§2.1 分离变量法求解偏微分方程

合集下载

第二章 分离变量

第二章 分离变量

解 这里所考虑的方程仍是(2.1) ,所不同的只是在 x=l 这一端的边 界条件不是第一类齐次边界条件 u
u 件 x
x l
x l
0 ,而是第二类齐次边界条
0 。因此,通过分离变量的步骤后,仍得到方程(2.4)与
T (t ) a2T (t ) 0 , X ( x) X ( x) 0 ,但条件(2.6)应 (2.5)
代入条件(2.6)′得
A 0 B cos l 0
由于B≠0,故cosβl=0,即
(2n 1) (n 0,1, 2,3,) 2l
从而求得了一系列特征值与特征函数。
(2n 1)2 2 n 4l 2
(2n 1) X n ( x) Bn sin x(n 0,1, 2,3,) 2l
的解。这时 l=10,并给定 a2 10000 (这个数字与 弦的材料,张力有关) 。
直接应用已经得到的结果公式:
得到
Bn 0
0, n为偶数 1 10 n 2 An x(10 x)sin xdx 3 3 (1 cos n ) 4 5000 0 10 5n 5n3 3 ,当n为奇数
因此,所求的解为
1 (2n 1) x u ( x, t ) 3 sin cos10(2n 1) t 3 5 n0 (2n 1) 10 4

例2 解定解问题
2u 2u a2 2 , 0 x l, t 0 t 2 x u u x 0 0, x l 0, t 0 x u 2 u t 0 x 2lx, t t 0 0, 0 x l
n=1的驻波除两端x=0和x=l外没有其它节点,它的波长2l在所有 本征振动中是最长的;相应地,它的频率a/2l在所有本征振动中 是最低的。这个驻波叫作基波。n>1的各个驻波分别叫作n次谐波 n次谐波的波长2l/n是基波的1/n,频率na/2l则是基波的n倍。

微分方程的求解方法例题

微分方程的求解方法例题

微分方程的求解方法例题1. 基础概念简介在数学中,微分方程是描述未知函数及其导数之间关系的方程。

它是很多科学领域的基础理论,包括物理、工程、经济等。

求解微分方程可以帮助我们理解和预测自然界的现象。

常见的微分方程类型包括常微分方程和偏微分方程。

常微分方程仅涉及一个未知函数的变量和它的导数,而偏微分方程涉及多个未知函数和它们的偏导数。

2. 常见的求解方法2.1 分离变量法分离变量法适用于一阶常微分方程。

它的基本思想是将未知函数和它的导数分离到等式的两边,然后对两边积分。

例如,考虑一阶常微分方程 dy/dx = x/y,我们可以将其改写为y dy = x dx。

将两边同时积分得到:∫y dy = ∫x dx解这两个积分后得到:y^2/2 = x^2/2 + C其中C为常数。

2.2 变量替换法变量替换法适用于一阶或高阶常微分方程。

它的思想是通过引入新的变量替换原方程,使得新方程容易求解。

例如,考虑二阶常微分方程 y'' + y = 0,我们可以引入新变量 v = y',得到一阶常微分方程 v' + y = 0。

我们可以用分离变量法解得v = -y + C1,再对 v = y' 进一步积分得到 y = -x + C2*e^x,其中 C1 和 C2 是常数。

2.3 特征方程法特征方程法适用于线性常系数常微分方程。

它的基本思想是将未知函数假设为指数函数形式,然后根据方程的特征求解。

例如,考虑二阶常微分方程 y'' + 3y' + 2y = 0,我们可以假设 y= e^(rx),其中 r 是未知常数。

将这个假设带入原方程得到特征方程r^2 + 3r + 2 = 0。

解这个特征方程得到 r1 = -1 和 r2 = -2。

因此,通解可以表示为 y = C1*e^(-x) + C2*e^(-2x),其中 C1 和 C2 是常数。

2.4 数值方法数值方法适用于无法用解析方法求解的微分方程。

线性偏微分方程的解法-分离变量法

线性偏微分方程的解法-分离变量法

由 2.1.1 中 例 题 ( 1 ) 可 知 , 当 f (x,t ) ≡ 0 时 , 定 解 问 题 的 本 征 函 数 族 为
⎨⎧sin ⎩
nπx l
⎬⎫, ⎭
(n
=
1,2,3L)

因此,设
∑ u(x, t )
=

Tn (t)sin
n =1
nπx l
将(12)带入(11)中的泛定方程,得
∑∞
⎡ ⎢Tn
(23)
上述定解问题和初始条件是非齐次的,但边界条件是齐次的,可以用上一小节的本征函数发 或者冲量定理法继续求解。
另一个函数 v(x,t ),可以用线性函数构造,令
v(x,t) = α (t) + β (t) − α (t) x
l
将(24)式带入(23)式,即可求得ω(x,t ),最终由(22)式可得
= 0,
= u1
0,
x=
l
=
0,
⎪ ⎪⎩u1
t=0
=
ϕ (x ),
u1t t=0 = ψ (x),
(16)
( ) ⎪⎪⎨⎧uu
2 tt
2 x

=0
a 2u 2 = 0,
xx = u2
f x,t , x=l = 0,

⎪⎩u2 t =0 = 0,
u
2 t
t=0 =
0,
(17)
齐次方程(16)可用上一小节分离变量法直接求得,方程(17)泛定方程为非齐次,但初始 条件已经转化为齐次。
nπa l
sin
nπx l

(x),
(0 < x < l)
(9)式左边是傅里叶正弦级数展开,因此其系数

偏微分方程的几种解法

偏微分方程的几种解法

偏微分方程的几种解法偏微分方程(Partial Differential Equations, PDEs)是数学中的一个重要分支,广泛应用于物理学、工程学、经济学等领域。

解决PDEs的问题是科学研究和工程实践中的一个关键任务。

本文将介绍几种常见的偏微分方程的解法。

一、分离变量法分离变量法是解偏微分方程最常用的方法之一。

其基本思想是将未知函数表示为一系列互相独立的分离变量的乘积,然后将方程两边同时关于这些变量积分。

这样就可以得到一系列常微分方程,然后通过求解这些常微分方程得到原偏微分方程的解。

例如,对于二维的泊松方程(Poisson Equation)∇²u = f,可以假设u(x, y) = X(x)Y(y),将其代入方程后得到两个常微分方程,然后分别求解这两个常微分方程,最后将其合并即可得到泊松方程的解。

分离变量法的优点是简单易行,适用于一些特定的偏微分方程。

但也存在一些限制,例如只适用于线性齐次方程、边界条件满足一定条件等。

二、变量替换法变量替换法是另一种常见的解偏微分方程的方法。

通过合适的变量替换,可以将原方程转化为一些形式简单的方程,从而更容易求解。

例如,对于热传导方程(Heat Equation)∂u/∂t = α∇²u,可以通过变量替换u(x, t) = v(x, t)exp(-αt)将其转化为∂v/∂t = α∇²v,然后再利用分离变量法或其他方法求解新方程。

变量替换法的优点是可以将一些复杂的偏微分方程转化为简单的形式,便于求解。

但需要根据具体问题选择合适的变量替换,有时可能会引入新的困难。

三、特征线法特征线法是解一阶偏微分方程的一种有效方法。

通过寻找方程的特征线,可以将方程转化为常微分方程,从而更容易求解。

例如,对于一维线性对流方程(Linear Convection Equation)∂u/∂t + c∂u/∂x = 0,其中c为常数,可以通过特征线法将其转化为沿着特征线的常微分方程du/dt = 0,然后求解得到解。

偏微分方程理论与实际问题求解方法研究

偏微分方程理论与实际问题求解方法研究

偏微分方程理论与实际问题求解方法研究导言:偏微分方程(Partial Differential Equations, PDEs)是描述自然现象中变化与发展过程的数学模型,被广泛应用于物理、工程、金融等领域。

解决实际问题涉及到偏微分方程的求解方法研究,既需要深入理解偏微分方程的理论基础,又需要掌握有效的数值计算方法。

本文将对偏微分方程理论与实际问题求解方法展开研究讨论。

1. 偏微分方程的基本理论:1.1 偏微分方程的分类:偏微分方程可分为椭圆型、双曲型和抛物型三种类型。

椭圆型方程描述的是静态问题,如静电场的分布;双曲型方程描述的是波动问题,如声波传播;抛物型方程描述的是扩散和传热问题,如热传导方程。

1.2 解的存在性和唯一性:对于某些偏微分方程,解的存在性和唯一性是一个重要的问题。

根据边界条件、初值条件等给定条件,可以证明方程的解是存在且唯一的。

这为实际问题的数学建模提供了基础。

2. 偏微分方程的求解方法:2.1 分离变量法:对于某些特殊形式的偏微分方程,可以通过分离变量法求解。

该方法通过假设方程的解可以分解为若干个单变量的函数,将偏微分方程转化为一系列常微分方程,并通过求解常微分方程得到解。

2.2 特征线法:双曲型和抛物型偏微分方程常常可以利用特征线法求解。

该方法通过沿着特征线方向引入新的变量,将偏微分方程转化为常微分方程,并通过求解常微分方程得到解。

2.3 变换法:某些偏微分方程可以通过变换法将其转化为简化形式。

常见的变换包括小量变换、相似变量变换、齐次化变换等。

通过变换后的方程求解,可以获得原方程的解。

2.4 数值计算方法:对于复杂的偏微分方程,常常无法得到解析解。

此时需要借助数值计算方法进行求解。

常用的数值方法包括有限差分法、有限元法、有限体积法等。

这些方法将偏微分方程离散化,通过数值近似求解。

3. 实际问题求解方法:3.1 实例1:扩散方程的数值求解扩散方程是描述物质扩散过程的重要方程。

偏微分方程的变量分离法

偏微分方程的变量分离法

偏微分方程的变量分离法偏微分方程(Partial Differential Equations,简称PDE)是数学中的重要分支,广泛应用于物理、工程、经济等领域的建模与分析中。

