磁场与电磁感应复习
高中物理知识点总结:磁场 电磁感应
磁场1.磁场:磁场是存在于磁体、电流周围的一种物质(1)磁场的基本特点:磁场对处于其中的磁体、电流有力的作用.(2)磁场方向的三种判断方法:a.小磁针N极受力的方向。
b.小磁针静止时N极的指向。
c.磁感线的切线方向.2.磁感线(1)在磁场中人为地画出一系列曲线,磁感线上某一点的切线方向也表示该点的磁场方向。
曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交,不相切。
(3)几种典型磁场的磁感线的分布: 右手螺旋定则判定通电直导线、环形电流、通电螺线管周围的磁场分布①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L 的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A·m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。
(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。
(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。
4.磁场力:F=BILsinθ(θ为B与I的夹角),只要求B∥I,B⊥I两种情况;注意:只有电流和磁场之间有一定夹角时,磁场力才不为0。
大学物理知识点(磁学与电磁感应)
y
Idl B
B
dF
dF
I
Idl
x L 任意闭合平面载流导线在均匀磁场中所受的力为零 。 F3 P 注:载流线圈在均匀磁 F2 M 场中所受力矩不一定为 零 B I O F 1 M Npm B en N F4
在均匀磁场中
F BIL
o
P
**应用介质中安培环路定理解题方法**
I 0 Bo
2R
2 IR 0 pm B 0 3 3
2x
2πx
注意:在一定的x处,磁场强弱随载流环的半径变 化,故可用求极值的方法讨论轴线某一定点处磁 场随载流环半径变化的趋势。
无限长柱面电流的磁场
无限长柱体电流的磁场
L1
r
R
I
L2
r
B
0 I
2π R
o R
r
二、磁场的基本性质
1、 感生电动势
S定
B dS i s t
方向由楞次定律判断
o
B变
2、 感生电场
B Ei dl s t dS
感生电场是涡旋场,其电场线与磁感 应强度增大的方向成左手螺旋关系。
3、 感生电场与感生电动势的计算 感生电场 : 当变化的磁场的分布具有特殊对称性时: 1 dB Ei r (r R) 2 dt
五、磁场的能量
1、通电线圈的自感磁能 2、磁场的磁能
1 2 Wm LI 2
目前范畴内:
1 1 2 1 2 w m H B BH 2 2 2
W m V w m dV
电磁学基本物理图象
运动
电荷
激 发
电流
激 发
电磁感应复习
8、如图所示,匀强磁场中固定的金属框架ABC,导体棒DE 在框架上沿图示方向匀速平移,框架和导体棒材料相同、同 A 样粗细,接触良好.则( ) A.电路中感应电流保持一定 B.电路中磁通量的变化率一定 C.电路中感应电动势一定 D.棒受到的外力一定 E. 回路的电功率一定 DE棒在任意时刻t在电路中的有效切割长度L=2·vt·tanθ 与t无关
来拒去留 S N S N S N
四、法拉第电磁感应定律
1.法拉第电磁感应定律:电磁感应中感应电动势的大小,即 跟穿过这一电路的磁通量的变化率成正比,即: 2、注意:产生感应电动势的那部分导体相当于电源,该电源 的正负极由楞次定律来确定,注意电源内部电流是由负极流 向正极. 3.磁通量变化产生电动势的几种情况
②E=2BRv;
③E=BRv
公式中的L为有效切割长度:即垂直于B、垂直于v且处于磁 场中的直线部分长度
例4、材料、粗细相同,长度不同的电阻丝做成ab、 cd、ef三种形状的导线,分别放在电阻可忽略的光滑 金属导轨上,并与导轨垂直,如图所示,匀强磁场方 向垂直导轨平面向内.外力使导线水平向右做匀速运动, 且每次外力所做功的功率相同,已知三根导线在导轨 间的长度关系是Lab<Lcd<Lef,则 ( )BD (A)ab运动速度最大 Rab<Rcd<Ref BLv (B)ef运动速度最大 L 0.8 N p=FV F BIL B R (C)因三根导线切割磁感线的有效长度相同,故它们产 生的感应电动势相同 (D)忽略导体内能变化,三根导线每秒产生的热量相同 Q=Pt
D1
D2
(2) 、接通瞬间可把线圈当断路
电工基础复习3(磁场与电磁感应)
电工基础复习3(磁场与电磁感应)一、磁场1)磁场是磁体周围存在的一种特殊物质,磁体通过磁场发生相互作用。
2)磁场的大小和方向可用磁感线来形象的描述:磁感线的疏密表示磁场的强弱,磁感线的切线方向表示磁场的方向。
2、电流的磁效应1)通电导线周围存在着磁场,说明电可以产生磁,由电产生磁的现象称为电流的磁效应。
电流具有磁效应说明磁现象具有电本质。
2)电流产生的磁场方向与电流的方向有关,可用安培定则,即右手螺旋定则来判断。
3、描述磁场的物理量1)磁感应强度BB是描述磁场强弱和磁场方向的物理量,它描述了磁场的力效应。
当通电直导线与磁2)铁磁性物质的B随H而变化的曲线称为磁化曲线,它表示了铁磁性物质的磁性能。
磁滞回线常用来判断铁磁性物质的性质和作为选择材料的依据。
6、磁路1)磁通经过的闭合路径称为磁路。
磁路中的磁通、磁动势和磁阻的关系,可用磁路El欧姆定律来表示,即m,其中RmRmS2)由于铁磁性物质的磁导率不是常数,因此磁路欧姆定律一般不能直接用来进行磁路计算,只用于定性分析。
