总结(超经典)

人教版九年级数学《二次函数》知识点梳理与总结(超经典)

《二次函数》单元知识梳理与总结一、二次函数的概念1、定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.2、注意点:(1)二次函数是关于自变量x 的二次式,二次项系数a 必须为非零实数,即a ≠0,而b 、c 为任意实数。

(2)当b=c=0时,二次函数2ax y =是最简单的二次函数。

(3)二次函数c b a c bx ax y ,,(2++=是常数,)0≠a 自变量的取值为全体实数 (c bx ax ++2为整式)3、三种函数解析式:(1)一般式: y=ax 2+bx+c (a ≠0),对称轴:直线x=ab2- 顶点坐标:( a b ac a b 4422--, ) (2)顶点式:()k h x a y +-=2(a ≠0),对称轴:直线x=h 顶点坐标为(h ,k )(3)交点式:y=a (x-x 1)(x-x 2)(a ≠0), 对称轴:直线x=22x1x + (其中x 1、x 2是二次函数与x 轴的两个交点的横坐标).二、二次函数的图象1、二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.2、二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.注:二次函数的图象可以通过抛物线的平移得到 3、二次函数c bx ax y ++=2的图像的画法因为二次函数的图像是抛物线,是轴对称图形,所以作图时常用简化的描点法和五点法,其步骤是:(1)先找出顶点坐标,画出对称轴;(2)找出抛物线上关于对称轴的四个点(如与坐标轴的交点等); (3)把上述五个点按从左到右的顺序用平滑曲线连结起来.1、增减性:当a>0时,在对称轴左侧,y 随着x 的增大而减少;在对称轴右侧,y 随着x 的增大而增大; 当a<0时,在对称轴左侧,y 随着x 的增大而增大;在对称轴右侧,y 随着x 的增大而减少; 2、最大或最小值:当a>0时,函数有最小值,并且当x=a b2- , y 最小 =a b ac 442-当a<0时,函数有最大值,并且当x=ab2- , y 最大 =a b ac 442-四、.抛物线的三要素:开口方向、对称轴、顶点坐标。

人教版初中九年级数学上册《二次函数小结》精品课件

人教版初中九年级数学上册《二次函数小结》精品课件

知识梳理
二次函数 y=ax2+bx+c的图象与 x 轴公共点的坐标与一元二次方程
ax2+bx+c=0根的关系
一元二次方程
ax2+bx+c=0 根的判别式
(b2-4ac)
二次函数 y=ax2+bx+
c的图象和x轴公共点
一元二次方程
ax2+bx+c=0 的根
有两个公共点
有两个相异的实数根
b2-4ac > 0
有一个公共点
有两个相等的实数根
b2-4ac = 0
没有实数根
b2-4ac < 0
没有公共点
知识梳理
二次函数 y=ax2+bx+c 的图象与 x 轴公共点的坐标与一元二次不等式的关系
二次函数
y=ax2+bx+c的图象
与x轴公共点
有两个公共点x1,x2
(x1<x2)
有一个公共点x0
没有公共点
a>0
a<0
解:(2) W=(x-60)(-x+120)= -x2+180x-7200= -(x-90)2+900,
∵抛物线的开口向下, ∴当x<90时,W 随x的增大而增大,
而60≤x≤60(1+45%),即60≤x≤87,
∴当x=87时,W有最大值,此时W=-(87-90)2+900=891.
重点解析
3
如图,在梯形ABCD中,AB∥DC,∠ABC=90°,∠A=4<q<n
解:∵二次函数 y=(x-p)(x-q)+2,
∴该函数开口向上,当x=p或x=q时,y=2,
∵m,n是关于x的方程(x-p)(x-q)+2=0的两个根,

