新教材人教版高中数学必修第二册 6.1 平面向量的概念

合集下载

高中数学人教A版必修第二册课件:6.1平面向量的概念

高中数学人教A版必修第二册课件:6.1平面向量的概念
(1)平行向量是否一定方向相同? (不一定)
(2)不相等的向量是否一定不平行?(不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任意向量都平行的向量是什么向量? (零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
(6)两个非零向量相等当且仅当什么? (长度相等且方向相同)
(2)分别写出图中与 , ,相等的向量.
解:(1) , , ,是共线向量;
, , ,是共线向量;
, , , 是共线向量.
(2) = = ;
= = ;
= = = .
1.回答下列问题:
第六章 平面向量及其应用
6.1 平面向量的概念
学习目标:
1.通过对生活几何表示;
3.掌握相等向量与共线向量的意义.
教学重点:
掌握向量、相等向量、共线向量的概念及向量的几何表示.
教学难点:
对共线向量的理解及掌握.
1.在学习物理时,学过力、位移、速度,它们有什么共同属性呢?
数量可用数轴上的点表示,而且不同的点表示不同的数量.
如何表示向量呢?
具有方向的线段叫做有向线段.
以A为起点、B为终点的有向线段记作,线段AB的长度也叫做
有向线段的长度,记作||.
有向线段的三要素:起点、方向、长度.
向量可以用有向线段来表示,我们把这个向量记作向量.有
向线段的长度||表示向量的大小,有向线段的方向表示向量的方向.
216km
解:表示A地至B地的位移,且|| ≈_______;
272km
表示A地至C地的位移,且|| ≈_______;
= 线段AB长度× 8000 000 ÷ 100 000 ≈ 216km

人教A版高中数学必修第二册6.1 平面向量的概念

人教A版高中数学必修第二册6.1 平面向量的概念
a=b;④有向线段就是向量;⑤单位向量大于零向量.其中正确说法
的序号是
.
答案:②
解析:直角坐标平面上的x轴、y轴是数轴,但不是向量,故①错误;
由零向量的定义可知②正确;若a,b都是单位向量,则它们的模相等,
但不一定方向相同,故③错误;有向线段可以用来表示向量,但它不
是向量,故④错误;单位向量的模大于零向量的模,但不能说单位向
所以||=| |,且 AB∥CD.
因此四边形 ABCD 是平行四边形,
所以||=||,且 DA∥CB.
同理由 = ,可证四边形 CNAM 是平行四边形,
所以 = .
所以||=||,即与的模相等,
又与的方向相同,故 = .
(2)解:图中与向量共线的向量有:
6.1
平面向量的概念
课标阐释
思维脉络
1.了解向量的实际
背景,理解向量的概
念.培养数学抽象素
养.
2.掌握向量的表示
方法,理解向量的模
的概念.培养数学抽
象素养.
3.理解零向量、单位
向量、相等向量、平
行向量等概念.培养
数学抽象及逻辑推
理素养.



一、向量的概念
1.思考
(1)在物理上,位移和距离这两个量有什么不同?
相反,长度相等,故D项正确.(2)向量的模是一个非负实数;零向量的
方向是任意的,但它不是实数0,故A,B,D均错,只有C项正确.



三、相等向量与共线向量
1.思考
(1)向量由其模和方向所确定.对于两个向量a,b,就其模等与不等,
方向同与不同而言,有哪几种可能情形?
提示有四种情形:模相等,方向相同;模相等,方向不相同;模不

高中数学第六章平面向量及其应用6.1平面向量的概念教案第二册

高中数学第六章平面向量及其应用6.1平面向量的概念教案第二册

6。

1 平面向量的概念本节课选自《普通高中课程标准数学教科书—必修第二册》(人教A 版)第六章《平面向量及其应用》,本节课是第1课时,本节课内容包括向量的实际背景与概念、向量的几何表示、相等向量与共线向量。

本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。

在“向量的物理背景与概念"中介绍向量的定义;在“向量的几何表示"中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等1。

教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.2.教学难点:平行向量、相等向量和共线向量的区别和联系.多媒体意的,单位向量的方向具体而定.(2)注意:向量是不能比较大小的,但向量的模(是正数或零)是可以进行大小比较的。

例1。

在图中,分别用向量表示A地至B、C两地的位移,并根据图中的比例尺,并求出A地至B、C两地的实际距离(精确到1km)(三)。

相等向量与共线向量思考1:向量由其模和方向所确定.对于两个向量b a,,就其模等与不等,方向同与不同而言,有哪几种可能情形?【答案】模相等,方向相同;模相等,方向不相同;模不相等,方向相同; 模不相等,方向不相同;1.平行向量定义:[来源:学科网ZXXK]通过例题进一步理解向量的概念,提高学生用向量解决问题的能力。

通过思考,引入平行向量,提高学生的理解问题的能力。

①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。

说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.2。

相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线....段的起点无关......。

人教版数学必修第二册6.1平面向量的概念课件

人教版数学必修第二册6.1平面向量的概念课件

(4)如何判断相等向量或共线向量?向量与向量是相等向量吗?
(5)零向量与单位向量有什么特殊性?0与0的含义有什么区别?
课前小测
边长相等
1.正n边形有n条边,它们对应的向量依次为a1,a2,a3,…,
an,则这n个向量( D )
A.都相等
B.都共线
C.都不共线
D.模都相等
2.有下列物理量:
①质量;②温度;③角度;④弹力;⑤风速.


