中考数学综合题专题成都中考B卷填空题专题精选一

合集下载

中考数学综合题专题成都中考B卷培优专题训练一

中考数学综合题专题成都中考B卷培优专题训练一

中考数学综合题专题【成都中考B 卷培优】专题训练一一、填空题:1.关于x 的不等式组0330x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是65a -≤<-。

2. 如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则DMN S ∆∶ANME S 四边形等于 .【分析】∵DE 是△ABC 的中位线,∴DE∥BC,DE=12BC 。

若设△ABC 的面积是1,根据DE∥BC ,得△ADE∽△ABC,∴S △ADE =14。

连接AM ,根据题意,得S △ADM =12S △ADE =18。

∵DE∥BC ,DM=14BC ,∴DN=14BN 。

∴DN=13BD=13AD 。

∴S △DNM =13S △ADM =124,∴S 四边形ANME =11424-=524。

∴S △DMN :S 四边形ANME =124:524 =1:5。

3. 已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB = 5 .下列结论:①△APD≌△AEB;②点B 到直线AE 的距离为 2 ;③EB⊥ED;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是【分析】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD。

又∵AE=AP,AB=AD ,∴△APD≌△AEB(SAS )。

故①成立。

③∵△APD≌△AEB,∴∠APD=∠AEB。

又∵∠AEB=∠AEP+∠BEP ,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°。

∴EB⊥ED。

故③成立。

②过B 作BF⊥AE,交AE 的延长线于F ,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°。

四川省成都市中考数学B卷填空题专项练习一(7套合集)

四川省成都市中考数学B卷填空题专项练习一(7套合集)

B卷填空专项练习(一)21.(4分)如果二次函数y=x2+2x+m的图象与x轴有两个交点,那么m的取值范围是.22.(4分)有五张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外,其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为n,则使关于x的分式方程有解的概率为.23.(4分)将正方形沿虚线(其中x<y)剪成①,②,③,④四块图形,用这四块图形恰好能拼成一个如图所示的矩形,则=.24.(4分)如图,反比例函数y=的图象经过点(﹣,﹣4),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C 在第四象限,AC与x轴交于点P,连结BP.在点A运动过程中,当BP平分∠ABC时,点C的坐标是.25.(4分)如图,点C在以AB为直径的半圆上,AB=10,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为5;③当AD=3时,EF与半圆相切;④若点F恰好落在弧BC上,则AD=5;⑤当点D从点A运动到B点时,线段EF扫过的面积是20.其中正确结论的序号是.(二)一、填空题(本大题共5小题,每小题4分,共20分)21.(4分)在平面直角坐标系xOy中,点P(4,a)在正比例函数y=x的图象上,则点Q(2a ﹣5,a)关于y轴的对称点Q'坐标为.22.(4分)定义新运算:a*b=a(b﹣1),若a、b是关于一元二次方程x2﹣x+m=0的两实数根,则b*b﹣a*a的值为.23.(4分)如图,AB是⊙O的直径,AB=10,∠A=40°,点D为弧BC的中点,点P是直径AB 上的一个动点,PC+PD的最小值为.24.(4分)如图,已知双曲线y=与直线y=k2x(k1,k2都为常数)相交于A,B两点,在第一象限内双曲线y=上有一点M(M在A的左侧),设直线MA,MB分别与x轴交于P,Q 两点,若MA=m•AP,MB=n•QB,则n﹣m的值是.25.(4分)如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP 为“叠弦三角形”.以下说法,正确的是.(填番号)①在图1中,△AOB≌△AOD';②在图2中,正五边形的“叠弦角”的度数为360°;③“叠弦三角形”不一定都是等边三角形;④正n边形的“叠弦角”的度数为60°﹣.21.(4分)若实数m满足=m+1,且0<m<,则m的值为.22.(4分)若关于x的分式方程=﹣有增根,则k的值为.23.(4分)在平面直角坐标系中,横坐标,纵坐标都为整数的点称为整点,正方形边长的整点称为边整点,如图,第一个正方形有4个边整点,第二个正方形有8个边整点,第三个正方形有12个边整点,…,按此规律继续作下去,若从内向外共作了5个这样的正方形,那么其边整点的个数共有个,这些边整点落在函数y=的图象上的概率是.24.(4分)如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC上(如图3),给出四个结论:①AF的长为10;②△BGH的周长为18;③=;④GH的长为5,其中正确的结论有.(写出所有正确结论的番号)25.(4分)如图,线段AB=16,以AB为直径的半圆上有一点C,连接BC并延长到点D,使DC=2BC,连接OD、AC交于点E,当∠B=2∠D时,线段OE的长为.21.(4分)已知一元二次方程x2﹣4x﹣3=0的两根为m、n,则m2﹣3mn+n2=.22.(4分)如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行分钟可使渔船到达离灯塔距离最近的位置.23.(4分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B的左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“关联”抛物线,直线AC′为抛物线p的“关联”直线.若一条抛物线的“关联”抛物线和“关联”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.24.(4分)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.25.(4分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH,④AD2=OD•DH中,正确的是.21.(4分)若点M(a,b)在直线y=﹣x+上,则3a×9b÷27﹣2a﹣4b的值为.22.(4分)从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率.23.(4分)如图,直线y=6﹣x交x轴、y轴于A、B两点,P是反比例函数y=(x>0)图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于AB于点F,且AF•BE=8,则k=.24.(4分)如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连接CD,过点B 作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连接DF,下面四个结论:①=;②点F是GE的中点;③AF=AB;④S△ABC =6S△BDF.其中正确结论的序号是.25.(4分)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P为和谐点,例如点(1,1),(﹣,﹣),(﹣,﹣),…都是和谐点,若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点(,),当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是.21.(4分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图如图所示,则抽查的学生中户外活动时间为1.5小时的人数.22.(4分)如图,半径为2cm的圆O与地面相切于点B,圆周上一点A距地面高为(2+)cm,圆O沿地面BC方向滚动,当点A第一次接触地面时,圆O在地面上滚动的距离为.23.(4分)设α、β是方程x2+2013x﹣2=0的两根,则(α2+2016α﹣1)(β2+2016β﹣1)=.24.(4分)双曲线y=(x>0)与直线y=x在坐标系中的图象如图所示,点A、B在直线上AC、BD分别平行y轴,交曲线于C、D两点,若BD=2AC,则4OC2﹣OD2的值为.25.(4分)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1)现将y轴上一点P(0,2)绕点A旋转180°得到点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,又将点P4绕点A旋转180°得点P5,又将点P5绕点B旋转180°得点P6…,按此方法操作依次得到P1,P2,…,则点P2016的坐标是.21.(4分)如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C点在斜边上,设矩形的一边AB=xm,矩形的面积为ym2,则y的最大值为.22.(4分)有五张正面分别标有数﹣2,0,1,3,4的不透明卡片,它们除了数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程+2=有正整数解的概率为.23.(4分)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为.24.(4分)如图,△A1B1A2,A2B2A3,A3B3A4,…,A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2017的长为.25.(4分)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有.。

最新成都中考数学模拟试题B卷题汇编(含解析)超经典填空解答题(初三培优)

最新成都中考数学模拟试题B卷题汇编(含解析)超经典填空解答题(初三培优)