二次函数知识小结

二次函数知识小结

二次函数知识小结一.定义:形如 (a,b,c 是常数且a ≠0),那么y 叫做x 的二次函数。

注意:当二次系数中含有待定字母时,必考虑该系数非零的条件。

范例1:若函数 是二次函数,则m = 。

范例2:若抛物线 与y 轴的交点在正半轴上,则m 的取值范围是 .二.图象:二次函数的图象是一条抛物线,抛物线的形状只有由a 来决定的,a 的正负性决定抛物线的开口方向性,a 的大小决定抛物线的开口大小性,绝对值越大开口反而越小。

特别注意:抛物线的形状相同,则a 的绝对值相等。

范例:若抛物线 的图象与抛物线 的形状相同,则m = 。

三.函数 的图象的相互位置关系:平移规律:平方里面左右移,平方外边上下移,平移方向,正负、上下、左右三对应还可以用顶点位置确定法:描顶点,判始终,明方向,定单位。

范例1:把抛物线 先向右平移2个单位,再向下平移3个单位所得的抛物线的解析式是 。

范例2:把某抛物线先向左平移3个单位,再向上平移2个单位得到抛物线 ,则此抛物线的解析式是 。

2y ax bx c =++2213m m y (m )x x +=-++2221y (m )x x m =-+++221y mx x =+-232y x x =-+-2222y ax ,y ax k,y a(x m),y a(x m)k ==+=+=++左右平移m 个单位上下平移k 个单位左右平移m 个单位上下平移k 个单位y=a x+m ()2+ky=a x+m ()2y=ax 2+ky=ax 222y x =227y x x =--+范例3:把抛物线 通过怎样平移得到抛物线 ? 四.函数 (a ≠0)的图象性质:说清图象的性质的关键是正确地把一般式化成顶点式。