×
×
×
其中可以看成是向量的有( B )
A.1个
B.2个
C.3个
D.4个
3
3.已知||=1,||=2,若∠ABC=90°,则||=________.
C
2
B
1
A
||= 22 − 12 = 3
4.如图,四边形ABCD是平行四边形,则图中相等的向量
(1)作出向量, ,;
(2)求的模.
2.某人从A点出发向东走了5米到达B点,然后改变方向沿东北方向走
了10 2米到达C点,到达C点后又改变方向向西走了10米到达D点.
(1)作出向量, ,;
D
C

西
A


B
2.某人从A点出发向东走了5米到达B点,然后改变方向沿东北方向走
b,c,…表示,或用表示向量的有向线段的起点和终点字
母表示,例如: , .
注意:用字母a表示向量时,印刷用黑体a,书写用Ԧ .
?
思考
(1)向量可以比较大小吗?
向量不能比较大小,但向量的模可以比较大小.
(2)有向线段就是向量吗?
有向线段只是表示向量的一个图形工具,它不是向量.
3.向量的有关概念

6.1平面向量的概念课件共34张PPT

6.1平面向量的概念课件共34张PPT

探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA

O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2

新教材人教版高中数学必修第二册 知识点梳理

新教材人教版高中数学必修第二册 知识点梳理

高中数学 必修2 第六章平面向量设为所在平面上一点,角所对边长分别为,则(1)为的外心. (2)为的重心.(3)为的垂心. (4)为的内心.【6.1】平面向量的概念1、向量的定义及表示(向量无特定的位置,因此向量可以作任意的平移) (1)定义:既有大小又有方向的量叫做向量.(2)表示:①有向线段:带有方向的线段,它包含三个要素:起点、方向、长度; ②向量的表示:2、向量的有关概念:相等向量是平行(共线)向量,但平行(共线)向量不一定是相等向量 向量名称 定义零向量 长度为0的向量,记作0 单位向量 长度等于1个单位长度的向量平行向量 (共线向量) 方向相同或相反的非零向量,向量a ,b 平行,记作a ∥b ,规定:零向量与任一向量平行相等向量长度相等且方向相同的向量;向量a ,b 相等,记作a =b【6.2】平面向量的运算1、向量的加法(1)定义:求两个向量和的运算. (2)运算法则: 向量求和的法则 图示几何意义三角形法则使用三角形法则时要注意“首尾相接”的条件,而向量加法的平行四边法则应用的前提是共起点已知非零向量a ,b ,在平面内任取一点A ,作AB ⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =b ,则向量AC ⃗⃗⃗⃗⃗ 叫做a 与b 的和,记作a +b ,即a +b =AB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ 平行四边形法则以同一点O 为起点的两个已知向量a ,b ,以OA ,OB 为邻边作▱OACB ,则以O 为起点的向量OC ⃗⃗⃗⃗⃗ (OC 是▱OACB 的对角线)就是向量a 与b 的和(3)规定:对于零向量与任意向量a ,规定a +0=0+a =a .(4)位移的合成可以看作向量加法三角形法则的物理模型;力的合成可以看作向量加法平行四边形ABC ∆,,A B C ,,a b c O ABC ∆222OA OB OC ⇔==O ABC ∆0OA OB OC ⇔++=O ABC ∆OA OB OB OC OC OA ⇔⋅=⋅=⋅O ABC ∆0aOA bOB cOC ⇔++=法则的物理模型.(5)一般地我们有|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. (6)向量加法的运算律与实数加法的运算律相同 2、向量的减法(1)相反向量(利用相反向量的定义,-AB ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ 就可以把减法转化为加法) 定义:我们规定,与向量a 长度相等,方向相反的向量,叫做a 的相反向量性质:①对于相反向量有:a +(-a )=0;②若a ,b 互为相反向量,则a =-b ,a +b =0;③零向量的相反向量仍是零向量(2)向量减法运算(向量的减法是向量加法的一种逆运算) 定义:求两个向量差的运算叫做向量的减法.a -b =a +(-b ),减去一个向量就等于加上这个向量的相反向量.几何意义:a -b 表示为从向量b 的终点指向向量a 的终点的向量.3、向量的数乘运算(实数与向量可以进行数乘运算,但不能进行加减运算)(1)定义:规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作:λa ,它的长度和方向规定如下:①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. ③由①可知,当λ=0时,λa =0;由①②知,(-1)a =-a .(2)运算律:设λ,μ为任意实数,则有:①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③λ(a +b )=λa +λb ;特别地,有(-λ)a =-(λa )=λ(-a );λ(a -b )=λa -λb .(3)向量的加、减、数乘运算统称为向量的线性运算,向量的线性运算结果仍是向 量.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1 a ±μ2b )=λμ1 a ±λμ2 b .(4)共线向量定理:向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .也就是说,位于同一直线上的向量可以由位于这条直线上的一个非零向量表示. 4、向量的数量积(1)向量的夹角:两向量的夹角与两直线的夹角的范围不同,向量夹角范围是[0,π],而两直线夹角的范围为[0,π2](2)向量的夹角的定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作向量OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,则∠a O b =θ(0≤θ≤π)叫做向量a 与b 的夹角. 当θ=0时,a 与b 同向;当θ=π时,a 与b 反向. 如果a 与b 的夹角是π2,我们说a 与b 垂直,记作a ⊥b .(3)向量的数量积及其几何意义:向量的数量积是一个实数,不是向量,它的值可正可负可为0 (4)向量的数量积的定义:已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cosθ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cosθ.规定:零向量与任一向量的数量积为0.(5)投影:如图,设a ,b 是两个非零向量,AB ⃗⃗⃗⃗⃗ =a ,CD ⃗⃗⃗⃗⃗ =b ,我们考虑如下变换:过AB ⃗⃗⃗⃗⃗ 的起点a 和终点b ,分别作CD ⃗⃗⃗⃗⃗ 所在直线的垂线,垂足分别为A 1,B 1得到A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,我们称上述变换为向量a 向向量b 投影,A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 叫做向量a 在向量b 上的投影向量.(6)向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则①a ·e =e ·a =|a |cosθ②a ⊥b ⇔a ·b =0③当a 与b 同向时,a ·b =|a ||b |;当a 与b 反向时,a ·b =-|a ||b |,特别地,a ·a =|a |2或|a |=√a ·a .在求解向量的模时一般转化为模的平方,但不要忘记开方④|a ·b |≤|a |·|b |.(7)运算律:①a ·b =b ·a ;②(a +b )·c =a ·c +b ·c (8)运算性质:类比多项式的乘法公式【6.3】平面向量基本定理及坐标表示1、平面向量基本定理(定理中要特别注意向量e 1与向量e 2是两个不共线的向量) 条件:e 1,e 2是同一平面内的两个不共线向量结论:对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1 e 1+λ2 e 2 基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底 2、平面向量的坐标表示(1)基底:在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.