中考模拟试题B卷题汇编(含解析)第Ⅰ卷(选择题)一.填空题(共25小题)1.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是.2.如图,Rt△ABC的顶点在坐标原点,点B在x轴上,∠ABO=90°,sin∠AOB=,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D,连接CD,则四边形CDBO的面积是.3.如图,正方形ABCD与正方形AEFG有公共顶点A,连接BE、CF,则线段BE:CF的值是.4.抛物线y=﹣x2+ax﹣5的顶点在坐标轴上,则系数a的值是.5.阅读材料:在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任何一点M,用表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,∠O叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系.如图,在极坐标系中,点A的极坐标为(4,30°)、点B的极坐标为(6,60°),那么AB两点之间的距离是.6.已知CD分别是线段AB上的两个黄金分割点,且AB=4,则CD= .7.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且|x1﹣x2|=5,则a= .8.如图,抛物线y=﹣x2+x+c的顶点是正方形ABCO的边AB的中点,点A,C 在坐标轴上,抛物线分别与AO,BC交于D,E两点,将抛物线向下平移1个单位长度得到如图所示的阴影部分.现随机向该正方形区域投掷一枚小针,则针尖落在阴影部分的概率P= .9.如图,直线y=﹣x+b与双曲线y=(k<0),y=(m>0)分别相交于点A,B,C,D,已知点A的坐标为(﹣1,4),且AB:CD=5:2,则m= .10.如图,⊙O的直径AB的长12,长度为4的弦DF在半圆上滑动,DE⊥AB于点E,OC⊥DF于点C,连接CE,AF,则sin∠AEC的值是,当CE的长取得最大值时AF的长是.11.已知x1,x2是方程x2+5x﹣6=0的两根,则x22﹣5x1+6的值为.12.从﹣3,﹣1,0,1,2这5个数中任意取出一个数记作k,则既能使函数y=的图象经过第一、第三象限,又能使关于x的一元二次方程x2﹣kx+1=0有实数根的概率= .13.在▱ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交▱ABCD的四条边于E、G、F、H四点,连接EG、GF、FH、HE.(1)如图①,四边形EGFH的形状是;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,四边形EGFH的形状是.14.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B 重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.当常数k= 时,△EFA的面积有最大值,其最大面积= .15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2>4ac;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③a>;④当y>0时,x的取值范围是﹣1<x≤3;⑤当x>0时,y随x增大而增大.上述五个结论中正确的有(填序号)16.已知方程x2﹣2x﹣1=0的两根分别为m,n,则代数式4m+2(n﹣m)﹣1的值为.17.如图是二次函数y=ax2+bx+c的图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②b2>4ac;③b=﹣2a;④a+b+c=0,其中正确结论的序号是.18.现从四个数1,2,﹣1,﹣3中任意选出两个不同的数,分别作为函数y=ax2+bx 中a,b的值,那么所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是.19.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=20,AH=16,⊙O的半径为15,则AB= .20.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.21.如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是(把你认为正确结论的序号都填上).22.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O 运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为.23.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为.24.现有三张分别标有数字1、2、6的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回),再从中任意抽取一张,将上面的数字记为b,这样的数字a,b能使关于x的一元二次方程x2﹣2(a﹣3)x﹣b2+9=0有两个正根的概率为.25.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.第Ⅱ卷(非选择题)二.解答题(共15小题)26.七中育才初2017届某班作文集准备在周边学校进行销售,试销售成本为每本20元,班级规定试销售期间的售价不低于成本价,也不高于每本40元,经试销售发现,销售量y(本数)与销售单价x(元)之间符合一次函数关系,下图是y与x的函数图象.(1)求y与x之间的函数关系式,并直接写出x的取值范围;(2)为了销售利润要达到520元,并且要将制作班级作文征集活动在周边学校进行推广(让了解的人越多越好),此时销售价应该定为多少元?27.如图,在菱形ABCD中,∠BAD=120°,边长AB=6,对角线AC、BD交于点O,线段AD上有一动点P,过点P作PH⊥BC于点H,交直线CD于点Q,连接OQ,设线段PD=m.(1)求线段PH的长度.(2)设△OPQ的面积为S,求S与m之间的关系式.(3)在运动过程中是否存在点P使△OPQ的面积与△CQH的面积相等,若存在,请求出满足条件m的值;若不存在,请说明理由.28.如图,将二次函数y=﹣x2向右平移1个单位,再向上平移4个单位得到新的二次函数y=ax2+bx+c(a≠0),该图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求二次函数y=ax2+bx+c解析式,并求出顶点P的坐标.(2)在二次函数y=ax2+bx+c(a≠0)对称轴上有一动点E(点E在顶点下方),直线OE交BP于点K,交抛物线于点Q,连接CQ交对称轴于点E.①若点O、E、F、C围成四边形面积为2时,求Q点坐标.②当△OCK为等腰三角形时(如图),求E点坐标.29.某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图1所示,每千克成本y2(元)与销售月份x之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x之间满足的函数表达式,并直接写出x的取值范围;(2)求出y2与x之间满足的函数表达式;(3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价﹣成本)30.如图1,点E为正方形ABCD的边CD上一点,DF⊥AE于点F,交AC于点M,交BC于点G,在CD上取一点G′,使CG´=CG,连接MG´.(1)求证:∠AED=∠CG´M;(2)如图2,连接BD交AE于点N,连接MN,MG´交AE于点H.①试判断MN与CD的位置关系,并说明理由;②若AB=12,DG´=G´E,求AH的长.31.如图,抛物线y=﹣x2+x+c与x轴交于A,B两点(点A在点B的左侧),过点A的直线y=x+3与抛物线交于点C,且点C的纵坐标为6.(1)求抛物线的函数表达式;(2)点D是抛物线上的一个动点,若△ACD 的面积为4,求点D的坐标;(3)在(2)的条件下,过直线AC上方的点D的直线与抛物线交于点E,与x 轴正半轴交于点F,若AE=EF,求tan∠EAF的值.32.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?33.如图已知正方形ABCD,点M是边AB的中点.(1)如图1,点G为线段CM上一点,且∠AGB=90°,延长AG,BG分别与边BC、CD交于点E、F.①求证:BE=CF=CG;②求证:BE2=BC•CE.(2)如图2,若点E为边BC的黄金分割点时(BE>CE),连接BG并延长交CD 于点F,求tan∠CBF的值.34.如图1,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x轴交于点A (1,0)和点B.(1)求抛物线的解析式;(2)求经过点B且与抛物线只有一个交点的直线PQ的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H 为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.35.成都市某学校计划建一个长方形种植园,如图所示,种植园的一边靠墙,另三边用周长为30m的篱笆围成,已知墙长为18m,设这个种植园垂直于墙的一边长为x(m),种植园面积为y(m2).(1)求y与x之间的函数关系式;(2)根据实际需要,要求这个种植园的面积不小于100m2,求x的取值范围,并求这个种植园的面积的最大值.36.如图,在△ABC中,∠C=90°,AC=BC=2,点D,E分别在边BC,AB上,连接AD,ED,且∠BDE=∠ADC,过E作EF⊥AD交边AC于点F,连接DF.(1)求证:∠AEF=∠BED;(2)过A作AG∥ED交BC的延长线于点G,设CD=x,CF=y,求y与x之间的函数关系式;(3)当△DEF是以DE为腰的等腰三角形时,求CD的长.37.如图,直线y=2x﹣10分别与x轴,y轴交于点A,B,点C为OB的中点,抛物线y=﹣x2+bx+c经过A,C两点.(1)求抛物线的函数表达式;(2)点D是直线AB上方的抛物线上的一点,且△ABD的面积为.①求点D的坐标;②点P为抛物线上一点,若△APD是以PD为直角边的直角三角形,求点P到抛物线的对称轴的距离.38.如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD 上一动点.(1)求抛物线的解析式;(2)过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG 对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.39.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD 上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.40.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h 的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.参考答案与试题解析一.填空题(共25小题)1.若x1,x2是关于x的方程x2﹣2x﹣5=0的两根,则代数式x12﹣3x1﹣x2﹣6的值是﹣3 .【解答】解:∵x1,x2是关于x的方程x2﹣2x﹣5=0的两根,∴x12﹣2x1=5,x1+x2=2,∴x12﹣3x1﹣x2﹣6=(x12﹣2x1)﹣(x1+x2)﹣6=5﹣2﹣6=﹣3.故答案为:﹣3.2.如图,Rt△ABC的顶点在坐标原点,点B在x轴上,∠ABO=90°,sin∠AOB=,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D,连接CD,则四边形CDBO的面积是.【解答】解:∵sin∠AOB=,∴∠AOB=30°,∵∠ABO=90°,OB=2,∴AB=OB=2,作CE⊥OB于E,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函数y=(x >0)的图象经过OA 的中点C ,∴1=, ∴k=,∴反比例函数的关系式为y=;∵OB=2,∴D 的横坐标为2, 代入y=得,y=,∴D (2,),∴BD=,∵AB=2, ∴AD=1.5, ∴S △ACD =AD•BE=××=,∴S 四边形CDBO =S △AOB ﹣S △ACD =OB•AB ﹣=×2×2﹣=.故答案为:.3.如图,正方形ABCD 与正方形AEFG 有公共顶点A ,连接BE 、CF ,则线段BE :CF 的值是.【解答】解:连接AC、AF.在正方形ABCD与正方形AEFG中,∴△AEF,△ABC是等腰直角三角形,∴∠EAF=∠BAC=45°,==,'∴∠CAF=∠BAE,∴△FAC∽△EAB,∴==.4.抛物线y=﹣x2+ax﹣5的顶点在坐标轴上,则系数a的值是或0 .【解答】解:∵y=﹣x2+ax﹣5=,∴抛物线y=﹣x2+ax﹣5的顶点坐标是(,﹣5),∵抛物线y=﹣x2+ax﹣5的顶点在坐标轴上,∴当顶点在x轴上时,,得a=,当顶点在y轴上时,,得a=0,故答案为:或0.5.阅读材料:在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向),对于平面内任何一点M,用表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,∠O叫做点M的极角,有序数对(ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系.如图,在极坐标系中,点A的极坐标为(4,30°)、点B的极坐标为(6,60°),那么AB两点之间的距离是2.【解答】解:如图,过点A向极轴做垂线,垂足为C,过点B向极轴做垂线,垂足为D,过点A向BD做垂线,垂足为E,连接AB,在Rt△OAC中,AC=OA×sin30°=4×=2,OC=OA×cos30°=4×=2,在Rt△OBD中,BD=OB×sin60°=6×=9,OD=OB×cos60°=6×=,∴CD=OD﹣OC=,∵四边形ACDE中,三个角为直角,∴四边形ACDE为矩形,∴AE=CD=,DE=AC=2,∴BE=9﹣2=7,在直角三角形ABE中,AB===2,∴AB两点之间的距离是2,故答案为:2.6.已知CD分别是线段AB上的两个黄金分割点,且AB=4,则CD= 4﹣8 .【解答】解:∵C、D是AB上的两个黄金分割点,∴AD=BC=AB=4×=2﹣2,∴CD=AD+BC﹣AB=4﹣8,故答案为:4﹣8.7.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且|x1﹣x2|=5,则a= 0 .【解答】解:∵x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,∴x1+x2=﹣5,x1x2=a,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(﹣5)2﹣4a=25﹣4a,∵|x1﹣x2|=5,∴(x1+x2)2﹣4x1x2=25,∴25﹣4a=25,解得a=0,故答案为:0.8.如图,抛物线y=﹣x2+x+c的顶点是正方形ABCO的边AB的中点,点A,C 在坐标轴上,抛物线分别与AO,BC交于D,E两点,将抛物线向下平移1个单位长度得到如图所示的阴影部分.现随机向该正方形区域投掷一枚小针,则针尖落在阴影部分的概率P= .【解答】解:∵抛物线y=﹣x2+x+c的顶点是正方形ABCO边AB的中点,且抛物线对称轴为直线x=2,∴正方形ABCO的边长为4,∵抛物线向下平移1个单位长度得到如图所示的阴影部分,∴阴影部分面积为4,则针尖落在阴影部分的概率P==,故答案为:9.如图,直线y=﹣x+b与双曲线y=(k<0),y=(m>0)分别相交于点A,B,C,D,已知点A的坐标为(﹣1,4),且AB:CD=5:2,则m= .【解答】解:如图由题意:k=﹣4,设直线AB交x轴于F,交y轴于E.∵反比例函数y=和直线AB组成的图形关于直线y=x对称,A(﹣1,4),∴B(4,﹣1),∴直线AB的解析式为y=﹣x+3,∴E(0,3),F(3,0),∴AB=5,EF=3,∵AB:CD=5:2,∴CD=2,∴CE=DF=,∴C(,),D(,),∴m=,故答案为.10.如图,⊙O的直径AB的长12,长度为4的弦DF在半圆上滑动,DE⊥AB于点E,OC⊥DF于点C,连接CE,AF,则sin∠AEC的值是,当CE的长取得最大值时AF的长是4.【解答】解:如图1,连接OD,∴DO=AB=6,∵OC⊥DF,∴∠OCD=90°,CD=CF=DF=2,在Rt△OCD中,根据勾股定理得,OC==4,∴sin∠ODC===,∵DE⊥AB,∴∠DEO=90°=∠OCD,∴点O,C,D,E是以OD为直径的圆上,∴∠AEC=∠ODC,∴sin∠AEC=sin∠ODC=,如图2,∵CD是以OD为直径的圆中的弦,CE要最大,即:CE是以OD为直径的圆的直径,∴CE=OD=6,∠COE=90°,∵∠OCD=∠OED=90°,∴四边形OCDE是矩形,∴DF∥AB,过点F作FG⊥AB于G,易知,四边形OCFG是矩形,∴OG=CF=2,FG=OC=4,∴AG=OA﹣OG=4连接AF,在Rt△AFG中,根据勾股定理得,AF==4,故答案为,4.11.已知x1,x2是方程x2+5x﹣6=0的两根,则x22﹣5x1+6的值为37 .【解答】解:∵x1,x2是方程x2+5x﹣6=0的两根,∴x22+5x2=6,x1+x2=﹣5,∴x22﹣5x1+6=x22+5x2﹣5x2﹣5x1+6═6﹣5(x1+x2)+6=12+25=37,故答案为:37.12.从﹣3,﹣1,0,1,2这5个数中任意取出一个数记作k,则既能使函数y=的图象经过第一、第三象限,又能使关于x的一元二次方程x2﹣kx+1=0有实数根的概率= .【解答】解:这5个数中能使函数y=的图象经过第一、第三象限的有1,2这2个数,∵关于x的一元二次方程x2﹣kx+1=0有实数根,∴k2﹣4≥0,解得k≤﹣2或k≥2,能满足这一条件的数是:﹣3、2这2个数,∴能同时满足这两个条件的只有2这个数,∴此概率为,故答案为:.13.在▱ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交▱ABCD的四条边于E、G、F、H四点,连接EG、GF、FH、HE.(1)如图①,四边形EGFH的形状是平行四边形;(2)如图②,当EF⊥GH时,四边形EGFH的形状是菱形;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是菱形;(4)如图④,在(3)的条件下,若AC⊥BD,四边形EGFH的形状是正方形.【解答】解:(1)结论:四边形EGFH是平行四边形.理由:∵四边形ABCD是平行四边形,∴OA=OC,AE∥CF,∴∠AEO=∠CFO,∵∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,同理可证:OG=OH,∴四边形EGFH是平行四边形,(2)∵四边形EGFH是平行四边形,EF⊥GH,∴四边形EGFH是菱形;(3)菱形;由(2)知四边形EGFH是菱形,当AC=BD时,对四边形EGFH的形状不会产生影响;(4)四边形EGFH是正方形;证明:∵AC=BD,∴▱ABCD是矩形;又∵AC⊥BD,∴▱ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∠BOG+∠BOF=∠COF+∠BOF=90°∴∠BOG=∠COF;∴△BOG≌△COF(ASA);∴OG=OF,同理可得:EO=OH,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.故答案为:平行四边形,菱形,菱形,正方形;14.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B 重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.当常数k= 3 时,△EFA的面积有最大值,其最大面积= .【解答】解:由题意知E,F两点坐标分别为E(,2),F(3,),=AF•BE=×k(3﹣k),∴S△EFA=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+,在边AB上,不与A,B重合,即0<<2,解得0<k<6,∴当k=3时,S有最大值.S最大值=.故答案为:3,.15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2>4ac;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③a>;④当y>0时,x的取值范围是﹣1<x≤3;⑤当x>0时,y随x增大而增大.上述五个结论中正确的有①②(填序号)【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,即b2>4ac,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,∴3a+c=0,即a=﹣,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤错误.故答案为①②.16.已知方程x2﹣2x﹣1=0的两根分别为m,n,则代数式4m+2(n﹣m)﹣1的值为3 .【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m,n,∴m+n=2,则原式=4m+2n﹣2m﹣1=2m+2n﹣1=2(m+n)﹣1=4﹣1=3,故答案为:3.17.如图是二次函数y=ax2+bx+c的图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②b2>4ac;③b=﹣2a;④a+b+c=0,其中正确结论的序号是①②④.【解答】解:①∵抛物线与y轴交点在y轴正半轴,∴c>0,①正确;②∵抛物线与x轴有两个不同的交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴b2>4ac,②正确;③∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,③错误;④∵抛物线对称轴为直线x=﹣1,且点A的坐标为(﹣3,0),∴抛物线与x轴另一交点的坐标为(1,0),∴当x=1时,y=a+b+c=0,④正确.综上所述:正确结论的序号是①②④.故答案为:①②④.18.现从四个数1,2,﹣1,﹣3中任意选出两个不同的数,分别作为函数y=ax2+bx 中a,b的值,那么所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是.【解答】解:由题意可得,所有的可能性是:(1,2)、(1,﹣1)、(1,﹣3)、(2,1)、(2,﹣1)、(2,﹣3)、(﹣1,1)、(﹣1,2)、(﹣1,﹣3)、(﹣3,1)、(﹣3,2)、(﹣3,﹣1),∵所得抛物线中,满足开口向下且对称轴在y轴左侧,∴a<0,b<0,∴所得抛物线中,满足开口向下且对称轴在y轴左侧的抛物线的概率是:,故答案为:.19.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=20,AH=16,⊙O的半径为15,则AB= 24 .【解答】解:作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,有圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴=,即=,解得,AB=24,故答案为:24.20.如图,在△ABC中,AB>AC,∠B=45°,AC=5,BC=4.①AB的长为4+;②若E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE∥AC时,tan∠BCD的值为.【解答】解:①如图作AM⊥BC于M.在Rt△ABM中,∵∠AMB=90°,∠B=45°,∴BM=AM,AB=AM,设AM=BM=x,在Rt△AMC中,∵AC2=AM2+CM2,∴52=x2+(4﹣x)2,解得x=或(舍弃),∴AB=x=7,故答案为7.②如图作FN⊥BC于N.∵DE∥AC,∴∠ACF=∠D=∠B,∵∠CAF=∠CAB,∴△ACF∽△ABC,∴AC2=AF•AB,∴AF=,∴BF=AB﹣AF=7﹣=,∴BN=FN=,∴CN=BC﹣BN=4﹣=,∴tan∠BCD===,故答案为.21.如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+.其中正确的是①②(把你认为正确结论的序号都填上).【解答】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF,在△BOE与△COF中,,∴△BOE≌△COF,∴BE=CF,∴=,①正确;②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,∴△BOG≌△COH;∴OG=OH,∵∠GOH=90°,∴△OGH是等腰直角三角形,②正确.③如图所示,∵△HOM≌△GON,∴四边形OGBH的面积始终等于正方形ONBM的面积,③错误;④∵△BOG≌△COH,∴BG=CH,∴BG+BH=BC=4,设BG=x,则BH=4﹣x,则GH==,∴其最小值为4+2,D错误.故答案为:①②.22.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O 运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为 4 .【解答】解:在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO==,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②如图3所示,QC⊥AB,则∠ACQ=90°,即PQ运动到与AB垂直时,垂足为P,当点P从B→C时,∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°=∴AQ==2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4故答案为:423.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为3或.【解答】解:∵△DCE和△ABC相似,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴或即或解得,CE=3或CE=故答案为:3或.24.现有三张分别标有数字1、2、6的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回),再从中任意抽取一张,将上面的数字记为b,这样的数字a,b能使关于x的一元二次方程x2﹣2(a﹣3)x﹣b2+9=0有两个正根的概率为.【解答】解:画树形图得:∵方程有两个正根,∴由韦达定理得2(a﹣3)>0,﹣b2+9>0,解得a>3,b<3,若b=2,9﹣b2=5 要使方程有两个正根,判别式=4(a﹣3)2﹣4×5>0 (a﹣3)2>5,解得,a=6;若b=1,9﹣b2=8 判别式=4(a﹣3)2﹣4×8>0 (a﹣3)2>8,解得,a=6,∴a,b只有两种情况满足要求:a=6,b=1,∴能使关于x的一元二次方程x2﹣2(a﹣3)x﹣b2+9=0有两个正根的概率==,故答案为:.25.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是1<x<4 .【解答】解:∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,故答案为:1<x<4.二.解答题(共15小题)26.七中育才初2017届某班作文集准备在周边学校进行销售,试销售成本为每本20元,班级规定试销售期间的售价不低于成本价,也不高于每本40元,经试销售发现,销售量y(本数)与销售单价x(元)之间符合一次函数关系,下图是y与x的函数图象.(1)求y与x之间的函数关系式,并直接写出x的取值范围;(2)为了销售利润要达到520元,并且要将制作班级作文征集活动在周边学校进行推广(让了解的人越多越好),此时销售价应该定为多少元?【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(20,300)、(21,280)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣20x+700(20≤x≤35).(2)根据题意得:(x﹣20)(﹣20x+700)=520,整理,得:x2﹣55x+726=0,解得:x1=22,x2=33.∵要将制作班级作文征集活动在周边学校进行推广(让了解的人越多越好),∴x=22.答:此时销售价应该定为22元.27.如图,在菱形ABCD中,∠BAD=120°,边长AB=6,对角线AC、BD交于点O,线段AD上有一动点P,过点P作PH⊥BC于点H,交直线CD于点Q,连接OQ,设线段PD=m.(1)求线段PH的长度.(2)设△OPQ的面积为S,求S与m之间的关系式.(3)在运动过程中是否存在点P使△OPQ的面积与△CQH的面积相等,若存在,请求出满足条件m的值;若不存在,请说明理由.【解答】解:(1)如图1,∵四边形ABCD是菱形,∴BC∥AD,AB=AD=CD=6,∵∠BAD=120°,∴∠ADC=60°,∴△ACD是等边三角形,过点C作CH⊥AD于G,在Rt△CDG中,∠CDG=60°,CD=6,∴DG=3,CG=3,∵BC∥AD,PH⊥BC,CG⊥AD,∴四边形CHPG是矩形,∴PH=CG=3,(2)如图1,在Rt△PDQ中,∠PDQ=60°,DP=m,∴PQ=m.易知,△PDQ∽△HCQ,∴,∴,∴CH=3﹣m,过点O作OM⊥PH∴OM=(CH+AP)=(3﹣m+6﹣m)=(梯形的中位线定理)=OM×PQ=××m=﹣(m2﹣9m)(0<m≤6);∴S=S△OPQ(3)不存在,理由:假设△OPQ的面积与△CQH的面积相等,由(2)知,CH=3﹣m,HQ=3﹣m,可得﹣(m2﹣9m)=(3﹣m)(3﹣m)整理得得:2m2﹣7m+6=0,∴m=1或m=6即:m=1或6时,△OPQ的面积与△CQH的面积相等.28.如图,将二次函数y=﹣x2向右平移1个单位,再向上平移4个单位得到新的二次函数y=ax2+bx+c(a≠0),该图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求二次函数y=ax2+bx+c解析式,并求出顶点P的坐标.(2)在二次函数y=ax2+bx+c(a≠0)对称轴上有一动点E(点E在顶点下方),直线OE交BP于点K,交抛物线于点Q,连接CQ交对称轴于点E.①若点O、E、F、C围成四边形面积为2时,求Q点坐标.②当△OCK为等腰三角形时(如图),求E点坐标.【解答】解:(1)由题意新抛物线的顶点P坐标为(1,4),∴平移后抛物线的解析式y=﹣(x﹣1)2+4.(2)如图1中,设Q(m,﹣m2+2m+3),∴直线OQ的解析式为y=x,直线CQ的解析式为y=(﹣m+2)x+3,∴E(1,),F(1,﹣m+5),∴EF=﹣m+5﹣,∵S=2,四边形OEFC∴•(﹣m+5﹣+3)•1=2,解得m=,∴Q(,).(3)如图2中,∵P(1,4),B(3,0),∴直线PB的解析式为y=﹣2x+6,设K(n,﹣2n+6),①当KC=KO时,点K在线段OC的垂直平分线上,易知k(,),∴直线OK的解析式为y=x,∴E(1,).②当OC=OK时,由题意:n2+(﹣2n+6)2=9,解得n=或3,当n=时,K(,),∴直线OK的解析式为y=x,∴E(1,),当n=3时,K与B重合,此时E(1,0).③当CO=CK时,由题意:n2+(2﹣n+3)2=9,解得n=或0(舍弃)∴K(,),∴直线OK的解析式为y=x,∴E(1,).综上所述,满足条件的点E的坐标为(1,或(1,)或(1,0)或(1,).29.某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图1所示,每千克成本y2(元)与销售月份x之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x之间满足的函数表达式,并直接写出x的取值范围;(2)求出y2与x之间满足的函数表达式;(3)设这种蔬菜每千克收益为w元,试问在哪个月份出售这种蔬菜,w将取得最大值?并求出此最大值.(收益=售价﹣成本)【解答】解:(1)设y1=kx+b,∵直线经过(3,5)、(6,3),,解得:,∴y1=﹣x+7(3≤x≤6),(2)设y2=a(x﹣6)2+1,把(3,4)代入得:4=a(3﹣6)2+1,解得a=,∴y2=(x﹣6)2+1,(3)由题意得:w=y1﹣y2=﹣x+7﹣[(x﹣6)2+1],=﹣=﹣+,当x=5时,y最大值=.故5月出售这种蔬菜,每千克收益最大.30.如图1,点E为正方形ABCD的边CD上一点,DF⊥AE于点F,交AC于点M,交BC于点G,在CD上取一点G′,使CG´=CG,连接MG´.(1)求证:∠AED=∠CG´M;(2)如图2,连接BD交AE于点N,连接MN,MG´交AE于点H.①试判断MN与CD的位置关系,并说明理由;②若AB=12,DG´=G´E,求AH的长.【解答】(1)证明:如图1,∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠DCG=90°,∴∠DGC+∠CDG=90°,∵AE⊥DF,∴∠DFE=90°,∴∠AED+∠CDG=90°,∴∠AED=∠DGC,∵CG=CG',∠MCG=∠MCG',CM=CM,∴△GCM≌△G'CM,∴∠DGC=∠CG'M,∴∠AED=∠CG'M;(2)①解:MN∥CD,理由是:∵∠AOD=∠NFD=90°,∠ANO=∠DNF,∴∠OAN=∠ODM,∵AO=OD,∠AON=∠DOM=90°,∴△AON≌△DOM,∴ON=OM,∴△NOM是等腰直角三角形,∴∠ONM=45°,∵∠ODC=45°,∴∠ONM=∠ODC,∴MN∥CD;②解:∵AD=DC,∠ADC=∠DCG=90°,∠AED=∠DGC,∴△ADE≌△DCG,∴DE=CG,∵CG=CG',∴CG'=CG=DE,∴DG'=CE=EG'=CD=AB=4,∴CG=2BG=8,由勾股定理得:AE==4,∵AB∥DE,∴=,∴AN==,EN==,AO==6,∴ON===,∵△MON是等腰直角三角形,∴MN=ON=,∵MN∥EG',∴△MNH∽△G'EH,∴==,∴NH==,EH=×=,∴AH=AE﹣EH=4﹣=3.31.如图,抛物线y=﹣x2+x+c与x轴交于A,B两点(点A在点B的左侧),过点A的直线y=x+3与抛物线交于点C,且点C的纵坐标为6.(1)求抛物线的函数表达式;(2)点D是抛物线上的一个动点,若△ACD 的面积为4,求点D的坐标;(3)在(2)的条件下,过直线AC上方的点D的直线与抛物线交于点E,与x 轴正半轴交于点F,若AE=EF,求tan∠EAF的值.【解答】解:(1)由题意A(﹣2,0),C(2,6),把A(﹣2,0)代入y=﹣x2+x+c得到0=﹣2﹣3+c,∴c=5,∴抛物线的解析式为y=﹣x2+x+5.(2)如图,设点M是x轴上一点,M(m,0),满足△AMC的面积=4,则有|m+2|×6=4,∴m=﹣或﹣,∴M(﹣,0),M′(﹣,0),过点M作直线MD∥AC交抛物线于D,此时△ADC的面积=△ACM的面积=4,则直线DM的解析式为=x+5,由,解得,。