其中,变量分离法(Separation of Variables)是一种常见且有效的解PDE的方法。

本文将详细介绍偏微分方程的变量分离法及其应用。

一、变量分离法概述偏微分方程是含有多个独立变量和它们的偏导数的方程。

变量分离法的基本思想是将这些变量进行合理的分离,得到多个单变量的常微分方程,再对这些方程进行求解。

通常情况下,变量分离法适用于具有线性的PDE,它将PDE的解转化为一系列的常微分方程的解,通过求解这些常微分方程来得到PDE的解。

二、一维变量分离法案例以一维波动方程为例,来说明一维变量分离法的应用过程。

波动方程是描述波动现象的重要方程,在物理学中有着广泛的应用。

一维波动方程的数学表达式为:∂²u/∂t² = v² ∂²u/∂x²其中,u(x,t)是表示波动的函数,v是波速。

为了使用变量分离法解这个一维波动方程,我们假设u(x,t)可以被分解为两个互不相依的函数U(x)和T(t)的乘积形式:u(x,t) = X(x)T(t)将此形式的解代入波动方程,可以得到两个常微分方程:[T''(t)/T(t)] = (v²X''(x)/X(x)) = -λ²其中λ²是常数。

解这两个方程得到:T''(t)/T(t) = -λ²X''(x)/X(x) = -λ²/v²这两个常微分方程的解分别为:T(t) = A*cos(λvt) + B*sin(λv t)X(x) = C*cos(λx) + D*sin(λx)其中A、B、C、D为待定常数。

将这两个解合并,可以得到原偏微分方程的解:u(x,t) = [A*cos(λvt) + B*sin(λvt)] * [C*cos(λx) + D*sin(λx)]三、二维变量分离法案例除了一维波动方程,变量分离法也可以应用于二维偏微分方程的求解。

第二章 分离变量法

第二章 分离变量法
为加深理解,下面扼要分析一下级数形式解(2.11)得物理意义。先 分析一下级数中每一项 的物理意义。分析的方法时:先固定时间t,看看在任一指定时刻波是 什么形状;再固定弦上一点,看看该点的振动规律。
把括号内的式子改变一下形式,可得 其中,,。
当时间t取定值t0时,得 其中是一个定值。这表示再任一时刻,波的形状都是一些正弦曲线,只 是它的振幅随时间的改变而改变。
如果将初始条件(2.3)代之以,则相应的定解问题的解为 当时,它平均收敛于(2.11)所给的形式解u(x,t)。由于Sn(x,t)既满足方 程(2.1)及边界条件(2.2),有近似地满足初始条件(2.3),所以, 当n很大时,可以把Sn(x,t)看成是原问题的近似解。所谓近似平均收敛的 极限u(x,t),具有实际意义。
ቤተ መጻሕፍቲ ባይዱ解,它的主要步骤大体为:
一、首先将偏微分方程的定解问题通过分离变量转化为常微分方程
的定解问题,这对线性齐次偏微分方程来说是可以做到的。
二、确定特征值与特征函数。由于特征函数是要经过叠加的,所以
确定特征函数的方程与条件,当函数经过叠加之后仍旧要满足。当边界
条件是齐次时,求特征函数就是求一个常微分方程满足零边界条件的非
需要指出的是,当φ(x),ψ(x)不满足这里所述的条件时,由 (2.11~2.12)所确定的函数u(x,t)不具备古典解的要求,它只能是原定 解问题的一个形式解。由实变函数的理论可知,只要φ(x),ψ(x)在 [0,l]上是L2可积的,函数列 分别平均收敛[即按L2中的“距离”(范数)收敛]于φ(x),ψ(x),其 中Ck,Dk由(2.12)确定。
从上面的运算过程可以看出,用分离变量法求解定解问题的关键步 骤是确定特征函数与运动叠加原理,这些运算之所以能够进行,就是因

偏微分方程的解法

偏微分方程的解法
10
只表示P(x)一个确定的函数.
3、一阶线性非齐次微分方程的解法——常数变易法
由方程特点,设一阶线性非齐次微分方程的通解为
y C ( x )e
P ( x ) dx
(5)
对(5)式求导得 P ( x ) dx P ( x ) dx dy C ( x )e P ( x )C ( x )e . (6) dx 将(5)和(6)代入方程(3)并整理得
化简,得
10x 10 y C
(其中C C1 ln10)
把初始条件 y x1 0 代入上式 ,得 C 11.
于是所求微分方程的特解为
10x 10 y 11.
5
二、齐次型微分方程
1. 定义 形如
dy y f( ) dx x ( 2)
的微分方程, 称为齐次型微分方程.
x
用常数变易法,设非齐次方程的通解为
1 y C ( x) 2 x
则 1 2 y C ( x ) 2 3 C ( x ) x x
把 y 和 y 代入原方程并化简 , 得 C ( x) x 1.
1 2 C( x) x x C 两边积分,得 2 1 1 C 因此,非齐次方程的通解为 y 2 2 x x 1 将 初 始 条 件y x 1 0 代 入 上 式 , 得C . 故所求微分方程的特解为 2
2
3.步骤
(1)分离变量,得 dy f ( x )dx g( y ) (2) 两边积分,得
( g ( y ) 0)

(3) 求得积分,得
dy f ( x )dx g( y )
G( y ) F ( x ) C
1 其 中G( y ), F ( x )分 别 是 , f ( x )的 原 函 数 . g( y )

分离变量法解偏微分方程

分离变量法解偏微分方程

•基本思想: 首先求出具有变量分离形式且满足边界条件的特解,然后 由叠加原理作出这些解的线性组合,最后由其余的定解条件 确定叠加系数。
•特点: a.物理上由叠加原理作保证,数学上由解的唯一性作保证; b.把偏微分方程化为常微分方程来处理,使问题简单化。
•适用范围: 波动问题、热传导问题、稳定场问题等
l n at n at Tn (t ) C 'n cos D 'n sin (n 1, 2,3, ) l l n a n a n un ( x, t ) (Cn cos t Dn sin t ) sin x (n 1, 2,3, ) l l l
T ''n (t )

u( x, t ) X ( x)T (t )
带入方程: X ( x)T ''(t ) a2 X ''( x)T (t ) X ''( x) T ''(t ) 令 2 X ( x) a T (t ) X ''( x) X ( x) 0 T ''(t ) a2T (t ) 0 带入边界条件
2 2u u 4 0 x 10, t 0 t 2 10 x 2 , t 0 u (0, t ) u (10, t ) 0, x(10 x) u ( x,0) u ( x,0) 1000 , t 0, 0 x 10 解: u( x, t ) X ( x)T (t ) X (0) 0 u(0, t ) X (0)T (t ) 0 XT 104 X T u(10, t ) X (10)T (t ) 0 X (10) 0 X 1 T 4 X X 0, 0 x 10 X 10 T X (10) 0 X (0) 0, X X 0

分离变量法总结——从理论到实践的偏微分方程定解方法

分离变量法总结——从理论到实践的偏微分方程定解方法

(7)
a
则称 f (x) 是归一化的. 而若对于函数集合 {fi}, 恒有
b
(fi, fj) ≡ fi∗(x)fj(x)dx = δij,
(8)
a
则称此函数集合是正交归一的. √
Example 18.6 函数集合 einx/ 2π, n = 0, ±1, ±2, · · · 在 [−π, π] 上是正交归一的
b
cα = fα∗(x)f (x)dx = (fα, f ).
(11)
a
6
4. 因为
b
n
2
f (x) − cαi fαi (x) dx
a
i=1
n
=(f, f ) − c∗αi (fαi , f )
i=1
n
n
− cαi (f, fαi ) + |cαi |2
i=1
i=1
n
=(f, f ) − |cαi |2,
存在. Proof 由于
b
f1∗(x)f2(x)dx
a
|f1(x)|2 + |f2(x)|2 − 2|f1(x)| · |f2(x)| = |f1(x)| − |f2(x)| 2 ≥ 0
3
因此 所以, 积分 存在. 于是 也存在.
|f1∗(x)f2(x)| = |f1(x)| · |f2(x)| ≤
正交归一 若对于所有的 i 和 j,
(xi, xj ) = δij
则称矢量组 {x1, x2, · · · } 是正交归一的.
正交归一的矢量一定线性无关. 任何一组线性无关的矢量都可以正交归一化.
Schmidt 正交化 任何一组线性无关的矢量 y1, y2, y3, ...