二、电磁感应1、利用磁场产生电流的现象叫做电磁感应现象,用电磁感应的方法产生的电流,叫感应电流。
2、闭合回路中的一部分在磁场中作切割磁感线运动(磁通发生变化),回路中有感应电流。
3、右手定则:右手,磁力线垂直进入手心;大姆指,运动方向;四指,感生电流方向。
(在感应电流方向、磁场方向、导体运动方向中已知任意两个的方向可以判断第三个的方向。
)4.楞次定律:感应电流的方向,总是使感应电流的磁场阻碍引起感应电流的磁通量的变化,它是判断感应电流方向的普遍规律。
注意:阻碍原来的变化步骤:(1)原磁通方向,增大或减小;(2)感应电流的磁场方向;(3)安培定则——电流方向5、感应电动势E=BLVinθ(θ为B、V的夹角)6、E=N△Φ/△t(N为匝数△Φ/△t为磁通变化率E与磁通的变化率成正比)属于电磁感应现象的问题——右手定则——“电”磁场对电流作用的问题——左手定则——“力”7、导体本身的电流发生变化而产生的电磁感应现象叫做自感现象,自感现象中产生的感应电动势,叫做自感电动势。
磁场与电磁感应知识点总结
磁场与电磁感应知识点总结一、磁场1、磁场的基本性质磁场是一种存在于磁体、电流和运动电荷周围的特殊物质。
它对放入其中的磁体、电流和运动电荷有力的作用。
2、磁场的方向规定在磁场中某一点小磁针 N 极所受磁场力的方向为该点磁场的方向。
3、磁感线磁感线是为了形象地描述磁场而引入的假想曲线。
磁感线上某点的切线方向表示该点的磁场方向,磁感线的疏密程度表示磁场的强弱。
4、常见磁场的磁感线分布(1)条形磁铁:外部从 N 极到 S 极,内部从 S 极到 N 极,形成闭合曲线。
(2)蹄形磁铁:与条形磁铁类似。
(3)通电直导线:以导线为圆心的一系列同心圆,越靠近导线,磁感线越密集。
(4)通电螺线管:外部类似于条形磁铁,内部为匀强磁场。
5、地磁场地球本身是一个大磁体,地磁的 N 极在地理的南极附近,地磁的 S 极在地理的北极附近。
但地理的南北极与地磁的南北极并不完全重合,存在磁偏角。
二、电流的磁场1、奥斯特实验奥斯特实验表明通电导线周围存在磁场,其磁场方向与电流方向有关。
2、安培定则(右手螺旋定则)(1)判断直线电流的磁场:用右手握住导线,让伸直的大拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
(2)判断环形电流的磁场:让右手弯曲的四指与环形电流的方向一致,伸直的大拇指所指的方向就是环形导线轴线上磁感线的方向。
(3)判断通电螺线管的磁场:用右手握住螺线管,让弯曲的四指所指的方向与电流的方向一致,大拇指所指的方向就是螺线管内部磁感线的方向,也就是螺线管的 N 极。
三、磁感应强度1、定义磁感应强度是描述磁场强弱和方向的物理量,在磁场中垂直于磁场方向的通电导线,所受的安培力 F 跟电流 I 和导线长度 L 的乘积 IL 的比值叫做磁感应强度。
2、定义式B = F /(IL)3、单位特斯拉(T)4、磁感应强度是矢量,其方向就是磁场的方向。
四、安培力1、定义通电导线在磁场中受到的力称为安培力。
2、大小当导线与磁场方向垂直时,F = BIL;当导线与磁场方向平行时,F = 0;当导线与磁场方向成夹角θ时,F =BILsinθ。
磁场与电磁感应的关键知识点总结
磁场与电磁感应的关键知识点总结磁场和电磁感应是电磁学中的重要概念,它们在我们日常生活和科学研究中发挥着重要作用。
本文将对磁场和电磁感应的关键知识点进行总结和归纳,以帮助读者更好地理解和掌握这些概念。
一、磁场磁场是指周围空间中存在磁力作用的区域,可以通过磁感线来表示和描述。
磁感线是垂直于磁力方向的曲线,沿着磁力的方向指向南极,从北极出发。
磁感线的密度表示了磁场的强度,密集的磁感线代表较强的磁场。
磁场的特点:1. 磁场具有方向性:磁力线具有方向,始终从北极指向南极。
2. 磁场具有力的作用:磁场对磁性物质和带电粒子具有吸引和排斥的作用。
3. 磁场的大小由磁感线的密集程度表示,磁感线越密集,磁场越强。
二、电磁感应电磁感应是指通过磁场的变化而引起电流产生的现象。
根据法拉第电磁感应定律,当磁场与导体相对运动或磁通量发生改变时,会在导体中感应出电动势和电流。
电磁感应的关键知识点:1. 磁通量:磁感线穿过一个平面的数量,用Φ表示,单位为韦伯(Wb)。
磁通量的大小与磁场的强弱、磁感线的密集程度有关。
2. 法拉第电磁感应定律:当一个闭合线圈中的磁通量发生变化时,会感应出一个与磁通量变化有关的电动势。
电动势的大小与磁场的变化率成正比。
3. 楞次定律:根据楞次定律,电流的产生会产生磁场,磁场的变化会引起感应电流的产生。
这个定律可以用来解释为什么当导体在磁场中运动时会感应出电流,也可以用来解释发电机的原理。
三、应用领域与重要设备磁场和电磁感应的概念和原理在许多领域有广泛的应用,涉及到电力工业、通信、电子技术等多个领域。
以下列举了一些常见的应用和设备:1. 电磁铁:电磁铁利用通电线圈产生的磁力,可以将铁块吸附在上面或将其吸附下来,常见于电梯、磁悬浮列车等设备。
2. 电动机:电动机是利用电磁感应现象将电能转化为机械能的装置,广泛应用于机械设备、家电等领域。
3. 发电机:发电机是利用电磁感应原理将机械能转化为电能的设备,常见于发电厂、汽车等。
物理电磁感应复习题集及答案
物理电磁感应复习题集及答案第一题:电磁感应基础知识1. 什么是电磁感应?2. 法拉第电磁感应定律是什么?3. 在一个圆形线圈中,磁场的变化如何影响感应电动势的大小?4. 什么是自感现象?5. 自感现象与互感现象有何异同?答案:1. 电磁感应是指当一个导体中的磁通量发生变化时,在导体中就会产生感应电动势和感应电流的现象。
2. 法拉第电磁感应定律是指导体中感应电动势的大小与磁场的变化率成正比,方向由右手定则确定。