(2)坐标:对于平面内的一个向量a ,由平面向量基本定理可知,有且仅有一对实数x ,y ,使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标. (3)坐标表示:a =(x ,y ).(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0). (5)平面向量的加减法坐标运算(可类比实数的加减运算法则进行记忆) 设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:设向量a =(x ,y ),则有λa =(λx ,λy ),这就是说实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(7)平面向量共线的坐标表示:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.向量a ,b (b≠0)共线的充要条件是x 1 y 2-x 2 y 1=0.(8)中点坐标公式:若P 1,P 2的坐标分别是(x 1,y 1),(x 2,y 2),线段P 1P 2的中点P 的坐标为(x ,y ),则x =x 1+x 22y =y 1+y 22.此公式为线段P 1 P 2的中点坐标公式.(9)两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ. 数量积:两个向量的数量积等于它们对应坐标的乘积的和,即:a ·b =x 1 x 2+y 1 y 2 向量垂直:a ⊥b ⇔x 1 x 2+y 1 y 2=0(10)与向量的模、夹角相关的三个重要公式 ①向量的模:设a =(x ,y ),则|a |=√x 2+y 2.②两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB ⃗⃗⃗⃗⃗ |=√(x 1-x 2)2+(y 1-y 2)2.③向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则θ=a ·b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22【6.4】平面向量的应用1、平面几何中的向量方法用向量方法解决平面几何问题的“三步曲”(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系;(3)把运算结果“翻译”成几何关系. 2、向量在物理中的应用举例(1)向量与力:向量是既有大小,又有方向的量,它们可以有共同的起点,也可以没有共同的起点.而力是既有大小和方向,又有作用点的量.用向量知识解决力的问题时,往往把向量平移到同一作用点上.(2)向量与速度、加速度、位移:速度、加速度、位移的合成与分解,实质上就是向量的加、减运算.用向量解决速度、加速度、位移等问题,用的知识主要是向量的线性运算,有时也借助于坐标来运算.(3)向量与功、动量:力所做的功是力在物体前进方向上的分力与物体位移的乘积,它的实质是力和位移两个向量的数量积,即W =F ·s =|F ||s |cosθ(θ为F 和s 的夹角).动量m ν实际上是数乘向量. 3、余弦定理、正弦定理(1)余弦定理的表示及其推论(SAS 、SSS 、SSA )文字语言:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号语言:;;.在△ABC 中,有2222cos a b c bc =+-A ,推论:222cos 2b c a bc+-A =(2)解三角形:一般地,三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形. (3)正弦定理的表示(AAS 、SSA )文字语言:在一个三角形中,各边和它所对角的正弦的比相等,该比值为该三角形外接圆的直径. 符号语言:在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则2sin sin sin a b cR C===A B (R 为△ABC 的外接圆的半径)(4)正弦定理的变形形式变形形式是在三角形中实现边角互化的重要公式 设三角形的三边长分别为a ,b ,c ,外接圆半径为R ,正弦定理有如下变形: ①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2bR B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ; (5)三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B . (6)相关术语①仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯2222cos a b c bc A =+-2222cos b c a ca B =+-2222cos c a b ab C =+-角,如图所示.②方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图1所示).③方位角的其他表示——方向角正南方向:指从原点O出发的经过目标的射线与正南的方向线重合,即目标在正南的方向线上.依此可类推正北方向、正东方向和正西方向.东南方向:指经过目标的射线是正东和正南的夹角平分线(如图2所示).(7)解三角形应用题解题思路:基本步骤:运用正弦定理、余弦定理解决实际问题的基本步骤如下:①分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);②建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型.③求解:利用正弦定理、余弦定理解三角形,求得数学模型的解.④检验:检验所求的解是否符合实际问题,从而得出实际问题的解.第七章复数【7.1】复数的概念1、数系的扩充和复数的概念(1)复数的定义:形如a +bi (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,全体复数所构成的集合C ={a +bi |a ,b ∈R }叫做复数集.(2)复数通常用字母z 表示,代数形式为z =a +bi (a ,b ∈R ),其中a 与b 分别叫做复数z 的实部与虚部.(3)复数相等:在复数集C ={a +bi |a ,b ∈R }中任取两个数a +bi ,c +di (a ,b ,c ,d ∈R ),我们规定:a +bi 与c +di 相等当且仅当a =c 且b =d . (4)复数的分类①对于复数a +bi (a ,b ∈R ),当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +bi (a ,b ∈R )可以分类如下:复数{实数(b =0)虚数(b ≠0)(当a =0时为纯虚数),②集合表示:2、复数的几何意义(1)复平面(复平面中点的横坐标表示复数的实部,点的纵坐标表示复数的虚部)(2)复数的几何意义①复数z =a +bi (a ,b ∈R )一一对应↔ 复平面内的点z (a ,b ). ②复数z =a +bi (a ,b ∈R )一一对应↔ 平面向量OZ⃗⃗⃗⃗⃗ . (3)复平面上的两点间的距离公式:(,).(4)复数的模①定义:向量OZ⃗⃗⃗⃗⃗ 的模叫做复数z =a +bi (a ,b ∈R )的模或绝对值. 12||d z z =-=111z x y i =+222z x y i =+②记法:复数z =a +bi 的模记为|z |或|a +bi |. ③公式:|z |=|a +bi |=√a 2+b 2(a ,b ∈R ).如果b =0,那么z =a +bi 是一个实数,它的模就等于|a |(a 的绝对值).(5)共轭复数:一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数.复数z 的共轭复数用z̅表示,即如果z =a +bi ,那么z̅=a -bi .(6)两个实数可以比较大小,但两个复数如果不全是实数就不能比较大小。

