弹性力学基础知识归纳知识讲解
弹性力学知识点总结
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
弹性力学基础知识
06
弹性力学的有限元法
有限元法的基本概念
有限元法是一种数值分析方法,通过将复杂的 物理系统离散化为有限个简单元(或称为元素) 的组合,来近似求解复杂的物理问题。
这些简单元在节点处相互连接,形成一个离散 的系统,其行为可以通过物理定律和数学模型 进行描述。
有限元法的核心思想是将连续的求解域离散化, 将复杂的边界条件和应力状态转化为有限个单 元的组合。
弹性力学基础知识
• 弹性力学概述 • 弹性力学的基本假设 • 弹性力学的基本方程 • 弹性力学的基本问题 • 弹性力学的能量原理与变分原理 • 弹性力学的有限元法
01
弹性力学概述
定义与特点
定义
弹性力学是一门研究弹性物体在外力 作用下变形和内力的科学。
特点
弹性力学主要关注物体在受力后发生 的变形,以及这种变形如何影响物体 的内力和应力分布。
在声学领域,有限元法可以用于分析声音的传播、噪音的来源 等。
THANKS
感谢观看
有限元法的求解步骤
单元分析
对每个单元进行受力分析,建 立单元的刚度方程。
求解方程
使用数值方法(如直接法、迭 代法等)求解整体刚度方程, 得到节点的位移和应力。
分析模型建立
首先需要建立待分析系统的数 学模型,包括对系统进行离散 化、定义节点、建立方程等。
系统组装
将所有单元的刚度方程组装成 整体的刚度方程,同时引入边 界条件和载荷。
弹性力学的能量原理与变分原理
弹性力学的能量原理
总结词
弹性力学的能量原理是描述物体在外力 作用下能量变化的重要理论,它为解决 弹性力学问题提供了基础框架。
VS
详细描述
弹性力学的能量原理指出,一个弹性系统 在外力作用下,其能量变化等于外力所做 的功与物体形变所吸收的功之和。这个原 理在解决弹性力学问题时非常有用,因为 它可以将复杂的物理现象转化为数学上的 能量平衡问题。
弹性力学知识点总结
一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
弹性力学基础讲解
一、基本物理量应力张量:在直角坐标系中,过弹性体内任一点取分别平行于三个坐标平面的三个微平面,它们的外法线方向分别为三个坐标轴的方向,将三个剪应力平行于坐标轴的两个分量;由此共得九个应力分量,记为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz zy zx yz yy yx xz xy xx ττττττττττ;每个分量的第一下标表示应力分量所在平面的外法线方向,第二下标表示应力分量的方向。
应力分量的正负号规定为:当应力分量所在平面的外法线方向与某坐标轴同向时,应力分量的方向也与相应坐标轴同向;当应力分量所在平面的外法线方向与某坐标轴反向时,应力分量的方向也与相应坐标轴反向。
3、应变弹性体内某一点的正应变(线应变):设P 为弹性体内任意点,过P 点某一微元线段变形前的长度为l ∆,变形后的长度为'l ∆,定义P 点l 方向的正应变为:lll l ll ∆∆-∆=→∆'lim 0ε。
即正应变表示单位长度线段的伸长或缩短。
弹性体内某一点的剪应变(角应变):设r l ∆和s l ∆为过P 点的两微元线段,变形前两线段相互垂直,定义变形后两线段间夹角的改变量(弧度)为角应变,夹角减小则角应变为正。
应变张量:在直角坐标系中,过弹性体内任一点取分别平行三个坐标轴的线段,按上述原则定义各应变分量,得:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=zz zy zx yz yy yx xz xy xx εεεεεεεεεε;两个下标相同的分量为正应变,其它为剪应变。
关于主应变和主应变方向的讨论与主应力基本相同,可以证明,主应变方向与主应力方向重合。
4、外力体积力:作用于弹性体内部每一点上,如重力、电磁力、惯性力等。
设V ∆为包含P 点的微元体,作用于该微元体上的体积力为V F ∆,则定义P 点的体积力为:{}Tz y x V V f f f V=∆∆=→∆F f 0lim。
表面力:作用于弹性体表面,如压力,约束力等。
设S ∆为包含P 点的微元面,作用于该微元面上的表面力为S F ∆,则定义P 点的表面力为:{}Tz y x S S s s s S=∆∆=→∆F s 0lim 。
弹性力学知识基础
上述6个方程称几何方程
u v w
唯一确定
{ε }
{f}
但
{ε }
不唯一确定
原因:刚体位移不能确定。
第三节 物理方程
当材料是均匀、连续、各向同性,应力与应变成正比 (小变形),即广义虎克定律
ε x = [σ x − µ (σ y + σ z )] E ε y = [σ y − µ (σ z + σ x )] E ε z = [σ z − µ (σ x + σ y )] E = τ xy G , γ yz = τ yz G , γ zx = τ zx G