数学物理方程-第二章分离变量法

数学物理方程-第二章分离变量法

第二章 分离变量法分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论.§21 特征值问题⋅2.1.1 矩阵特征值问题在线性代数中,我们已学过线性变换的特征值问题. 设为一阶实矩阵,A n 可视为到自身的线性变换。

该变换的特征值问题(eigenvalue problem )A n R 即是求方程:,,n Ax x x R λ=∈(1.1)的非零解,其中为待定常数. 如果对某个,问题(1.1)有非零解C λ∈λ,则就称为矩阵的特征值(eigenvalue),相应的称为矩阵n x R λ∈λA n x R λ∈的特征向量(eigenvector). 一般来讲,特征值问题(1.1)有不多于个相A n 异的特征值和线性无关的特征向量. 但可证明: 任一阶矩阵都有个线性无n n 关的广义特征向量,以此个线性无关的广义特征向量作为的一组新基,矩n n R 阵就能够化为标准型.Jordan 若为一阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正A n 交矩阵使得T , 1T AT D -=(1.2)其中diag 为实对角阵. 设,为矩阵的第列D =12(,,...,)n λλλ12[ ... ]n T T T T =i T T i 向量,则式(1.2)可写为如下形式(1)i n ≤≤ ,1212 [ ... ][ ... ]n n A T T T T T T D =或, 1.i i i A T T i n λ=≤≤(1.3)上式说明,正交矩阵的每一列都是实对称矩阵的特征向量,并且这T A 个特征向量是相互正交的. 由于此结论在一定意义下具有普遍性,我们以定n 理的形式给出.定理1.1 设为一阶实对称矩阵,考虑以下特征值问题A n ,,n Ax x x R λ=∈则的所有特征值为实数,且存在个特征向量,它们是相互正交的A n ,1i T i n ≤≤(正交性orthogonality ),可做为的一组基(完备性completeness ).n R 特征值问题在线性问题求解中具有重要的意义,下面举例说明之.为简单起见,在下面两个例子中取为阶非奇异实矩阵,故的所有特A n A 征值非零,并且假设有个线性无关的特征向量 相应的特征值为A n ,i T ., 1i i n λ≤≤例1.1 设,求解线性方程组 .n b R ∈Ax b =解 由于向量组线性无关,故可做为的一组基. 将按此{1}i T i n ≤≤n R ,x b 组基分别展开为,则等价于11 ,nni i i i i i x x T b bT ====∑∑Ax b =,11nni ii ii i x AT bT ===∑∑或,11nni i ii ii i x T bT λ===∑∑比较上式两边的系数可得i T ,1, 1i i i x b i n λ-=≤≤便是原问题的解.12( ... )n x x x x T =例1.2 设,. 求解非齐次常微0n x R ∈12()((),(),...,()), 0n n f t x t x t x t R t T =∈>分方程组, 0(), (0)dxAx f t x x dt=+=(1.4)其中 . '''12((),(),...,()),0n dx x t x t x t t dtT =>解 类似于上例,将按基分别展开为0,,()x x f t {1}i T i n ≤≤ .0111, , ()()nn n i i i ii i i i i x x T x x T f t f t T ======∑∑∑则(1.4)等价于,0111()() +(), (0), 1n n ni i i i i i i i i i i dx t T x t AT f t T x x i n dt =====≤≤∑∑∑或,011()(()()), (0),1nni i i i i i i i i i dx t T x t f t T x x i n dt λ===+=≤≤∑∑比较上式两边的系数可得i T . 0()()(), (0), 1i i i i i i dx t x t f t x x i n dtλ=+=≤≤(1.5)(1.5)是个一阶线性方程的初始值问题,很容易求出其解.请同学们给出解n 的具体表达式.(),1i x t i n ≤≤2.1.2 一个二阶线性微分算子的特征值问题在这一小节,我们讨论在本章常用的一些特征值问题. 代替上节的有限维线性空间和阶实对称矩阵,在这儿要用到线性空间的某个子空间n R n A [0,]C l 和该子空间上的二阶线性微分算子. 一般地取H A在满足齐次边界条件.2{()[0,]()H X x C l X x =∈0,x l =}(1.6)下面我们讨论二阶线性微分算子的特征值问题. 先取边界条件为22d A dx=-,设是的特征函数,即且满足(0)0,()0X X l ==()X x H ∈A ()0X x ≠.()()AX x X x λ=此问题等价于是下面问题的非零解()X x "()()0, 0(0)()0 .X x X x x l X X l λ⎧+=<<⎨==⎩(1.7)(1.7)便是二阶线性微分算子的特征值问题,即要找出所有使22d A dx=-得该问题有非零解的. 下面求解特征值问题(1.7).λ首先证明要使(1.7)具有非零解,必须非负.λ设是相应于的一个非零解,用乘(1.7)中的方程,并在)(x X λ)(x X 上积分得[]l ,0,0)()()()("=+x X x X x X x X λ,0)()()( 0 2 0 "=+⎰⎰dx x X dx x X x X llλ.0)())(()()( 0 2 0 2'0'=+-⎰⎰dx x X dx x X x X x X lll λ由于,故有0)()0(==l X X ,2'2 0()(())llX x dx X x dx λ=⎰⎰.'22 0(())()0llX x dxX x dx λ=≥⎰⎰(1.8)当时,方程的通解为. 利用边界条件0λ=0)()("=+x X x X λ12()X x c c x =+可得,即. 因此,不是特征值.0)()0(==l X X 120c c ==()0X x =0λ=当时,方程的通解为0λ>0)()("=+x X x X λ. (1.9x C x C x X λλsin cos )(21+=)利用边界条件确定常数如下0)()0(==l X X 21,C C , ,10C =l C l C λλsin cos 021+=或.0sin 2=l C λ由于要求(1.7)中齐次微分方程的非零解,故不能为零. 故有2C .0sin =l λ,从而有0> , ,πλn l =1n ≥, .2)(ln n πλ=1n ≥将代入到(1.8)中,并略去任意非零常数得n C C λ,,212C , .x ln x X n πsin)(=1n ≥故特征值问题(1.7)的解为, , 2(l n n πλ=x ln x X n πsin )(=1n ≥(1.10)注1 特征值问题是分离变量法的理论基础. 上面已求出特征值问题(1.7)的解为. 在高等数学中知道,在一定条件下区间{ sin 1 }n x n lπ≥的任一函数可按特征函数系展开为Fourier 级数. 换言[0 , ]l { sin 1 }n x n lπ≥之,特征函数系是区间上满足一定条件的函数所成无穷维空间的一组基,{ sin 1 }n x n lπ≥[0 , ]l 而且还是该空间上的一组正交基,即有. 特征函0sinsin 0 , ln m x n m l lππ=≠⎰数系的这两个根本性质:正交性和完备性(基),和定理1.1{ sin1 }n x n lπ≥有限维空间中相应结论很相似,只是现在的特征值和特征函数是无穷个. 另n R 外,若改变(1.7)中的边界条件,其相应的特征值和特征函数也会有所变化.如将边界条件变为,则特征值和特征函数分别为(0)0,'()0X X l ==. 2(21)(21)(),()sin ,022n n n n X x x n l lππλ++==≥该特征函数系也具有和特征函数系类似(21){ sin1 }2n x n l π+≥{ sin 1 }n x n lπ≥的性质,既正交性和完备性.此类问题的一般结果便是著名的Sturm—Liouville定理,有兴趣的同学可参阅参考文献.[1][4]-将以上的结果以定理的形式给出.定理1.2 考虑二阶线性微分算子的特征值问题[1],[4]22d A dx=- "()()()()0 , 0 ,(0)0,()0 .k m X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩(1.11)其中. 则该问题的特征值非负,且满足0,1k m ≤≤.120......n λλλ≤<<<<→∞相应的特征函数系在上是相互正交的. 且对于任一在区间上1{()}n n X x ≥[0,]l [0,]l 分段光滑的函数,可按特征函数系展开为如下的级数()f x 1{()}n n X x ≥Fourier ,1()()n n n f x f X x ∞==∑其中系数为Fourier .20()(), 1()l nn lnf x Xx dxf n Xx dx =≥⎰⎰为后面需要,下面再求解二阶线性微分算子带有周期边界条件的22d A dx=-特征值问题. 在偏微分方程教材中,习惯上用表示周期函数,即考虑下面()θΦ二阶线性微分算子的周期边值问题22d A dx=- "()()0, () (2), .θλθθθπθθ⎧Φ+Φ=-∞<<+∞⎨Φ=Φ+-∞<<+∞⎩(1.12)可证(1.12)和以下问题等价"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩(1.13)和(1.8)的证明相似易得(1.13)中的特征值.当时,0≥λ0λ=, 由周期边界条件可得. 所以为特征函数.12()c c θθΦ=+20c =0()1θΦ=当时,方程通解为0λ>,θλθλθsin cos )(21c c +=Φ求导得.'()c c θΦ=-+由周期边界条件可得112cos(2sin(2c c c c c c ππ⎧=+⎪⎨=-+⎪⎩或1212[1cos(2sin(20sin(2[1cos(20.c c c c ππ⎧--=⎪⎨+-=⎪⎩(1.14)由于要求非零解,故不能同时为零. 因此,齐次方程组(1.14)的系数矩12,c c 阵行列式必为零,即 .解之可得1cos(20-=,2n n =λ()cos sin .n n n c n d n θθθΦ=+此时对每个正特征值,特征函数有二个,既,. 总结所得2n n =λθn cos θn sin 结果为如下定理.定理1.3 考虑二阶线性微分算子带有周期边界条件的特征值问22d A d θ=-题"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩则该问题的特征值和特征函数分别为,.00,λ=0()1;θΦ=2n n =λ(){cos ,sin }, 1n n n n θθθΦ=≥§22 分离变量法⋅本节结合具体定解问题的求解来介绍分离变量法(method of separation of variables ). 