平面向量的概念【新教材】人教A版高中数学必修第二册优秀课件

平面向量的概念【新教材】人教A版高中数学必修第二册优秀课件

6平.面1 向平量面的向概量念的【概新念教-【材 新 】人教教材 】A版人高教中A数版学(必2 0修19第)二高 册中优数秀学 必pp修t课第件二册课 件(共 29张PP T)
3.关注两个“特殊”向量 定义中的零向量和单位向量都是只限制大小,没有确 定方向.我们规定零向量的方向是任意的;单位向量有无 数个,它们大小相等,但方向不一定相同.
5.已知A,B,C是不共线的三点,向量m
与向量
―→ AB
是平行
向量,与―B→C 是共线向量,则m =________.
解析:因为A,B,C三点不共线,所以
―→ AB

―→ BC
不共
线,又因为m ∥―A→B 且m ∥―B→C ,所以m =0.
答案:0
6平.面1 向平量面的向概量念的【概新念教-【材 新 】人教教材 】A版人高教中A数版学(必2 0修19第)二高 册中优数秀学 必pp修t课第件二册课 件(共 29张PP T)

―→ CO
是模相等的向
量.故选C.
答案:C
6 . 1 平 面向 量的概 念-【 新教材 】人教 A版(2 019)高 中数学 必修第 二册课 件(共 29张PP T)
6平.面1 向平量面的向概量念的【概新念教-【材 新 】人教教材 】A版人高教中A数版学(必2 0修19第)二高 册中优数秀学 必pp修t课第件二册课 件(共 29张PP T)
2.在向量的表示法中,字母表示向量要注意书写规 范,等长且同向的有向线段表示同一个向量.
3.注意向量共线与线段共线的不同.
[思考发现]
1.有下列物理量:①质量;②速度;③力;④加速度; ⑤路程;⑥功.
其中,不是向量的个数是
()
A.1

数学人教A版(2019)必修第二册6.1平面向量的概念(共41张ppt)

数学人教A版(2019)必修第二册6.1平面向量的概念(共41张ppt)
方向
起点
方向
自主思考1 “有向线段就是向量,向量就是有向线段”,这种说法正确吗?________________________________________________________________________________________________________________
新知生成
1.平行向量 方向____________的非零向量叫做平行向量.向量 与 平行,记作 . 规定:零向量与任意向量平行,即对于任意向量 ,都有 .
任务学习一 向量的概念与表示
任务学习二 相等向量与共线向量
任务学习一 向量的概念与表示
活动探究
李老师每天下班开车5千米从学校回到家,你能据此确定李老师家的位置吗?为什么?
提示 不能确定李老师家的位置.要想确定李老师家的位置,不仅要知道李老师家与学校的直线距离,还要知道李老师家在学校的什么方向.
1.下列各量中,向量的个数为( ) ①浓度;②年龄;⑨盈利;⑩时间.
B
A. 3 B. 4 C. 5 D. 6
[解析] 向量是既有大小又有方向的量,故符合题意的有③风力,⑤位移,⑥人造卫星的速度,⑧向心力,共4个.
2.下列说法中正确的是( )
任务学习二 相等向量与共线向量
活动探究
某地一网格形街道分布图如图所示,方格由若干个边长为1的小正方形拼成,甲同学从 地到 地,乙同学从 地到 地,丙同学从 地到 地,分别用向量表示甲、乙、丙三位同学的位移,并判断它们有何关系.
提示 甲、乙、丙三位同学的位移分别用向量 , 和 表示,如图所示.由图可知向量 与 的大小相等、方向相同, 与 的大小不等、方向相反.
(2) ,点 在点 正东方向.
[解析] 由于点 在点 正东方向,且 ,所以在坐标纸上点 距点 的横向小方格数为4,纵向小方格数为0,于是点 的位置可以确定,画出向量 ,如图所示.

人教版高中数学新教材必修第二册课件:6.1 平面向量的概念 (共21张PPT)

人教版高中数学新教材必修第二册课件:6.1  平面向量的概念  (共21张PPT)

A.一条线段
B.一段圆弧
C.圆上一群孤立点
D.一个单位圆





启 强
13
练习巩固
4.已知非零向量 a // b ,若非零向量 c // a ,
则 c 与 b 必定 平行
.
5. 2. 已知 a 、 b 是两非零向量,且 a 与b 不共线,
若非零向量
3.
c
与a
共线,则 c
与b
必定
不共线
.







启 强
7
练习巩固
一、判断
温馨提示: 1.做题时要注意向量平行(共线)与直线平行、共线的区别 2.不要忽略零向量的特殊性及有关的两个规定
uur uur (1)若AB / /CD,则AB / /CD;

uuur uur
(2)若AB / /CD,则AB / /CD;
×
rr r r
rr
( 3 ) a与 b共线,b 与 c 共线,则 a与 c也共线;
6.1平面向量的概念
新课引入
质量

速度
(1)
(2)
(3)
问题:请指出与位移具有同样特征的量。
力、速度也是有大小和方向的量





启 强
2
学习新知 向量的定义:
数学中,我们把既有大小,又有方向的量叫做向量.
1、下列各个量中是向量的有 D F G H
.
A.密度 E.面积
B.体积 F.浮力
C.温度 G.位移
D.重力 H.速度
2.有人说:由于海平面以上的高度(海拔)用 正数表示,海平面以下的高度用负数表示,所以 海拔也是向量.你同意他的看法吗?为什么?