化顶点式三法:①配方法;②公式法;③求值法。

(一)位置性:1。

顶点: 24(,)24b ac b a a--; 2。

方向:当a >0时,开口向上并无限伸展;当a <0时,开口向下并无限伸展; 3。

二次函数小结与复习教学案

二次函数小结与复习教学案

二次函数小结与复习教学案一. 教学内容:二次函数小结与复习二. 重点、难点:1. 重点:⑴体会二次函数的意义,了解二次函数的有关概念;⑵会运用配方法确定二次函数的图象的顶点、开口方向和对称轴,并能确定其最值;⑶会运用待定系数法求二次函数的解析式;⑷利用二次函数的知识解决实际问题,并对解决问题的策略进行反思.2. 难点:⑴二次函数图象的平移;⑵将实际问题转化为函数问题,并利用函数的性质进行决策.三. 知识梳理:1. 二次函数的概念及图象特征二次函数:如果,那么y叫做x的二次函数.通过配方可写成,它的图象是以直线为对称轴,以为顶点的一条抛物线.值>0=时,函数有最小值<时,<0=时,函数有最大值<时,3. 二次函数图象的平移规律抛物线可由抛物线平移得到. 由于平移时,抛物线上所有的点的移动规律都相同,所以只需研究其顶点移动的情况. 因此有关抛物线的平移问题,需要利用二次函数的顶点式来讨论.4. 、、及的符号与图象的关系⑴a→决定抛物线的开口方向;a>0. 开口向上;a<0,开口向下.⑵a、b→决定抛物线的对称轴的位置:a、b同号,对称轴(<0=在y轴的左侧;a、b异号,对称轴(>0)在y轴的右侧.⑶c→决定抛物线与y轴的交点(此时点的横坐标x=0)的位置:c>0,与y轴的交点在y轴的正半轴上;c=0,抛物线经过原点;c<0,与y轴的交点在y轴的负半轴上.⑷b2-4ac→决定抛物线与x轴交点的个数:①当b2-4ac>0时,抛物线与x轴有两个交点;②当b2-4ac=0时,抛物线与x轴有一个交点;③当b2-4ac<0时,抛物线与x轴没有交点.5. 二次函数解析式的确定用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立的条件,根据不同的条件选择不同的设法:⑴设一般形式:(a≠0);⑵设顶点形式:(a≠0);⑶设交点式:(a≠0).6. 二次函数的应用问题解决实际应用问题的关键是选准变量,建立好二次函数模型,同时还要注意符合实际情景.【典型例题】例1. 二次函数y=-x2+2x-1通过向(左、右)平移个单位,再向___________(上、下)平移个单位,便可得到二次函数y=-x2的图象.分析:y=-x2+2x-1的顶点为(3,2),y=-x2的顶点为(0,0),因此可以根据顶点坐标确定平移的方向和距离.解:y=-x2+2x-1=-(x-3)2+2,∴把二次函数y=-x2+2x-1向左平移3个单位,再向下平移2个单位,便得到y=-x2的图象.例2. 已知二次函数y=ax2+bx+c的图象如下图所示,则下列5个代数式:ab,ac,a-b+c,b2-4ac,2a+b中,值大于0的个数有()A. 5B. 4C. 3D. 2解析:∵抛物线开口向上,∴a>0.∵对称轴在y轴左侧,∴a,b同号.又a>0,∴b>0.∵抛物线与y轴的交点在x轴下方,∴c﹤O. ∴ab>0,ac﹤0.∵抛物线与x轴有两个交点,∴b2-4ac>0.∵对称轴x=-=-1,∴b=2a. ∴2a+b﹥0当x=-1时,y=a-b+c﹤0. ∴选C.例3. 如图,抛物线y=-x2+2(m+1)x+m+3与x轴交于A、B两点,且OA:OB=3:1,则m的值为()A. -B. 0C. -或0D. 1分析:二次函数的图象与x轴交点的横坐标与点到原点的距离即线段的长度应区分开,当点A在原点右侧时,x A=OA;当点A在原点左侧时,x A+OA=0(注:点A在x轴上).解:设OB=x,则OA=3x(x﹥0),则B(-x,0),A(3x,0).∵-x,3x是方程-x2+2(m+1)x+m+3=0的根,∴-x+3x=2(m+1),-x·3x=-m-3.解得m1=0,m2=-.又∵x﹥0,∴m=-不合题意.∴m=0,因此选B.例4. 已知二次函数y=mx2+(m-1)x+m-1有最小值为0,求m的值.分析:二次函数y=ax2+bx+c有最大(小)值a﹤0(a>0).解:∵二次函数y=mx2+(m-1)x+m+1有最小值为0,∴即解得m=1.例5. 已知关于x的二次函数y=(m+6)x2+2(m-1)x+(m+1)的图象与x轴总有交点,求m的取值范围.分析:这个函数是二次函数,应注意m+6≠0这个条件.解:∵二次函数y=(m+6)x2+2(m-l)x+(m+1)的图象与x轴总有交点,∴∴m≤-且m≠-6.例6. 如图所示,有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4. 9m,AB=10m,BC=2. 4m. 现把隧道的横断面放在平面直角坐标系中,若有一辆高为4m,宽为2m的装有集装箱的汽车要通过隧道.问:如果不考虑其他因素,汽车的右侧离开隧道右壁多少米才不至于碰隧道顶部?(抛物线部分为隧道顶部,AO、BC为壁)分析:由已知条件知,抛物线经过原点O(0,0)、C(10,0),顶点的纵坐标为(4. 9-2. 4)=2. 5. 由此可求出抛物线的关系式,要想使汽车的顶部不碰到隧道的顶部,看y=4-2. 4=1. 6时,求出x的值.解:由已知条件知,该抛物线顶点的横坐标为=5,纵坐标为4. 9-2. 4=2. 5,C点坐标为(0,0),∴设抛物线的函数关系式为y=a(x-5)2+2. 5.把(0,0)或(10,0)代入上式,得0=25a+2. 5. 解得a=-.∴y=-(x-5)2+2. 5.当y=4-2. 4=1. 6时,1. 6=-(x-5)2+2. 5.解得x1=8,x2=2(不合题意,舍去).∴x=8,∴OC-x=10-8=2(米).故汽车离开右壁至少2米,才不会碰到顶部.点拨:将实际问题转化成数学问题时,要注意(1)顶点纵坐标是(4. 9-2. 4)而不是4. 9;(2)求出的x=2是汽车的右侧离开隧道右壁的距离(因为该隧道是双向的,因此会出现两种情况),若改为“汽车离开隧道壁多少米才不至于碰隧道顶部”,则x1=2,x2=8都合题意.例7. 今年夏季我国部分地区遭受水灾,空军某部奉命赶赴灾区空投物资。