所举例子仅限于一维弦振动方程,一维热传导方程混合问题以及平面上一些特殊区域上的位势方程边值问题. 对高维问题的处理放在其它章节中介绍.以下多数例子均假定定解问题带有齐次边界条件. 否则,可利用边界条件齐次化方法转化之. 我们以弦振动方程的一个定解问题为例介绍分离变量法.2.2.1 弦振动方程定解问题例2.1求解两端固定弦振动方程的混合问题2(,), 0, 0 (2.1)(0,)0, (,)0, 0 (2.2)(,0)(), (,0)(),0. tt xx t u a u f x t x l t u t u l t t u x x u x x x l ϕψ-=<<>==≥==≤≤ (2.3)⎧⎪⎨⎪⎩解 分四步求解.第一步 导出并求解特征值问题. 即由齐次方程和齐次边界条件,利用变量分离法导出该定解问题的特征值问题并求解.令,并代入到齐次方程中得)()(),(t T x X t x u =,0)()()()(''2''=-t T x X a x X t T 或.''''2()()()()X x T t X x a T t =上式左端是的函数而右端是的函数,要二者相等,只能等于同一常数.x t 令此常数为-,则有λ , ,λ-=)()("x X x X "2()()T t a T t λ=-上面的第一个方程为.0)()("=+x X x X λ利用齐次边界条件(2.2),并结合得0)(≠t T .0)()0(==l X X 由此便得该定解问题的特征值问题为"()()0, 0(0)()0.X x X x x l X X l λ⎧+=<<⎨==⎩其解为特征值:特征函数: 2() , 1 ;n n n lπλ=≥()sin, 1 .n n X x x n lπ=≥第二步 正交分解过程. 即将初值和自由项按特征函数系展成{}1()n n X x ≥Fourier 级数,并将也用特征函数表出.),(t x u {}1()n n X x ≥ ,11()()sinn n n n n n x X x x lπϕϕϕ∞∞====∑∑(2.4), 11()()sinn n n n n n x X x x lπψψψ∞∞====∑∑(2.5), 11(,)()()()sinn n n n n n f x t f t X x f t x lπ∞∞====∑∑(2.6)(2.711(,)()()()sinn n n n n n u x t T t X x T t x lπ∞∞====∑∑)这里,和分别为,和的Fourier 系数,具体表示如n ϕn ψ)(t f n )(x ϕ)(x ψ),(t x f 下,02()sin l n n d l l πϕϕααα=⎰,02()sin l n n d l l πψψααα=⎰,02()(,)sin l n n f t f t d l lπααα=⎰而为待定函数.)(t T n 第三步 待定系数法. 即先将和的Fourier 级数代入到(2.1)),(t x f ),(t x u 中,导出关于满足的常微分方程. 再利用初值条件(2.3)得出满足)(t T n )(t T n 的初始条件.假设(2.7)中的级数可逐项求导,并将(2.6)和(2.7)代入到(2.1)中得,"2"111()()()()()()nnnnn n n n n T t Xx aT t Xx f t X x ∞∞∞===-=∑∑∑,"2111()()()(())()()nnn nnn n n n n T t Xx aT t Xx f t X x λ∞∞∞===--=∑∑∑ . (2.8"211(()())()()()nn n n n n n n T t a T t X x f t X x λ∞∞==+=∑∑)由于Fourier 展式是唯一的,比较(2.8)两端系数得)(x X n(2.9"2()()(), 1.n n n n T t a T t f t n λ+=≥)在(2.7)中令并结合(2.4)得0=t (2.10()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑)比较(2.10)两端系数得)(x X n(0), 1.n n T n ϕ=≥(2.11)类似地可得'(0), 1.n n T n ψ=≥(2.12)结合(2.9),(2.11)和(2.12)便得出关于满足的二阶常系数非齐)(t T n (1)n ≥次方程初始值问题"2'()()(), 0(0), (0).n n n n n n n n T t a T t f t t T T λϕψ⎧+=>⎪⎨==⎪⎩(2.13)第四步 求解关于的定解问题(2.13),并将其结果代入到(2.7)中)(t T n 即可.为简单起见,我们设. 将代入到(2.13)中可得方程的通()0,1n f t n =≥n λ解为, t lan d t l a n c t T n n n ππsin cos)(+=利用初始条件确定常数如下,n n c d.'(0), (0)n n n n nn aT c T d lπϕψ====故有. ()cossin n n n l n a n a T t t t l n a lψππϕπ=+最后将上式代入到(2.7)中便得定解问题(2.1)—(2.3)的解为12(,)()sin cos sin l n n n a n u x t d t xlll lπππϕααα∞==∑⎰ (2.14)012()sin sin sin l n n n a n d t x n a l l l πππψαααπ∞=+∑⎰注1 利用分离变量法求解(2.1)—(2.3),需要假设在(2.7)中可通过无穷求和号逐项求导. 而通过号求导要对无穷级数加某些条件,在这里就∑∑不做专门讨论了. 今后遇到此类问题,我们均假设一切运算是可行的,即对求解过程只作形式上的推导而不考虑对问题应加什么条件. 通常称这样得出的解为形式解. 验证形式解是否为真解的问题,属于偏微分方程正则性理论的范围. 一般地讲,偏微分方程定解问题的解大多数是以无穷级数或含参变量积分形式给出的. 对这两类函数可微性的研究需要较深的数学知识,也有一定的难度,有兴趣的同学可查阅参考文献和. 我们约定:本书只求定解问题的形式解.[1][2]注2 当时,由(2.14)可以看出:两端固定弦振动的解是许多(,)0f x t =简单振动的叠加,当时,对任意的(,)()sinn n n u x t T t x l π=(11)k klx x k n n==≤≤-时刻,,即在振动的过程中有个点永远保持不动,所t (,)0n k u x t =(,)n u x t (1)n +以称这样的振动为驻波,而称为该驻波的节点.显然当k x 时,在这些点上振幅最大,称这些点为驻波的21(11)2k x l k n n+=≤≤-sin 1x =腹点. 因此,求特征函数实际上就是求由偏微分方程及边界条件所构定的系统所固有的一切驻波. 利用由系统本身所确定的简单振动来表示一些复杂的振动,便是分类变量法求解波动问题的物理解释.注3 例2.1的求解方法也叫特征函数法(eigenfunction method ),现已成为固定模式,也具有普适性. 初学者似乎会感到有些繁琐,但随着进一步的学习,同学们就会熟练掌握这一方法. 特征函数法的关键之处是求解偏微分方程定解问题相应的特征值问题,而基本思想就是笛卡尔(Descartes )坐标系的思想.如在三维空间中,每个向量可由基的线性组合表出,两个向量3R {,,}i j k 111222 , a i b j c k a i b j c kαβ=++=++相等当且仅当在基下两个向量的坐标相等. 既.{,,}i j k121212 , , a a b b c c ===与此相类似,在例2.1求解中也是比较方程或初始条件两边的系数而得()n X x 到(2.13). 与三维空间相比较,例2.1中特征函数系相当3R { sin1 }n x n lπ≥于3R 中的基,而也就相当于上面的,即定解问题的解{,,}i j k{ T () 1 }n t n ≥111{,,}a b c 关于基函数的坐标. 因此,在具有可数基的无穷维空间中,特{ sin1 }n x n lπ≥征函数法也称为待定系数法.例2.2 设有一均匀细弦,其线密度为. 若端为自由端,端固ρ0x =x l =定.初始速度和初始位移分别为零,并受到垂直于弦线的外力作用,其单位长度所受外力为. 求此弦的振动. sin t ω 解 所求定解问题为(2.1521 sin , 0, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x t u a u t x l t u t u l t t u x u x x l ρω-⎧-=<<>⎪==≥⎨⎪==≤≤⎩)利用特征函数法求解该问题.情形1 非共振问题,即.22, 0n a n ωλ≠≥ 该定解问题的特征值问题为(2.16)"'()()0, 0(0)0, ()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩其解为, , 2(21)()2n n l πλ+=(21)()cos 2n n X x x lπ+=0n ≥将按特征函数展开成Fourier 级数得1sin t ρω-{}0)(≥n n x X , (2.17)11sin ()()n n n t f t X x ωρ∞==∑.021214()sin sin sin sin 2(21)l n n n f t t d t f t l l n ωπααωωρπρ+===+⎰令(,)()()n n n u x t T t X x ∞==∑(2.18)完全类似例2.1的求解过程可得,对于任意满足下面问题0, ()n n T t ≥(2.19"2'()()sin , 0(0)0, (0)0.n n n n n n T t a T t f t t T T λω⎧+=>⎪⎨==⎪⎩)初值问题(2.19)中齐次方程的通解为,12()cos sin n T t c c =+而非齐次方程的一个特解为.22()sin nn n f T t t a ωλω=-因此,(2.19)的通解为. 1222()cos sin sin nn n f T t c c t a ωλω=++-(2.20)由初始条件可确定出120, c c ==最后将所得到的代入到(2.18)中便得(2.15)的解.()n T t 情形2 共振问题,即存在某个 使得.0,n ≥22n a ωλ=不妨假设.此时,在情形1中求解所得到的不变.220a ωλ={ T () 1 }n t n ≥当时,要求解以下问题0n = "2000'00()()sin , 0(0)0, (0)0.T t T t f t t T T ωω⎧+=>⎪⎨==⎪⎩(2.21)(2.21)中齐次方程通解为.012()cos sin T t c t c t ωω=+为求得非齐次方程的一个特解,要将(2.21)中方程的自由項换为,而求0i t f e ω以下问题的一个特解"2000()().i t T t T t f e ωω+=令并代入到上面非齐次方程中可得 ,故有()i t T t Ate ω=02f iA ω=-,00()sin cos 22f t f tT t t i t ωωωω=-取其虚部便得(2.21)中方程的一个特解为. 