3. 在一个圆形线圈中,磁场的变化越快,感应电动势就越大。
当磁场增强或减弱时,感应电动势的方向也会相应变化。
4. 自感现象是指一个导体中的电流变化时,导体本身会产生感应电动势和感应电流。
5. 自感现象与互感现象都是电磁感应现象,不同之处在于自感发生在导体本身,而互感发生在两个或多个相邻的线圈之间。
第二题:电磁感应的应用1. 什么是变压器?它如何工作?2. 什么是感应电动机?3. 什么是发电机?它是如何产生电能的?4. 什么是涡流?它对电磁感应有什么影响?5. 什么是励磁?6. 举例说明一种电磁感应的实际应用。
答案:1. 变压器是一种通过电磁感应原理来改变交流电压大小的电器设备。
它由一个主线圈和一个副线圈组成,通过磁场的感应作用,将输入电压变换为输出电压,实现电能的传输和变换。
2. 感应电动机是利用电磁感应原理来转换电能和机械能的装置。
它由一个定子和一个转子组成,当定子上的交流电流变化时,就会在转子上产生感应电流,从而使转子转动。
3. 发电机是一种将机械能转换为电能的装置。
它通过电磁感应原理,在导体中产生感应电动势,并通过电路系统将这种电动势转化为电流和电能的装置。
4. 涡流是指当导体中有磁场变化时,在导体内部会形成的电流环流动现象。
涡流的产生会导致能量损耗,并且会对电磁感应产生一定的影响。
5. 励磁是指为了使发电机和变压器等设备工作正常,需要通过外部电源向设备提供一定的励磁电流,以产生足够的磁场。
磁场与电磁感应知识点总结
磁场与电磁感应知识点总结磁场和电磁感应是物理学中重要的概念和理论,对于理解电磁现象以及应用于许多实际生活中的技术具有重要意义。
本文将对磁场和电磁感应的相关知识进行总结。
一、磁场的基本概念磁场是指周围的空间中存在磁力的区域,可以通过磁力线来表示。
磁力线是表示磁力分布的图形,沿磁力线的方向,指示了磁力的方向。
磁力线的密度越大,表示磁场强度越大。
当两根平行导线的电流方向相同时,两个导线之间会产生吸引力。
而当两根平行导线的电流方向相反时,两个导线之间会产生斥力。
基于这个原理,我们可以推导出洛伦兹力的概念。
二、洛伦兹力洛伦兹力是指电流在磁场中受到的力。
当电流通过导线时,会产生磁场,而这个磁场会与外部的磁场相互作用,从而产生力。
洛伦兹力的大小和方向由电流的大小、磁场的大小和方向以及导线的长度和方向所决定。
洛伦兹力的方向垂直于电流方向和磁场的方向,符合右手定则。
洛伦兹力是电机和电流计等电磁设备的基础。
三、安培环路定理安培环路定理是电磁感应的基本定律之一。
该定理说明了电流所形成的磁场沿闭合回路的积分等于闭合回路所包围的电流的代数和的数量。
根据安培环路定理,我们可以计算闭合回路中的总电流。
这个定理对于理解电动势和电感储能等概念非常重要。
四、电磁感应电磁感应是指通过磁场的变化产生的感应电动势。
当磁场的磁通量发生变化时,就会在导线中产生感应电动势。
这个感应电动势的大小和方向由磁场变化的速率和导线的长度和方向决定。
根据法拉第定律,磁场变化的快慢对于感应电动势的大小具有重要影响。
根据楞次定律,感应电动势的方向总是使得磁场变化的影响减弱。
五、法拉第电磁感应定律法拉第电磁感应定律是描述感应电动势的定律,该定律由英国物理学家迈克尔·法拉第在1831年提出。
根据该定律,当导体中的磁通量发生变化时,导体两端会产生感应电动势。
这个电动势的大小和方向由磁通量变化的速率和导体的路径决定。
法拉第电磁感应定律在电力发电、电感耦合和电动机等领域具有广泛应用。
物理电场磁场电磁感应知识点
电场知识点一、电荷、电荷守恒定律1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。
2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。
说明:任何带电体的带电量皆为元电荷电量的整数倍。
荷质比(比荷):电荷量q与质量m之比,(q/m)叫电荷的比荷3、起电方式有三种①摩擦起电,②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。
③感应起电——切割B,或磁通量发生变化。
4、电荷守恒定律:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的.二、库仑定律1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。
方向由电性决定(同性相斥、异性相吸)2.公式:k=9.0×109N·m2/C2极大值问题:在r和两带电体电量和一定的情况下,当Q1=Q2时,有F最大值。
3.适用条件:(1)真空中;(2)点电荷.点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。
点电荷很相似于我们力学中的质点.注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律②使用库仑定律计算时,电量用绝对值代入,作用力的方向根据“同性相排斥,异性相吸引”的规律定性判定。
计算方法:①带正负计算,为正表示斥力;为负表示引力。
②一般电荷用绝对值计算,方向由电性异、同判断。
三个自由点电荷平衡问题,静电场的典型问题,它们均处于平衡状态时的规律。
磁场 电磁感应总结
n R
BR2 cos
1 BR2 2
60°
B
S
任意曲面
14
P67(3). 一个密绕的细长螺线管,每厘米长度上绕有10匝细导线, 螺线管的横截面积为10 cm2.当在螺线管中通入10 A的电流时, 它的横截面上的磁通量为_________________________.