二次函数知识小结笔记

二次函数知识小结笔记
(3)若反比例函数y2= (x>0,k>0)的图像与二次函数y1=ax2+bx+c(a≠0)的图像在第一象限内的交点A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围.(5分)
8.(2008年南京市)已知二次函数 中,函数 与自变量 的部分对应值如下表:




(1)求该二次函数的关系式;
(2)当 为何值时, 有最小值,最小值是多少?
答案:x=2
4.(2008常州市) 已知函数 的部分图象如上图所示,则c=______,当x______时,y随x的增大而减小.
5.(2008年甘肃省白银市)抛物线y=x2+x-4与y轴的交点坐标为.
答案:(0,-4)
解析:考查二次函数解析式及平面直角坐标系内点的坐标特征。根据y轴上的点的横坐标为0的特征,可得y=02+0-4=-4,所以所求交点坐标为(0,-4)。
三、求二次函数的最值
方法一: 应用公式法求:
当a>0时,函数有最小值,并且当x= ,y最小值= ;
当a<0时,函数有最大值,并且当x= ,y最大值=
方法二配方法:当把二次函数解析式化为 的形式时,可知当 ,其有最大值或最小值 .
方法三代入法:把x= 代入函数解析式 计算的函数值y是最值
四、求二次函数的顶点坐标
其中正确的是( ).
A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.
二、填空题:
1.(2008年湖北省咸宁市)抛物线 与 轴只有一个公共点,则 的值为.
2.(2008年南昌市)将抛物线 向上平移一个单位后,得到的抛物线解析式是.
3.(2008黄冈市)抛物线y=2(x-2)2+3的对称轴为直线________.

九年级数学《二次函数》小结与复习

九年级数学《二次函数》小结与复习

《二次函数》小结与复习教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c (a≠0)(2)顶点式:y=a(x-h)2+k (a≠0) (3)两根式:y=a(x-x1)(x-x2) (a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx +c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。

初中数学二次函数知识点总结

初中数学二次函数知识点总结

初中数学二次函数知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学二次函数知识点总结初中数学二次函数知识点总结(精选30篇)初中数学二次函数知识点总结篇11、定义与定义表达式一般地,自变量X和因变量y之间存在如下关系:y=aX^2+bX+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a 二次函数表达式的右边通常为二次三项式。

华东师大版九年级数学下26章二次函数知识点总结及经典例题

华东师大版九年级数学下26章二次函数知识点总结及经典例题

二次函数知识点总结一、二次函数概念:1二次函数的概念:一般地,形如y ax2 bx c( a, b , c是常数,a 0 )的函数,叫做二次函数。

里需要强调:和一元二次方程类似,二次项系数 a 0,而b,c可以为零•二次函数的定义域是全体实数•--22. 二次函数y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b, c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. 二次函数基本形式:y ax2的性质:a的绝对值越大,抛物线的开口越小。