成都中考B卷填空题几何专练7套

成都中考B卷填空题几何专练7套

精选文档成都中考 B 填几何专练(一)1. 如图,等边△ ABC 中,点 D、E 、F 分别在边 BC、CA 、AB 上,且 BD=2DC , CE=2EA , AF=2FB , AD 与 BE 订交于点 P,BE 与 CF 订交于点 Q,CF 与 AD 订交于点 R,则 AP:PR:RD=.若△ABC 的面积为1,则△PQR 的面积为.2.如下图,已知∠ AOB= 30°,P 是∠ AOB 内一点,且点 P 到 OA、OB 的距离分别为 1、2,以 P 点为圆心的圆分别与OA、OB 订交于点 M、 N,且 MN 恰为圆的直径,则该圆的半径为____________.3.在直角坐标系中, O 为坐标原点, A 是双曲线k( k>0)在第一象限图象上的一点,且直线OA 是y=x第一象限的角均分线,直线OA 交双曲线于另一点C.将 OA 向上平移32 个单位后与双曲线在第一象限的图象交于点 M,交 y 轴于点 N,若MN1OA=2,则 k= __________.︵4.如图,扇形 AOB 中, OA=1,∠ AOB=90°,半圆 O1的圆心 O1在 OA 上,并与 AB 内切于点 A,半圆︵O2的圆心 O2在 OB 上,并与 AB 内切于点 B,半圆 O1与半圆 O2相切.设两半圆的面积之和为S,则 S 的取值范围是 ______________________.5.如图,平行四边形 ABCD 中, AM ⊥BC 于 M,AN⊥CD 于 N,已知 AB= 10, BM = 6, MC= 3,则 MN 的长为 ____________.6.如图,在菱形 ABCD 中,对角线 AC、BD 交于点 O,以 OB 为直径作⊙ M,过 D 作⊙ M 的切线,切点为N,分别交 AC、 BC 于点 E、F.若 AE= 5,CE=3,BF =___________,DF = ___________.7.如图,正方形 ABCD 中,点 E 、F 、G、H 分别在边AB、BC、CD 、DA 上,且 EG 与 FH 的夹角为 45°.若正方形 ABCD 的边长为 1, FH 的长为5,则 EG 的长为 ____________.28.已知抛物线y=ax2+ bx+c( a≠0)与 x 轴交于 A、B 两点,极点为 C,当△ ABC 为等腰直角三角形时,b2- 4ac 的值为 __________;当△ ABC 为等边三角形时, b 2- 4ac 的值为 __________.9.如图,△ ABC 中, AB= 7,BC= 12,CA= 11,内切圆 O 分别与 AB、BC、CA 相切于点 D、 E、 F,则AD : BE : CF =_______________.成都中考 B 填几何专练(二)1.如图,△ ABC 内接于⊙ O, BC= a, AC= b,∠A-∠ B=90°,则⊙ O 的半径为 _______________.2.如图, Rt△ABC 中,∠ ACB=90°, AC=2BC,CD⊥AB 于点 D ,过 AC 的中点 E 作 AC 的垂线,交ABEN于点 F,交 CD 的延伸线于点G,M 为 CD 中点,连结AM 交 EF 于点 N,则FG = ____________.3.如图,半径为 r1的⊙ O1内切于半径为r 2的⊙ O2,切点为 P,⊙ O2的弦 AB 过⊙ O1的圆心 O1,与⊙ O1交于 C、D ,且 AC : CD : DB= 3 : 4 : 2,则r 1= ___________.r 24.(1)如图 1,在边长为 1 的正方形 ABCD 内,两个动圆⊙ O1与⊙ O2相互外切,且⊙ O1与边 AB、AD 相切,⊙ O2与边 BC、 CD 相切,设⊙ O1与⊙ O2面积之和为 S,则 S 的取值范围是 _________________;( 2)如图 2,在矩形ABCD 中, AB=32,BC= 1,两个动圆⊙ O1与⊙ O2相互外切,且⊙ O1与边 AB、AD相切,⊙ O2与边 BC、CD 相切,设⊙ O1与⊙ O2面积之和为S,则 S 的取值范围是 _________________.5.如图,等腰梯形ABCD 中, AD∥BC,∠ B=60°, AB= CD= AD= 2,M 是 BC 的中点.将△DMC 绕点M旋转,得△D ′MC′,D′M 与 AB 交于点 E, C′M 与 AD 交于点 F,连结 EF ,则△ AEF 的周长的最小值为_____________.6.如图,已知矩形ABCD的面积为2011cm2,梯形 AFGE 的极点 F 在 BC 上, D 是腰 EG 的中点,则梯形AFGE 的面积为 ____________cm2.7.如图,在边长为 1 的正方形 ABCD 中,分别以A、B、C、D 为圆心, 1 为半径画四分之一圆,交点为E、F 、G、H,则中间暗影部分的周长为_____________,面积为 _____________.8.如图,在边长为 1 的正方形 ABCD 中, E、F 分别是 BC、CD 边上的动点,知足∠EAF =45°,则△CEF 内切圆半径的最大值为_____________.9.如图,在边长为 1 的正方形ABCD 中,点 M、N 分别在 CB、DC 的延伸线上,且∠ MAN=45°.过D作DP ⊥ AN 交 AM 于点 P,连结 PC,若 C 为 DN 的中点,则PC 的长为 _____________.成都中考 B 填几何专练(三)1.如,正方形 ABCD 的 2, M 是 AB 的中点,点 P 是射 DC 上的点.若以 C 心, CP 半径的与段 DM 只有一个公共点, PD 的取范是 __________________________________.2.如,点 A、 B 分在 x 正半和 y 半上, OA=OB= 2,点 E 是 y 正半上一点,接EA, O 作 OP⊥ EA 于 P,接PB , P 作 PF⊥ PB 交 x 正半于 F,接 EF.当 OE= 1 ,S△EAF=S1;OE= 2 , S△EAF= S2;⋯; OE=n , S△EAF = S n, S1+ S2+S3+⋯+S n=___________.3.如,直=B、点 C, B、C 两点的抛物y=2+bx+ c 与 x y x-3 与 x 、 y 分订交于点ax的另一交点 A ,点 D ,且称是直 x= 1.若平行于 x 的直 y=k与△BCD的外接有公共点, k 的取范是 _____________________.4.如,在Rt△ABC 中,∠ ACB=90°,半径 4 的⊙ A 与 AB 订交于点 D,与 AC 订交于点E,DE 并延,与段 BC 的延交于点P .已知 tan∠BPD =1,CE= 2,△ABC 的周.25.如图,在平行四边形ABCD 中, AE⊥ BC 于 E,AF ⊥CD 于 F ,H 是△ AEF 的垂心.若AC =20,EF =16,则 AH = __________.6.如图, AD 均分∠ BAC,交△ABC 的外接圆于点D, DE ∥BC ,交 AC 的延伸线于点E.若 AB= 4,AD=5,CE= 1,则 DE= __________.7.将一副三角板如图搁置,∠ BAC=∠BDC = 90°,∠ ABC= 45°,∠ DBC = 30°,BC= 4 2,则△ ADC的面积为 _____________.8.已知△ABC 中, AB=6,AC =BC= 5,将△ ABC 折叠,使点 A 落在 BC 边上的点 D 处,折痕为 EF (点 E 、F 分别在边 AB、AC 上).(1)当 ED⊥ BC 时, BE 的长为 ___________ ;(2)当以 B、E、D 为极点的三角形与△ DEF 相像时, BE 的长为 ___________.成都中考 B 填几何专练(四)1.如图,将正方形沿图中虚线(此中 a <b )剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非a正方形),则b 的值为 _____________.2.如图是一块矩形钢板 ABCD , AB = 4,BC = 3.工人师傅想用它裁出两块全等的、面积最大的△ APB 和△ CP ′D 钢板,且∠ APB =∠ CP ′D = 60°,则 △ APB 的面积为 ______________,请在图中画出切合要求的点P 和 P ′.( 2 小题变练) 已知矩形 ABCD 中,AB =4 3,BC = m ,P 是矩形 ABCD 边上的一动点, 且使得∠ APB =60°,假如这样的点 P 有 4 个,则 m 的取值范围是 ______________.3.已知 △ABC 中,∠ ABC = 30°, AB = 3,BC = 4,以 AC 为边在 △ ABC 外作等边三角形 ACD ,连结 BD ,则 BD 的长为 ____________.( 3 题变练)已知 △ ABC 中,∠ ABC =45°,AB =7 2,BC = 17,以 AC 为斜边在 △ ABC 外作等腰直角三 角形 ACD ,连结 BD ,则 BD 的长为 ____________.4.已知正方形ABCD 的面积是 144,E、M 分别是边 AB、AD 上的点,分别以 BE、DM 为边在正方形ABCD 内作正方形BEFG 和正方形DMNP .若两个小正方形重叠部分的面积是1,A、F、P 三点共线,则 tan∠ DAP =__________.5.如图,矩形纸片 ABCD 中, AB= 4,折叠纸片,使极点 A 落在 CD 边上的点′A 处, EF 为折痕(点 E、′′AE 相切于点 E,且与 AD 边也相切,F 分别在边 BC 、AD 上),连结 AE、 A E.若△ ECA 的外接圆恰巧与则 AD = __________.6.已知△ABC 中,∠ ABC= 45°, AB=52, BC= 12,将线段 AC 绕点 A 逆时针旋转90°,得线段 AD ,2连结 BD,则 BD 的长为 ____________.7.如图,等腰直角三角形 OAB 和 BCD 的底边 OB、BD 都在 x 轴上,直角极点A、 C 都在反比率函数y=k图象上,若 D(- 8,0),则 k= __________.x成都中考 B 填几何专练(五)11.如图,直线y=-x+ b 与双曲线 y=x(x> 0)交于 A、B 两点,与 x 轴、y 轴分别交于 E 、F 两点, AC⊥ x 轴于 C,BD⊥ y 轴于 D,当 b= __________时,△ ACE、△ BDF 与△AOB 面积的和等于△EOF 面积的34.︵2.如图,△ABC 中,∠ ACB= 90°,AC= 6-2,BC=6+2,半圆 O 过 A、B、C 三点, M 是 AB 的中点, ME ⊥ AC 于 E ,MF ⊥BC 于 F,则图中暗影部分的面积为_______________.3.直线y=-2x- 4 与 x 轴交于点 A ,与 y 轴交于点 B,将线段 AB 绕着平面内的某个点旋转180°后,获得k点 C、 D,恰巧落在反比率函数y=的图象上,且 D 、 C 两点横坐标之比为 3 : 1,则 k= _________.x4.如图, AB、AP、PB 分别是半圆 O、O1、O2的直径,点 P 在直径 AB 上, PQ⊥AB 交半圆 O 于点 Q,圆 O3的与半圆 O、 O2及 PQ 都相切,若圆 O3的半径为 3,暗影部分的面积为 39π,则 AB= ___________ .5.如图,正方形 ABCD 的边长为 2, E 是 AB 边上一点,将 △ ADE 绕点 D 逆时针旋转至 △ CDF ,连结 EF 交 CD 于点 G .若 ED =EG ,则 AE = ___________.6.已知 Rt △ ABC 中,∠ ACB = 90°,BC = 2AC ,CD ⊥AB 于 D ,E 是 BC 边上一点,且 BE =2CE ,连结 AE ,与 CD 订交于点 G ,EF ⊥AE ,与 AB 边订交于点 F .将∠ FEG 绕点 E 顺时针旋转,旋转后 EF 边所在的直线与 AB 边订交于点 F ′,EG 边所在的直线与 AC 边订交于点 H ,与 CD 订交于点 G ′.若 AH = 3 5,且FF′CG ′2=7 ,则线段 G ′H 的长为 ____________.7.如图,在平面直角坐标系中, O 为坐标原点,张口向上的抛物线与 x 轴交于点 A (- 1,0)、B (3,0),D 为抛物线的极点,∠ DAB = 45°.过 A 作 AC ⊥AD 交抛物线于点 C ,动直线 l 过点 A ,与线段 CD 交于点 P ,设点 C 、D 到直线 l 的距离分别为d 1、d 2,则 d 1+ d 2 的最大值为 __________.8.如图,在梯形 ABCD 中, AD ∥ BC ,∠ B + ∠C = 120°, AD =3, BC =7,则梯形 ABCD 面积的最大值为 __________.成都中考 B 填几何专练(六)1.如, Rt△ABC 和 Rt△BCD 有公共斜BC, M 是 BC 的中点, E、 F 分是 AB、BD 上的点.若∠ABC= 30°,∠ BCD =45°, BC= 4,△ECF 的周的最小 _____________.2.如所示,点A1、A2、A3在 x 上,且 OA1=A 1A2=A 2A3,分点A1、A2、A3作 y 的平行,与反比率函数y=8( x>0)的象分交于点B1、B 2、 B3,分点 B 1、 B2、 B3作 x 的平行,分与y x交于点C1、 C2、 C3,接 OB1、OB2、OB3,那么中暗影部分的面之和____________.3.在反比率函数 y=10(x> 0)的象上,有一系列点 A、A 、 A 、⋯、 A、A,若 A的横坐 2,x123n n+11且此后每点的横坐与它前一个点的横坐的差都2.分点 A1、 A2、 A3、⋯、 A n、 A n+1作 x 与 y的垂段,组成若干个矩形如所示,将中暗影部分的面从左到右挨次S1,S2,S3,⋯,S n,S1+ S2+ S3+⋯+ S n= ____________(用含 n 的代数式表示).4.如,点 A(x1,y1)、B( x2,y2)都在双曲y=kx(x>0)上,且x2-x1=4,y1-y2=2;分点A、B 向 x 、 y 作垂段,垂足分 C、 D、E、 F, AC 与 BF 订交于 G 点,四形 FOCG 的面 2,五形 AEODB 的面 14,那么双曲的分析式 _______________.5.如图,△ABC 的面积是63,D 是 BC 上的一点,且BD : CD= 2 : 1,DE∥ AC 交 AB 于 E ,延伸 DE 到 F,使FE: ED = 2 : 1,则△ CDF 的面积是 _________.6.已知线段AB 的长为 20 2,点 D 在线段 AB 上,△ACD 是边长为10 的等边三角形,过点 D 作与 CD垂直的射线DP ,过 DP 上一动点E(不与 D 重合)作矩形CDEF ,记矩形 CDEF 的对角线交点为O,连结OB,则线段OB 长的最小值为 _____________.7.如图,△ABC 和△ ADE 都是等腰直角三角形,∠ACB=∠ ADE=90°,∠BAE=135°,AC=22,AD =1,F 为BE 中点,则CF 的长为 _______________.将△ADE 绕点 A 旋转一周,则点 F 运动路径的长为_______________ .。

成都初三数学b卷试题及答案

成都初三数学b卷试题及答案

成都初三数学b卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y=ax+bB. y=ax^2+bx+cC. y=a(x-h)^2+kD. y=a(x+b)^2+c答案:B2. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C3. 如果一个角的补角是它的两倍,那么这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:A4. 一个等腰三角形的两边长分别为4和6,那么它的周长是多少?A. 14B. 16C. 18D. 20答案:C5. 一个数的立方根等于它本身,这个数可能是?A. 1B. -1C. 0D. 以上都是答案:D6. 已知一组数据的平均数是5,中位数是4,众数是3,那么这组数据的极差是多少?A. 2B. 4C. 6D. 无法确定答案:D7. 直角三角形的两直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A8. 下列哪个选项是不等式的基本性质?A. 若a>b,则a+c>b+cB. 若a>b,c>0,则ac>bcC. 若a>b,c<0,则ac>bcD. 若a>b,则a/c>b/c答案:A9. 一个正多边形的内角和是720°,那么这个多边形的边数是多少?A. 5B. 6C. 8D. 10答案:C10. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 无法确定答案:A二、填空题(每题3分,共15分)11. 已知一个等腰三角形的顶角是80°,那么它的底角是多少度?________答案:50°12. 一个数的绝对值是5,那么这个数可能是________答案:±513. 一个二次函数的顶点坐标是(2,3),那么它的对称轴是________答案:x=214. 一个圆的直径是8,那么它的周长是多少?________答案:8π15. 一个三角形的三边长分别是3,4,5,那么这个三角形的面积是多少?________答案:6三、解答题(共55分)16. (10分)已知一个二次函数y=ax^2+bx+c,其中a=1,b=-2,c=1,求这个函数的顶点坐标和对称轴。

成都中考数学b卷专题训练圆的填空题

成都中考数学b卷专题训练圆的填空题

成都中考数学B卷专题训练圆的填空题一、圆的基本性质1.(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为.2.(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于.3.(2013•绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为.4.(2013济宁)如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为.5.(2013•泸州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为.6.(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.7.(2013安徽)如图所示,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中:①当弦PB最长时,ΔAPC是等腰三角形;②当ΔAPC是等腰三角形时,PO⊥AC;③当PO⊥AC时,∠ACP=300;④当∠ACP=300,ΔPBC是直角三角形.其中正确的是①②④(写出所有正确结论的序号).8.(2013•内江)如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为.9.(2013德阳)如图,在圆O上有定点C和动点P,位于直径AB的异侧,过点C作CP的垂线,与PB的延长线交于点Q,已知:圆O半径为52,tan∠ABC=34,则CQ的最大值是.10.(2013•温州)一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线上.木工师傅想了一个巧妙的办法,他测量了PQ与圆洞的切点K到点B的距离及相关数据(单位:cm),从点N沿折线NF﹣FM(NF∥BC,FM∥AB)切割,如图1所示.图2中的矩形EFGH是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不记损耗),则CN,AM的长分别是.11.(2013四川宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是(写出所有正确结论的序号).12.(2013•呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(﹣6,0),点C是y轴上的一个动点,当∠BCA=45°时,点C的坐标为.二、直线与圆的位置关系13.(2013•黔西南州)如图所示,线段AB是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于.14.(2013•天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C等于(度).15.(2013台湾)如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为.16.(2012广西玉林、防城港)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切与点D、E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为.17.(2012山东济南)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.18.(2012海南省)如图,∠APB=300,圆心在边PB上的⊙O半径为1cm,OP=3cm,若⊙O 沿BP方向移动,当⊙O与PA相切时,圆心O移动的距离为cm..19.(2013杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t 可取的一切值.(单位:秒)20.(2012湖北黄石)如图所示,直线CD 与线段AB 为直径的圆相切于点D ,并交BA 的延长线于点C ,且AB=2,AD=1,P 点在切线CD 上移动.当∠APB 的度数最大时,则∠ABP 的度数为 .21.(2013•咸宁)如图,在Rt △AOB 中,OA=OB=3,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .22.(2012浙江宁波)如图,△ABC 中,∠BAC=60°,∠ABC=45°,D 是线段BC 上的一个动点,以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 .三、圆与圆的位置关系23.(2013•嘉兴)在同一平面内,已知线段AO=2,⊙A 的半径为1,将⊙A 绕点O 按逆时针方向旋转60°得到的像为⊙B ,则⊙A 与⊙B 的位置关系为 .24.(2013•娄底)如图,⊙O 1,⊙O 2、相交于A 、B 两点,两圆半径分别为6cm 和8cm ,两圆的连心线O 1O 2的长为10cm ,则弦AB 的长为 .25.(2013黄石)如右图,在边长为3的正方形ABCD 中,圆1O 与圆2O 外切,且圆1O 分别与DA 、DC 边相切,圆2O 分别与BA 、BC 边相切,则圆心距12O O 为 .26.(2013•南宁)如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为 .27.(2013•泰州)如图,⊙O 的半径为4 cm ,直线l 与⊙O 相交于A 、B 两点,AB=4cm ,P 为直线l 上一动点,以1 cm 为半径的⊙P 与⊙O 没有公共点.设PO=d cm ,则d 的范围是 .28.(2012福建龙岩)如图,平面直角坐标系中,⊙O 1过原点O ,且⊙O 1与⊙O 2相外切,圆心O 1与O 2在x 轴正半轴上,⊙O 1的半径O 1P 1、⊙O 2的半径O 2P 2都与x 轴垂直,且点P 1()11x y ,、P 2()22x y ,在反比例函数1y=x(x>0)的图象上,则12y +y = . 四、与圆有关的计算29.(2013•衢州)如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB )为120°,OC 的长为2cm ,则三角板和量角器重叠部分的面积为 .30.(2013•广安)如图,如果从半径为5cm 的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是 cm .31.(2013•恩施州)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为 .32.(2013四川宜宾)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB =1,那么曲线CDEF 的长是 .33.(2013泰安)如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为.34.(2013•眉山)如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为.(结果保留π)35.(2013山西)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是.36.(2012广东广州)如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的倍,第n个半圆的面积为.(结果保留π)P第10题图37.(20XX年武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E 是切点,若∠CED=x°,∠ECD=y°,⊙B的半径为R,则DE的长度是.38.(2013•黄冈)如图,矩形ABCD中,AB=4,BC=3,边CD在直线l上,将矩形ABCD 沿直线l作无滑动翻滚,当点A第一次翻滚到点A1位置时,则点A经过的路线长为.38.(2013•十堰)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是.40.(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为.。

最新成都中考B卷填空题专题训练

最新成都中考B卷填空题专题训练

成都中考B 卷填空题专题训练(数式系列)1.已知关于x 的方程224220x x p p --++=的一个根为p ,则p = _________.2.设x 1、x 2 是一元二次方程x 2+4x -3=0的两个根,2x 1(x 22+5x 2-3)+a =2,则a = . 3.若实数m 满足m 2-10m + 1 = 0,则 m 4 + m -4 = .4、若x 1,x 2(x 1<x 2)是方程(x -a )(x -b )= 1(a <b )的两个根,则实数x 1,x 2,a ,b 的大小关系为 .(直线型几何系列)1、如图,梯形ABCD 的对角线AC 、BD 相交于O ,G 是BD 的中点.若AD = 3,BC = 9,则GO : BG = .2、如图,等腰梯形ABCD 内接于半圆D ,且AB = 1,BC = 2,则OA = .3、如图,一副三角板拼在一起,O 为AD 的中点,AB = a .将△ABO 沿BO 对折于△A ′BO ,M 为BC 上一动点,则A ′M 的最小值为4、如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为圆心,以OE 为半径画弧EF .P 是上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G . 若3=BMBG ,则BK ﹦ . (第1题) (第2题) (第3题) (折叠、动态系列) 1.小敏将一张直角边为l 的等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得 到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得 到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为 ;同上操作,若小敏连续将图1的等腰直角三角形折叠N 次后所得到 的等腰直角三角形(如图N +1)的一条腰长为 . 2、在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为 .3、如图,将矩形纸片ABCD (AD DC >)的一角沿着过点D 的直线折叠,使点A 落在BC 边上,落点为E ,折痕交AB 边交于点F .若1BE =,2EC =,则sin EDC ∠=__________;若::BE EC m n =,则:AF FB =_________(用含有m 、n 的代数式表示)G A B D C O C B A O D 45︒ 60︒ A ′B M A O DC A OD B F KE (第4题)G M C 第1次折叠 第3次折叠 … 第2次折叠图1 图2图3 图n +1(第2题)(第3题) 4、小明尝试着将矩形纸片ABCD (如图①,AD >CD )沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE (如图②);再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG (如图③).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为 .(一次函数与反比例系列)1.如图,一次函数y ax b =+的图象与x 轴,y 轴交于A ,B 两点,与反比例函数ky x =的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE . 有下列四个结论: ①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④AC BD =. 其中正确的结论是 .2.如图,直线y 1=kx +b 过点A (0,2),且与直线y 2=mx 交于点P (1,m ),则不等式组mx >kx +b >mx -2的解集是______________. 3.如图,直线y x b =+与y 轴交于点A ,与双曲线k y x=在第一象限交于B 、C 两点,且AB ·AC =4,则k =_________.(第2题) (第3题) (概率计算系列)1.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是_____________.F ① ② ③2.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖(如图),突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是 . 3、平行四边形中,AC 、BD 是两条对角线,现从以下四个关系式 ① AB BC =,② AC BD =,③ AC BD ⊥,④ AB BC ⊥中,任取一个作为条件,即可推出平行四边形ABCD 是菱形的概率为4.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为 . (规律探索系列)1.图(1)是面积都为S 的正n 边形(3≥n ),图(2)是由图(1)中的每个正多边形分别对应“扩展”而来。