外
B
0nI
0
内 外
公 式
问下述哪一种情况将会发生?
××××
(A) 在铜条上a、b两点产生 一小电势差,且Ua > Ub.
×B × × ×
a
b
霍耳效应
UH
K IB d
B
+
I
++ + +
---
UH
K 1× × × ×
nq
B
-
- --
I
-
+++
UH
-
+
P 型半导体
N型半导体
I B 指向的面电位高为空穴 (p)型半导体
I B 指向的面电位低为电子 (n)型半导体
24
磁介质内部的磁场:
B r Bo B 0r H H
P72 一个绕有500匝导线的平均周长50 cm的细环,载有 0.3 A电 流时,铁芯的相对磁导率为600 .
(1) 铁芯中的磁感强度B为__________________________. (2) 铁芯中的磁场强度H为____________________________. (m0 =4p×10-7 T·m·A-1)
B
0 I 4r
(cos 1
cos2
)
1
磁场+电磁感应-题干
1. 【推题】如图,长为2l的直导线拆成边长相等,夹角为60o的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B,当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为()A.0 B.0.5BIl C.BIl D.2BIl2. 【推题】电磁感应发射装置的简易模型如图所示,质量为m,电阻为R,边长为L的正方形金属线框abcd竖直静止放置在水平面上,垂直于线框平面存在有界匀强磁场,线框cd边在磁场外侧且紧靠磁场边界。
在某次成功发射过程中,磁感应强度B随时间t的变化规律为B=B0+kt(k是大于零的常数),线框能穿过磁场继续上升,上升的最大高度为h。
重力加速度为g,空气阻力不计,线框平面在运动过程中不旋转始终保持竖直。
下列说法错误的是()A.t=0时刻,线框中的电流大小I=kL2RB.t=0时刻,线框ab边受到安培力F=B0kL3RC.线框从静止到最高点的过程中安培力所做的功等于mghD.线框从最高点下落,再次经过磁场的过程中磁感应强度大小为B′且保持恒定,使线框最终以速度v安全着陆。
则线框下落过程运动总时间t=B ´2L3mgR3. 【推题】如图所示,金属线框abcd 置于光滑水平桌面上,其右方存在一个有理想边界的方向竖直向下的矩形匀强磁场区,磁场宽度大于线圈宽度。
金属线框以速度v0开始向右运动最终穿过磁场区域,ab边始终保持与磁场边界平行,则在线框进入磁场区域和离开磁场区域过程()A.线框受到的安培力方向相同B.线框受到的安培力大小相同C.通过线框导体横截面的电量相同D.线框中产生的热量相同4. 【推题】如图所示,在光滑的水平面上方有两个磁感应强度大小均为B、方向相反的水平匀强磁场区域,磁场宽度均为L。
一个边长为L、电阻为R的单匝正方形金属线框,在水平外力作用下沿垂直磁场方向运动,从如图实线位置Ⅰ进入磁场开始到线框运动到分别有一半面积在两个磁场中的位置Ⅱ时,线框的速度始终为v ,则下列说法正确的是( )A .在位置Ⅱ时外力F 为22B L vRB .在位置Ⅱ时线框中的电功率为2224B L v RC .此过程中回路产生的电能为233B L vRD .此过程中通过导线横截面的电荷量为2BL R5. 【推题】如图甲所示,等离子气流(由高温高压的等电量的正、负离子组成)由左方连续不断地以速度v 0 射入P 1 和P 2 两极板间的匀强磁场中,ab 直导线与P 1 、P 2 相连接,线圈A 与直导线cd 相连接,线圈A 内存在如图乙所示的变化磁场,且磁感应强度B 的正方向规定为向左,则下列叙述正确的是( )A .0~1s 内ab 、cd 导线互相排斥B .1~2s 内ab 、cd 导线互相吸引C .2~3s 内ab 、cd 导线互相排斥D .3~4s 内ab 、cd 导线互相吸引6. 【推题】如图3-6所示的等臂天平可用来测定磁感应强度.天平的右臂下面挂有一个矩形线圈,宽为l ,共N 匝,线圈的下部悬在匀强磁场中,磁场方向垂直纸面.当线圈中通有电流I (方向如图)时,在天平左、右两边加上质量各为m 1、m 2的砝码,天平平衡.当电流反向(大小不变)时,右边再加上质量为m 的砝码后,天平重新平衡.由此可知( )A .磁感应强度的方向垂直纸面向外B .磁感应强度的方向垂直纸面向里C .磁感应强度的大小为12()m m gNIlD .磁感应强度的大小为2mgNIl7. 【推题】如图所示,边长为L 的正方形abcd 为两个匀强磁场的边界,正方形内磁场的方向垂直纸面向外。
磁学知识点总结电磁感应定律和电磁感应现象
磁学知识点总结电磁感应定律和电磁感应现象电磁感应定律是电磁学中的重要理论基础,描述了电磁感应现象的规律。
本文将对电磁感应定律和电磁感应现象进行总结。
1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。
当磁场的磁感应强度发生变化时,在磁场中的闭合回路内会产生感应电动势和感应电流。