22. y ax c的性质:上加下减。

23. y a x h的性质:左加右减。

六、四、二次函数从解析式上看,b a x2a二次函数 4ac b 24a,其中 ax 2bx c 的性质ax 22axbx c 的比较 bx c 是两种不同的表达形式,4ac b 24a 后者通过配方可以得到前者,a 0向下 h , 0 X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值0 •24. y ax hk 的性质:a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k •a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k •三、二次函数图象的平移1. 平移步骤:⑴将抛物线解析式转化成顶点式⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2y a x h k ,确定其顶点坐标 h, k ;y=ax 2 A y=ax 2+k向右(h>0)【或左(*0)] 平移|k|个单位向右(h>0)【或左(h<0)] 平移|k|个单位2. 平移规律在原有函数的基础上概括成八个字“左加右减, h 值正右移,负左移;上加下减” •k 值正上移,负下移”向上(k>0)【或向下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】平移|k 个单位向上(k>0)【或下(k<0)] 平移|k 个单位y=a(x h)2y=a(x h)2+k向右(h>0)【或左(h<0)]平移|k|个单位七、二次函数解析式的表示方法21. 一般式:y ax bx c ( a , b , c 为常数,a 0); 2•顶点式:y a (x h )2 k ( a , h , k 为常数,a 0);3. 两根式(交点式):y a (x x i )(x 血)(a 0, x , X 2是抛物线与x 轴两交点的横坐标) 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.二次函数的图象与各项系数之间的关系二次项系数a当a 0时,抛物线开口向上, 当a 0时,抛物线开口向下,九、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与 二次方程ax bx c 0是二次函数y x 轴的交点个数: 兀 图象与 2ax x 轴交点情况): bx c 当函数值 y 0时的特殊情况. 2b 4ac 0时,图象与x 轴交于两点A X i , 0 , B x 2 , 0 (X i X 2),其中的X i , X 2是一元二次方2ax bx 0的两根.. 1' 2' 0时, 0时, 当a 当a x 轴只有一个交点; x 轴没有交点. 图象与 图象与 0时,图象落在x 轴的上方,无论 0时,图象落在x 轴的下方,无论x 为任何实数,都有 x 为任何实数,都有2•当a2时,2a 2时,2a2ba 时, y 随x 的增大而减小; y 随x 的增大而增大;y 有最小值 24ac b4a0时,抛物线开口向下, 对称轴为暑,顶点坐标为b 4ac b 2 2a' 4a•当x —时,y 随2ax的增大而增大;当x时,y 随x 的增大而减小;当 x2—时,y 有最大值4^-b -2a4a八、 1. ⑴ ⑵a 的值越大,开口越小,反之 a 的值越小,开口越大; a 的值越小,开口越小,反之 a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下, 3. 常数项c⑴当c ⑵当c ⑶当c总结起来, b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)抛物线与y 轴的交点在x 轴上方,即抛物线与 抛物线与y 轴的交点为坐标原点,即抛物线与 抛物线与0时,0时, 0时, c 决定了抛物线与y 轴交点的位置.y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.22. 抛物线y ax bx c的图象与y 轴一定相交,交点坐标为(0 , c);二次函数对应练习试题一、选择题1. 二次函数y x2 4x 7的顶点坐标是()A.(2, —11)B. (- 2, 7)C. (2, 11)D. (2, - 3)2. 把抛物线y 2x2向上平移1个单位,得到的抛物线是( )2 2 2 2A. y 2(x 1)B. y 2(x 1)C. y 2x 1D. y 2x 12 k3. 函数y kx k和y (k 0)在同一直角坐标系中图象可能是图中的()x4.已知二次函数y ax2bx c(a 0)的图象如图所示当x 1和x 3时,函数值相等;③4a b 0④当y确的个数是()A.1个B.2 个C. 35.已知二次函数ax2 bx c(a由图象可知关于兀二次方程axA. — 1 .6.已知二次函数A.第一象限C.第三象限7.方程2x x2A.0个8.已知抛物线过点,则下列结论:①a,b同号;②2时,x的值只能取0.其中正个个D. 4B.-2.3C.-0.3D.-3.32ax bx c的图象如图所示,则点(ac,bc)在(B.第二象限D.第四象限-的正根的个数为( )xB. 1C.2A(2,0),B(-1,0), 与y轴交于点C,且OC=2.则这条抛物线的解析式为2A.y2x2x 2B.y2x2x 2C.y x2 x 2 或y 2 小x x 2 D.y2 2x x 2 或y x x 2二、填空题9•二次函数y x2 bx 3的对称轴是x 2,则b ______________ 。