最新四川省成都市中考数学及模拟汇编:B卷填空题、几何综合

最新四川省成都市中考数学及模拟汇编:B卷填空题、几何综合

一.填空题(共5小题)1.如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=,则BE的最小值为.2.如图,正方形ABCD与正方形AEFG有公共顶点A,连接BE、CF,则线段BE:CF的值是.3.如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于点G,交CD于点H,下列结论:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△DCN,其中正确的有4.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为.5.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=3,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F,若△AB′F为直角三角形,则AE的长为.二.解答题(共35小题)12.在四边形ABCD中,点E为AB边上一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形;①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE、DF,猜想AE与DF的数量关系并说明理由;(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B 逆时针旋转α(0°<α<90°)得到△E′BF′,连接AE′,DF′,请在图3中画出草图,并求出AE′与DF′的数量关系.13.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若=,求的值.14.在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=4.①如图2,若∠PBM=∠ACP,AB=7,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,求BP的长.15.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.16.在矩形ABCD边AD上有一个动点P,点P沿AD﹣﹣﹣DC﹣﹣﹣CA运动,并且不与点A重合,连接BP,以BP为直角边作等腰直角三角形BPQ,AB=3,AD=2.(1)如图1所示,当点P在AD边上运动时,△BPQ的边PQ与DC交于点E,当△BPQ 的面积最大时,BP=;若AP:AD=1:2时,BP:PE的值为;若AP:AD=1:n时,BP:PE的值为;(2)如图2所示,当点P在DC上运动且PQ∥AC时,请求出PC的长度;(3)如图3所示,当点P运动到CA的延长线上时,PQ与射线CD交于点F,请探究PF与QF有怎样的数量关系,并说明理由.17.如图,AM是△ABC的中线,D是线段AM上一点(不与点A、M重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,求证:四边形ABDE是平行四边形;(2)如图2,延长BD交AC于点H,若BH⊥AC,且BH=AM,求∠CAM的度数;(3)在(2)的条件下,当FH=,DM=3时,求DH的长.18.如图,在菱形ABCD中,∠BAD=120°,边长AB=6,对角线AC、BD交于点O,线段AD上有一动点P,过点P作PH⊥BC于点H,交直线CD于点Q,连接OQ,设线段PD=m.(1)求线段PH的长度.(2)设△OPQ的面积为S,求S与m之间的关系式.(3)在运动过程中是否存在点P使△OPQ的面积与△CQH的面积相等,若存在,请求出满足条件m的值;若不存在,请说明理由.19.如图,在平行四边形ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF交CE于点G.(1)若∠D=60°,CF=2,求CG的长度;(2)求证:AB=ED+CG.20.如图已知正方形ABCD,点M是边AB的中点.(1)如图1,点G为线段CM上一点,且∠AGB=90°,延长AG,BG分别与边BC、CD交于点E、F.①求证:BE=CF=CG;②求证:BE2=BC•CE.(2)如图2,若点E为边BC的黄金分割点时(BE>CE),连接BG并延长交CD于点F,求tan∠CBF的值.21.如图,△ABC中,∠C=90°,AC=3cm,BC=4cm,动点P从点B出发以2cm/s速度向点c移动,同时动点Q从C出发以1cm/s的速度向点A移动,设它们的运动时间为t.(1)根据题意知:CQ=,CP=;(用含t的代数式表示)(2)t为何值时,△CPQ的面积等于△ABC面积的?(3)运动几秒时,△CPQ与△CBA相似?22.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为AB延长线上一点,连接CD,过A分别作AM⊥CD,垂足为M,交BC于点N,作AP⊥BC,垂足为P,交CD于点Q.(1)求证:AN=CQ;(2)如图,点E在BA的延长线上,且AE=BD,连接EN并延长交CD于点F,求证:DQ=EN;(3)在(2)的条件下,当AE=AB时,请直接写出的值为.23.如图,点E是边长为1的正方形ABCD的对角线BD上的一个动点(不与B、D两点重合),过点E作直线MN∥DC,交AD于M,交BC于N,连接AE,作EF⊥AE于E,交直线CB于F.(1)如图1,当点F在线段CB上时,通过观察或测量,猜想△AEF的形状,并证明你的猜想;(2)如图2,当点F在线段CB的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;(3)在点E从点D向点B的运动过程中,四边形AFNM的面积是否会发生变化?若发生了变化,请说明理由;若没有发生变化,请求出其面积的值.24.(1)如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H,求证:=.(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若,则的值为.(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=12,BC=CD=4,AM⊥DN,点M,N分别在边BC,AB上,求的值.40.在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.。

【成都中考数学B卷填空必考专题】 几何变换综合(学生版)

【成都中考数学B卷填空必考专题】 几何变换综合(学生版)

几何变换综合1.如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为'B ,则线段BF 的长为_______;第二步,分别在,'EF A B 上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.2.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BN CN的值为__________.3.如图,长方形纸片ABCD 中,AB =8cm ,AD =6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用); 第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180°,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180°,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片. (注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为________cm ,最大值为________cm .4.在矩形ABCD 中,8,3AB AD ==P 是BC 边上的一个动点,将矩形ABCD 折叠,使点A 与点P 重合,点D 落在点G 处,折痕为EF .如图所示,当点P 与点B ,C 均不重合时,取EF 的中点O ,连接并延长PO与GF 的延长线交于点M ,连接,,PF ME MA .当1tan 4MAD ∠=时,四边形MEPF 的面积=_______.5.如图,在矩形ABCD 中,AB =9,BC =12,F 是边AD 上一点,连接BF ,将△ABF 沿BF 折叠使点A 落在G 点,连接AG 并延长交CD 于点E ,连接GD .若△DEG 是以DG 为腰的等腰三角形,则AF 的长为_____.6.如图,在矩形ABCD 中,AB =4,BC =43M 为BC 边中点,E 为AD 边上的一动点,过点A 作BE 的垂线,垂足为F ,连接FM ,则FM 的最小值为_________.在线段FM 上取点G ,使GM =34FM ,将线段GM 绕点M 顺时针旋转60°得到NM ,连接GN ,CN ,则CN 的最小值为_________.7.如图,在等腰Rt △ABC 中,AC =BC =2,∠EDF 的顶点D 是AB 的中点,且∠EDF =45°,现将∠EDF 绕点D 旋转一周,在旋转过程中,当∠EDF 的两边DE 、DF 分别交直线AC 于点G 、H ,把△DGH 沿DH 折叠,点G 落在点M 处,连接AM ,若AH AM =34,则AH 的长为_______.8.如图,ABC ∆为等边三角形,O 为其内心,射线AO 交BC 于点6D AD =,, 点P 为射线AO 上一动点,将射线CP 绕点C 逆时针旋转60︒,与射线AO 交于点Q ,当1PO =时,DQ 的长度为__________.9.如图,在正方形ABCD 中,AB =2,点E 是CD 的中点,连接AE ,将△ADE 沿AE 折叠至△AHE ,连接BH ,延长AE ,BH 交于点F ;BF ,CD 交于点G ,则FG =_______.10.如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE △按逆时针方向旋转得DCF ,连接EF ,分别交BD ,CD 于点M ,N .若25AE DN =,则sin EDM ∠=__________.11.如图,Rt △ABC 中,∠ACB =90°,BC =5,AB =5点D 在边AC 上,将△ABD 沿着直线BD 翻折得△EBD ,BE 交直线AC 于点F ,联结CE ,若△BCE 是等腰三角形,则AF 的长是_____.12.如图,在矩形ABCD 中,AB =4,BC =7,EA 平分∠BAD 交BC 于点E ,连接DE ,将矩形ABCD 沿DE 翻折,翻折后点D 与点D '点对应,再将所得△C 'D 'E 绕着点E 旋转,线段C 'D '与线段ED 交于点P .当PD =PC '时,则DC '的长为_______.13.如图,在Rt △ABC 中,∠C =90°,∠A =30°,AB =3E 和点F 分别是边AB 、BC 上两点.连接EF ,将△BEF 沿EF 折叠,点B 与点D 重合,点D 恰好是边AC 的中点,则EF =___.14.如图,长方形ABCD 中,6AB =,8BC =,E 为BC 上一点,且2BE =,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转30°到EG 的位置,连接FG 和CG ,则CG 的最小值为______.15.如图,“心”形是由抛物线26y x =-+和它绕着原点O ,顺时针旋转60°的图形经过取舍而成的,其中顶点C 的对应点为D ,点A ,B 是两条抛物线的两个交点,点E ,F ,G 是抛物线与坐标轴的交点,则AB =_______________.16.如图,在菱形纸片ABCD 中,AB =2,∠A =60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos ∠EFG 的值为________.17.如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF AB∠=_________.=,则DAF18.如图所示,正方形纸片ABCD的边长为2,点E为AD边上不与端点重合的一动点,将纸片沿过BE的直线折叠点A的落点记为F,连接CF、DF,若△CDF是以CF为腰的等腰三角形,则AE=_________.19.如图1,在矩形纸片ABCD中,AB=12,AD=10,点E是CD的中点.将这张纸片依次折叠两次;如图2,第一次折叠纸片使点A与点E重合,折痕为MN,连接ME、NE;如图3,第二次折叠纸片使点N与点E重∠=_________.合,点B落在B'处,折痕为HG,连接HE,则tan EHGBC=,点M,N分别在边AB,CD,CN=1.现将四边形BCNM 20.如图,有一张矩形纸条ABCD,AB=5,2MB与边CD交沿MN折叠,使点B,C分别落在点'B,'C处,在点M从点A运动到点B的过程中,若边'于点E,则点E相应运动的路径长_________.。

2024成都中考数学B卷专项强化训练一 (含答案)

2024成都中考数学B卷专项强化训练一 (含答案)

2024成都中考B 卷专项强化训练一班级:________姓名:________得分:________(满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知x +2y -1=0,则代数式x +2y x 2+4xy +4y2的值为________.20.已知关于x 的一元二次方程(m -2)x 2+2mx +m -10=0,两实数根分别为x 1,x 2,且1x 1+1x 2=3,则m 的值为________.21.我国古代数学名著《九章算术》中有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒.则这批米内夹谷约为________石.22.定义:在平面直角坐标系中,对于任意两点A (x 1,y 1),B (x 2,y 2),如果点M (x ,y )满足:x =x 1-x 22,y =y 1-y 22,那么称点M 是点A ,B 的“双减点”.若点D (1,-3),E (2m ,-3m -7)的“双减点”是点F ,当点F 在直线y =x -1的下方时,则m 的取值范围是________.23.如图,在▱ABCD 中,AD =5,AB =2,∠A =120°,点E ,F 分别在边AD ,BC 上,且DE =1,按照以下步骤操作:第一步,沿直线EF 折叠,使点C ,D 分别落在点C ′,D ′上.当点C ′恰好落在边AD 上时,线段CF 的长为________;第二步,在点F 从点B 运动到点C 的过程中,若边FC ′与边AD 交于点M ,则点M 相应运动的路径长为________.第23题图二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)某农户销售一种成本为10元/kg 的农产品,经调查发现,该农产品每天的销售量y (kg)与销售单价x (元/kg)(x ≥10)满足如图所示的函数关系,设销售这种商品每天的利润为W (元).(1)求W 与x 之间的函数关系式;(2)若销售单价不低于15元/kg,且每天至少销售140kg时,求W的最大值.第24题图25.(本小题满分10分)如图①,在平面直角坐标系中,抛物线y=-x2+2x+c与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,AB=4.(1)求此抛物线的函数表达式;(2)点P是第一象限内抛物线上的一个动点,连接BC,当点P到直线BC的距离最大时,求点P的坐标;(3)以A为顶点作如图②所示的矩形ADEF,使得AD=2,DE=3.将矩形ADEF沿x轴正方向平移,在平移过程中,边AD,EF所在直线分别交抛物线于点G,H.是否存在以点D,F,G,H为顶点的四边形是平行四边形?若存在,求出平移距离;若不存在,请说明理由.图①图②第25题图26.(本小题满分12分)【问题】如图①,△ABC为等边三角形,过点A作直线MN平行于BC,点D在直线MN上移动,过点D作∠BDE=60°,DE与直线AC交于点E.研究BD和DE的数量关系.【极端位置】(1)某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D移动到与点A重合时为最特殊情况,由此得到BD和DE的数量关系为________;【特殊位置】(2)如图②,该数学兴趣小组运用第二种特殊情况,当BD⊥MN时,此时发现(1)的结论依然成立,请你写出证明过程;【一般位置】(3)当点D在如图③的一般位置时,请证明(1)的结论依然成立.图①图②图③第26题图参考答案与解析19.1【解析】原式=x +2y (x +2y )2=1x +2y.∵x +2y -1=0,∴x +2y =1,∴原式=11=1.20.6【解析】由题意,得x 1+x 2=-2m m -2,x 1x 2=m -10m -2,∴1x 1+1x 2=x 1+x 2x 1x 2=-2mm -2m -10m -2=-2m m -10=3,解得m =6,经检验,m =6是原分式方程的解.21.18022.m <-1【解析】设点D (1,-3),E (2m ,-3m -7)的“双减点”点F 的坐标为(k ,t ),由“双减点”的定义,得k =1-2m 2,t =-3-(-3m -7)2=3m +42,∴点F 的坐标为(1-2m 2,3m +42),对于y =x -1,当x =1-2m 2时,y =1-2m 2-1.∵点F 在直线y =x -1的下方,∴1-2m 2-1>3m +42,解得m <-1.23.3;1453【解析】第一步:当点C ′恰好落在边AD 上时,如解图①,∵在▱ABCD 中,AD =5,AB =2,∠A =120°,∴CD =AB =2,∠D =60°,∠BCD =120°,AD ∥BC ,∴∠CFE =∠C ′EF .由折叠的性质,得C ′D ′=CD =2,D ′E =DE =1,∠D ′=∠D =60°,∠C ′FE =∠CFE ,C ′F =CF ,∴∠C ′FE =∠C ′EF ,∴C ′E =C ′F =CF .过点E 作EG ⊥C ′D ′于点G ,则∠EGD ′=∠C ′GE =90°,∴∠GED ′=30°,∴GD ′=12D ′E =12,∴EG =12-(12)2=32,C ′G =C ′D ′-GD ′=32,∴C ′E =C ′G 2+EG 2=3,∴CF =3.第二步:如解图②,当点F 与点B 重合时,此时AM 最短,连接C ′E ,由第一步得C ′E =3,C ′D ′=2,D ′E =1,∴D ′E 2+C ′E 2=4=C ′D ′2,∴∠C ′ED ′=90°,∴∠EC ′D ′=30°,∴∠MC ′E =∠BC ′D ′-∠EC ′D ′=∠BCD -∠EC ′D ′=90°.同第一步可得BM =ME .设BM =ME =x ,则C ′M =BC ′-BM =BC -BM =5-x ,在Rt △MC ′E 中,ME 2=C ′E 2+C ′M 2,即x 2=3+(5-x )2,解得x =145,∴ME =145,∴AM =AD -DE -ME =65;如解图③,当点C ′在AD 上时,此时M 与C ′重合,AM 最大,由第一步可知,AM =AD -DE -C ′E =4-3,∴点M 运动的路径长为4-3-65=145-3.图①图②图③第23题解图24.解:(1)当10≤x ≤20时,y =200,W =(x -10)y =200(x -10)=200x -2000;当x >20时,设y 与x 之间的函数关系式为y =kx +b (k ≠0),将(20,200),(25,180)代入,20k +b =200,25+b =180,k =-4,b =280,∴y 与x 之间的函数关系式为y =-4x +280,∴W =(x -10)y =(x -10)(-4x +280)=-4x 2+320x -2800.综上所述,W 与x 之间的函数关系式为W 200x -2000(10≤x ≤20)-4x 2+320x -2800(x >20);(2)根据题意,x ≥15,-4x +280≥140,解得15≤x ≤35,①当15≤x ≤20时,W =200x -2000,∴当x =20时,W 有最大值,最大值为2000元;②当20<x ≤35时,W =-4x 2+320x -2800,抛物线对称轴为直线x =-3202×(-4)=40,∵-4<0,∴当x ≤40时,W 随x 的增大而增大,∴当x =35时,W 有最大值,最大值为3500元.综上所述,W 的最大值为3500元.25.解:(1)抛物线的对称轴为直线x =-22×(-1)=1,∵AB =4,点A 在点B 的左侧,∴A (-1,0),B (3,0).将点A 的坐标代入y =-x 2+2x +c ,得0=-1-2+c ,解得c =3,∴此抛物线的函数表达式为y =-x 2+2x +3;(2)如解图①,过点P 作PM ⊥BC 于点M ,作PN ∥y 轴交BC 于点N ,第25题解图①令x =0,解得y =3,∴C (0,3).由点B ,C 的坐标,得直线BC 的函数表达式为y =-x +3.设点P (n ,-n 2+2n +3)(0<n <3),则点N 的坐标为(n ,-n +3),∴PN =-n 2+2n +3-(-n +3)=-n 2+3n .∵PN ∥y 轴,∴∠PNM =∠OCB ,∴sin ∠PNM =sin ∠OCB ,即PM PN =OB CB.∵OB =3,OC =3,∴由勾股定理,得CB =OB 2+OC 2=32,∴OB CB =332=22,∴PM =22PN =22(-n 2+3n )=-22(n -32)2+928,∴当n =32时,PM 有最大值,此时-n 2+2n +3=154,∴点P 的坐标为(32,154);(3)存在.设平移距离为t ,∵点A 移动后所对应的点为A ′,由题意可知,点G 的横坐标为t -1,点G 在抛物线上,则点G 的纵坐标为-(t -1)2+2(t -1)+3=-t 2+4t ,点H 的横坐标为t -4,点H 在抛物线上,则点H 的纵坐标为-(t -4)2+2(t -4)+3=-t 2+10t -21.如解图②,当GH 为平行四边形的一条边时,DG =FH ,第25题解图②即-t 2+4t -2=-t 2+10t -21,解得t =196;如解图③和解图④,当GH 为平行四边形的一条对角线时,DG =FH ,即-t 2+4t -2=-(-t 2+10t -21),解得t =7±32.综上所述,存在以点D ,F ,G ,H 为顶点的四边形是平行四边形,此时平移距离为196或7+32或7-32.图③图④第25题解图26.(1)解:BD=DE;(2)证明:如解图①,连接BE.∵△ABC为等边三角形,∴∠BAC=∠ABC=60°.∵MN∥BC,∴∠DAB=∠ABC=60°.∵BD⊥MN,且∠BDE=60°,∴∠EDA=30°,∴∠DEA=180°-∠EDA-∠DAB-∠BAC=30°,∴∠DEA=∠EDA,∴AD=AE.在△ADB和△AEB中,AD=AE,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(SAS),∴BD=BE,∴△BDE是等边三角形,∴BD=DE;第26题解图①(3)证明:如解图②,在CA延长线上截取一点H,使得AH=AD,连接DH.∵△ABC为等边三角形,∴∠C=∠ABC=60°.∵MN∥BC,∴∠BAD=∠ABC=60°,∠DAH=∠C=60°,∴△AHD为等边三角形,∴∠HDA=∠DHA=60°,AD=DH.∵∠BDE=60°,∴∠HDA+∠ADE=∠BDE+∠ADE.∴∠HDE=∠ADB.在△HDE和△ADB中,HDE=∠ADB,=DA,DHE=∠DAB,∴△HDE≌△ADB(ASA),∴BD=DE.第26题解图②。

成都初三数学b卷试题及答案

成都初三数学b卷试题及答案

成都初三数学b卷试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x+3=7的解?A. x=1B. x=2C. x=3D. x=42. 一个数的平方是36,这个数是?A. 6B. ±6C. -6D. 363. 一次函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 圆的面积公式是πr²,其中r是?A. 直径B. 半径C. 周长D. 面积5. 一个长方体的长、宽、高分别为3cm、2cm、1cm,其体积是?B. 9cm³C. 12cm³D. 18cm³6. 一个角的补角是120°,那么这个角的度数是?A. 60°B. 30°C. 90°D. 120°7. 函数y=3x-2的图象与x轴交点的横坐标是?A. 2/3B. -2/3C. 2D. -28. 一个三角形的内角和是?A. 90°B. 180°C. 360°D. 720°9. 一个数的立方是-27,这个数是?A. -3B. 3C. ±3D. 910. 一个圆的直径是10cm,那么它的半径是?A. 5cmC. 15cmD. 20cm二、填空题(每题3分,共30分)1. 一个数的相反数是-5,那么这个数是______。

2. 如果一个角是直角的一半,那么这个角的度数是______。

3. 一个等腰三角形的底边长为6cm,腰长为5cm,那么它的面积是______。

4. 一个数的绝对值是4,这个数可以是______。

5. 一个长方体的体积是64cm³,长和宽都是4cm,那么它的高是______。

6. 一个数的平方根是2,那么这个数是______。

7. 一个数的立方根是-2,那么这个数是______。

8. 一个直角三角形的两条直角边长分别是3cm和4cm,那么它的斜边长是______。

【成都中考数学B卷填空必考专题】 反比例函数与几何综合(学生版)

【成都中考数学B卷填空必考专题】 反比例函数与几何综合(学生版)