00()Im(())cos 2f tT t T t t ωω==-结合以上所得结果便可得到(2.21)中方程的通解为,0012()cos sin cos 2f tT t c t c t t ωωωω=+-由初始条件确定出 ,由此可得01220, 2fc c ω==.0002()sin cos 22f f tT t t t ωωωω=-将代入到(2.18)中便得在共振条件下(2.15)的解为()n T t 000102112(,)()()()()()()(sin cos )cos ()()222 (,)(,) .n n n n n n n n n u x t T t X x T t X x T t X x f f t t t x T t X x l u x t u x t πωωωω∞=∞=∞===+=-+=+∑∑∑可以证明: 是有界的. 而在的表达式中取 ,则2(,)u x t 1(,)u x t 2k k t πω=中的基本波函数的振幅当逐渐变大时将趋于无穷大,最1(,)u x t cos2x lπ0()k T t k 终要导致弦线在某一时刻断裂,这种现象在物理上称为共振. 注意到在上面求解过程中我们取周期外力的频率等于系统的第一固有频率ω波函数分量上发生共振. 一般地讲,当周期外力的频率很接近或等于系统的ω某个固有频率时,系统都会有共振现象发生,即弦线上一些点的振幅将随着时间的增大而不断变大,导致弦线在某一时刻断裂.2.2.2 热传导方程定解问题例2.3 求解下面热方程定解问题(2.2220, 0, 0 (0,), (,)sin , 0(,0)0, 0.t xx x u a u x l t u t u u l t t t u x x l ω⎧=<<>⎪==≥⎨⎪=≤≤⎩)解 利用特征函数法求解(2.22).首先将边界条件齐次化,取,并令,则0(,)sin w x t u x t ω=+w u v -=(2.22)转化为(2.2320cos , 0, 0 (0,)0, (,)0, 0(,0), 0.t xx x v a v x t x l t v t v l t t v x u x l ωω⎧-=-<<>⎪==≥⎨⎪=-≤≤⎩)利用分离变量法可得(2.23)的特征值问题为"()()0, 0(0)0, '()0.X x X x x l X X l λ⎧+=<<⎨==⎩特征值和特征函数分别为,2(21)()2n n lπλ+=0≥n .(21)()sin 2n n X x x lπ+=0≥n 将,按特征函数展成Fourier 级数(,)cos f x t x t ωω=-0)(u x -=ϕ{}0)(≥n n x X 得, (2.24)cos ()()n n n x t f t X x ωω∞=-=∑,02(21)()(1)cos sin cos 2l n n n f t t d f t l lπωαωααω+=-=⎰其中. 1228(1)(12)n n l f n ωπ+-=+ , (2.25)00n n n u X ϕ∞=-=∑其中.00042(21)()sin 2(12)l n u n u d l l n πϕααπ-+=-=+⎰令(2.26)(,)()(), n n n v x t T x X x ∞==∑并将(2.26)代入到(2.23)中的方程得,'2"()()()()cos ()nnnnn n n n n T t Xx aT t Xx f tX x ω∞∞∞===-=∑∑∑.'2(()())()cos ()nn nnn n n n T t a T t Xx f tX x λω∞∞==+=∑∑在(2.26)中令并结合(2.25)得0=t .()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑比较上面两式中特征函数的系数便得()n X x(2.27'2()()cos , 0(0).n n n n n n T t a T t f t t T λωϕ⎧+=>⎪⎨=⎪⎩)(2.27)是一阶常系数常微分方程初值问题.齐次方程通解为.t a n n Ce t T λ2)(-=令,并利用待定系数法求特解可得()cos sin n T t A t B t ωω=+ ,2242242()cos sin n n nn n na f f T t t t a a λωωωωλωλ=+++故有(2.2822242242()cos sin n a tn n nn n na f f T t Cet t a a λλωωωωλωλ-=++++)在上式中代得0t =,2242n nn na f C a λϕωλ=++ . 2242n nn na f C a λϕωλ=-+最后将(2.28)代入到(2.26)中便得(2.23)的解为.0(21)(,)()sin2n n n v x t T t x lπ∞=+=∑故(2.21)的解为),(),(),(t x w t x v t x u +=0 (,)sin v x t u x t ω=++其中由(2.28)给出. )(t T n2.2.3 平面上位势方程边值问题考虑矩形域上Poisson 方程边值问题1212(,), , (,)(), (,)(), (,)(), (,)(), .xx yy u u f x y a x b c y d u a y g y u b y g y c y d u x c f x u x d f x a x b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2.29)我们假设或. 否则,利用边界条件齐次化方法0)()(21==x f x f 0)()(21==y g y g 化非齐次边界条件为齐次边界条件. 当然,也可以利用叠加原理将(2.29)分解为二个问题,其中一个关于具有齐次边界条件,而另一个关于具有齐次边x y 界条件.例2.4 求解Dirichlet 问题(2.300, 02, 0 1 (0,)0, (2,)0, 01(,0)1, (,1)(1), 0 2.xx yy u u x y u y u y y u x u x x x x +=<<<<⎧⎪==≤≤⎨⎪==-≤≤⎩)解 令并将其代入到(2.29)中齐次方程得)()(),(y Y x X y x u =,0)()()()(""=+y Y x X y Y x X ,λ-=-=)()()()(""y Y y Y x X x X (2.31"()()0, 0 2(0)0, (2)0.X x X x x X X λ⎧+=<<⎨==⎩)0)()("=-y Y y Y λ(2.32)(2.31)便是(2.30)的特征值问题,其解为, , .2)2(πλn n =x n x X n 2sin)(π=1≥n 将代入到(2.32)中得n λ ,0)()("=-y Y y Y n λ(2.33)该方程有两个线性无关解,. 由于,也是(2.33)的y n e2πy n e2π-2n shy π2n ch y π解且线性无关,故(2.33)通解为.y n ch d y n shc y Y n n n 22)(ππ+=令(2.34)11(,)()()()sin 222n n n n n n n n n u x y X x Y y c shy d ch y x πππ∞∞====+∑∑则满足(2.30)中方程和关于的齐次边界条件. 利用关于的边界条),(y x u x y 件可如下确定,,n c n d ,∑∞==12sin1n n x n d π . (2.35))1(1(22sin12220n n n d n d --=⨯=⎰πααπ),x n n ch d n shc x x n n n ∑∞=+=-12sin )22()1(πππ . 22))1(1(22)1(416)1(163322ππππππn sh n chn n sh n n c n nnn -------=(2.36)故(2.30)解为(2.371(,)()sin ,222n n n n n n u x y c shy d ch y x πππ∞==+∑)其中,由(2.36)和(2.35)确定.n c n d 对于圆域,扇形域和圆环域上的Poisson 方程边值问题,求解方法和矩形域上的定解问题无本质区别,只是在此时要利用极坐标.同学们自己可验证:令,作自变量变换,则有θρcos =x θρsin =y .θθρρρρρu u u u u yy xx 211++=+令,将其代入到极坐标下的Laplace 方程中得)()(),(θρθρΦ=R u 222330216(1)164(1)(1)sin ,2222n nn n n n n n c sh d ch d n ππππααααπ----+=-=⎰,"'"211()()()()()()0R R R ρθρθρθρρΦ+Φ+Φ=,"'"211(()())()()()0R R R ρρθρθρρ+Φ+Φ=,"'"21()()()1()()R R R ρρθρλθρρ+Φ=-=-Φ故有, (2.380)()("=Φ+Φθλθ). (2.390)()()('"2=-+ρλρρρρR R R )方程(2.38)结合一定的边界条件便得相应定解问题的特征值问题,而(2.39)是欧拉(Euler )方程. 对(2.39)作自变量变换可得s e =ρ , ,s e =ρρln =s ,'1s dR dR ds R d ds d ρρρ==.2222'''2222211()ss s d R d R ds dR d s R R d ds d ds d ρρρρρ=+=-将以上各式代入到(2.39)得. (2.40''0ss R R λ-=)例2.5 求下面扇形域上Dirichlet 问题(2.4122220, 0, 0, 4(,0)0, 0 2(0,)0, 0 2 (,), 4. xx yy u u x y x y u x x u y y u x y xy x y ⎧+=>>+<⎪=≤≤⎪⎨=≤≤⎪⎪=+=⎩)的有界解.解 令,作自变量变换,(2.41)转化为θρcos =x θρsin =y(2.42)2110, 0, 0 2 2(,0)0, (,0, 022(2,)2sin 2, 0.2u u u u u u ρρρθθπθρρρπρρρπθθθ⎧++=<<<<⎪⎪⎪==≤≤⎨⎪⎪=≤≤⎪⎩令代入到(2.42)中的方程,并结合边界条件可得)()(),(θρθρΦ=R u"()()0, 0<</2(0)0, (/2)0.θλθθππ⎧Φ+Φ=⎨Φ=Φ=⎩(2.43). (2.440)()()('"2=-+ρλρρρρR R R )(2.43)便是(2.42)的特征值问题.求解特征值问题(2.43)可得, , .224)2/(n n n ==ππλθθn n 2sin )(=Φ1≥n 将代入到(2.44)中,并令作自变量变换可得n λs e =ρ,"240ss R n R -=.2222()ns ns n n n n n n n R c e d e c d ρρρ--=+=+由于是求(2.42)的有界解,故有,即. 从而有∞<)0(R 0=n d .n n n c R 2)(ρρ= 上面求出的对每个都满足(2.42)中的方程和齐(,)()()n n n u R ρθρθ=Φ1n ≥次边界条件,由叠加原理得, (2.45∑∑∞=∞==Φ=1212sin )()(),(n n n n n n n c R u θρθρθρ)也满足(2.42)中的方程和齐次边界条件.