九年级数学-《二次函数》小结与复习总结学案

九年级数学-《二次函数》小结与复习总结学案

九年级数学《二次函数》小结与复习教学目标:1、理解二次函数的概念,能结合二次函数的图象掌握二次函数的性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象;2、会用待定系数法求二次函数的解析式,能较熟练地利用函数的性质解决函数与方程、不等式以及几何图形等知识相结合的综合题;3、掌握二次函数模型的建立,能运用二次函数的知识解决实际问题。

教学难点和重点:重点:1、求二次函数的顶点、对称轴,根据图象概括二次函数图象的性质。

2、用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

3、利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。

难点:1、二次函数图象的平移。

2、会运用二次函数知识解决有关综合问题。

学习方法:在理解的基础上掌握二次函数的知识,多思考,灵活运用所学知识。

教学过程:二次函数复习提纲知识要点梳理知识点一:二次函数的定义一般地,如果是常数,,那么叫做的二次函数.知识点二:二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴) (0,0)(轴) (0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点;②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则. 4.用待定系数法求二次函数的解析式(1)一般式:.已知图象上三点或三对、的值,通常选择一般式. (2)顶点式:.已知图象的顶点或对称轴,通常选择顶点式. (可以看成的图象平移后所对应的函数.) (3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:.(由此得根与系数的关系!)5.二次函数图象的平移规律任意抛物线y a x h k=-+()2可以由抛物线y ax=2经过适当的平移得到,移动规律可简记为:[左加右减,上加下减],具体平移方法如下表所示。

黑龙江省绥化市第九中学九年级数学下册 第27章 二次函数小结与复习1教案 华东师大版

黑龙江省绥化市第九中学九年级数学下册 第27章 二次函数小结与复习1教案 华东师大版

教具准备 投影仪,胶片.教学过程 初 备 在学习二次函数时,要注重数形结合的思想方法。

在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。

4.点A (-2,a )是抛物线2x y =上的一点,则a= ; A 点关于原点的对称点B 是 ;A 点关于y 轴的对称点C 是 ;其中点B 、点C 在抛物线2x y =上的是 .5.若二次函数c bx x y ++=2的图象经过点(2,0)和点(0,1),则函数关系式为 .教学内容教学目标 1)能结合实例说出二次函数的意义。

(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。

(3)掌握二次函数的平移规律。

(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。

(5)会用待定系数法灵活求出二次函数关系式。

(6)熟悉二次函数与一元二次方程及方程组的关系。

(7)会用二次函数的有关知识解决实际生活中的问题教学重点 能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。

会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值教学难点 会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值会用二次函数的有关知识解决实际生活中的问题复习建构一、知识结构:二、注意事项:复习题组 1.已知函数m m mx y -=2,当m= 时,它是二次函数;当m= 时,抛物线的开口向上;当m= 时,抛物线上所有点的纵坐标为非正数.2.抛物线2ax y =经过点(3,-1),则抛物线的函数关系式为 .3.抛物线9)1(22-++=k x k y ,开口向下,且经过原点,则k= .(2)请你根据已有信息,在原题中的矩形框内,填上一个适当的条件,把原题补充完整典例探究例1某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数:m=162-3x .(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?例2阅读下面的文字后,解答问题.有这样一道题目:“已知二次函数y=ax 2+bx+c 的图象经过点A(0,a) 、B(1,-2)、 、 ,求证:这个二次函数图象的对称轴是直线x=2.”题目中的矩形框部分是一段被墨水污染了无法辨认的文字.(1)根据现有信息,你能否求出题目中二次函数的解析式? 若能,写出求解过程,若不能请说明理由;小结与作业 课堂小结:谈一下学习本章应该注意的问题有那些?课堂作业:1已知二次函数12-+=bx x y 的图象经过点(3,2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27章 《二次函数》小结与复习(1)(第15课时)
一、结合例题精析,强化练习,剖析知识点
1.二次函数的概念,二次函数y =ax 2+bx +c(a≠0)的图象性质。