平面向量的概念 课件-高中数学人教A版(2019)必修第二册

平面向量的概念 课件-高中数学人教A版(2019)必修第二册
系.
(3)不正确.依据规定:与任意向量平行.
(4)不正确.因为向量与向量若有一个是零向量,则其方向不定.
(5)正确.向量完全由它的模和方向确定,与起点无关.
练习
变1.下列说法正确的是( ).
A.若与平行,与平行,则与一定平行
B.一定在同一直线上
C.若|| < ||,则 <
解:(1)如图所示,作出 , , : 解:(2)由题意知//, = ,
所以四边形是平行四边形.
所以 = = 400,所以|| =
400.
Байду номын сангаас
练习
变3.在四边形中, = ,且|| = ||,则这个四边形是( ).
A.正方形
B.矩形
C.等腰梯形
D.菱形
答案:D.
解:由 = 可知//,且|| = ||,
所以四边形为平行四边形.
练习
方法技巧:
平面向量在实际生活中的应用
生活中很多问题可以归结为向量的问题,如力、速度、位移等,因此运用
向量的知识进行解答可使问题简化,易于求解,解答时,一般先把实际问题用
有向线段表示向量,使向量有了直观形象.
向量的大小称为向量的长度(或模),记作||.长度为0的向量叫做零向量,
记作.长度等于1个单位长度的向量,叫做单位向量.
(向量的字母表示)向量也可以用字母, , , …表示.
印刷用黑体,书写用.
Ԧ
新知探索
1.向量的定义及表示
(1)定义:既有大小又有方向的量叫做向量.
头的线段来表示向量,线段按一定比例(标度)画出,它的长短表示向量的大小,
箭头的指向表示向量的方向.
新知探索
通常在线段的两个端点中,规定一个顺序,假设为起点,为终点,我们就

新教材人教A版必修第二册 6.1 平面向量的概念 课件(43张)

新教材人教A版必修第二册 6.1 平面向量的概念 课件(43张)

(2)向量的表示:
→ |AB|
长度
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章 平面向量及其应用
【预习自测】判断下列命题是否正确.(正确的画“√”,错误的画
“×”)
(1)向量就是有向线段.
()
(2)如果|A→B|>|C→D|,那么A→B>C→D.
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
向量的有关概念
第六章 平面向量及其应用
名称
定义
向量的长度 向量A→B的大小称为向量A→B的长度(或称为模),记作|A→B|
零向量 长度为 0 的向量,记作 0
单位向量 长度等于___1_个__单__位__长__度____的向量
平行向量 方向_相__同__或__相__反___的非零向量,向量 a 与 b 平行,记作 (共线向量) a∥b,规定:零向量与任意向量_平__行___ 相等向量 长度__相__等__且方向_相__同___的向量;向量 a 与 b 相等,记
作 a=b
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
()
(3)力、速度和质量都是向量.
()
| 自学导引 |
| 课堂互动 |
| 素养达成 |
| 课后提能训练 |
数学 必修第二册 配人版A版
第六章 平面向量及其应用
【答案】(1)× (2)× (3)× 【解析】(1)向量可以用有向线段来表示,但并不能说向量就是有向 线段. (2)向量的模可以比较大小,但向量不能比较大小. (3)质量不是向量.

6.1平面向量的概念-高一数学同步教学课件(人教A版必修第二册)

6.1平面向量的概念-高一数学同步教学课件(人教A版必修第二册)
②要注意0和

的区分及联系:0是一个实数, 是一个向量,并
且| |=0,书写时 0 表示零向量,一定不能忘记上面的箭头.
③单位向量有无数个,它们大小相等,但是方向不一定相同.
④在平面内,将表示所有单位向量的有向线段的起点平移到
同一点,则它们的终点就会构成一个半径为1的圆.
3
相等向量与共线向量
【3】向量可以用有向线段来表示,但是向量不是有向线段,也不能说有向线段
是向量.
咱俩差不多,
我还可以表示你
有向线段
向量
但是你不是我,
我是不一样的烟火
2
向量的几何表示
印刷体
两种特殊的向量
【1】零向量——长度为0的向量叫做零向量,记作
【2】单位向量——长度等于1个单位长度的向量,叫做单位向量
①若用有向线段表示零向量,则其终点和起点重合.
那么终点的位置就确定了.
向量
的模
向量AB的大小称为向量AB的长度,也叫做向量
AB的模,记作 |AB|
向量的模
2
向量的几何表示
概念辨析
——向量和有向线段是一回事吗?
【1】从定义上看,向量有大小和方向两个要素,而有向线段有起点、方向、长
度三个要素,因此这是两个不同的量;
【2】在平面内,向量可以自由平移,而有向线段是固定的线段;
方向两个要素,这也
是判断一个量是否为
向量的重要方法.
1
向量的概念
例①
有人说:由于海平面以上的高度(海拔)用正数表示,
海平面以下的高度用负数表示,所以海拔也是向量.
你同意吗?温度、角度是向量吗?为什么?
【解】海拔不是向量,它只有大小没有方向.
海拔的正负不表示方向,只表示在海平面的上方还是下方.

6.1平面向量的概念课件共45张PPT

6.1平面向量的概念课件共45张PPT

即时训练1-1:判断下列命题是否正确,若不正确,请简述理由.
(2)单位向量都相等;
解:(2)不正确,单位向量的模均相等且为1,但方向并不确定.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.