为使(2.42)中的非齐次边界条件得以满足,在(2.45)中令得(2,)2sin u θθ=2ρ= ,212sin 22sin 2n n n c n θθ∞==∑(2.46)比较上式两边特征函数的系数得θθn n 2sin )(=Φ , .112c =1)( 0≠=n c n 将,代入到(2.45)中便得(2.42)的解为1c 1)(≠n c n . θρθρ2sin 21),(2=u 例2.6 求解圆域上Dirichlet 问题2110, 0, 02(,)(), 02.u u u a u a ρρρθθρθπρρθϕθθπ⎧++=<<≤<⎪⎨⎪=≤≤⎩(2.47)解 圆域上的函数相当于关于变量具有周期. 令(,)u ρθθ2π并代入到(2.46)中的方程可得)()(),(θρθρΦ=R u(2.48"()()0() (2).θλθθπθ⎧Φ+Φ=⎨Φ=Φ+⎩). (2.490)()()('"2=-+ρλρρρρR R R )(2.48)是定解问题(2.47)的特征值问题. 由定理1.3知(2.48)的解为.2, ()cos sin , 0n n n n n c n d n n λθθθ=Φ=+≥将代入到(2.49)中可得(要利用自然边界条件)n λ(0,)u θ<∞,,00)(c R =ρn n n c R ρρ=)(1≥n 利用叠加原理可得(2.47)的如下形式解.∑∞=++=10)sin cos (),(n n n n n d n c c u θθρθρ(2.50)根据边界条件得)(),(θϕθ=a u ,01()(cos sin )n n n n c a c n d n ϕθθθ∞==++∑其中,2001()2c d πϕττπ=⎰,⎰=πτττϕπ20cos )(1d n a c n n .⎰=πτττϕπ20sin )(1d n a d n n 将以上各式代入到(2.50)中便得(2.47)的解为2 2 0 0111(,)()()(()cos cos 2n n u d n d n a ππρρθϕττϕτττθππ∞==+∑⎰⎰ .)sin sin )(12 0 ⎰+πθτττϕπn d n (2.51)注4 利用等式可将(2.51)化为如下形)Re()(cos 1)(1∑∑∞=-∞==-n in n n n e c n c τθτθ式(2.522222201()()(,),22cos()a u d a a πρϕτρθτπρρθτ-=+--⎰)式(2.52)称为圆域上调和函数的Poisson 公式. 在后面学习中还将用其它方法导出它. 注5 在例2.5和例2.6中,如果方程中自由项不为零,若),(θρf 特殊,可用函数代换将自由项化为零而转化齐次方程. 对于一般的),(θρf ,要利用特征函数方法求解.),(θρf 注6 上面例2.3—例2.6几个定解问题的求解思想和主要过程,是伟大的数学家和物理学家Fourier 给出的,详细内容见参考文献. 在这部著名论著[5]中,Fourier 首次利用偏微分方程来研究热问题,并系统地介绍了分离变量法的基本思想和主要步骤. 结合本节所举例子,请同学们小结一下在本章所学过的特征值问题,二阶常系数非齐次常微分方程和欧拉方程的求解方法. 习 题 二1. 设有如下定解问题2(,), 0, 0 (0,)0, (,)0, 0(,0)(), (,0)(), 0.tt xx x t u a u f x t x l t u t u l t t u x x u x x x l ϕψ⎧-=<<>⎪==≥⎨⎪==≤≤⎩利用分离变量法导出该定解问题的特征值问题并求解.2.求解下列特征值问题 (1) "''()()0, 0 (0)()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩ (2) "()()0, 1 1 (1)0,(1)0X x X x x X X λ⎧+=-<<⎨-==⎩ (3) "()()0, 0 '(0)0, ()0.X x X x x l X X l λ⎧+=<<⎨==⎩ (4) "()()0, 02 (0)(2), '(0)'(2).X x X x x l X X l X X l λ⎧+=<<⎨==⎩3 考虑下面特征值问题*"()()0, 0 (0)0, '()()0.X x X x x l X X l X l λ⎧+=<<⎨=+=⎩(1)证明一切特征值0.λ>(2)证明不同的特征值对应的特征函数是正交的.(3)求出所有的特征值和相应的特征函数.4. 设在区间一阶连续可导且 考虑如下特(),()p x q x [0,]l ()0,()0.p x q x >≥征值问题[()()]()()(), 0 (0)0, ()0.d d p x X x q x X x X x x l dx dx X X l λ⎧-+=<<⎪⎨⎪==⎩(1)证明一切特征值0.λ≥(2)证明不同的特征值对应的特征函数是正交的.5.求解下列弦振动方程的定解问题(1)20, 0<, 0(0,)0, (,)0, 0(,0), (,0)0, 0.tt xx x x t u a u x l t u t u l t t u x x u x x l ⎧-=<>⎪==≥⎨⎪==≤≤⎩ (2) 20, 0<, 0(0,)0, (,)0, 035(,0)sin , (,0)sin , 0.22tt xx x t u a u x l t u t u l t t u x x u x x x l l l ππ⎧⎪-=<>⎪==≥⎨⎪⎪==≤≤⎩(3) 240, 0<1, 0(0,)0, (1,)0, 0(,0), (,0)0, 0 1.tt xx t u u u x t u t u t t u x x x u x x ⎧-+=<>⎪==≥⎨⎪=-=≤≤⎩(4) 242sin , 0<, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x x t u u u x x t u t u t t u x u x x πππ⎧--=<>⎪==≥⎨⎪==≤≤⎩(5) 22, 0, 0 (0,) (,)0, 0(,0)0, (,0), 0.tt xx x t u a u x l t u t u l t t u x u x A x l ⎧-=<<>⎪==≥⎨⎪==≤≤⎩6.求解下列热传导方程的定解问题(1) 2cos , 0<, 02(0,)1, (,), 0(,0)0, 0<.t xx x x u a u x t u t u t t u x x ππππ⎧-=<>⎪⎪==≥⎨⎪=<⎪⎩(2) 22, 0<1, 0(0,)0, (1,)0, 0(,0)sin , 0< 1.t xx x u a u u x t u t u t t u x x x π⎧-=<>⎪==≥⎨⎪=<⎩(3) 220, 0<, 0(0,)0, (,)0, 0(,0)(), 0.t xx u a u b u x l t u t u l t t u x x x l ϕ⎧-+=<>⎪==≥⎨⎪=≤≤⎩(4) 2, 0, 0 (0,)0, (,)0, 0(,0)1, 0.t xx x x u a u xt x l t u t u l t t u x x l ⎧-=<<>⎪==≥⎨⎪=≤≤⎩7. 求解下面位势方程定解问题(1) , 0, 0 (,0)0, (,)0, 0(0,)0, (,), 0.xx yy y y u u x x a y b u x u x b x a u y u a y Ay y b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2)22220, 0, , 4 (,0)0, 02, (,)0, 0(,), 4.xx yy u u y x y x y u x x u x x x u x y x y x y ⎧+=>>+<⎪⎪=≤≤=≤≤⎨⎪=++=⎪⎩(3) 22220, 4 (,)1, 4.xx yy u u x y u x y x x y ⎧+=+<⎪⎨=++=⎪⎩(4) 222222, 1< 4 (,)0, 1 (,), 4.xx yy u u xy x y u x y x y u x y x y x y ⎧+=+<⎪⎪=+=⎨⎪=++=⎪⎩8 设在区间的Fourier 展开式为 *()x ϕ[0,]l 1()sin ,k k k x x c l πϕ∞==∑(6.1)其部分和为 求解或证明以下结果.1()sin ,n n k k k x S x c l π==∑(1)设,求.()[0,]x C l ϕ∈20[()()]l n x S x dx ϕ-⎰(2)证明下面贝塞尔(Bessel )不等式 22012().l k k c x dx l ϕ∞=≤∑⎰(6.2)(3)设,的二阶导数的Fourier 展开式为2()[0,]x C l ϕ∈()x ϕ1''()sin ,n n n x x d l πϕ∞==∑如果 ,利用分部积分法证明(0)()0l ϕϕ==2, 1,n n d An c n =≥(6.3)其中为正常数.A (4)利用(6.2)和(6.3)证明(6.1)中的三角级数在区间上一致[0,]l 收敛,并且可以逐項求导.9 考虑如下定解问题* 2, 0, 0 (0,)0, (,)0, 0(,0)(), 0.t xx x x u a u x l t u t u l t t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)当经过充分长的时间后,导热杆上的温度分布如何?(,)u x t (3)求极限.lim (,)t u x t →+∞10 考虑如下定解问题*2, 0, 0 (0,), (,), 0(,0)(), 0.t xx x u a u x l t u t A u l t B t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)求极限.lim (,)t u x t →+∞11 考虑下面定解问题 *20, 0<, 0(0,)(,)0, 0(,0), (,0)0, 0.tt xx t t u u u u x t u t u t t u x x u x x πππ-++=<>⎧⎪==≥⎨⎪==≤≤⎩(1)解释该定解问题方程中各项的物理意义.(2)推导出问题的特征值问题并求解.(3)写出该问题解的待定表示式并求出表达式中第一特征函数的系数.12 考虑下面定解问题 * (,), 0<, 0(0,)(,)0, 0(,0)(), (,0)(), 0.tt xx x x t u u f x t x t u t u t t u x x u x x x ππϕψπ-=<>⎧⎪==≥⎨⎪==≤≤⎩(12.1)(1)写出该定解问题的特征值和特征函数 ,(),0.n n X x n λ≥(2)如果,而,求解该定解问题.()0,()0x x ϕψ==(,)f x t t =(3)如果,证明 ,下面等式(,)0f x t =0τ∀>,222200[(,)(,)][()()]l l t x x u x u x dx x x dx ττψϕ+=+⎰⎰(12.2)成立,解释该等式的物理意义.(4)证明(12.1)的解是唯一的.。