法拉第电磁感应定律可以用一个简洁的数学公式表示:ε = -dΦ/dt其中,ε表示感应电动势,dΦ/dt表示磁通量的变化率。
该定律说明,当磁通量变化时,感应电动势的大小与磁通量变化率成正比。
2. 楞次定律楞次定律是法拉第电磁感应定律的推论,描述了感应电流的方向。
楞次定律表明,感应电流的方向总是使得产生它的磁场的磁通量发生变化的趋势减弱。
根据楞次定律,当磁通量增加时,感应电流的方向会使磁场的磁感应强度减小;当磁通量减少时,感应电流的方向会使磁场的磁感应强度增加。
楞次定律保证了能量守恒的原则。
3. 电磁感应现象电磁感应现象是电动势和电流产生的实际过程。
根据电磁感应定律,只有当磁通量发生变化时才会产生感应电动势。
常见的电磁感应现象包括:(1) 电磁感应发电机:在电磁感应发电机中,通过转动的磁场使得线圈中的磁通量发生变化,从而产生感应电动势,驱动电流产生。
(2) 电磁感应涡流:当导体在磁场中运动或磁场发生变化时,会产生感应电动势,从而使电流在导体内部形成环状的涡流。
(3) 电磁感应感应加热:利用电磁感应现象可以进行感应加热,即将交变磁场通过导体产生涡流,利用涡流的阻碍作用产生热量。
(4) 变压器:变压器是利用电磁感应原理工作的电气设备,通过磁场感应导体中的电动势,将电能从一个线圈传输到另一个线圈。
4. 应用领域电磁感应定律和电磁感应现象在许多领域有着广泛的应用,例如:(1) 发电和能量转换:发电机和变压器是电能转换和传输的重要装置,利用电磁感应原理将机械能转化为电能。
(2) 感应加热:利用电磁感应产生的涡流可以用于感应加热,广泛应用于工业加热、熔炼和医学领域。
高考复习教程物理上册第十讲磁场与电磁感应答案
高考复习教程物理上册第十讲磁场与电磁感应§10.1磁场磁场对电流和电荷的作用一.选择题1.由磁感应强度的定义式B=F/IL可知〔〕〔A〕B与通电导线受到的磁场力F成正比,与电流和导线长度的乘积IL成反比〔B〕磁感应强度的方向与F的方向一样〔C〕该公式只适用于匀强磁场〔D〕只要满意L很短、I很小的条件,该公式对任何磁场都适用2.如下图,一条形磁铁放在水平桌面上,在其左上方固定一根与磁铁垂直的长直导线,当导线中通以图示方向的电流时〔〕〔A〕磁铁对桌面的压力减小,且受到向左的摩擦力〔B〕磁铁对桌面的压力减小,且受到向右的摩擦力〔C〕磁铁对桌面的压力增大,且受到向左的摩擦力〔D〕磁铁对桌面的压力增大,且受到向右的摩擦力3.如下图,原来静止的圆环线圈,通有顺时针方向的电流I1,在其直径ab上靠近b处垂直于线圈平面固定一长直导线,并通以图示方向的电流I2,那么线圈将〔〕〔A〕以ab为轴转动,并向左平动〔B〕以ab为轴转动,并向右平动〔C〕只向左平动〔D〕只以ab为轴转动4.如下图的电流天平可用来测定磁感应强度B。
天平的右臂下面挂有一个矩形线圈,宽ab为l,共N匝,线圈的下部悬在待测匀强磁场中,磁场方向垂直纸面。
当线圈中通有图示方向电流I 时,在天平左、右两边加上质量各为m1、m2的砝码,天平平衡。
当电流反向〔大小不变〕时,右边再加上质量为m的砝码后,天平重新平衡。
由此可知〔〕〔A〕磁感应强度的方向垂直纸面对里,大小为〔m1-m2〕g/N l〔B〕磁感应强度的方向垂直纸面对里,大小为mg/2NI l l〔C〕磁感应强度的方向垂直纸面对外,大小为〔m1-m2〕g/NI l l〔D〕磁感应强度的方向垂直纸面对外,大小为mg/2NI l l5.如下图,在倾角为30°的光滑斜面上垂直纸面放置一根长为L,质量为m的直导体棒,一匀强磁场垂直于斜面对下,当导体棒内通有垂直纸面对里的电流I时,导体棒恰好静止在斜面上,那么磁感应强度的大小为B=。
磁场与电磁感应(二)
磁场与电磁感应(二)一、填空题:1、某些物体能够的性质称为磁性。
具有的物体称为磁体,磁体分为和两大类。
2、磁体两端的部分称为磁极。
当两个磁极靠近时,它们之间也会产生相互作用力;同性磁极相互,异名磁极相互。
3、磁感线的方向定义为:在磁体外部由指向,在磁体内部由指向。
磁感线是曲线。
4、磁感线上任意一点的方向,就是该点磁场的方向,也就是放在该点的磁针的方向。
5、在磁场的某一区域里,如果磁感线是一些方向相同分布均匀的平行直线,这一区域称为。
6、的现象称为电流的磁效应。
7、电流所产生的磁场方向可用来判断。
8、描述磁场中各点磁场强弱和方向的物理量称为,用符号表示,单位是;描述磁场在空间某一范围内分布情况的物理量称为,用符号表示,单位是。
9、磁感应强度是量,它的方向就是该点的的方向;在同一磁场的磁感线分布图上,磁感线越密,磁感应强度越,磁场越。
10、在均匀磁场中,磁感应强度等于穿过单位面积的,用公式表示,所以磁感应强度又称。
11、用来表示媒介质导磁性能的物理量称为,用符号表示,单位是,为了方便比较媒介质对磁场的影响,又引入的概念,它们之间的关系表达式为。
12、根据相对磁导率的大小,可把物质分为、和三类。
13、通常把通电导体在磁场中受到的力称为,也称,通电导体在磁场中的受力方向可用定则来判断。
14、把一段通电导线放入磁场中,当电流方向与磁场方向时,导线所受到的电磁力最大;当电流方向与磁场方向时,导线所受到的电磁力最小。