(3)四边形 ABCD 是平行四边形当且仅当=;
(4)一个向量方向不确定当且仅当模为 0;
有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.


(1)向量与是共线向量,则 A,B,C,D 四点必在同一直线上;
解:(1)不正确,共线向量即平行向量,只要求方向相同或相反即可,并不


要求两个向量,在同一直线上.
(3)两个特殊向量:
①零向量与非零向量:
长度为0的向量叫做零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写

时,可写为.长度不为 0 的向量称为非零向量.
②单位向量:长度等于1个单位长度的向量,叫做单位向量.
2.向量间的关系
(1)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,向量
图所示的向量中,


(1)分别找出与, 相等的向量;




解:(1)=,=.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
图所示的向量中,

(2)找出与共线的向量;




解:(2)与共线的向量有,,.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如

平面向量的概念-【精选】人教A版高中数学必修第二册ppt课件

平面向量的概念-【精选】人教A版高中数学必修第二册ppt课件

解: OA CB DO;
OB DC EO;
O
C
OC AB ED FO;
问题:
(1) OA 与 FE 相等吗?
D
(2) OB 与 AF 相等吗? (3)与 OA 长度相等的向量有几个?
(4)与 OA 共线的向量有哪几个?
F E
根据下列小题的条件,分别判断四边形ABCD 的形状: (1)AD BC ; (2)AB DC 且 AB AD
2.向量有方向、大小,双重属性, 因为方向没有大小可言, 所以向量不能比较大小
二 向量的几何表示
问题:1、如何直观(用几何方法)表示 数量?如实数?
由于实数与数轴上的点一一对应, 所以数量常常用数轴上的一个点表示, 而且不同的点表示不同的数量。
1
知识构建
问题2:向量既有大小,又有方向, 又如何直观表示?
向量为矢量,数量为标量.
或 的非零向量|A叫C做|平≈行_向_量_。_______.
知识构建
平行向量
方向相同 或相反 的非零向量叫做平行向量。
a
记作:α / /b / /c
b
c
规定:零向量与任一向量都是一
组平行向量。
知识构建
讨论:这两个向量是平行向量吗?
a
b
α / /b
在一条直线上!
注意:平行向量规定的是向量方向 相同或者相反,与所在的直线的位 置没有关系!
又如,物体受到的重力是竖直向下的,物体的质量越大,它 受到的重力越大
物体在液体中受到的浮力是竖直向上的,物体浸在液体 中的体积越大,它收到的浮力越大。
F
G
力、位移、速度有各自的特性,但也有共同属性, 请问共同属性是什么?
既有大小,又有方向.

(新)人教高中数学A版必修二第六章第1节《平面向量的概念》优质说课稿

(新)人教高中数学A版必修二第六章第1节《平面向量的概念》优质说课稿

(新)人教高中数学A版必修二第六章第1节《平面向量的概念》优质说课稿今天我说课的内容是新人教高中数学A版必修二的第六章第1节《平面向量的概念》。

向量理论具有深刻的数学内涵、丰富的物理背景。

向量既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁.向量是描述直线、曲线,平面、曲面以及高维空间数学同题的基本工具,是进一步学习和研究其他数学领域问题的基础,在解决实际问题中发挥着重要作用。

本章的学习可以帮助学生理解平面向量的几何意义和代数意义;掌握平面向量的概念、运算、平面向量基本定理;用向量语言、方法表述和解决现实生活、数学和物理中的问题:提升数学运算、直观想象和逻辑推理素养.第1节主要讲平面向量的概念。

本节教学承载着实现上述目标的任务,为了更好地教学,下面我从课程标准、教材分析、核心素养、教学重难点、教学方法、教学过程等方面进行说课。

一、说课程标准普通高中数学课程标准(2017年版2020年修订)【内容要求】1.平面向量及其应用。

内容包括:向量概念①通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义。

②理解平面向量的几何表示和基本要素。

二、教材分析。

本节是本章的入门课,概念较多,但难度不大.本节主要通过物理中的位移、速度、力等抽象出数学中的向量,并类比实数的几何表示,以及物理学中位移的表示方法,用有向线段表示向量,进而通过向量之间的关系来认识相等向量与共线向量.本节包括向量的实际背景与概念、向量的几何表示、相等向量与共线向量三部分内容.三、说教学目标与核心素养(一)说教学目标1.通过对力、速度,位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义.2.理解平面向量的几何表示和基本要素.(二)核心素养1.数学抽象:理解平面向量的概念;2.逻辑推理:区分平行向量、相等向量和共线向量;3.直观想象:向量的几何表示.4.数学建模:理解平面向量的几何表示和基本要素.四、说教学重难点。

数学人教A版必修第二册6.1平面向量的概念课件(5)

数学人教A版必修第二册6.1平面向量的概念课件(5)