第三讲分离变量法

第三讲分离变量法

0时, X ( x ) C1 cos x C2 sin x
C1 0 C 2 sin l 0
由边界条件
从而
n 2 , n 1,2, l
2 2
特征函数为:
n x X ( x ) C 2 sin , l
n 1,2,
T 的方程
n T a T 0 2 l
取参数
''
''

T X 2 X aT
''
''
X ( x ) X ( x ) 0 ②
''
T a T 0
'' 2
…..…….. ③
利用边界条件
X (0)T ( t ) 0 ④ X ( l )T ( t ) 0
④ 成立 X (0) 0, X ( l ) 0
特点: 方程齐次, 边界齐次.
设 u( x , t ) X ( x )T ( t ) 且u( x , t ) 不恒为零,代入 方程和边界条件中得
XT '' a 2 X ''T 0 ①
由 u( x , t )不恒为零,有:
X ( x ) T (t ) 2 X ( x ) a T (t )
n 1,2,
所以 ( x ), ( x ) 展开为傅立叶余弦级数,比较系数得 将 1 2 l n u0 (0x , t )0 A0 l (B0d t A 0 ) An n 0 ( ) cos d
l l n at n at l n x un ( x , t ) ( An cos Bn sin 2 )lcos n 1 l n 1,2, l l B0 0 0 ( )d Bn l 0 ( ) cos d l n a l 故 n at n at n x u( x , t ) A0 B0 t ( An cos Bn sin ) cos l l l n 1

偏微分方程求解算法研究及应用

偏微分方程求解算法研究及应用

偏微分方程求解算法研究及应用偏微分方程是描述自然现象和工程问题的重要工具。

从最简单的热传导方程到流体力学中的Navier-Stokes方程,这些方程的求解能够获得很多实际问题的解答。

随着计算机技术的飞速发展,可解决的偏微分方程问题的范围和复杂性也得到了提高。

在本文中,我们将讨论偏微分方程的一些求解算法及其应用,以及这些算法如何在实践中发挥作用。

第一部分:解析方法解析方程的基本思想是寻找满足特定条件的解析表达式。

在偏微分方程的求解中,常见的解析方法包括分离变量法、变量参数法和特征线方法等。

1.1 分离变量法分离变量法是解决大多数运筹学、物理学和工程学问题的重要方法。

它的基本思想是,假设找到一种函数形式,使得偏微分方程中的某些变量可以单独表示,这样就可以得到关于单个变量的一组普通微分方程。

通过求解这些方程,就可以获得原始问题的解。

例如,考虑一个双曲型偏微分方程:$$ \frac{\partial^2 u}{\partial x^2}-\frac{\partial^2 u}{\partial t^2}=0 $$我们可以假设$u(x,t)$的解有如下形式:$$ u(x,t)=X(x)T(t) $$将它代入原方程得到:$$ \frac{X''}{X}=\frac{T''}{T}=-\lambda $$其中$\lambda$是分离常数。

然后,我们可以解出关于$X$和$T$的两个普通微分方程:$$ X''+\lambda X=0, T''+\lambda T=0 $$这两个方程都是熟悉的谐振动方程,其解可以表示为正弦波和余弦波的线性组合。

因此,原方程的通解可以写成:$$ u(x,t)=\sum_{n=1}^{\infty}(A_n\cos(\sqrt{\lambda_n}x)+B_n\sin(\sqrt{\lambda_n}x))(C_n\cos(\sqrt{\lambda_n}t)+D_n\sin(\sqrt{\lambda_n}t)) $$其中,$A_n,B_n,C_n$和$D_n$是一些常数,根据边界条件和初始条件来确定。

数学物理方法分离变量法

数学物理方法分离变量法

数学物理方法分离变量法分离变量法是数学物理中常用的一种解微分方程的方法,它适用于一些特定形式的偏微分方程,能够将原方程分解成一系列简单的常微分方程,从而求得方程的解。

在物理学中,分离变量法常常用于描述热传导、波动、量子力学等问题的求解。

本文将介绍分离变量法的基本思想和应用,以及一些实际问题中的案例分析。

首先,我们来看一般形式的偏微分方程:\[F(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial^2u}{\partial x^2},\frac{\partial^2 u}{\partial y^2},...) = 0\]其中,\(u = u(x,y)\) 是未知函数,\(F\) 是关于 \(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial^2 u}{\partial x^2},\frac{\partial^2u}{\partial y^2},...\) 的已知函数。

我们的目标是求解这个偏微分方程,找到满足条件的 \(u\) 函数。

分离变量法的基本思想是假设未知函数 \(u(x,y)\) 可以表示为两个独立变量 \(x\) 和 \(y\) 的乘积形式,即 \(u(x,y) = X(x)Y(y)\)。

将这个形式代入原方程中,然后通过变量分离的方法,将方程化为两个关于 \(x\) 和 \(y\) 的常微分方程。

最后再对这两个方程分别进行积分,得到原偏微分方程的解。

下面我们通过一个具体的例子来说明分离变量法的应用。

考虑二维热传导方程:\[\frac{\partial u}{\partial t} = k\left(\frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2}\right)\]其中,\(u(x,y,t)\) 表示温度分布,\(k\) 是热传导系数。

第二章-分离变量法-1

第二章-分离变量法-1

T = F (x )
0 ≤ x ≤L ,τ= 0 =
解:1.分离函数 .
假定该问题的解可以分解成空间函数与 时间函数的乘积形式
T ( x,τ ) = X ( x )Γ(τ )
代入微分方程及定界条件,转化为 个常 代入微分方程及定界条件,转化为2个常 微分方程——分离方程 微分方程 分离方程
T ( x,τ ) = X ( x )Γ (τ )
上式所示的解既满足原导热问题的微分方程, 上式所示的解既满足原导热问题的微分方程,又满 足边界条件,但它不一定满足初始条件。因此, 足边界条件,但它不一定满足初始条件。因此,还 需将初始条件应用于上式。 需将初始条件应用于上式。
F ( x) = ∫

β =0
C ( β )[β cos( β x) + H sin( β x)]dβ
数学描述: 数学描述:
h
1
初始时 T=F(x)
1 ∂T ( x,τ ) ∂ 2T ( x,τ ) = a ∂τ ∂x 2
x
0 < x < ∞,τ>0 , >
O
∂T λ − hT = 0 ∂x ∂x
x =0 ,τ>0 >
半无限大物体的导热
T = F (x )
0 ≤x ≤L ,τ= 0 =
解:1.分离函数 .
1 d 2 X ( x) 1 d Γ (τ ) = X ( x ) dx 2 a Γ (τ ) d τ
dΓ(τ ) + aβ 2 Γ(τ ) = 0 dτ
1 ∂T ( x,τ ) ∂ 2T ( x,τ ) = a ∂τ ∂x 2
= -β
2
d 2 X ( x) + β 2 X( x) = 0 dx 2
∂X + HX = 0 ∂x

一齐次偏微分方程的分离变量法

一齐次偏微分方程的分离变量法

第二章 分离变量法一 齐次偏微分方程的分离变量法1 有界弦的自由振动(1) 考虑两端固定的弦振动方程的混合问题⎪⎪⎪⎩⎪⎪⎪⎨⎧====><<∂∂=∂∂==)(|),(|0),(),0(0,0,01022222x u x u t l u t u t l x x u a t u t t φϕ ① 这个定解的特点是:偏微分方程是齐次的,边界条件是齐次的。

求解这样的方程可用叠加原理。

类似于常微分方程通解的求法先求出其所有线性无关的特解,通过叠加求定解问题的解。

所谓),(t x u 具有分离变量的形式,即)()(),(x T x X t x u =把)()(),(x T x X t x u =带入方程①中,可得到常微分方程定解为:),(t x u =∑∞=1),(n n t x u =l x n l t an D l t an C n n n πππ∑∞=+1sin )sin cos (其中:⎰=l n dx l x n x l C 0sin )(2πϕ,⎰=l n dx lx n x an D 0sin )(2πφπ 2离变量法的解题步骤可以分成三步:(一) 首先将偏微分方程的定解问题通过分离变量转化为常微分方程的定解问题。

(二) 确定特征值与特征函数。

(三) 求出特征值和特征函数后,再解其它的常微分方程,将所得的解与同一特征值报骊应的特征函数相乘得到所有分离变量的特解。

3 有限长杆上的热传导二、非齐次方程的的解法1非齐次方程的特征函数法可分离变量法要求方程是齐次、边界条件也为齐次(位势方程例外)如果上述条件之一破坏,则不能采用分离变量法解。

对于齐次方程具有齐次边界条件的定解问题,因其通解可表示为其特征函数)(x X n ,....)2,1(=n 的线性组合,即=),(t x u ∑∞=1)()(n n n n x X t T C ,由此推断非齐次方程具有齐次边界条件定解问题也可由特征函数列)}({x X n 线性表出,即求形式解=),(t x u ∑∞=1)()(n n n x X t T ,)(t T n 为待定函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
⎧ x = r sin θ cos ϕ ⎪ 直角坐标系与球坐标系的关系: ⎨ y = r sin θ sin ϕ ⎪ z = r cos ϕ ⎩
利用微分计算,可以得到球坐标系下拉普拉斯方程
1 ∂ ⎛ 2 ∂u ⎞ 1 ∂ ⎛ ∂u ⎞ 1 ∂ 2u =0 ⎜r ⎟+ ⎜ sin θ ⎟+ ∂θ ⎠ r 2 sin 2 θ ∂ϕ 2 r 2 ∂r ⎝ ∂r ⎠ r 2 sin θ ∂θ ⎝
边界条件 确定本征值、 本征函数
初始条件 确定待定系数
§2.1 分离变量法求解偏微分方程
一、拉普拉斯(Laplace)方程: ∇ u = 0
2
1、球坐标系 (r , θ , ϕ ) 下拉普拉斯方程的分离变量解法 直角坐标系下拉普拉斯方程:
∂ 2u ∂ 2u ∂ 2u + + =0 ∂x 2 ∂y 2 ∂z 2