15、在均匀磁场中放入一个线圈,当线圈平面与磁感线平行时,线圈所产生的转矩,当线圈平面与磁感线垂直时,线圈所产生的转矩,16、楞次定律的内容是产生的磁通总是原磁通的变化,当线圈中磁通增加时,感应磁场的方向与原磁通的方向;当线圈中磁通减小时,感应磁场的方向与原磁通的方向。
17、在电磁感应中,用定律判别感应电动势的方向,用定律计算感应电动势的大小;其表达式为。
18、当直导体的运动方向与磁感线垂直时,导体中感应电动势最;当直导体的运动方向与磁感线平行时,导体中感应电动势最。
电磁感应复习提纲
电磁感应1. 电磁感应现象:2. 楞次定律:闭合回路中产生的感应电流具有确定的方向,它总是使感应电流所产生的通过回路的磁通量,去补偿或者反抗引起感应电流的磁通量的变化。
3. 法拉第电磁感应定律:通过回路所包围的磁通量发生变化时产生的感应电动势与磁通量对时间的变化率成正比。
εi =-d /d t(εi =-d Ψ/d t , Ψ=N ) ; 说明1:感生电荷量q :如果闭合回路的电阻R ,通过导线任一界面的感生电荷量为 q i =⎰21d i t t t I =(1/R )(1-2); 说明2:感应电流产生的条件 感应电流产生的条件:凡是谈及感应电流,一般都是对闭合的导体回路而言。
这里一定要抓住磁通量的变化,不管这种变化是外界引起的还是回路本身运动、形变、电流变化引起的,只有在磁通量变化的过程中才有感应电流。
说明3:感应电动势与回路是否闭合、导体是否存在无关。
例1:尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中: (A) 感应电动势不同, 感应电流不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同, 感应电流相同. (D) 感应电动势相同,感应电流不同. 说明4:感应电动势的方向(具体见例) 电磁感应定律是电动势与磁通量变化率的关系,实验测得电动势的方向与磁通量变化率正值方向成左手关系,当转换成右手关系是发现:大拇指指向磁通量变化率正值方向,四指绕行方向所得到的电动势方向与实验测得相反,于是负号修正。
根据此思想,可衍生以下几种方式判断方向的方法:(1) 右手大拇指指向磁通量变化率负值方向,四指绕行方向即电动势(电流)方向。
(这就是楞次定律,感应电流就是要产生负磁通量变化率来试图抵消线圈中的正值磁通量变化率或者产生正磁通量变化率来试图补偿线圈中的负值磁通量变化率)(2) 右手大拇指指向自定义的面的法向方向,四指绕行方向即电动势(电流)标定方向(将环路方向与电动势方向绑定)。
第四章磁场与电磁感应教案
§4-1 磁场(一)教案教学过程:第四章磁场与电磁感应复习旧课:串联和并联电路及特点讲授新课:磁场安全教育3分钟,注意天气变化,预防感冒。
§4-1 磁场(一)一、磁场与磁感线1、磁体:具有磁性的物体。
包括俩大类。
(1)永久磁铁,在正常情况下能长期保留磁性。
(2)电磁铁。
2、磁极:磁铁两端磁性最强的部分叫磁极3、磁场:磁极周围空间存在着一种特殊的物质(1)磁场的方向。
规定——小磁针在磁场中某点的北极(N)极的指向为该点的磁场方向。
4. 磁力线:也叫磁感线,形象的描述磁场的大小和方向。
是假想的互不交叉的闭合曲线,在磁体外部是N极指向S极,在磁体内部是S极指向N极。
5、磁力线的特点(1) 磁感线的切线方向表示磁场方向,其疏密程度表示磁场的强弱。
(2) 磁感线是闭合曲线,在磁体外部,磁感线由N极出来,绕到S极;在磁体内部,磁感线的方向由S极指向N极。
(3) 任意两条磁感线不相交。
说明:磁感线是为研究问题方便人为引入的假想曲线,实际上并不存在。
作业,巩固与练习1 。
§4-1 磁场(二)教案教学课题磁场教学目标1、掌握电流产生磁场的右手螺旋定则;2、会用右手螺旋定则判断磁场的方向教学重点右手螺旋定则教学难点磁场方向的判断教学后记教学过程:§4-1 磁场(二)复习旧课:磁场、磁感线讲授新课:电流的磁场安全教育3分钟,过马路注意安全。
二.电流的磁场1. 通电直导线周围的磁场通电导体周围要产生磁场,磁场的方向与电流的方向有关。
右手螺旋定则1:(判定通电直导线磁场方向)右手握住导体,伸直大拇指,大拇指指向电流方向,弯曲四指所指方向即为磁力线方向。
电流方向的符号表示,规定:×表示流进. 表示流出以上方向的符号规定同样适合磁场的方向2. 环形电流的磁场○环形电流磁场的磁感线:是一些围绕环形导线的闭合曲线,在环形导线的中心轴线上,磁感线和环形导线的平面垂直(图4)。
○环形电流的方向跟中心轴线上的磁感线方向之间的关系也可以用安培定则来判定:让右手弯曲的四指和和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向.3. 通电线圈的磁场右手螺旋定则2:(判定通电线圈磁场方向)右手握住导体,让弯曲的四指方向与电流方向一致,大拇指所指方向就是线圈内磁力线的方向。
初三物理关于磁场与电磁感应的知识点