例3. 在如图所示的坐标纸上(每个小方格的边长均为1),用直尺和圆规画出
下列向量:
(1),使||=4 2,点 A 在点 O 北偏东 45°方向;
(2) ,使| |=4,点 B 在点 A 正东方向;
(3) ,使| |=6,点 C 在点 B 北偏东 30°方向.
分析先确定起点,再根据大小和方向确定出终点,即可画出向量.
1.有向线段
(1)有向线段:具有
方向 的线段叫作有向线段.
(2)表示方法:以A为起点、B为终点的有向线段记作,
如图所示.
(3)有向线段的长度:线段AB 的长度也叫作有向线段的长度,记作|AB|.
(4)有向线段包含三个要素:
起点、方向、长度 .
2.向量的表示方法
(1)向量的几何表示:向量可以用有向线段来表示, 有向线段的 长度 表
相等,记作a=b.
3.共线向量:任一组 平行向量
平行向量也叫作 共线向量 .
都可以平移到同一条直线上,因此,
注意:向量共线包括四种情况:
方向相同,模相等;
方向相同,模不等;
方向相反,模相等;
方向相反,模不等.
a
b
a
b
a
b
a
b
二、课堂练习
题型一
平面向量的相关概念
例1. 已知下列说法:
①若|a|=0,则a为零向量;②若|a|=|b|,则a=b;③若a∥b,则|a|=|b|;④两个有共
6.1 平面向量的概念
学 习 目 标
1.通过对力、速度、位移的分析,了解向量的实际背景,理解向量的概念.(数学抽象)
2.掌握向量的表示方法,理解向量的模的概念.(数学抽象)
3.理解零向量、单位向量、相等向量、平行向量等概念.(数学抽象、逻辑推理)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 平面向量的概念考点学习目标核心素养 平面向量的相关概念了解平面向量的实际背景,理解平面向量的相关概念数学抽象平面向量的几何表示 掌握向量的表示方法,理解向量的模的概念数学抽象相等向量与共线向量 理解两个向量相等的含义以及共线向量的概念数学抽象、逻辑推理问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些? 3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|. (2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( )(5)向量AB →与向量BA →是相等向量.( )(6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (7)零向量是最小的向量.( )答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)× 已知向量a 如图所示,下列说法不正确的是( )A .也可以用MN →表示 B .方向是由M 指向N C .起点是M D .终点是M答案:D已知点O 固定,且|OA →|=2,则A 点构成的图形是( ) A .一个点 B .一条直线 C .一个圆 D .不能确定答案:C如图,四边形ABCD 和ABDE 都是平行四边形,则与ED →相等的向量有________.答案:AB →,DC →向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →; ③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB →=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向.1.下列说法中正确的是( )A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的向量可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小解析:选D.不管向量的方向如何,它们都不能比较大小,故A ,B 不正确;向量的大小即为向量的模,指的是有向线段的长度,与方向无关,故C 不正确;向量的模是一个数量,可以比较大小.故D 正确.2.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫做相等向量 C .零向量与任一向量平行D .共线向量是在一条直线上的向量解析:选C.向量AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故A 错;相等向量不仅要求长度相等,还要求方向相同,故B 错;C 显然正确;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故D 错.向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA →,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB →,使|AB →|=4,点B 在点A 正东方向上; (3)BC →,使|BC →|=6,点C 在点B 北偏东30°方向上.【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA →,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC →,如图所示.用有向线段表示向量的步骤已知飞机从A 地按北偏东30°的方向飞行2 000 km 到达B 地,再从B地按南偏东30°的方向飞行 2 000 km 到达C 地,再从C 地按西南方向飞行1 000 2 km 到达D 地.(1)作出向量AB →,BC →,CD →,DA →;(2)问D 地在A 地的什么方向?D 地距A 地多远? 解:(1)由题意,作出向量AB →,BC →,CD →,DA →,如图所示.(2)依题意知,三角形ABC 为正三角形,所以AC =2 000 km.又因为∠ACD =45°,CD =1 0002,所以△ACD 为等腰直角三角形,即AD =1 000 2 km ,∠CAD =45°,所以D 地在A 地的东南方向,距A 地1 000 2 km.共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD →,BC →,AO →,FE →. (2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.2.[变问法]本例条件不变,与AD →共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.1.已知向量AB →与向量BC →共线,下列关于向量AC →的说法中,正确的为( ) A .向量AC →与向量AB →一定同向B .向量AC →,向量AB →,向量BC →一定共线 C .向量AC →与向量BC →一定相等 D .以上说法都不正确解析:选B.根据共线向量的定义,可知AB →,BC →,AC →这三个向量一定为共线向量,故选B.2.如图,四边形ABCD 和BCED 都是平行四边形,在每两点所确定的向量中:(1)写出与BC →相等的向量; (2)写出与BC →共线的向量.解:(1)因为四边形ABCD 和BCED 都是平行四边形,所以BC ∥AD ∥DE ,BC =AD =DE ,所以BC →=AD →=DE →.故与BC →相等的向量为AD →,DE →.(2)与BC →共线的向量共有7个,分别是AD →,DE →,DA →,ED →,AE →,EA →,CB →.1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE →平行的向量为BE →,FD →,FC →共3个. 2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ;④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B.