ρ d ⎛ dR ⎞ ρ 2 d 2 Z 1 d 2Φ ⎜ ⎟ + = − = m2 ρ ⎜ ⎟ 2 2 Φ dϕ R dρ ⎝ dρ ⎠ Z dz
⎧ d 2Φ 2 ⎪ 2 +m Φ =0 ⎪ dϕ ⎨ dR ⎞ ρ 2 d 2 Z 2 ⎪ρ d ⎛ ⎜ ⎟ ρ ⎟ + Z dz 2 − m = 0 ⎪ R dρ ⎜ d ρ ⎝ ⎠ ⎩ (17) (18)
Φ (ϕ ) 应满足自然边界条件 Φ (ϕ ) = Φ (ϕ + 2π )
所以, m 必须为整数,即 m = 0,1,2, L 综上
Φ(ϕ ) = Am cos mϕ + Bm sin mϕ
3 、方程(8)的求解 ○ 令 x = cos θ ,
(m = 0,1,2,L)
(13)
y ( x ) = Θ(θ )
(1)
方程(1)为偏微分方程, u 具有多个自变量,无法直接进行求解,我们利用分离变量法 将球坐标系下拉普拉斯偏微分方程分解成为多个常微分方程,然后进行求解。 设 u (r , θ , ϕ ) = R (r )Y (θ , ϕ ) ,代入(1)式
Y d ⎛ 2 dR ⎞ R R ∂ ⎛ ∂Y ⎞ ∂ 2Y r + sin θ + =0 ⎜ ⎟ ⎜ ⎟ ∂θ ⎠ r 2 sin 2 θ ∂ϕ 2 r 2 dr ⎝ dr ⎠ r 2 sin θ ∂θ ⎝
⎧ x = ρ cos ϕ ⎪ ⎨ y = ρ sin ϕ ⎪z = z ⎩
柱坐标系下拉普拉斯方程
1 ∂ ⎛ ∂u ⎞ 1 ∂ 2 u ∂ 2 u ⎜ρ ⎟ + 2 =0 ⎟+ 2 2 ρ ∂ρ ⎜ ∂z ⎝ ∂ρ ⎠ ρ ∂ϕ
利用分离变量法,令 u (ρ , θ , z ) = R(ρ )Φ (ϕ )Z ( z ) 代入(16)式中
d ⎛ 2 dR ⎞ ⎜r ⎟ − l (l + 1)R = 0 展开 dr ⎝ dr ⎠ r2 d 2R dR + 2r − l (l + 1)R = 0 2 dr dr t = ln r
(10) (9)
设r = e ,
t
dR dR dt 1 dR 1 dR = = = dr dt dr r dt e t dt d 2R d ⎛ dR ⎞ d ⎛ 1 dR ⎞ d dt ⎛ 1 dR ⎞ = ⎜ ⎟= ⎜ ⎟= ⎜ ⎟= 2 dr ⎝ dr ⎠ dr ⎝ e t dt ⎠ dt dr ⎝ e t dt ⎠ dr = 1 d 2 R 1 dR − e 2t dt 2 e 2t dt
[
]
一旦得到三个常微分方程(6) 、 (7 ) 、 (8)的解 R (r )、Θ(θ )、Φ (ϕ ) ,球坐标系下拉普拉斯 偏微分方程的解即可得到: u (r , θ , ϕ ) = R (r )Θ(θ )Φ (ϕ ) 下面,我们将分别求解上述三个常微分方程。 1 、欧拉方程(6)的求解 ○ 将方程
第二章 线性偏微分方程和特殊函数的推导
第一章我们推导了如下三个常见的偏微分方程:
⎧ ∂ 2u = a 2∇ 2u ⎪ 2 ⎪ ∂t ⎨ 2 ⎪ ∂ u = a 2 ∇ 2 u + f ( x, y , z , t ) ⎪ ⎩ ∂t 2
⎧ ∂u = a 2∇ 2u ⎪ ⎪ ∂t ⎨ ⎪ ∂u = a 2 ∇ 2 u + f ( x, y, z , t ) ⎪ ⎩ ∂t
(
)
(15)
其中, l 为本征值,由 x = ±1 的自然边界条件确定, l = 0,1,2,3L ,其本征函数为 l 阶勒让 德多项式 Pl ( x ) 。综上,
l 阶连带勒让德方程对应的解为 l 阶连带勒让德多项式 Pl m (x ) ; l 阶勒让德方程对应的解为 l 阶勒让德多项式 Pl (x ) 。
特征值 x1 = l , x 2 = −(l + 1)
R(t ) = Ce lt + De − (l +1)t
将 t = ln r 代入上式,得到
R(r ) = Ce l ln r + De −(l +1) ln r = Cr l +
D r l +1
当 l = 0 时,特征值 x1 = 0, x 2 = −1
⎧ d ⎛ 2 dR ⎞ ⎪ dr ⎜ r dr ⎟ − l (l + 1)R = 0 ⎠ ⎪ ⎝ 2 ⎪d Φ 2 ⎨ 2 +m Φ =0 ⎪ dϕ ⎪ d ⎛ dΘ ⎞ 2 2 ⎪sin θ ⎜ sin θ ⎟ + l (l + 1)sin θ − m Θ = 0 dθ ⎝ dθ ⎠ ⎩
(6) (7) (8)
由此偏微分方程(3)又可以分离为如下两个常微分方程:
⎧ d 2Φ 2 ⎪ 2 +m Φ =0 d ϕ ⎪ ⎨ dΘ ⎞ 2 2 ⎪sin θ d ⎛ sin θ ⎜ ⎟ + l (l + 1)sin θ − m Θ = 0 ⎪ d d θ θ ⎝ ⎠ ⎩
(4) (5)
[
]
其中,方程(4) 、 (5)均为常微分方程,可以直接求解。 综上,球坐标系下拉普拉斯偏微1 dR ⎞ 1 ⎛ 1 d 2 R 1 dR ⎞ ⎜ t ⎟= t ⎜ ⎟ − t − t 2 2 ⎜ t r⎜ e dt ⎟ e dt ⎟ ⎝ e dt ⎠ e ⎝ e dt ⎠ (11)
将方程(10) 、 (11)带入方程(9) ,得到
3
d 2 R dR + − l (l + 1) R = 0 dt dt 2
方程两边同乘以
sin 2 θ ΘΦ
2
sin θ d ⎛ ⎜ sin θ Θ dθ ⎝ sin θ d ⎛ ⇒ ⎜ sin θ Θ dθ ⎝
dΘ ⎞ 1 d 2 Φ + l (l + 1)sin 2 θ = 0 ⎟+ 2 dθ ⎠ Φ dϕ dΘ ⎞ 1 d 2Φ 2 = m2 , ⎟ + l (l + 1)sin θ = − 2 dθ ⎠ Φ dϕ m为常数
其解分别为
D ⎧ l (l = 0,1,2,L) ⎪ R(r ) = Cr + r l +1 ⎪ ⎨Φ (ϕ ) = Am cos mϕ + Bm sin mϕ ⎪ m ⎪Θ(θ ) = Pl (cos θ ) ⎩
所以,球坐标系下拉普拉斯方程通解为:
(m = 0,1,2,L)
D ⎞ ⎛ u (r ,θ , ϕ ) = R(r )Φ (ϕ )Θ(θ ) = ⎜ Cr l + l +1 ⎟( Am cos mϕ + Bm sin mϕ )Pl m (cos θ ) r ⎠ ⎝
(勒让德多项式的求解以及为什么本征值 l 必须为 l = 0,1,2,3L 将在§2.2 节详细讲解)
至此,球坐标系下拉普拉斯方程,经过分离变量,得到三个独立的常微分方程
∂ ⎛ ∂u ⎞ 1 ∂ 2u 1 ∂ ⎛ 2 ∂u ⎞ 1 θ =0 r + sin + ⎜ ⎟ ⎜ ⎟ ∂θ ⎠ r 2 sin 2 θ ∂ϕ 2 r 2 ∂r ⎝ ∂r ⎠ r 2 sin θ ∂θ ⎝
(
)
(
)
4
带入方程(8) ,得到 m 阶连带勒让德方程
⎡ d ⎡ m2 ⎤ 2 dy ⎤ ( ) x 1 − + l l + 1 − ⎢ ⎥y = 0 dx ⎢ dx ⎥ 1− x2 ⎦ ⎦ ⎣ ⎣
(
)
(
)
(14)
当 m = 0 时,方程(14)退化为勒让德方程
d ⎡ dy ⎤ 1− x2 + l (l + 1) y = 0 ⎢ dx ⎣ dx ⎥ ⎦
由此,偏微分方程(1)可得到分离为如下两个方程:
⎧ d ⎛ 2 dR ⎞ ⎪ dr ⎜ r dr ⎟ − l (l + 1)R = 0 ⎠ ⎪ ⎝ ⎨ ∂Y ⎞ 1 ∂ 2Y ⎪ 1 ∂ ⎛ + l (l + 1)Y = 0 ⎜ sin θ ⎟+ ⎪ ∂θ ⎠ sin 2 θ ∂ϕ 2 ⎩ sin θ ∂θ ⎝
(l = 0,1,2,L; m = 0,1,2,L)
尤其,当 m = 0 时,
D ⎞ ⎛ u (r ,θ , ϕ ) = R(r )Φ (ϕ )Θ(θ ) = ⎜ Cr l + l +1 ⎟ Pl (cos θ ) r ⎠ ⎝
5
(l = 0,1,2,L)
2、柱坐标系 (ρ , θ , z ) 下拉普拉斯方程的分离变量解法 柱坐标系与直角坐标系的关系
(16)
ΦZ d ⎛ dR ⎞ RZ d 2 Φ RΦd 2 Z ⎜ρ ⎟ + =0 2 ⎟+ 2 ρ dρ ⎜ dz 2 ⎝ dρ ⎠ ρ dϕ
方程两边同乘以
ρ2
RΦZ
ρ d ⎛ dR ⎞ 1 d 2 Φ ρ 2 d 2 Z ⎜ρ ⎟ + =0 ⎟+ 2 R dρ ⎜ Z dz 2 ⎝ dρ ⎠ Φ dϕ
相关文档
最新文档