例:已知函数4
m m 2x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?
强化练习;
已知函数m m 2x )1m (y ++=是二次函数,其图象开口方向向下,则m =_____,顶点为_____,当x_____0时,y 随x 的增大而增大,当x_____0时,y 随x 的增大而减小。

2。

用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律。

例:用配方法求出抛物线y =-3x 2-6x +8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y =-3x 2。

强化练习:
(1)抛物线y =x 2+bx +c 的图象向左平移2个单位。

再向上平移3个单位,得抛物线y =x 2-2x +1,求:b 与c 的值。

(2)通过配方,求抛物线y =12
x 2-4x +5的开口方向、对称轴及顶点坐标,再画出图象。

3.用待定系数法确定二次函数解析式.
例:根据下列条件,求出二次函数的解析式。

(1)抛物线y =ax 2+bx +c 经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y =ax 2+bx +c 的图象过(3,0),(2,-3)两点,并且以x =1为对称轴。

(4)已知二次函数y =ax 2+bx +c 的图象经过一次函数y =-2
3x +3的图象与x 轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y =a(x -h)2+k 的形式。

强化练习:
已知二次函数的图象过点A(1,0)和B(2,1),且与y 轴交点纵坐标为m 。

(1)若m 为定值,求此二次函数的解析式;
(2)若二次函数的图象与x 轴还有异于点A 的另一个交点,求m 的取值范围。

4.何时获得最大利润问题。

例:重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,区
政府对该花木产品每投资x 万元,所获利润为P=-150
(x -30)2+10万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售
外,还可运往外地销售,运往外地销售的花木产品,每投资x 万元可获利润Q=-4950
(50-x)2+1945
(50-x)+308万元。

(1)若不进行开发,求10年所获利润最大值是多少?
(2)若按此规划开发,求10年所获利润的最大值是多少?
(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。

强化练习:
某公司试销一种成本单价为500元/件的新产品,
规定试销时的销售单价不低于成本单价,又不高于800
元/件,经试销调查,发现销售量y(件)与销售单价x(元
/件)可近似看做—次函数y =kx +b 的关系,如图所示。

(1)根据图象,求一次函数y =kx +b 的表达式,
(2)设公司获得的毛利润(毛利润=销售总价-成
本总价)为S 元,①试用销售单价x 表示毛利润S ;②
试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?
5.最大面积是多少问题。

例:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形的边长为x,面积为S平方米。

(1)求出S与x之间的函数关系式;
(2)请你设计一个方案,使获得的设计费最多,并求出这个设计费用;
(3)为了使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元) (参与资料:①当矩形的长是宽与(长+宽)的比例中项时,这样的矩形叫做黄金矩形,②5≈2.236)
三、课堂小结
1。

投影:完成下表:
3 归纳二次函数三种解析式的实际应用。

4.如何将实际问题转化为二次函数问题,从而利用二次函数的性质解决最大利润问题,最大面积问题。

四、作业:
1.若二次函数y =(m +1)x 2+m 2-2m -3的图象经过原点,则m =______。

2.函数y =3x 2与直线y =kx +3的交点为(2,b),则k =______,b =______。

3.开口向上的抛物线y =a(x +2)(x -8)与x 轴交于A 、B 两点,与y 轴交于C 点,若∠ACB =90°,则a =_____。

4.已知抛物线y =ax 2+bx +c 的对称轴为x =2,且过(3,0),则a +b +c =______。

5.某公司生产的A 种产品,它的成本是2元,售价为3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(十万元)
时,产品的年销售量将是原销售量的y 倍,且y =-110x 2+35
x +1,如果把利润看成是销售总额减去成本费和广告费。

(1)试写出年利润S(十万元)与广告费x(十万元)的函数关系式.
(2)如果投入广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增次?
(3)在(2)中,投入的广告费为多少万元时,公司获得的年利润最大?是多少?。

相关文档
最新文档