反比例函数与几何综合1.在平面直角坐标系xOy 中,已知直线y mx =(0m >)与双曲线4y x=交于A ,C 两点(点A 在第一象限),直线y nx =(0n <)与双曲线1y x=-交于B ,D 两点.当这两条直线互相垂直,且四边形ABCD 的周长为102时,点A 的坐标为_________.2.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”.当双曲线()0ky k x=>的眸径为6时,k 的值为__________.33角.如图,ABC 是幸运三角形,BC 为幸运边,B 为幸运角,()3,0A ,点B ,C 在反比例函数(0)ky x x=>的图象上,点C 在点B 的上方,且点B 3当ABC 是直角三角形且90B ∠=︒时,则k 的值为_______.4.如图,直线152y x =-+与坐标轴交于A ,B 两点,交反比例()0ky x x =>的图象于C ,D 两点,且3CD AC =,点E 是直线AB 上一点,连接OE ,以OE 为边在OE 右侧作直角三角形OEF ,90OEF ∠=︒,OFE ABO ∠=∠,若边OF 交反比例函数图象于点G ,OG GF =,则k 值为______,点E 的坐标是______.5.如图,OAB 的顶点A 、B 在反比例函数1(0)y x x=>的图象上,90OAB ∠=︒,AO AB =,将OAB 沿直线OB 翻折,得到OBC ,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为_______.6.如图,反比例函数12y x =-的图象与直线1(0)2y x b b =+>交于A ,B 两点(点A 在点B 右侧),过点A 作x 轴的垂线,垂足为点C ,连接AO ,BO ,图中阴影部分的面积为12,则b 的值为________.7.如图,一次函数3y =与反比例函数 (0)k y k x =>的图象在第一象限交于点A ,点C 在以(6,0)B 为圆心,1为半径的⊙B 上,已知当点C 到直线OA 的距离最大时AOC △的面积为8,则该反比例函数的表达式为________.8.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图像上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为2,4,OAC 与ABD △的面积之和为3,则k 的值为_______.9.如图,在△ABC 中,AB =AC ,点A 在反比例函数y =12x (x >0)的图象上,点B ,C 在x 轴上,OC =15OB ,延长AC 交y 轴于点D ,连接BD ,AO ,则△BCD 的面积为____.10.如图,已知函数2y x =-+的图象与x 轴、y 轴分别交于点C 、B ,与双曲线ky x=交于点A 、D ,若AB CD BC +=,则k 的值为___________.11.如图,在平面直角坐标系xOy 中,函数y =3x(x >0)的图象经过点P (3,1)和Q (1,3),直线PQ 与x 轴,y 轴分别交于C ,D 两点,点M (x ,y )是该函数图象上的一个动点,过点M 分别作x 轴和y 轴的垂线,垂足分别为A ,B .当1<x <3时,存在点M 使得△OPM ∽△OCP ,点M 的坐标_____.12.如图,在平面直角坐标系中,点A 、B 分别在x 轴和y 轴,34OA OB =,∠AOB 的角平分线与OA 的垂直平分线交于点C ,与AB 交于点D ,反比例函数y =k x 的图象过点C .当以CD 为边的正方形的面积为47时,k 的值为_____.13.如图.点A ,B 是反比例函数(0,0)ky k x x=>>图象上的两点(点A 在点B 左侧),过点A 作AD x ⊥轴于点D ,交OB 于点E ,延AB 交x 轴于点C ,已知:21:25OAB ADC S S =△△,7OACS=,则k 的值为__________.14.如图,矩形ABCD 的边AB 在x 轴上,点C 在反比例函数6y x =的图象上,点D 在反比例函数ky x=的图象上,若5sin CAB ∠4cos 5OCB ∠=,则k =_________.15.如图,平面直角坐标系xOy 中,在反比例函数4k y x=(k >0,x >0)的图象上取点A ,连接OA ,与ky x =的图象交于点B ,过点B 作BC ∥x 轴交函数4k y x=的图象于点C ,过点C 作CE ∥y 轴交函数ky x =的图象于点E ,连接AC ,OC ,BE ,OC 与BE 交于点F ,则CEFABCS S∆∆=____.16.在直角坐标系中,已知A (0,4)、B (2,4),C 为x 轴正半轴上一点,且OB 平分∠ABC ,过B 的反比例函数y =kx 交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记△BDF 的面积为S 1,△OEF 的面积为S 2,则12S S =_____.17.已知双曲线4y x =与直线14y x =交于A 、B 两点(点A 在点B 的左侧).如图,点P 是第一象限内双曲线上一动点,BC ⊥AP 于C ,交x 轴于F ,P A 交y 轴于E ,则222AE BF EF +的值是_____.18.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为3,1,反比例函数y =3x的图象经过A ,B 两点,则菱形ABCD 的面积为_____.19.如图,直线y =﹣x +b 与x 、y 轴的正半轴交于点A ,B ,与双曲线y =﹣4x交于点C (点C 在第二象限内),点D ,过点C 作CE ⊥x 轴于点E ,记四边形OBCE 的面积为S 1,△OBD 的面积为S 2,若12S S =712,则b 的值为_____.20.如图,A 、B 两点是反比例函数y 1=10x与一次函数y =2x 的交点,点C 在反比例函数y 2=kx 上,连接OC ,过点A 作AD ⊥x 轴交OC 于点D ,连接BD .若AD =BD ,OC =3OD ,则k =__.21.如图,反比例函数ky x=的图象经过点(-1,22-,点A 是该图象第一象限分支上的动点,连结AO 并延长交另一支于点B ,以AB 为斜边作等腰直角三角形ABC ,顶点C 在第四象限,AC 与x 轴交于点P ,连结BP .在点A 运动过程中,当BP 平分∠ABC 时,点A的坐标是____________.22.如图,函数ky x=(k 为常数,k >0)的图象与过原点O 的直线相交于A 、B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴、y 轴于点C 、D 两点,连接BM 分别交x 轴、y轴于点E 、F .若27MF MB =,则MD MA=______.23.如图,平行四边形OABC 中,点A ,C 在反比例函数1k y x =第一象限的图象上,点B 在反比例函数2k y x=第一象限的图象上,连接AC 并延长交x 轴于点D ,若2AD AC =,则12k k 的值是_______.24.如图,函数ky x=(k 为常数,0k >)的图象与过原点O 的直线相交于A 、B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴、y 轴于C 、D 两点,连接BM 分别交x 轴、y 轴于点E 、F .若25MF MB =,则MDMA=________.25.如图,在平面直角坐标系xOy 中,一次函数1y x =+的图象与反比例函数2y x=的图象交于A ,B 两点,若点P 是第一象限内反比例函数图象上一点,且ABP △的面积是AOB 的面积的2倍,则点P 的横坐标...为________.26.如图,一次函数2y x =与反比例数()0ky k x=>的图像交于A ,B 两点,点M 在以()2,0C 为圆心,半径为1的C 上,N 是AM 的中点,已知ON 长的最大值为32,则k 的值是_______.。

最新成都市中考数学B卷专题突破练习(反比例函数与几何综合问题)含答案填空题经典题目

最新成都市中考数学B卷专题突破练习(反比例函数与几何综合问题)含答案填空题经典题目

成都市中考数学B卷专题突破:反比例函数与几何综合问题1.如图点A在反比例函数y=(x<0)的图象上,作Rt△ABC,直角边BC在x轴上,点D 为斜边AC的中点,直线BD交y轴于点E,若△BCE的面积为8,则k=.2.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB 交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为.3.如图,点A,点B分别在y轴,x轴上,OA=OB,点E为AB的中点,连接OE并延长交反比例函数y=(x>0)的图象于点C,过点C作CD⊥x轴于点D,点D关于直线AB的对称点恰好在反比例函数图象上,则OE﹣EC=.4.如图,将双曲线y=(k<0)在第四象限的一支沿直线y=﹣x方向向上平移到点E处,交该双曲线在第二象限的一支于A,B两点,连接AB并延长交x轴于点C.双曲线y=(m >0)与直线y=x在第三象限的交点为D,将双曲线y=在第三象限的一支沿射线OE方向平移,D点刚好可以与C点重合,此时该曲线与前两支曲线围成一条“鱼”(如图中阴影部分),若C点坐标为(﹣5,0),AB=3,则mk的值为.5.如图,直线y=x分别与双曲线y=(m>0,x>0),双曲线y=(n>0,x>0)交于点A和点B,且,将直线y=x向左平移6个单位长度后,与双曲线y=交于点C,若S△ABC=4,则的值为,mn的值为.6.如图,在直角坐标系中有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于点D,双曲线y=(x>0)经过点D,交BC的延长线于点E,且OB•AC=160,则点E的坐标为.7.如图,平行于x轴的直线与函数y=(k1>0,x>0)和y=(k2>0,x>0)的图象分别相交于A,B两点.点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为.8.直线y=x+3与两坐标轴交于A、B两点,以AB为斜边在第二象限内作等腰Rt△ABC,反比例函数y=(x<0)的图象过点C,则m=.9.对于一个函数,如果它的自变量x与函数值y满足:当﹣1≤x≤1时,﹣1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=﹣x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,﹣1)和点B(﹣1,1),则a的取值范围是.10.如图,已知点B(0,2),A(﹣6,﹣1)在反比例函数的图象上,作射线AB,再将射线AB绕点A逆时针旋转45°后,交反比例函数图象于点C,则点C的坐标为.11.如图,直线y=2x+b与双曲线y=(k>0)交于点A、D,直线AD交y轴、x轴于点B、C,直线y=﹣+n过点A,与双曲线y=(k>0)的另一个交点为点E,连接BE、DE,若S△ABE=4,且S△ABE:S△DBE=3:4,则k的值为.12.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,则tan∠BAO的值为.13.如图,直线AB交双曲线y=于A、B两点,交x轴于点C,且B恰为线段AC的中点,连结OA.若S△OAC=,则k的值为.14.如图,点P为双曲线y=(x<0)上一动点,连接OP并延长到点A,使PA=PO,过点A作x轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是.参考答案一.填空题(共34小题)1.16;2.(0,)或(0,15);3.;4.﹣25;5.;100;6.(4,8);7.8;8.﹣;9.﹣≤a<0或0<a≤;10.(,18);11.;12.;13.;14.;。

成都中考数学B卷专练(16套)含详细答案

成都中考数学B卷专练(16套)含详细答案

成都中考B 卷专练(16套)含详细答案B 卷专练(一)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21. 若a -b =3,a -c =1,则(2a -b -c )2+(c -a )3=________.22. 若n 是一个两位正整数,且n 的个位数字大于十位数字,则称n 为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.则抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率是________.23. 已知a n =1-1(n +1)2(n =1,2,3,…),定义b 1=a 1,b 2=a 1·a 2,b n =a 1·a 2·…·a n ,则b 2019=________.24. 如图,直线y =-2x +2与x 轴、y 轴分别相交于点A 、B ,四边形ABCD 是正方形,双曲线y =kx 在第一象限经过点D ,则k =________.第24题图25. 如图,在等腰△ABC 中,CA =CB =6,AB =6 3.点D 在线段AB 上运动(不与点A 、B 重合),将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAE 与△CBF ,连接EF ,则△CEF 面积的最小值为________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)国家为支持大学生创业,提供小额无息贷款,学生王芳享受政策无息贷款36000元用来代理品牌服装的销售.已知该品牌服装进价每件40元,日销售y (件)与销售价x (元/件)之间的关系如图所示,每天付员工的工资每人每天82元,每天应支付其他费用106元.(1)求日销售y(件)与销售价x (元/件)之间的函数关系式;(2)若该店只有2名员工,则该店至少需要多少天才能还清贷款,此时,每件服装的价格应定为多少元?第26题图27. (本小题满分10分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一动点,作EM⊥EC交AB 于点M,点N在射线MB上,且AE2=AM·AN,连接NE.(1)如图①,求证:∠ANE=∠DCE;(2)如图②,当点N在线段MB上时,连接AC,且AC⊥NE,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.28. (本小题满分12分)如图①,抛物线y=ax2-3ax-2交x轴于A、B(A左B右)两点,交y轴于点C,过点C作CD∥x轴,交抛物线于点D,E(-2,3)在抛物线上.(1)求抛物线的解析式;(2)P为第一象限抛物线上一点,过点P作PF⊥CD于点F,连接PE交y轴于点G,连接FG,DE,求证:FG∥DE;(3)如图②,在(2)的条件下,过点F作FM⊥PE于点M.若∠OFM=45°,求P点坐标.第28题图B 卷专练(二)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 如图,将面积为3的正方形放在数轴上,以表示实数1的点为圆心,正方形的边长为半径,作圆交数轴于点A 、B ,则点A 表示的数为________.第21题图22. 已知m ,n 是关于x 的方程x 2+(2b +3)x +b 2=0的两个实数根,且满足1m +1=-1n ,则b 的值为________.23. 一只小鸟自由自在在空中飞翔,然后随意落在如图(由16个小正方形组成)中,则落在阴影部分的概率是________.第23题图24. 在平面直角坐标系xOy 中,对于P (a ,b ),若点P ′的坐标为(ka +b ,a +bk )(其中k 为常数且k ≠0),则称点P ′为点P 的“k 的和谐点”.已知点A 在反比例函数y =43x (x >0)的图象上运动,且点A 是点B 的“3的和谐点”,若Q (-2,0),则BQ 的最小值为________.25. 如图,把正方形纸片对折得到矩形ABCD ,点E 在BC 上,把△ECD 沿ED 折叠,使点C 恰好落在AD 上的点C ′处,点M 、N 分别是线段AC ′与线段BE 上的点,把四边形ABNM 沿NM 向下翻折,点A 落在DE 的中点A ′处.若原正方形的边长为12,则线段MN 的长为________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数解析式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?第26题图27. (本小题满分10分)(1)如图①,已知:在等腰直角△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.小明观察图形特征后猜想线段DE、BD和CE之间存在DE=BD+CE的数量关系,请你判断他的猜想是否正确,并说明理由;(2)如图②,将(1)中的条件改为:△ABC为等边三角形,D、A、E三点都在直线m上,并且有∠BDA =∠AEC=∠BAC=60°,请问结论DE=BD+CE是否成立?并说明理由;(3)如图③,若将(1)中的三角形变形为一般的等腰三角形,△ABC中,AB=AC,∠BAC=α,其中α为任意锐角或钝角,D、A、E三点都在直线m上.问:满足什么条件时,结论DE=BD+CE仍成立?直接写出条件即可.第27题图28. (本小题满分12分)如图,在平面直角坐标系中,抛物线y =x 2+4x 的顶点为A . (1)求点A 的坐标;(2)点B 为抛物线上横坐标等于-6的点,点M 为线段OB 的中点,点P 为直线OB 下方抛物线上的一动点.当△POM 的面积最大时,过点P 作PC ⊥y 轴于点C ,若在坐标平面内有一动点Q 满足PQ =32,求OQ +12QC 的最小值;(3)当(2)中OQ +12QC 取得最小值时,直线OQ 与抛物线另一交点为E ,作点E 关于抛物线对称轴的对称点E ′.点R 是抛物线对称轴上的一点,在x 轴上是否存在点S ,使得以O 、E ′、R 、S 为顶点的四边形是平行四边形?若存在,请直接写出S 点的坐标;若不存在,请说明理由.B 卷专练(三)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. “万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则其中选择红色运动衫的约有________名.第21题图22. 若x 1,x 2是关于x 的方程x 2-2mx +m 2-m -1=0的两个根且x 1+x 2=1-x 1x 2,则m =________. 23. 对于平面直角坐标系xOy 中的点P (a ,b ),若点P ′的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P ′为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P ′(1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P ′点,且线段PP ′的长度为线段OP 长度的2倍,则k 的值________.24. 如图,在矩形ABCD 中,AB =4,BC =5,E 为CD 边上一点,将△BCE 沿BE 折叠,使得点C 落到矩形内点F 的位置,连接AF ,若tan ∠BAF =12,则CE =________.第24题图25. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A (4,4),C (-2,-2),点B ,D 在反比例函数y =k x 的图象上,对角线BD 交AC 于点M ,交x 轴于点N ,若BN ND =53,则k 的值是________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某塑料厂每月生产甲、乙两种塑料的信息如下表:注1:生产乙种塑料每月还需另外支付专用设备维护费20000元.注2:总成本包括生产成本、排污处理费、专用设备维护费.(1)已知该厂每月共生产甲、乙塑料共700吨,甲、乙塑料均不超过400吨,求该厂每月生产利润的最大值;(2)试销中发现,甲种塑料销售量Q(吨)与销售价m(百元)满足一次函数Q=-10m+810,营销利润为W(百元).若规定销售价不低于出厂价,且不高于出厂价的200%,则销售甲种塑料营销利润的最大值是多少?27. (本小题满分10分)已知:正方形ABCD,等腰直角△DEF的直角顶点落在正方形的顶点D处,使△DEF绕点D旋转.(1)当△DEF旋转到图①的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE=1,AE=7,CE=3,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连接DM,DM与AC交于点O,当△DEF的一边DF与边DM重合时(如图②),若OF=53,求CN的长.第27题图28. (本小题满分12分)如图,抛物线y=ax2-2ax+c的图象与坐标轴分别交于A、B、C三点,其中A(-1,0)、C(0,3).点Q是线段BC上方抛物线上的一个动点.(1)求抛物线的表达式;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为P′.若新抛物线经过点C,并且新抛物线的顶点和原抛物线的顶点P的连线PP′平行于直线BC,求新抛物线对应的函数表达式;(3)过点Q作x轴的垂线,交线段BC于点D,再过点Q作QE∥x轴交抛物线于点E,连接DE,请问是否存在点Q使△QDE为等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.第28题图备用图B 卷专练(四)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 已知x 1,x 2是关于x 的方程x 2-(2m -2)x +m 2-2m =0的两根,且满足x 1x 2+2(x 1+x 2)=-1,那么m 的值为________.22. 一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何点的可能性都相同.那么它停在△AOB 上的概率是________.第22题图23. 在平面直角坐标系xOy 中,点A 的坐标为(1,0),P 是第一象限内任意一点,连接PO ,P A ,若∠POA =m °,∠P AO =n °,则我们把(m °,n °)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).若点P 到x 轴的距离为12,则m +n 的最小值为________.24. 如图,在矩形纸片ABCD 中,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则BP 的长为________.第24题图25. 如图,在平面直角坐标系中,等边△OAB 和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx(x >0)的图象经过点B ,则k 的值为________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)一家特产店有A、B两种特产礼盒,A种礼盒进价72元/盒,售价120元/盒,B种礼盒进价40元/盒,售价80元/盒,这两种礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种礼盒各多少盒?(2)调査发现,A种礼盒售价每降3元可多卖1盒.若B种礼盒的售价和销量不变,当A种礼盒降价多少元/盒时,这两种礼盒平均每天的总利润最大,最大是多少元?27. (本小题满分10分)如图①,在正方形ABCD中,E是AB上一动点,F是AD延长线上一点,且DF =BE,(1)求证:CE=CF;(2)在图①中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)如图②,在四边形ABCD中,AD∥BC(BC>AD),∠A=∠B=90°,AB=BC=16,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.第27题图28. (本小题满分12分)如图,抛物线与x 轴交于点A (-1,0),B (3,0),顶点为D (1,-4),点P 为y 轴上一动点.(1)求抛物线的解析式;(2)在y 轴的负半轴上是否存在点P ,使△BDP 是等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图②,点M (-32,m )在抛物线上,求MP +22PC 的最小值.第28题图B 卷专练(五)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.那么,其中最喜欢足球的学生数占被调查总人数的百分比为________ %.第21题图 第24题图 第25题图22. 设α,β是方程x 2-x -2019=0的两个实数根,则α3-2021α-β的值为______.23. 式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =å,这里“∑”是求和符号,如421n n =å=12+22+32+42=30,通过对以上材料的阅读,计算20191n =å1n (n +1)=________.24. 如图,在Rt △ABC 中,∠BAC =90°,AB =2,边AB 在x 轴上,BC 边上的中线AD 的反向延长线交y 轴于点E (0,3),反比例函数y =kx(x >0)的图象过点C ,则k 的值为________.25. 如图,在平行四边形ABCD 中,∠A =45°,AB =4,AD =22,M 是AD 边的中点,N 是AB 边上一动点,将线段MN 绕点M 逆时针旋转90°至MN ′,连接N ′B ,N ′C ,则N ′B +N ′C 的最小值是________.二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?第26题图27. (本小题满分10分)已知,在△ABC 中,∠ABC -∠ACB =90°,点D 在BC 上,连接AD ,且∠ADB =45°.(1)如图①,求证:∠BAD =∠CAD ;(2)如图②,点E 为BC 的中点,过点E 作AD 的垂线分别交AD 的延长线,AB 的延长线,AC 于点F ,G ,H ,求证:BG =CH ;(3)如图③,在(2)的条件下,过点E 分别作EM ⊥AG 于点M ,EN ⊥AC 于点N ,若AB +AC =26,EM +EN =12013,求△AFG 的面积.第27题图28. (本小题满分12分)如图,一次函数y=x+3与坐标轴交于A、C两点,过A、C两点的抛物线y=ax2-2x+c与x轴交于另一点B的抛物线顶点为E,连接AE.(1)求该抛物线的函数表达式及顶点E坐标;(2)点P是线段AE上的一动点,过点P作PF平行于y轴交AC于点F连接EF,求△PEF面积的最大值及此时点P的坐标;(3)若点M为坐标轴上一点,点N为平面内任意一点,是否存在这样的点,使以A、E、M、N为顶点的四边形是以AE为对角线的矩形?如果存在,请直接写出N点坐标;若不存在,请说明理由.第28题图备用图B 卷专练(六)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 若关于x 的分式方程mx -2=1-x 2-x-3有一个根是x =3,则实数m 的值是____.22. 欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”.如图所示,可见卖油翁的技艺之高超,若铜钱直径为4 cm ,中间有边长为1 cm 的正方形小孔,随机向铜钱上滴一滴油(油滴大小忽略不计),则油恰好落入口中的概率是________.第22题图23. 如图,矩形ABCD 中,AB =4,AD =3,点P 是CD 边上的一动点(点P 与D 、C 点不重合),四边形ABCP 沿AP 折叠得四边形AFEP ,延长CD 交AF 于点N .若点E 恰好在AD 的延长线上,则DP 的长度为________.第23题图24. 如图,在直角坐标系中,O 为坐标原点,点A (1,2),过点A 分别作x 轴、y 轴的平行线交反比例函数y =kx(x >0)的图象于点C 、B ,连接BC ,延长OA 交BC 于点D .若△ABD 的面积为2,则k 的值为________.第24题图25. 我们规定:一个多边形上任意两点间距离的最大值称为该多边形的“直径”.现有两个全等的三角形,边长分别为4、4、27.将这两个三角形相等的边重合拼成对角线互相垂直的凸四边形,那么这个凸四边形的“直径”为________.二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x天)的关系如下表:任务完成后,统计发现销售员小王90天内日销售量p(件)与时间(第x天)满足一次函数关系p=-2x+200.设小王第x天销售利润为W元.(1)求W与x之间的函数关系式,并写出自变量x的取值范围;(2)小王第几天的销售利润最大?最大利润是多少?(3)任务完成后,统计发现平均每个销售员每天销售利润为4800,公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金.请计算小王一共可获得多少元奖金?27. (本小题满分10分)(1)如图①,锐角△ABC 中,分别以AB 、AC 为边向外作等边△ABE 和等边△ACD ,连接BD ,CE ,试猜想BD 与CE 的大小关系,并说明理由;(2)如图②,△ABC 中,∠ABC =45°,AB =5,BC =3,分别以AB 、AC 为边向外作正方形ABNE 和正方形ACMD ,连接BD ,求BD 的长;(3)如图③,在(2)的条件下,以AC 为直角边在线段AC 的左侧作等腰直角△ACD ,求BD 的长.第27题图28. (本小题满分12分)如图,直线y =-x +4与x 轴交于点B ,与y 轴交于点C ,抛物线y =-x 2+bx +c 经过B ,C 两点,与x 轴另一交点为A .点P 以每秒2个单位长度的速度在线段BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .(1)求抛物线的解析式;(2)如图①,过点P 作y 轴垂线交y 轴于点N ,连接MN 交BC 于点Q ,当MQ NQ =12时,求t 的值;(3)如图②,连接AM 交BC 于点D ,当△PDM 是等腰三角形时,直接写出t 的值.第28题图B 卷专练(七)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 已知代数式ax 5+bx 3+cx +e ,当x =0时,该代数式的值为10,当x =1时,该代数式的值为2020,则当x =-1时,该代数式的值为________.22. 从2019年高中一年级学生开始,某省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A 已选物理,还从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选择思想政治、历史、地理的可能性相等,选择化学、生物的可能性相等,则选修地理和生物的概率为________.23. 如图,在菱形ABCD 中,∠ABC =120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若BC =4,BG =3,则GE 的长为________.第23题图24. 如图,点A 、B 在x 轴的上方,∠AOB =90°,OA 、OB 分别与反比例函数y =8x 、y =-2x 的图象交于A 、B 两点,以OA 、OB 为邻边作矩形AOBC .当点C 在y 轴上时,分别过点A 和点B 作AE ⊥x 轴,BF ⊥x 轴,垂足分别为E 、F ,则AEBF=________.第24题图25. 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为“格点弦图”.例如,在如图①所示的格点弦图中,正方形ABCD 的边长为65,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD 的边长为65时,正方形EFGH的面积的所有可能值是________(不包括5).第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题:(1)分别写出当0≤x≤100和x>100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电量为60度,则应缴费多少元?若该用户某月缴费125元,则该用户该月用电量为多少?第26题图27. (本小题满分10分)已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图①,求证:△CDE是等边三角形;(2)设OD=t,①如图②,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由;②求t为何值时,△DEB是直角三角形(直接写出结果即可).第27题图28. (本小题满分12分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.第28题图B 卷专练(八)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21. 计算:(3-2)2019·(3+2)2020=________.22. 已知关于x 的一元二次方程x 2-mx +2m -1=0的两根x 1、x 2满足x 21+x 22=14,则m =________.23. 取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m ,则数字m 使分式方程x x -1-1=m(x -1)(x +2)无解的概率为________.24. 当m ,n 是实数,且满足m -n =mn 时,就称点Q (m ,mn )为“奇异点”,已知点A 是“奇异点”且在反比例函数y =2x的图象上,则点A 的坐标为________.25. 如图,在△ABC 中,∠BAC =90°,AB =AC =10 cm ,点D 为△ABC 内一点,∠BAD =15°,AD =6 cm ,连接BD ,将△ABD 绕点A 按逆时针方向旋转,使AB 与AC 重合,点D 的对应点为点E ,连接DE ,DE 交AC 于点F ,则CF 的长为________ cm .第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某竹制品加工厂根据市场调研结果,对该厂生产的一种新型竹制品玩具未来两年的销售进行预测,并建立如下模型:设第t 个月,竹制品销售量为P (单位:箱),P 与t 之间存在如图所示的函数关系,其图象是线段AB (不含点A )和线段BC 的组合.设第t 个月销售每箱的毛利润为Q (百元),且Q 与t 满足如下关系Q =2t +8(0≤t ≤24).(1)求P 与t 的函数关系式(6≤t ≤24);(2)该厂在第几个月能够获得最大毛利润?最大毛利润是多少.第26题图27. (本小题满分10分)如图①,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD,BC分别交于点E,F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4- 2.①求KD的长度;②如图②,点P是线段KD上的动点(不与点D,K重合),连接DG,PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=24时,求m的值.第27题图28. (本小题满分12分)如图,已知抛物线C1:y=a(x+2)2-5的顶点为点P,与x轴交于A,B两点(点A在点B的左边),点B的横坐标是1.(1)求点P坐标及a的值;(2)如图①,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求抛物线C3的解析式;(3)如图②,点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4,抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.第28题图B 卷专练(九)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 某校为了解七年级学生的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则估计该校一分钟仰卧起坐的次数不少于25次的有________人.第21题图22. 已知x 1,x 2是方程x 2-73x +13=0的两根,若实数a 满足a +x 1+x 2-x 1x 2=2018,则a =________.23. 如图,多边形的各顶点都在方格纸的格点(横竖格子线的交点)上,这样的多边形称为格点多边形,它的面积S 可用公式S =a +12b -1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S =40.设该格点多边形外的格点数为c ,则c -a =________.第23题图24. 如图,矩形OABC 的边OA =2,OC =4,点E 是边AB 上的一动点(不与点A 、B 重合),过点E 的反比例函数y =kx的图象与边BC 交于点F ,当四边形AOFE 的面积最大时,点F 的坐标为________.第24题图25. 如图,在Rt△ABC中,∠C=90°,AB=5,AC=4,线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D,BD交AE于点H,则AH=________.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某商品的进价为每件50元.当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?27. (本小题满分10分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图①,若点E是DC的中点,CH与AB之间的数量关系是________;(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由;(3)如图③,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.第27题图28. (本小题满分12分)如图,抛物线y=ax2-2ax+c的图象与坐标轴分别交于A、B、C三点,其中A(-1,0)、C(0,3).点Q是线段BC上方抛物线上的一个动点.(1)求抛物线的表达式;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为P′.若新抛物线经过点C,并且新抛物线的顶点和原抛物线的顶点P的连线PP′平行于直线BC,求新抛物线对应的函数表达式;(3)过点Q作x轴的垂线,交线段BC于点D,再过点Q作QE∥x轴交抛物线于点E,连接DE,请问是否存在点Q使△QDE为等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由.B 卷专练(十)(限时:60分钟 满分:50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21. 若a 2-3a +1+b 2+2b +1=0,则a 2+1a2-|b |=________.22. 若实数a ,b (a ≠b )分别满足方程a 2-7a +2=0,b 2-7b +2=0,则b a +ab 的值为________.23. 如图,将一个含30°角的三角尺ABC 放在直角坐标系中,使直角顶点C 与原点O 重合,顶点A ,B 分别在反比例函数y =-4x 和y =kx的图象上,则k 的值为________.第23题图24. 如图,△ABC 和△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,将△ADE 绕点A 在平面内自由旋转,连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,若AD =3,AB =7,则线段MN 的取值范围是________.第24题图25. 我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y =kx +43与x 轴、y 轴分别交于 A ,B 两点,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当点P 在线段OA 上运动时,使得⊙P 成为整圆的点P 的个数是________个.第25题图二、解答题(本大题共3个小题,共30分)26. (本小题满分8分)某学校九年级为提高学生的身体素质,加强体育锻炼,现计划购进篮球和排球共45个,其中篮球的价格定为每个70元,购买排球所需费用y(元)与购买数量x(个)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,排球的数量不超过30个,且不少于篮球的数量,求购买多少个排球,可使得总费用最低,并求出最低费用.第26题图27. (本小题满分10分)如图①,E是正方形ABCD的边AD上的一点,过点C作CF⊥CE,交AB的延长线于点F.(1)求证:△CDE≌△CBF;(2)过点C作∠ECF的平分线交AB于点P,连接PE,请探究PE与PF的数量关系,并证明你的结论;(3)如图②,E是正方形ABCD的边AD上的一点,过点C作CF⊥CE,交AB的延长线于点F,连接EF 交DB于点M,连接CM并延长CM交AB于点P,已知AB=6,DE=2,求PB的长.第27题图。