初三物理关于磁场与电磁感应的知识点在初三物理的学习中,磁场与电磁感应是非常重要的一部分内容。
这部分知识不仅在考试中经常出现,而且对于我们理解现代科技的原理也有着至关重要的作用。
首先,让我们来了解一下磁场。
磁场是一种看不见、摸不着的特殊物质,但它却有着实实在在的作用。
我们可以通过小磁针来感知磁场的存在。
小磁针在磁场中会受到力的作用而发生偏转,其静止时北极所指的方向就是该点磁场的方向。
磁场是有强弱之分的,我们用磁感应强度来表示磁场的强弱。
磁感应强度的单位是特斯拉(T)。
在磁场中,磁感线可以用来形象地描述磁场的分布情况。
磁感线是闭合的曲线,在磁体外部,磁感线从 N 极出发,回到 S 极;在磁体内部,磁感线从 S 极指向 N 极。
磁感线的疏密程度表示磁场的强弱,磁感线越密,磁场越强;磁感线越疏,磁场越弱。
接下来,我们说一说常见的磁体。
永磁体包括天然磁体和人造磁体,如条形磁体、蹄形磁体等。
电流也能产生磁场,这就是奥斯特实验所揭示的。
当导线中有电流通过时,在其周围会产生磁场。
通电螺线管的磁场与条形磁体的磁场相似,其极性与电流的方向有关,可以用安培定则(也叫右手螺旋定则)来判断。
电磁感应现象是这部分知识的另一个重点。
当闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应。
产生的电流叫做感应电流。
电磁感应现象的发现,为人类大规模利用电能开辟了道路。
在电磁感应现象中,感应电流的方向与导体运动的方向和磁场的方向都有关系。
如果改变其中一个因素,感应电流的方向就会改变;如果同时改变这两个因素,感应电流的方向不变。
电磁感应现象在实际生活中有很多应用。
发电机就是利用电磁感应原理制成的。
在发电机中,线圈在磁场中转动,不断地切割磁感线,从而产生感应电流。
与发电机原理相反的是电动机,电动机是根据通电导体在磁场中受到力的作用而工作的。
在磁场中,通电导体也会受到力的作用。
其受力的方向与电流的方向和磁场的方向都有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容:
• • • • 一、电流周围的磁场 二、磁场的效应 三、感应电动势的计算 例题分析
2
一、电流周围的磁场
• 1、毕-萨定律 • 2、磁通量与高斯定理 • 3、安培环路定理
3
二、磁场的效应
• 1、磁场对运动电荷的作用力 ------洛仑兹力 • 2、磁场对电流的作用力 ------安培力
2 a 0 I 0 Bx B1 cos135 B2 4 a 0 I 0 By B1 sin135 4 a
1
2 2a
B2
B1 P a B2 x
0 I 0 I B i j 4 a 4 a
a
37
例题: 一个电子射入B =(0.2 i+0.5 j )T 的非均匀磁场中,当电子速度为v =5×106j m/s时,求电子所受的磁力。 解: F = q v ×B
2x
0 d x n 2 4 x dq d x a b d x 0 B a 4 x
0 a b ln 4 a
方向:
d I ndq
O
a xA dx ω b
B
36
例题:两无限长直导线载有大小相同、方 向相反的电流 I,试求 P 点的磁感应强度。 解:B 0 I 0 I y
电流 I 取负值
I
I
向 行方
向 方 绕 行
13
绕
I2
I1
l1
I
l2
I
I
l3
(a) (a) (b) (c)
1
(b)
(c)
o
l B . dl = μ l B . dl = 0
2
(I 1 I 2 )
l=0
14
a. 直长通电螺线管内的磁场
. . . . . . . . . . . . . a
0 0
I
b x
30
. P
0
dx
0
b
例: 电流均匀地流过宽度为 b 的无限长平面导体薄板, 电流为 I ,沿板长方向流动。求:
(2)通过板的中线并与板面垂直的直线上一点Q 处 的磁感应强度,Q 点到板面的距离为x。
31
(2)解:
cos
x x2 y 2
y dy x
y dB’
dBx dBy
I
R
π
I´ π r 2 ( 或: = I´) 2 I πR μ 0Ir 得: B= 2π R 2
B
I´ r
17
I r (2). > R B 2 r =μ 0 I π
R
r
B
μ I B=
2 r π
0
18
1、 带电粒子在磁场中 所 F = q v × B 受作用及其运动:洛伦兹力
洛伦兹力的大小: F = q vB sin
F1 BIl
F1 0 I f1 l 2 a
2
B1 f2 f a
f1
f 2 f1 cos30 2 30 I 方向如图 2 a
0
40
例: 一通有电流为 I 的导线,弯成如图所示的形状,放 在磁感应强度为 B 的均匀磁场中,B 的方向垂直直面向里。 问此导线受到的安培力为多少? 解: 根据对称性,
4
三、感应电动势的计算
• 1、法拉第电磁感应定律 • 2、动生电动势的计算 • 3、感生电场与感生电动势
5
1、毕奥
萨伐尔(Biot-savart)定律 I I dl dB . P
dB的大小: dB =
μ I dl sin a r2 4π