两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量; (2)与OB →长度相等的向量; (3)与DA →共线的向量. 解:画出图形,如图所示. (1)易知BC ∥AD ,BC =AD , 所以与BC →相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC , 所以与OB →长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →. (3)与DA →共线的向量为AD →,BC →,CB →.[A 基础达标]1.下列命题中,正确命题的个数是( ) ①单位向量都共线; ②长度相等的向量都相等; ③共线的单位向量必相等;④与非零向量a 共线的单位向量是a|a|.A .3B .2C .1D .0解析:选D.根据单位向量的定义,可知①②③明显是错误的;对于④,与非零向量a 共线的单位向量是a |a|或-a|a|,故④也是错误的.2.下列说法正确的是( )A .若a 与b 平行,b 与c 平行,则a 与c 一定平行B .终点相同的两个向量不共线C .若|a|>|b|,则a>bD .单位向量的长度为1解析:选D.A 中,因为零向量与任意向量平行,若b =0,则a 与c 不一定平行.B 中,两向量终点相同,若夹角是0°或180°,则共线.C 中,向量是既有大小,又有方向的量,不可以比较大小.3.如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A.AB →=OC →B.AB →∥DE → C .|AD →|=|BE →|D.AD →=FC →解析:选D.由题图可知,|AD →|=|FC →|,但AD →、FC →的方向不同,故AD →≠FC →,故选D. 4.设O 是△ABC 的外心,则AO →,BO →,CO →是( ) A .相等向量 B .模相等的向量 C .平行向量D .起点相同的向量解析:选B.因为三角形的外心是三角形外接圆的圆心,所以点O 到三个顶点A ,B ,C 的距离相等,所以AO →,BO →,CO →是模相等的向量.5.若a 是任一非零向量,b 是单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a|a |=b ,其中正确的有( )A .①④⑤B .③C .①②③⑤D .②③⑤解析:选B.①|a |>|b |不正确,a 是任一非零向量,模长是任意的,故不正确;②不一定有a ∥b ,故不正确;③向量的模长是非负数,而向量a 是非零向量,故|a |>0正确;④|b |=1,故④不正确;⑤a|a |是与a 同向的单位向量,不一定与b 同向,故不正确.6.如图,已知正方形ABCD 的边长为2,O 为其中心,则|OA →|=________.解析:因为正方形的对角线长为22,所以|OA →|= 2. 答案: 27.如果在一个边长为5的正△ABC 中,一个向量所对应的有向线段为AD →(其中D 在边BC 上运动),则向量AD →长度的最小值为________.解析:根据题意,在正△ABC 中,有向线段AD 的长度最小时,AD 应与边BC 垂直,有向线段AD 长度的最小值为正△ABC 的高,为532.答案:5328.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC →是共线向量,则m =________.解析:因为A ,B ,C 不共线, 所以AB →与BC →不共线. 又m 与AB →,BC →都共线, 所以m =0. 答案:09.在平行四边形ABCD 中,E ,F 分别为边AD ,BC 的中点,如图.(1)在每两点所确定的向量中,写出与向量FC →共线的向量; (2)求证:BE →=FD →.解:(1)由共线向量满足的条件得与向量FC →共线的向量有:CF →,BC →,CB →,BF →,FB →,ED →,DE →,AE →,EA →,AD →,DA →.(2)证明:在▱ABCD 中,AD 綊BC . 又E ,F 分别为AD ,BC 的中点, 所以ED 綊BF ,所以四边形BFDE 是平行四边形,所以BE 綊FD ,所以BE →=FD →.10.已知在四边形ABCD 中,AB →∥CD →,求AD →与BC →分别满足什么条件时,四边形ABCD满足下列情况.(1)四边形ABCD 是等腰梯形;(2)四边形ABCD 是平行四边形.解:(1)|AD →|=|BC →|,且AD →与BC →不平行.因为AB →∥CD →,所以四边形ABCD 为梯形或平行四边形.若四边形ABCD 为等腰梯形,则|AD →|=|BC →|,同时两向量不平行.(2)AD →=BC →(或AD →∥BC →).若AD →=BC →,即四边形的一组对边平行且相等,此时四边形ABCD 为平行四边形.[B 能力提升]11.在菱形ABCD 中,∠DAB =120°,则以下说法错误的是 ( )A .与AB →相等的向量只有一个(不含AB →)B .与AB →的模相等的向量有9个(不含AB →)C .BD →的模恰为DA →模的3倍D .CB →与DA →不共线解析:选D.两向量相等要求长度(模)相等,方向相同.两向量共线只要求方向相同或相反.D 中CB →,DA →所在直线平行,向量方向相同,故共线.12.如图,等腰梯形ABCD 中,对角线AC 与BD 交于点P ,点E ,F分别在腰AD ,BC 上,EF 过点P ,且EF ∥AB ,则( )A.AD →=BC →B.AC →=BD →C.PE →=PF →D.EP →=PF →解析:选D.由平面几何知识知,AD →与BC →方向不同,故AD →≠BC →;AC →与BD →方向不同,故AC →≠BD →;PE →与PF →的模相等而方向相反,故PE →≠PF →;EP →与PF →的模相等且方向相同,所以EP →=PF →.13.如图,在△ABC 中,∠ACB 的平分线CD 交AB 于点D .若AC →的模为2,BC →的模为3,AD →的模为1,则DB →的模为________.解析:如图,延长CD ,过点A 作BC 的平行线交CD 的延长线于点E .因为∠ACD =∠BCD =∠AED ,所以|AC →|=|AE →|.因为△ADE ∽△BDC , 所以|AD →||DB →|=|AE →||BC →|=|AC →||BC→|,故|DB →|=32. 答案:3214.某人从A 点出发向东走了5米到达B 点,然后改变方向沿东北方向走了102米到达C 点,到达C 点后又改变方向向西走了10米到达D 点.(1)作出向量AB →,BC →,CD →;(2)求向量AD →的模.解:(1)作出向量AB →,BC →,CD →,如图所示.(2)由题意得,△BCD 是直角三角形,其中∠BDC =90°,BC =102米,CD =10米,所以BD =10米.△ABD 是直角三角形,其中∠ABD =90°,AB =5米,BD =10米,所以AD =52+102=55(米).所以|AD →|=5 5.[C 拓展探究]15.如图,A 1,A 2,…,A 8是⊙O 上的八个等分点,则在以A 1,A 2,…,A 8及圆心O 九个点中任意两点为起点与终点的向量中,模等于半径的向量有多少个?模等于半径的2倍的向量有多少个?解:模等于半径的向量只有两类,一类是OA →i (i =1,2,…,8),共8个;另一类是A i O →(i=1,2,…,8),也有8个.两类共计有16个.以A 1,A 2,…,A 8中四点为顶点的⊙O 的内接正方形有两个,一个是正方形A 1A 3A 5A 7,另一个是正方形A 2A 4A 6A 8.在题中所述的向量中,只有这两个正方形的边(看成有向线段,每一边对应两个向量)的长度为半径的2倍,故模为半径的2倍的向量共有4×2×2=16(个).。

相关文档
最新文档