中考数学综合题专题成都中考B卷填空题专题精选一

中考数学综合题专题成都中考B卷填空题专题精选一

中考数学综合题专题【成都中考B 卷填空题】专题精选一1.如图,已知△ABC 中,AB =5,AC =3,则BC 边上的中线AD 的取值范围是________________.2.如图,已知抛物线y =x2+bx +c 经过点(0,-3),请你确定一个b 的值,使该抛物线与x0)和(3,0)之间,你所确定的b 的值是_________.3.如图,△ABC 中,∠C =90°,点O 在边BC 上,以O 为圆心,OC 为半径的圆交边AB 于点D 、E ,交边BC 于点F ,若D 、E 三等分AB ,AC =2,则⊙O 的半径为__________.4.已知点P (x ,y )位于第二象限,且y ≤2x +6,x 、y 为整数,则满足条件的点P 的个数是_________.5.半径分别为10和17的两圆相交,公共弦长为16,则两圆的圆心距为__________.6.已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.7.从甲地到乙地有A 1、A 2两条路线,从乙地到丙地有B 1、B 2、B 3三条路线,从丙地到丁地有C 1、C 2两条路线.一个人任意选了一条从甲地到丁地的路线,他恰好选到B 2路线的概率是_________.8.如图,在半径为4,圆心角为90°的扇形OAB 的AB ︵上有一动点P ,过P 作PH ⊥OA 于H .设△OPH 的内心为I ,当点P 在AB ︵上从点A 运动到点B 时,内心I 所经过的路径长为___________.AB C DC9.已知二次函数y =ax2+bx +c 图象的一部分如图所示,则a 的取值范围是_______________.10.在平面直角坐标系中,已知点P 1的坐标为(1,0),将其绕原点按逆时针方向旋转30°得到点P 2,延长OP 2到点P 3,使OP 3=2OP 2,再将点P 3绕原点按逆时针方向旋转30°得到P 4,延长OP 4到点P 5,使OP 5=2OP 4,如此继续下去,则点P 2011的坐标是_____________.11.木工师傅可以用角尺测量并计算出圆的半径r .如图,用角尺的较短边紧靠⊙O ,并使较长边与⊙O 相切于点C .假设角尺的较长边足够长,角尺的顶点为B ,较短边AB =8cm .若________________.y =12x(x >0)图象上的动点,PC ⊥x___________.13.在平面直角坐标系中,已知点A (2,4),B (4,2),C (1,1),点P 在x 轴上,且四2倍,则点P 的坐标为________________.B O14.已知关于x ,y 的方程组 ⎩⎪⎨⎪⎧tx +3y =22x +(t -1)y =t 的解满足|x |<|y |,则实数t 的取值范围是_______________.15.如图,已知P 为△ABC 外一点,P 在边AC 之外,∠B 之内,若S △PAB :S △PBC :S △PAC=3 : 4 :2,且△ABC 三边a ,b ,c 上的高分别为h a =3,h b =5,h c =6,则P 点到三边的距离之和为___________.16.一袋装有四个分别标有数字1、2、3、4,除数字外其它完全相同的小球,摇匀后,甲从中任意抽取1个,记下数字后放回摇匀,乙再从中任意抽取一个,记下数字,然后把这两个数相加,当两数之和为3时,甲胜,反之乙胜.若甲胜一次得7分,那么乙胜一次得__________分,这个游戏对双方才公平.17.如图,已知点A (0,4),B (4,0),C (10,0),点P 在直线AB 上,且∠OPC =90º,18.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.B a cC A P bA CDFH GMENK T图2图119.如图,在平面直角坐标系中,点A的坐标是(-2,4),AB⊥y轴于B,抛物线y=-x2-2x+c经过点A,将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△AOB的,则m的取值范围是______________.他们从食品安全监督部门获取了一份快若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,则其中所含碳水化合物质量的最大值为__________克.y=2x(x>0)的图象上,顶点A1、B P2P3A2B2,顶点P3在反比例函数y=2x(xP3的坐标为______________.22.已知n、k均为正整数,且满足815<nn+k<713,则n的最小值为_________.23.如图,在平面直角坐标系中,点A在第二象限,点B在x轴的负半轴上,△AOB的外接圆与y轴交于点C(0,2),∠AOB=45°,∠BAO=60°,则点A的坐标为______________.24.如图,图①中的圆与正方形各边都相切,设这个圆的周长为C 1;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长之和为C 2;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长之和为C 3;…,依此规律,当正方形边长为2时,则C 1+C 2+C 3+…+C 99+C 100=____________. 25.如图,在平行四边形ABCD 中,AB =3,BC =4,∠B =60°,E 是BC 的中点,EF ⊥AB 于点F .26.如图,将一块直角三角板OAB 放在平面直角坐标系中,点B 坐标为(2,0),∠AOB =60°,点A 在第一象限,双曲线y =kx经过点A .点P 在x 轴上,过点P 作直线OA 的垂线l ,以直线l为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标为___________; (2)设P (t ,0),当O ′B ′与双曲线有交点时,t 的取值范围是______________.27.已知抛物线y =x2-(m -1)x -m -1与x 轴交于A 、B 两点,顶点为为C ,则△ABC 的面积的最小值为__________.28.如图,E 、F 、G 、H 分别为四边形ABCD 的边AB ,BC ,CD ,DA 的中点,并且图中四个小三角形的面积的和为1,即S 1+S 2+S 3+S 4=1,则图中阴影部分的面积为___________.图② 图③ 图①A BD CE FG HS 1S 2S 3S 429.在平面直角坐标系中,A 、B 两点的坐标分别为(-1,1)、(2,2),直线y =kx -1与线段AB 的延长线相交(交点不包括B ),则实数k 的取值范围是______________.30.如图,正方形ABCD 的面积为12,点E 在正方形ABCD 内,△ABE 是等边三角形,点P 在对角线AC 上,则PD +PE 的最小值为___________.31.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,分别以AE 、BE 为直径作两个大小不同的⊙O 1和⊙O 2,若CD =16,则图中阴影部分的面积为___________(结果保留π).32.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.33.如图,已知一次函数y =-x +8与反比例函数y =kx的图象在第一象限内交于A 、B 两点,且△AOB 的面积为24,则k =_________A B D C E PA B34.已知x =3154)(+-3154)(-,则x3+12x 的算术平方根是__________.35.有三个含30°角的直角三角形,它们的大小互不相同,但均有一条长为a 的边,那么,这三个三角形按照从小到大的顺序,它们的面积比为______________.36.已知点P 是抛物线y =-x2+3x 在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于B 、A 两点.若△PAB 与△AOB 相似,则点P 的坐标为_____________________________.37.如图,直线y =-x +22 交x 轴、y 轴于点B 、A ,点C 的坐标为(42,0),P 是直线AB 上一点,且∠OPC =45º,则点P 的坐标为38.如图,在△ABC 中,AB =AC =5,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F在AC 的延长线上,且∠CBF =1 2 ∠A ,sin ∠CBF =55,则BF 的长为39.如图,Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .将△ABC 绕点D 按顺时针旋转角α(0<α<180°)后,点B 恰好落在初始Rt △ABC 的边上,那么α=____________°.40.如图,直线y =kx -2(k >0)与双曲线y =kx在第一象限内交于点A 别交于点B 、C .AD ⊥x 轴于点D ,且△ABD 与△OBC 的面积相等,则k41.在“传箴言”活动中,某党支部的全体党员在一个月内所发箴言条数情况如下:发了三条箴言的党员中有两位男党员,发了四条箴言的党员有两位女党员.如果在发了三条箴言和四条箴言的党员中分别选出一位参加区委组织的“传箴言”活动总结会,那么所选两位党员恰好是一男一女的概率为_________.42.如图,在△ABC 中,∠ACB =90°,∠A =20°.将△ABC 绕点C 按逆时针方向旋转角α后得△A ′B ′C ,此时点B 在A ′B ′上,CA ′ 交AB 于点D .则∠BDC 的度数为__________.43.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程1-ax x -2+2=12-x有正整数解的概率为_________.44.如图,等边△ABC 的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边△CEF ,连接BF 并延长至点N ,M 为BN 上一点,且CM =CN =5,则MN 的长为__________.45.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点EB CDA ′B ′ABCD E F M的坐标为(0,2).点F (a ,0)在边AB 上运动,若过点E 、F 的直线将矩形ABCD 的周长分成2 :1两部分,则a 的值为__________.46.如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =4,设AD =x ,CF =y ,则y 关于x 的函数关系式为_______________.47.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =1048.已知关于x 的方程(1-a2)x2+2ax -1=0的两个根一个小于0,另一个大于1,则a 的取值范围是_____________.49.已知二次函数y =ax2+bx +c 的图象与x 轴交于(-2,0)、(x 1,0)两点,且1<x 1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a <b <0;②2a +c >0;③4a +c <0;④2a -b +1>0.其中正确结论的序号是________________.50.如图,点A 、B 在反比例函数y =kx若S △AOB=3,则k 的值为_________.51.方程x +2x -1+x -2x -1=x -1的解为x =__________.52.如图,PA 、PB 是⊙O 的切线,PEC 是⊙O 的割线,AB 与PC 相交于点D .若PE =2,DC =1,则DE 的长为___________.53.若一直角梯形的两条对角线的长分别为9和11,上、下两底长都是整数,则该梯形的高为________.54.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点(x ,y ).已知小华前二次掷得的两个点所确定的直线经过点P (4,7),那么他第三次掷得的点也在这条直线上的概率为_________.55.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,∠ABC =30°,直角边BC 在x 轴上,其内切圆的圆心坐标为I (0,1),抛物线y =ax2+2ax +1的顶点为A ,则a =___________.56.已知方程ax2+bx +c =0(a >b >c )的一个根为α=1,则另一个根β的取值范围是________________.3 5 1 1 2 357.如图,在△ABC中,∠ABC和∠ACB的平分线相交于O,过O作EF∥BC交AB于E,交AC于F,过O作OD⊥AC于D.下列四个结论:①EF是△ABC的中位线;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=2n,则S△AEF=mn;④∠BOC=90º+12∠A;其中正确的结论是________________.58.方程1x2+3x+2+1x2+5x+6+1x2+7x+12+1x2+9x+20=18的解是x=___________.59.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则DEDF的值为__________.60.如图,已知点A(1,0),B(3,0),P是直线y=-34x+3上的动点,则当∠APB最大时,点P的坐标为______________.61.如图,AB是⊙O的直径,AC是弦,将△ABC沿AC翻折,点B落在点D 处,AD交⊙O于点E,连接EC.若EC∥AB,则∠BAC=_________°.62.已知△ABC的一条边长为5,另两条边长恰好是一元二次方程2x2-12x+m=0的两个根,则实数m的取值范围是________________.63.如图,已知直线y=12x与双曲线y=kx(k>0)交于A、B两点,且点A的横坐标为4,过原点O的另一条直线交双曲线y=kx(k>0)于B、C、D为顶点的四边形的面积为24,则点COABEDCFA EDFCBB64.如图1,直线l 1∥l 2,l 1、l 2之间的距离为6,圆心为O 、半径为4的半圆形纸片的直径AB 在l 1上,点P 为半圆上一点,设∠AOP =α.将扇形纸片BOP 剪掉,使扇形纸片AOP 绕点A 按逆时针方向旋转(如图2).要使点P 能落在直线l 2上,则α的取值范围是______________.(参考数据:sin49°=3 4,tan37°=34)65.如图,矩形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,OA =3,OC =4,D 为边OC 的中点,E 、F 为边OA 上的两个动点,且EF =2,当四边形BDEF 的周长最小时,点E 的坐标为____________.66.如图,将直线y =x 向下平移b 反比例函数y =3x(x >0)的图象相交于点A ,与x 则OA2-OB2=__________.67.如图,矩形ABCD 的周长为32cm ,E 是AD F 是AB 上一点,EF ⊥EC ,且EF =EC ,则矩形__________cm 2.l 1 l 2图1 l 1l 2图268.如图,AB 是⊙O 的直径,点D 、T 是圆上的两点,且AT 平分∠BAD ,过点T 作AD 延长线的垂线PQ ,垂足为C .若⊙O 的半径为2,TC =3,则图中阴影部分的面积为______________.69.若关于x 的方程2kx -1-xx2-x=kx +1x只有一个解,则k =____________.70.如图,正方形ABCD 的边长为l ,点P 为边BC 上任意一点(可与点B 、C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别为B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为_________;最小值为_________.71.如图,矩形纸片ABCD ,BC =10,点E 是AB 上一点,把△BCE 沿EC 向上翻折,使点B 落在AD 边上点F 处,若⊙O 内切于以B 、C 、F 、E 为顶点的四边形,且AE :EB =3 :5,则⊙O 的半径为_________.72.已知点P (a +1,a -1)关于x 轴的对称点在反比例函数y =-8x(x >0)的图像上,y关于x 的函数y =k2x2-(2k +1)x +1的图像与坐标轴只有两个不同的交点A ﹑B ,则△PAB 的面积为_____________.73.如图,等腰Rt △ABC 的直角边长为4,以A 为圆心,直角边AB 为半径作弧BC 1,交斜边AC 于点C 1,C 1B 1⊥AB 于点B 1,设弧BC 1与线段C 1B 1、B 1B 围成的阴影部分的面积为S 1,AC BD D ′ B ′ C ′ PC D再以A 为圆心,AB 1为半径作弧B 1C 2,交斜边AC 于点C 2,C 2B 2⊥AB 于点B 2,设弧B 1C 2与线段C 2B 2,B 2B 1围成的阴影部分的面积为S 2,按此规律继续作下去,则S 1+S 2+S 3+…+S n =________________.(用含有n 的代数式表示)74.如图,边长为4的正方形AOBC 的顶点O 在坐标原点,顶点A 、B 分别在y 轴正半轴和x 轴正半轴上,P 为OB 边上一动点(不与O 、B 重合),DP ⊥OB 交AB 于D .将正方形AOBC 折叠,使点C 与点D 重合,折痕EF 与PD 的延长线交于点Q ,设点Q 的坐标为(x ,y ),则y 关于x 的函数关系式为_______________.75.已知点A 、B 的坐标分别为(1,0),(2,0),若二次函数y =x2+(a -3)x +3的图象与线段AB 恰有一个交点,则a 的取值范围是___________________.76.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是____________m .(结果用π表示)77.如图,在边长为1的正方形ABCD 中,以BC 为边在正方形内作等边△BCE ,并与正方形的对角线交于点F 、G ,则图中阴影图形AFEGD 的面积为______________.1234l78.将水平相当的A 、B 、C 、D 四人随机平均分成甲、乙两组进行乒乓球单打比赛,每组的胜者进入下一轮决赛.(1)A 、B 被分在同一组的概率是___________;(2)A 、B 在下一轮决赛中相遇的概率是___________.79.已知点P 是一次函数y =-x +4的图象在第一、四象限上的动点,点Q 是反比例函数y =3x(x >0)图象上的动点,PP 1⊥x 轴于P 1,PP 2⊥y 轴于P 2,QQ 1⊥x 轴于Q 1,QQ 2⊥y 轴于Q 2,设点P 的横坐标为x ,矩形PP 1OP 2的面积为S 1S 1<S 2时,x 的取值范围是________________________.80.如图,在5×5的正方形网格中,△ABC 的三个顶点都在格点上,若△A 1B 1C 1的三个顶点也在格点上,且与△ABC 相似,面积最大,则△A 1B 1C 1的面积为__________.81.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶t (h )后,与B 港的距离分别为S 1、S 2(km ),S 1、S 2与t 的函数关系如图所示.若甲、乙两船的距离不超过10 km 时可以相互看见,则两船可以相互看见时t 的取值范围是82.如图所示,在梯形ABCD 中,AD ∥BC ,CE 是∠BCD 的平分线,且CE ⊥AB ,E 为垂足,BE =2AE ,若四边形AECD 的面积为1,则梯形ABCD 的面积为___________.CAB B CD A E83.在平面直角坐标系中,反比例函数y =2kx(k ≠0)满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线y =-x +3k 都经过点P ,且|OP |=7,则k =___________.84.如图所示,AC 为⊙O 的直径,PA ⊥AC 于点A ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,且DBDP=DCDO=23,则cos ∠BCA 的值等于_________85.已知反比例函数y =kx图象经过点A (-1,-3),点P是反比例函数图象在第一象限上的动点,以OA 、OP _____________.86.如图所示,在矩形ABCD 中,AB =nBC ,E 为BC 中点,DE ⊥AC ,则n =__________.87.如图,直线y =3x 和y =2x 分别与直线x =2相交于点A 、B ,将抛物线y =x2沿线段OB 移动,使其顶点始终在线段OB 上,抛物线与直线x =2相交于点C ,设△AOC 的面积为S ,则S 的取值范围是________________.APF D B A CE88.已知a2+b2=1,-2≤a +b ≤2,记t =a +b +ab ,则t 的取值范围是_______________.89.如图,平行四边形DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,则△ABC 的面积为__________.90.在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点.如图,⊙O 的半径是 5,圆心与坐标原点重合,l 为经过⊙O 上任意两个格点的直线,则直线l 同时经过第一、二、四象限的概率为________.91.已知二次函数y =x2+bx +c 的图象与x 轴交于不同的两点A 、B ,顶点为C ,且△ABC 的面积S ≤1,则b2-4c 的取值范围是________________.92.如图,已知正方形纸片ABCD 的边长是⊙O 半径的4倍,圆心O 是正方形ABCD 的中心,将纸片按图示方式折叠,使EA 1恰好与⊙O 相切于点A 1,则tan ∠A 1EF 的值为_________.93.已知a 、b 均为正整数,且满足 20092010<ab<20102011,则当b 最小时,分数 ab=_________.94.如图,将边长为2的正方形ABCD 沿直线l 向右无滑动地连续翻滚2011次,则正方形ABCD 的中心经过的路线长为_______________,顶点A 经过的路线长为_______________.A B DGD95.如图,半圆O 的直径AB =8,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧DE 交AB 于E 点,则图中阴影部分的面积为_____________.2ax -2b +1和y =-x2+(a -3)x +b2-1的图象都经过x 轴上两个不同的点M ,N ,则a =________,b =________.97.在平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,E 、F 为垂足,连接EF .若AB =13,BE =5,EC =9,则EF 的长为____________.98.已知抛物线y =-x2+bx +c 过点A (4,0)、B (1,3),对称轴为直线l ,点P 是抛物线上第四象限的一点,点P 关于直线l 的对称点为C ,点C 关于y 轴的对称点为D ,若四边形OAPD 的面积为20,则点P 的坐标为____________.99.如图,在△AB C 中,AB =AC =5,BC =6,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG ,连接BG ,当△BDG 是等腰三角形时,AD 的长为____________________.100.已知在平面直角坐标系中,点A (8,0),B (0,6),直线BC 平分∠OBA ,交x 轴于A B C (B ) l D (A ) (D ) A B C D …A B C DE FD AB CEFG点C,过O点作OD⊥BC,交AB于点D.P是射线BC上一动点,若S△AOP=S△ADP,则P点坐标为______________.。