o
a
r
r
dB的方向与 I dl
×
dB
r
相同
Idl
6
(1). 载流直导线的磁场
i
Ek dl (v B) dl
25
d v B d l vB sin a d lcos
d vB sin a d lcos
L L
动生电动势的计算步骤:
1. 选择 以及
dl 方向;
2. 确定 dl 所在处的 B 与 v 的夹角a;
I
dI y
I dI dy b y
o
x
r
x
dB
dB
x
dB
0 d I
2 x 2 y 2
0 I d y
由对称性: Bx 0
d By d B cos 0 Ix d y 2 2 2 b( x y )
32
2 b x 2 y 2
d By
2 b( x 2 y 2 )
一、 法拉第电磁感应定律
d dt
感应电动势和磁通量的变化率成正比
式中的“ ”号是楞次定律的数学表达。
楞次定律: 闭合的导线回路中所出现的感应电流,总是使 它自己所激发的磁场,去补偿或反抗任何引发 电磁感应的磁场
23
若有N 匝导线
ψ =N Φ
Ψ 为磁链
ε
感应电流:
dΦ = i= N dt Ii
感生电场是非保守场
29
例: 电流均匀地流过宽度为 b 的无限长平面导体薄板, 电流为 I ,沿板长方向流动。求: (1)在薄板平面内,距板的一边为 b 的 P点处的磁感 应强度;
解: (1) dI
I x =bd dI I dx d B= 2π x = 2π b x I 2 b dx B= 2π b b x I ln2 = 2 b π
b/2 b / 2
0 Ix d y
y dy
y
x
By d By
2 b( x 2 y 2 )
b/2
0 Ix d y
0 I y arctg 2 b x b / 2 0 I b arctg b 2x 0 I b B arctg j b 2x
dBx
dBy
弧长 周长 θ
I
θ
2R
2R
2π
10
2、磁通量 高斯定理
(1)、磁感应线的特点:
a.曲线上各点的切线方向就是该点的磁感 应强度的方向 b.曲线的疏密就表示该点的磁感应强度的 大小 c.任意两条磁感应线不会相交
d. 磁感应线是一组闭合曲线
11
(2)、磁通量 dΦ m = B . dS
Φ m = s B . dS
d
b
c
B
B =μ 0n I
15
b. 环形螺线管的磁场
R1 r R2
μ NI B= r
2 π
0
( N : 匝数)
. . . . . B . . . r . . R1 . . . . R2 . . .. . . .. .. . . .
.
. . . .. . ..
16
c. 均匀通电直长圆柱体的磁场 设电流 I 均匀分布在整个横截面上。 (1). < R r 0 l B .dl = l B dl cos 0 = B 2π r =μ 0 I ´ I´= I r2 2π R Ir2 = 2 R
b
a
Rc Ra
vc va
f
× 运动方向:a→b →c × 运动方向与洛伦兹力构成右 旋关系,故带电粒子带正电。
×c
vc
39
例题:彼此相距 10 cm 的三根平行长直导线 中各通有 I = 10 A 的同向电流。试求各导线 单位长度上所受的作用力的大小和方向。 解:B 0 I 1 2 a
ε =
ψ d dt
1 dΦ R dt
= R
i
运用法拉第定律计算感应电动势时的步骤: 1)计算磁通量和磁链 2)通过对时间求导,求出感应电动势的大小 3)运用楞次定律判别感应电动势方向
24
二 、动生电动势
引起磁通量变化的原因 稳恒磁场中的运动导体(回路面积变化、 取向变化等) 动生电动势 洛伦兹力
动生电动势的非静电力场来源 Fm Ek v B e
洛伦兹力的方向:
q>0时,与 v × B 同方向 q<0时,与 v × B 反方向
v× B q
B v
19
带电粒子在匀强磁场中的运动
(1). v 0 B q v0 B = m v 0 R m v0 R = q B
2
× × × × × × ×
× × × × ×
× × × × ×
× × × × × × × × × × × × × ×
BP
0 I
4π r
a
8
讨论:
c)载流直线延长线上
μ o I dl sina dB = r2 π 4
a°dB B=0
Idl dB
9
(2). 载流圆线圈轴线上的磁场 I a).在载流园环圆心处
2R b).在载流园弧的圆心处,
B0 = B0 =
B0 =
μ oI
μ oI μ oI
F1 F2 F1 × F3 IB 2R j × F F1 F2 F3 2IBR j
× × B R × ×
×
×
F3
×
×
×
×
×
×
×
×
F2
41
例题 AB和BC两段导线,其长均为10 cm,在B处相接成300角,若使导线在均匀 磁场中以速度v =1.5m/s运动,方向如图, 磁场方向垂直纸面向内,磁感应强度为B = 2.5×10-2 T。问A、C 两端之间的电势差为 多少?哪一端电势高。
x
dB
33
例6: 在半径为R 的“无限长” 的半圆柱 形金属薄片中,有电流 I 自下而上通过。 如图所示。试求:圆柱轴线上一点 P 的 磁感应强度。 I