最新成都市中考数学B卷专题突破练习(数与式)含答案填空题经典题目

最新成都市中考数学B卷专题突破练习(数与式)含答案填空题经典题目

成都市中考数学B卷专题练习(数与式)一.填空题(共28小题)1.已知x,y满足方程组,则x2﹣4y2的值为.2.已知点A(a,b)既在一次函数y=﹣x+3的图象上,又在反比例函数的图象上,则代数式a2+b2的值为.3.若常数a能使关于x的不等式组有解,且使关于y的方程的解为非负数,则符合条件的所有整数a的和为.4.设α、β是方程x2﹣x﹣2018=0的两根,则α3+2019β﹣2018的值为.5.从﹣2,﹣1,0,1,2这5个数中随机抽取一个数记为a,则使直线与双曲线有1个交点的概率为.6.如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).则的值为.7.若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则代数式的值2x12﹣2x1+x22﹣3为.8.数学学霸甲、乙两人在一次解方程组比赛中,甲求关于x、y的方程组的正确解与乙求关于x、y的方程组的正确的解相同,则的值为.9.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n=.10.如图,已知数轴上的点A、B、C、D表示的数分别为﹣3、﹣1、1、2,从A、B、C、D四点中任意取两点,则所取两点之间的距离为2的概率为.11.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为.12.已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是.13.已知m、n是方程x2﹣2x﹣7=0的两个根,那么m2+mn+2n=.14.已知x1,x2是一元二次方程x2+6x+1=0的两实数根,则2x1﹣x1x2+2x2的值为.15.考察反比例函数y=的图象,当y≤1时,x的取值范围是.16.从﹣4、﹣3、﹣1、﹣、0、1这6个数中随机抽取一个数a,则关于x的分式方程﹣=的解为整数,且二次函数y=ax2+3x﹣1的图象顶点在第一象限的概率是.17.在Rt△ABC中,若∠C=90°,sin A=,则sin B=.18.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.19.关于x的方程x2+2(m﹣1)x﹣4m=0的两个实数根分别是x1,x2,且x1﹣x2=2,则m的值是.20.已知a n=1﹣(n=1,2,3,……),定义b1=a1,b2=a1•a2…,b n=a1•a2…•a n,则b2019=.21.设m,n是方程x2﹣x﹣2019=0的两实数根,则m3+2020n﹣2019=.22.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=.23.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是.24.关于x的方程x2+mx﹣2n=0的两根之和为﹣2,两根之积为1,则m+n的值为.25.点P(a,b)是直线y=x﹣2上一点,则代数式a2﹣2ab+b2﹣1的值为.26.有五张正面分别标有数﹣7,0,1,2,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x的方程﹣2=有正整数解的概率为.27.已知方程x2﹣x﹣7=0的两个实数根分别为m,n,则m2+n的值为.28.我们知道黄金比例是,利用这个比例,我们规定一种“黄金算法”即:a b =a+b,比如12=1+×2=.若x(24)=5,则x的值为.二.解答题(共12小题)29.已知a,b是方程x2﹣x﹣3=0的两个根,求代数式2a3+b2+3a2﹣11a﹣b+5的值.参考答案一.填空题(共28小题)1.﹣15;2.15;3.8;4.2019;5.;6.;7.13;8.2;9.﹣10;10.;11.5;12.3;13.4;14.﹣13;15.x≤﹣2或x>0;16.;17.;18.﹣1;19.0或﹣2;20.;21.2020;22.2;23.;24.;25.3;26.;27.8;28.;。

成都中考数学B卷填空题必得分试题(74题)

成都中考数学B卷填空题必得分试题(74题)

成都中考数学B卷填空题必得分试题1、已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.2、已知实数满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则+的值是.3、从1,2,3,4四个数中随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数根的概率为.4、如图,正方形ABOC与正方形EFCD的边OC、CD均在x轴上,点F在AC边上,反比例函数y=的图象经过点A、E,且S△OAE=5,则k=.5.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程有正整数解的概率为.6.如图,点P在第一象限,点A、C分别为函数y=(x>0)图象上两点,射线P A交x 轴的负半轴于点B,且P0过点C,=,PC=CO,若△P AC的面积为,则k=.7.阅读下列材料,然后回答问题:已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,….当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1.直接写出S2020=(用含a的代数式表示);计算:S1+S2+S3+…+S2022=.8.若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.9.如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.10、已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为.11.若实数a,b满足a﹣b=1,则代数式a2﹣b2﹣2b+5的值为.12.将满足2≤x≤3的两个整数解分别记为x1,x2,且x1≠x2,则代数式(x﹣x1)2+(x﹣x2)2的最小值为.13.如图,在平面直角坐标系xOy中,点A(2,1)在反比例函数y=(k>0)的图象上,连接OA,将线段OA绕点O逆时针旋转120°得到对应线段OB,此时点B刚好落在反比例函数y=(m<0)的图象上,则m的值为.14.一次函数y=(m﹣1)x+的图象不经过第四象限,且m为整数,则m=.15.已知a,b分别为一元二次方程x2+2x﹣2011=0的两个实数根,则a2﹣3a﹣5b=.16.如图,矩形ABCD中,AB=6,AD=3,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最大值是.17.估算:≈(结果精确到1).18.关于x的一元二次方程mx2﹣8x+16=0有两个不相等的实数根,则m的范围.19.正实数a,b满足|a﹣b|=7a﹣3b,则a:b=.20.如图,大圆和小圆是等边三角形的外接圆和内切圆,现随机向该图形内掷一枚小针,则针尖落在小圆区域的概率为.21.已知=n,那么+=.(用含n的代数式表示)22.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根为x1,x2,使得x1x2﹣x12﹣x22=﹣16成立,则k的值.23.已知m为不等式组的所有整数解,则关于x的方程有增根的概率为.24.若x1,x2是方程x2﹣4x﹣2020=0的两个实数根,则代数式x12﹣2x1+2x2的值等于.25.已知二次函数y=2x2﹣bx+1,当x<1时,y随x的增大而减小,则实数b的取值范围为.26.若关于x的分式方程的解是负数,则m的取值范围是.27.如图,在Rt△ABC的纸片中,∠C=90°,AC=7,AB=25.点D在边BC上,以AD 为折痕将△ADB折叠得到△ADB',AB'与边BC交于点E.若△DEB'为直角三角形,则BD的长是.28.如图,在平行四边形ABCD中,AB=2,∠ABC=45°,点E为射线AD上一动点,连接BE,将BE绕点B逆时针旋转60°得到BF,连接AF,则AF的最小值是.29.关于x的分式方程的解为非负数,则a的取值范围是.30.若关于x的分式方程﹣=1的解为正数,且关于y的一元一次不等式组的解集为无解,则符合条件的所有整数a的和为.31.有6张正面分别标有﹣1,﹣2,﹣3,0,1,4的不透明卡片,它们除数字不同外,其余相同,现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使关于x的分式方程+2=有正数解,且使一元二次方程mx2+4x+4=0有两个实数根的概率为.32.如图,在平面直角坐标系中,点Q是一次函数y=﹣x+4的图象上一动点,将Q绕点C(2,0)顺时针旋转90°到点P,连接PO,则PO+PC的最小值.33.已知a,b都是实数,,则a b的值为.34.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.35.已知a2﹣2a﹣1=0,b2+2b﹣1=0,且ab≠1,则的值为.36.从﹣2,0,1,,,3这六个数中,随机抽取一个数记为a,则使关于x的二次函数y=x2+(3﹣a)x﹣1在x<1的范围内y随x的增大而减小,且使关于x的分式方程2﹣=解为正数的a共有个.37.已知菱形的两条对角线分别是一元二次方程x2+mx+24=0的两个实数根,则该菱形的面积是.38.如图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A处前进3米到达B处时,测得影子BC长的1米.已知小颖的身高1.5米,她若继续往前走3米到达D处,此时影子DE长为米.39.已知菱形ABCD中,∠A=120°,AB=4,边AD,CD上有点E、点F两动点,始终保持DE=DF,连接BE,EF,取BE中点G并连接FG,则FG的最小值是.40.已知关于x的方程=﹣1的解大于1,则a的取值范围是.41.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,2),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为24,那么a+b+c的值为.42.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M 运动到N时,点B随之运动.设点B的坐标为(0,b),则b的最小值为.43.在长度分别为3、4、7、9的四条线段中,任意选取三条,端点顺次连接,能组成三角形的概率为.44.设a,b分别是方程x2+x﹣2022=0的两个实数根,则a2+2a+b的值是.45.如图,点C在线段AB上,等腰△ADC的顶角∠ADC=120°,点M是矩形CDEF的对角线DF的中点,连接MB,若AB=6,AC=6,则MB的最小值为.46.如图,正方形ABCD的边长为8,E为BC上一点,且BE=2.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.47.如图,在矩形ABCD中,AB=3,BC=4,点M为AD的中点,点N为AB上一点,连接MN,CN,将△AMN沿直线MN折叠后,点A恰好落在CN上的点P处,则CN的长为.48.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;49.如图,在△ABC中,BC=9,AC=12,AB=15,D为直线AB上方一点,连接AD,BD,且∠ADB=90°,过D作直线BC的垂线,垂足为E,则线段BE的长度的最大值为.50.如图,菱形ABCD的边长AB=3,对角线BD=4,点E,F在BD上,且BE=DF =,连接AE,AF,CE,CF.则四边形AECF的周长为.51.如图,Rt△ABC中,∠ACB=90°,AC=BC=8,F为AC中点,D是线段AB上一动点,连接CD,将线段CD绕点C沿逆时针方向旋转90°得到线段CE,连接EF,则点D在运动过程中,EF的最大值为,最小值为.52.已知m、n是方程x2+2x﹣2021=0的两个实数根,则代数式m2+mn+3m+n=.53.不等式组有解且解集是2<x<m+7,则m的取值范围为.54.如图,正方形ABCD的边长为4cm,动点E、F分别从点A、C同时出发,以相同的速度分别沿AB、CD向终点B、D移动,当点E到达点B时,运动停止,过点B作直线EF 的垂线BG,垂足为点G,连接AG,则AG长的最小值为cm.55.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根为x1,x2,使得x1x2﹣x12﹣x22=﹣16成立,则k的值.56.若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.57.如果一条对角线把凸四边形分成两个相似的三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD中,AB=AC=,AD=CD=,点E、点F 分别是边AD,边BC上的中点.如果AC是凸四边形ABCD的相似对角线,那么EF的长等于.58.设a、b是方程x2+x﹣5=0的两个实数根,则a2+2a+b﹣5的值为.59.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD 的中点E处,折痕为FG,点F、G分别在边AB、AD上,则的值为.60.如图,已知正方形ABCD的边长为3,点E是AB边上一动点,连接ED,将ED绕点E 顺时针旋转90度到EF,连接DF,CF,则DF+CF的最小值是.61.若+|b+2|=0,则a+b的值为.62.关于x的方程+=2的解为正数,则m的取值范围是.63.数学家刘徽首创割圆术,用圆内接正多边形的面积去无限逼近圆面积并以此求出圆周率.如图,正六边形ABCDEF的边长为2,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.64.如图,在矩形ABCD中,AB=9,BC=12,F是边AD上一点,连接BF,将△ABF沿BF折叠使点A落在G点,连接AG并延长交CD于点E,连接GD.若△DEG是以DG 为腰的等腰三角形,则AF的长为.65.已知正实数a,b满足a2=2,b3=3.比较大小:a b(填“>”、“<”或“=”).66.已知x1,x2是一元二次方程x2﹣3x﹣2=0的两实数根,则+的值是.67.已知a i≠0(i=1,2,…,2019),且满足++…+=1971,则直线y=a i x+i(i=1,2,…,2019)经过一、二、四象限的概率为.68.如图,在矩形ABCD中,AB=3,AD=4,点E是AB边上一动点,连接CE,过点B 作BG⊥CE于点G,点P是AB边上另一动点,连接PD,PG,则PD+PG的最小值为.69.设a、b是一元二次方程x2+x﹣2014=0的两个根,则a2+2a+b=.70.如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点D是线段BC上一动点,连接AD,以AD为边作△ADE,使△ADE∽△ABC,则△ADE的最小面积与最大面积之比等于.71.已知a是正整数,且关于x的一元二次方程(a﹣2)x2+4x+1=0有实数解.则a使关于y的分式方程有正整数解的概率为.72.已知(2019﹣a)2+(a﹣2017)2=7,则代数式(2019﹣a)(a﹣2017)的值是.73.若(x﹣a)(x+5)=x2﹣bx﹣5,一元二次方程ax2+bx+k=0的两个实数根x1,x2满足(x1﹣x2)2﹣2x1x2=4,则k=.74.有六张正面分别标有数﹣1,0,1,2,3,4的不透明卡片,它除了数字不同外其余全部相同,现将它们背面朝上,洗匀后从中任取一张,将卡片上的数记为a,则使关于x 的方程有正整数解的概率为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学综合题专题【成都中考B 卷填空题】专题精选一1.如图,已知△ABC 中,AB =5,AC =3,则BC 边上的中线AD 的取值范围是________________.2.如图,已知抛物线y =x2+bx +c 经过点(0,-3),请你确定一个b 的值,使该抛物线与x0)和(3,0)之间,你所确定的b 的值是_________.3.如图,△ABC 中,∠C =90°,点O 在边BC 上,以O 为圆心,OC 为半径的圆交边AB 于点D 、E ,交边BC 于点F ,若D 、E 三等分AB ,AC =2,则⊙O 的半径为__________.4.已知点P (x ,y )位于第二象限,且y ≤2x +6,x 、y 为整数,则满足条件的点P 的个数是_________.5.半径分别为10和17的两圆相交,公共弦长为16,则两圆的圆心距为__________.6.已知方程(2011x)2-2010·2012x -1=0的较大根为a ,方程x2+2010x -2011=0的较小根为b ,则a -b =__________.7.从甲地到乙地有A 1、A 2两条路线,从乙地到丙地有B 1、B 2、B 3三条路线,从丙地到丁地有C 1、C 2两条路线.一个人任意选了一条从甲地到丁地的路线,他恰好选到B 2路线的概率是_________.8.如图,在半径为4,圆心角为90°的扇形OAB 的AB ︵上有一动点P ,过P 作PH ⊥OA 于H .设△OPH 的内心为I ,当点P 在AB ︵上从点A 运动到点B 时,内心I 所经过的路径长为___________.AB C DC9.已知二次函数y =ax2+bx +c 图象的一部分如图所示,则a 的取值范围是_______________.10.在平面直角坐标系中,已知点P 1的坐标为(1,0),将其绕原点按逆时针方向旋转30°得到点P 2,延长OP 2到点P 3,使OP 3=2OP 2,再将点P 3绕原点按逆时针方向旋转30°得到P 4,延长OP 4到点P 5,使OP 5=2OP 4,如此继续下去,则点P 2011的坐标是_____________.11.木工师傅可以用角尺测量并计算出圆的半径r .如图,用角尺的较短边紧靠⊙O ,并使较长边与⊙O 相切于点C .假设角尺的较长边足够长,角尺的顶点为B ,较短边AB =8cm .若________________.y =12x(x >0)图象上的动点,PC ⊥x___________.13.在平面直角坐标系中,已知点A (2,4),B (4,2),C (1,1),点P 在x 轴上,且四2倍,则点P 的坐标为________________.B O14.已知关于x ,y 的方程组 ⎩⎪⎨⎪⎧tx +3y =22x +(t -1)y =t 的解满足|x |<|y |,则实数t 的取值范围是_______________.15.如图,已知P 为△ABC 外一点,P 在边AC 之外,∠B 之内,若S △PAB :S △PBC :S △PAC=3 : 4 :2,且△ABC 三边a ,b ,c 上的高分别为h a =3,h b =5,h c =6,则P 点到三边的距离之和为___________.16.一袋装有四个分别标有数字1、2、3、4,除数字外其它完全相同的小球,摇匀后,甲从中任意抽取1个,记下数字后放回摇匀,乙再从中任意抽取一个,记下数字,然后把这两个数相加,当两数之和为3时,甲胜,反之乙胜.若甲胜一次得7分,那么乙胜一次得__________分,这个游戏对双方才公平.17.如图,已知点A (0,4),B (4,0),C (10,0),点P 在直线AB 上,且∠OPC =90º,则点P 的坐标为________________.18.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.B a cC A P bO B A C x y A CDFH GMNK T19.如图,在平面直角坐标系中,点A的坐标是(-2,4),AB⊥y轴于B,抛物线y=-x2-2x+c经过点A,将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△AOB的,则m的取值范围是______________.他们从食品安全监督部门获取了一份快若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,则其中所含碳水化合物质量的最大值为__________克.y=2x(x>0)的图象上,顶点A1、B P2P3A2B2,顶点P3在反比例函数y=2x(xP3的坐标为______________.22.已知n、k均为正整数,且满足815<nn+k<713,则n的最小值为_________.23.如图,在平面直角坐标系中,点A在第二象限,点B在x轴的负半轴上,△AOB的外接圆与y轴交于点C(0,2),∠AOB=45°,∠BAO=60°,则点A的坐标为______________.24.如图,图①中的圆与正方形各边都相切,设这个圆的周长为C 1;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长之和为C 2;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长之和为C 3;…,依此规律,当正方形边长为2时,则C 1+C 2+C 3+…+C 99+C 100=____________. 25.如图,在平行四边形ABCD 中,AB =3,BC =4,∠B =60°,E 是BC 的中点,EF ⊥AB 于点F .26.如图,将一块直角三角板OAB 放在平面直角坐标系中,点B 坐标为(2,0),∠AOB =60°,点A 在第一象限,双曲线y =kx经过点A .点P 在x 轴上,过点P 作直线OA 的垂线l ,以直线l为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标为___________; (2)设P (t ,0),当O ′B ′与双曲线有交点时,t 的取值范围是______________.27.已知抛物线y =x2-(m -1)x -m -1与x 轴交于A 、B 两点,顶点为为C ,则△ABC 的面积的最小值为__________.28.如图,E 、F 、G 、H 分别为四边形ABCD 的边AB ,BC ,CD ,DA 的中点,并且图中四个小三角形的面积的和为1,即S 1+S 2+S 3+S 4=1,则图中阴影部分的面积为___________.图② 图③ 图①A D HS 429.在平面直角坐标系中,A 、B 两点的坐标分别为(-1,1)、(2,2),直线y =kx -1与线段AB 的延长线相交(交点不包括B ),则实数k 的取值范围是______________.30.如图,正方形ABCD 的面积为12,点E 在正方形ABCD 内,△ABE 是等边三角形,点P 在对角线AC 上,则PD +PE 的最小值为___________.31.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,分别以AE 、BE 为直径作两个大小不同的⊙O 1和⊙O 2,若CD =16,则图中阴影部分的面积为___________(结果保留π).32.如图,在平面直角坐标系中,等边三角形ABC 的顶点B ,C 的坐标分别为(1,0),(3,0),过坐标原点O 的一条直线分别与边AB ,AC 交于点M ,N ,若OM =MN ,则点M 的坐标为______________.33.如图,已知一次函数y =-x +8与反比例函数y =kx的图象在第一象限内交于A 、B 两点,且△AOB 的面积为24,则k =_________.A B D C E PA B34.已知x =3154)(+-3154)(-,则x3+12x 的算术平方根是__________.35.有三个含30°角的直角三角形,它们的大小互不相同,但均有一条长为a 的边,那么,这三个三角形按照从小到大的顺序,它们的面积比为______________.36.已知点P 是抛物线y =-x2+3x 在y 轴右侧..部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于B 、A 两点.若△PAB 与△AOB 相似,则点P 的坐标为_____________________________.37.如图,直线y =-x +22 交x 轴、y 轴于点B 、A ,点C 的坐标为(42,0),P 是直线AB 上一点,且∠OPC =45º,则点P 的坐标为38.如图,在△ABC 中,AB =AC =5,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F在AC 的延长线上,且∠CBF =1 2 ∠A ,sin ∠CBF =55,则BF 的长为39.如图,Rt △ABC 中,已知∠C =90°,∠B =50°,点D 在边BC 上,BD =2CD .将△ABC 绕点D 按顺时针旋转角α(0<α<180°)后,点B 恰好落在初始Rt △ABC 的边上,那么α=____________°.40.如图,直线y =kx -2(k >0)与双曲线y =kx在第一象限内交于点A ,与x 交于点B 、C .AD ⊥x 轴于点D ,且△ABD 与△OBC 的面积相等,则k41.在“传箴言”活动中,某党支部的全体党员在一个月内所发箴言条数情况如下:发了三条箴言的党员中有两位男党员,发了四条箴言的党员有两位女党员.如果在发了三条箴言和四条箴言的党员中分别选出一位参加区委组织的“传箴言”活动总结会,那么所选两位党员恰好是一男一女的概率为_________.42.如图,在△ABC 中,∠ACB =90°,∠A =20°.将△ABC 绕点C 按逆时针方向旋转角α后得△A ′B ′C ,此时点B 在A ′B ′上,CA ′ 交AB 于点D .则∠BDC 的度数为__________.43.有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程1-ax x -2+2=12-x有正整数解的概率为_________.44.如图,等边△ABC 的边长为8,E 是中线AD 上一点,以CE 为一边在CE 下方作等边△CEF ,连接BF 并延长至点N ,M 为BN 上一点,且CM =CN =5,则MN 的长为__________.45.如图,矩形ABCD 的边AB 在x 轴上,AB 的中点与原点O 重合,AB =2,AD =1,点EAB CDA ′B ′AB CD E F M的坐标为(0,2).点F (a ,0)在边AB 上运动,若过点E 、F 的直线将矩形ABCD 的周长分成2 :1两部分,则a 的值为__________.46.如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点F .已知BD =4,设AD =x ,CF =y ,则y 关于x 的函数关系式为_______________.47.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE =6,EF =8,FC =1048.已知关于x 的方程(1-a2)x2+2ax -1=0的两个根一个小于0,另一个大于1,则a 的取值范围是_____________.49.已知二次函数y =ax2+bx +c 的图象与x 轴交于(-2,0)、(x 1,0)两点,且1<x 1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a <b <0;②2a +c >0;③4a +c <0;④2a -b +1>0.其中正确结论的序号是________________.50.如图,点A 、B 在反比例函数y =kx若S △AOB=3,则k 的值为_________.51.方程x +2x -1+x -2x -1=x -1的解为x =__________.52.如图,PA 、PB 是⊙O 的切线,PEC 是⊙O 的割线,AB 与PC 相交于点D .若PE =2,DC =1,则DE 的长为___________.53.若一直角梯形的两条对角线的长分别为9和11,上、下两底长都是整数,则该梯形的高为________.54.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x ,朝下一面的数为y ,得到平面直角坐标系中的一个点(x ,y ).已知小华前二次掷得的两个点所确定的直线经过点P (4,7),那么他第三次掷得的点也在这条直线上的概率为_________.55.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB =90°,∠ABC =30°,直角边BC 在x 轴上,其内切圆的圆心坐标为I (0,1),抛物线y =ax2+2ax +1的顶点为A ,则a =___________.56.已知方程ax2+bx +c =0(a >b >c )的一个根为α=1,则另一个根β的取值范围是________________.3 5 1 1 2 357.如图,在△ABC中,∠ABC和∠ACB的平分线相交于O,过O作EF∥BC交AB于E,交AC于F,过O作OD⊥AC于D.下列四个结论:①EF是△ABC的中位线;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③设OD=m,AE+AF=2n,则S△AEF=mn;④∠BOC=90º+12∠A;其中正确的结论是________________.58.方程1x2+3x+2+1x2+5x+6+1x2+7x+12+1x2+9x+20=18的解是x=___________.59.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则DEDF的值为__________.60.如图,已知点A(1,0),B(3,0),P是直线y=-34x+3上的动点,则当∠APB最大时,点P的坐标为______________.61.如图,AB是⊙O的直径,AC是弦,将△ABC沿AC翻折,点B落在点D 处,AD交⊙O于点E,连接EC.若EC∥AB,则∠BAC=_________°.62.已知△ABC的一条边长为5,另两条边长恰好是一元二次方程2x2-12x+m=0的两个根,则实数m的取值范围是________________.63.如图,已知直线y=12x与双曲线y=kx(k>0)交于A、B两点,且点A的横坐标为4,过原点O的另一条直线交双曲线y=kx(k>0)于CC、D为顶点的四边形的面积为24,则点COABEDCFA EDFCBB64.如图1,直线l 1∥l 2,l 1、l 2之间的距离为6,圆心为O 、半径为4的半圆形纸片的直径AB 在l 1上,点P 为半圆上一点,设∠AOP =α.将扇形纸片BOP 剪掉,使扇形纸片AOP 绕点A 按逆时针方向旋转(如图2).要使点P 能落在直线l 2上,则α的取值范围是______________.(参考数据:sin49°=3 4,tan37°=34)65.如图,矩形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,OA =3,OC =4,D 为边OC 的中点,E 、F 为边OA 上的两个动点,且EF =2,当四边形BDEF 的周长最小时,点E 的坐标为____________.66.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =3x(x >0)的图象相交于点A ,与x 轴相交于点B ,则OA2-OB2=__________.67.如图,矩形ABCD 的周长为32cm ,E 是AD 上一点,DE =4cm ,F 是AB 上一点,EF ⊥EC ,且EF =EC ,则矩形ABCD 的面积为__________cm 2.l 1 l 2图1 l 1l 2图2CA B F68.如图,AB 是⊙O 的直径,点D 、T 是圆上的两点,且AT 平分∠BAD ,过点T 作AD 延长线的垂线PQ ,垂足为C .若⊙O 的半径为2,TC =3,则图中阴影部分的面积为______________.69.若关于x 的方程2kx -1-xx2-x=kx +1x只有一个解,则k =____________.70.如图,正方形ABCD 的边长为l ,点P 为边BC 上任意一点(可与点B 、C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别为B ′、C ′、D ′,则BB ′+CC ′+DD ′的最大值为_________;最小值为_________.71.如图,矩形纸片ABCD ,BC =10,点E 是AB 上一点,把△BCE 沿EC 向上翻折,使点B 落在AD 边上点F 处,若⊙O 内切于以B 、C 、F 、E 为顶点的四边形,且AE :EB =3 :5,则⊙O 的半径为_________.72.已知点P (a +1,a -1)关于x 轴的对称点在反比例函数y =-8x(x >0)的图像上,y关于x 的函数y =k2x2-(2k +1)x +1的图像与坐标轴只有两个不同的交点A ﹑B ,则△PAB 的面积为_____________.73.如图,等腰Rt △ABC 的直角边长为4,以A 为圆心,直角边AB 为半径作弧BC 1,交斜边AC 于点C 1,C 1B 1⊥AB 于点B 1,设弧BC 1与线段C 1B 1、B 1B 围成的阴影部分的面积为S 1,A CB D D ′ B ′C ′ PC D再以A 为圆心,AB 1为半径作弧B 1C 2,交斜边AC 于点C 2,C 2B 2⊥AB 于点B 2,设弧B 1C 2与线段C 2B 2,B 2B 1围成的阴影部分的面积为S 2,按此规律继续作下去,则S 1+S 2+S 3+…+S n =________________.(用含有n 的代数式表示)74.如图,边长为4的正方形AOBC 的顶点O 在坐标原点,顶点A 、B 分别在y 轴正半轴和x 轴正半轴上,P 为OB 边上一动点(不与O 、B 重合),DP ⊥OB 交AB 于D .将正方形AOBC 折叠,使点C 与点D 重合,折痕EF 与PD 的延长线交于点Q ,设点Q 的坐标为(x ,y ),则y 关于x 的函数关系式为_______________.75.已知点A 、B 的坐标分别为(1,0),(2,0),若二次函数y =x2+(a -3)x +3的图象与线段AB 恰有一个交点,则a 的取值范围是___________________.76.已知一个半圆形工件,未搬动前如图所示,直径平行于地面放置,搬动时为了保护圆弧部分不受损伤,先将半圆如图所示的无滑动翻转,使它的直径紧贴地面,再将它沿地面平移50m ,半圆的直径为4m ,则圆心O 所经过的路线长是____________m .(结果用π表示)77.如图,在边长为1的正方形ABCD 中,以BC 为边在正方形内作等边△BCE ,并与正方形的对角线交于点F 、G ,则图中阴影图形AFEGD 的面积为______________.1234l78.将水平相当的A 、B 、C 、D 四人随机平均分成甲、乙两组进行乒乓球单打比赛,每组的胜者进入下一轮决赛.(1)A 、B 被分在同一组的概率是___________;(2)A 、B 在下一轮决赛中相遇的概率是___________.79.已知点P 是一次函数y =-x +4的图象在第一、四象限上的动点,点Q 是反比例函数y =3x(x >0)图象上的动点,PP 1⊥x 轴于P 1,PP 2⊥y 轴于P 2,QQ 1⊥x 轴于Q 1,QQ 2⊥y 轴于Q 2,设点P 的横坐标为x ,矩形PP 1OP 2的面积为S 11<S 2时,x 的取值范围是________________________.80.如图,在5×5的正方形网格中,△ABC 的三个顶点都在格点上,若△A 1B 1C 1的三个顶点也在格点上,且与△ABC 相似,面积最大,则△A 1B 1C 1的面积为__________.81.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶t (h )后,与B 港的距离分别为S 1、S 2(km ),S 1、S 2与t 的函数关系如图所示.若甲、乙两船的距离不超过10 km 时可以相互看见,则两船可以相互看见时t 的取值范围是82.如图所示,在梯形ABCD 中,AD ∥BC ,CE 是∠BCD 的平分线,且CE ⊥AB ,E 为垂足,BE =2AE ,若四边形AECD 的面积为1,则梯形ABCD 的面积为___________.CAB B CD A E83.在平面直角坐标系中,反比例函数y =2kx(k ≠0)满足:当x <0时,y 随x 的增大而减小.若该反比例函数的图象与直线y =-x +3k 都经过点P ,且|OP |=7,则k =___________.84.如图所示,AC 为⊙O 的直径,PA ⊥AC 于点A ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,且DBDP=DCDO=23,则cos ∠BCA 的值等于_________85.已知反比例函数y =kx图象经过点A (-1,-3),点P 是反比例函数图象在第一象限上的动点,以OA 、OP _____________.86.如图所示,在矩形ABCD 中,AB =nBC ,E 为BC 中点,DE ⊥AC ,则n =__________.87.如图,直线y =3x 和y =2x 分别与直线x =2相交于点A 、B ,将抛物线y =x2沿线段OB 移动,使其顶点始终在线段OB 上,抛物线与直线x =2相交于点C ,设△AOC 的面积为S ,则S 的取值范围是________________.APF D B A CE88.已知a2+b2=1,-2≤a +b ≤2,记t =a +b +ab ,则t 的取值范围是_______________.89.如图,平行四边形DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,则△ABC 的面积为__________.90.在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点.如图,⊙O 的半径是 5,圆心与坐标原点重合,l 为经过⊙O 上任意两个格点的直线,则直线l 同时经过第一、二、四象限的概率为________.91.已知二次函数y =x2+bx +c 的图象与x 轴交于不同的两点A 、B ,顶点为C ,且△ABC 的面积S ≤1,则b2-4c 的取值范围是________________.92.如图,已知正方形纸片ABCD 的边长是⊙O 半径的4倍,圆心O 是正方形ABCD 的中心,将纸片按图示方式折叠,使EA 1恰好与⊙O 相切于点A 1,则tan ∠A 1EF 的值为_________.93.已知a 、b 均为正整数,且满足 20092010<ab<20102011,则当b 最小时,分数 ab=_________.94.如图,将边长为2的正方形ABCD 沿直线l 向右无滑动地连续翻滚2011次,则正方形ABCD 的中心经过的路线长为_______________,顶点A 经过的路线长为_______________.CA B F DEGD95.如图,半圆O 的直径AB =8,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧DE 交AB 于E 点,则图中阴影部分的面积为_____________.2ax -2b +1和y =-x2+(a -3)x +b2-1的图象都经过x 轴上两个不同的点M ,N ,则a =________,b =________.97.在平行四边形ABCD 中,AE ⊥BC ,AF ⊥CD ,E 、F 为垂足,连接EF .若AB =13,BE =5,EC =9,则EF 的长为____________.98.已知抛物线y =-x2+bx +c 过点A (4,0)、B (1,3),对称轴为直线l ,点P 是抛物线上第四象限的一点,点P 关于直线l 的对称点为C ,点C 关于y 轴的对称点为D ,若四边形OAPD 的面积为20,则点P 的坐标为____________.99.如图,在△AB C 中,AB =AC =5,BC =6,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持DE ∥BC ,以DE 为边,在点A 的异侧作正方形DEFG ,连接BG ,当△BDG 是等腰三角形时,AD 的长为____________________.100.已知在平面直角坐标系中,点A (8,0),B (0,6),直线BC 平分∠OBA ,交x 轴于A B C (B ) l D (A ) (D ) A B C D …A B C DE FD AB C EFG点C,过O点作OD⊥BC,交AB于点D.P是射线BC上一动点,若S△AOP=S△ADP,则P点坐标为______________.。

相关文档
最新文档