T
(1-2)
2、平衡微分方程 、
∂σ x τ yx τ zx + + + ∂y ∂z ∂x ∂ σ y τ xy τ zy + + + ∂x ∂z ∂y ∂ σ z + τ yz + τ xz + ∂y ∂x ∂z
F F F
Vx
=0 =0 =0
Vy
Vz
反映了物体内的应力场所须满足的静力关系, 或者应力分量的关系。
(1-9)
γ xy
其中: E
G
弹性模量 切变模量 泊松比
µ
G = E [2(1 + µ )]
解(1-9)式, 得物理方程:
{σ } = [D]{ε }
{σ } = σ xσ yσ zτ xyτ yzτ zx
T
(1-10)
{ε } = ε xε yε zγ xyγ yzγ zx
a、正应力虚功: 正应力 虚位移 虚功 b、切应力虚功
x方向
弹性力学基本概念和考点汇总
弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
弹性力学基础
弹性力学基础弹性力学是力学中的一个重要分支,研究物体在受力后的变形和恢复能力。
本文将介绍弹性力学的基本概念、公式和应用。
一、基本概念弹性力学研究的对象是弹性体,即当受到外力作用后,可以恢复原状的物质。
弹性体的变形可以分为弹性变形和塑性变形两种。
弹性变形是指在外力作用下,物体发生变形但不改变其内部结构,当外力消失后,物体可以完全恢复原状。
塑性变形是指在外力作用下,物体发生变形会改变其内部结构,当外力消失后,物体无法完全恢复原状。
二、弹性模量弹性模量是衡量物体弹性变形程度的物理量,常用的弹性模量包括杨氏模量、剪切模量和泊松比。
其中,杨氏模量是衡量物体在拉伸或压缩时的弹性变形程度的量值,剪切模量是衡量物体在受到切割力时的弹性变形程度的量值,泊松比是物体在受到拉伸或压缩时在垂直方向上的变形程度与水平方向上的变形程度之比。
三、胡克定律胡克定律是弹性力学中的基本定律,描述了物体受到力的作用下的弹性变形。
根据胡克定律,当物体受到力的作用后,物体发生的弹性变形与力的大小成正比,与物体的初始长度成反比。
胡克定律可以用数学公式表示为F = kx,其中F为外力的大小,k为弹性系数,x为物体的弹性变形量。
四、应力和应变应力是物体受到外力作用后单位面积上的力的大小,用σ表示。
应变是物体受到外力作用后单位长度变化量与原始长度的比值,用ε表示。
根据胡克定律,应力与应变之间存在线性关系,称为胡克定律。
五、弹性力学的应用弹性力学在工程领域中有广泛的应用,例如在结构设计中,通过弹性力学的理论分析,可以确定结构的稳定性和安全性。
在材料科学中,弹性力学可以帮助研究材料的强度和刚度,为材料的选择和设计提供指导。
此外,弹性力学还在地震学、电子学和生物学等领域中有着重要的应用。
总结:弹性力学是研究物体受力后的变形和恢复能力的学科。
本文介绍了弹性力学的基本概念,包括弹性体、弹性变形和塑性变形等概念;弹性模量、杨氏模量、剪切模量和泊松比等物理量;胡克定律、应力和应变的关系;以及弹性力学在工程、材料科学和其他学科中的应用。
弹性力学基本概念
弹性力学基本概念弹性力学是力学的一个分支领域,研究材料在受力时的弹性变形和恢复变形的行为规律。
本文将介绍弹性力学的基本概念,包括应力、应变、胡克定律和杨氏模量等。
一、应力和应变在弹性力学中,应力和应变是两个基本的物理量,用来描述物体在受力时的变形情况。
应力是单位面积上的力,通常用希腊字母σ表示。
应力可以分为正应力和剪应力两种。
正应力是指垂直于受力面的力,它可以通过力的大小和受力面的面积计算得到。
正应力的单位是帕斯卡(Pa),1Pa等于1牛顿/平方米。
剪应力是指平行于受力面的力,它也可以通过力的大小和受力面的面积计算得到。
剪应力的单位也是帕斯卡(Pa)。
应变是物体由于受力而发生的变形程度,通常用希腊字母ε表示。
应变可以分为线性应变和剪切应变两种。
线性应变是指物体在受力下发生的长度变化与原长度之比。
线性应变的计算公式为:ε = ΔL / L,其中ΔL表示长度变化,L表示原长度。
剪切应变是指物体在受到剪应力时,各层之间相对位置的变化。
剪切应变的计算公式为:γ = Δx / h,其中Δx表示位置变化,h表示物体的厚度。
二、胡克定律胡克定律是弹性力学的基本定律之一,描述了材料的应力和应变之间的关系。
胡克定律可以用公式表示为:σ = Eε,其中σ表示应力,E表示杨氏模量,ε表示应变。
杨氏模量是衡量材料硬度和刚度的重要物理量,表示单位应力下材料的单位应变。
杨氏模量的单位是帕斯卡(Pa)。
胡克定律表明,当材料处于弹性变形状态时,应力和应变之间成正比。
杨氏模量越大,材料的刚度越高,抵抗变形的能力也越强。
三、弹性常数除了杨氏模量,弹性力学还有其他一些描述材料力学性质的常数。
泊松比是描述材料在受到正应力时,在垂直方向上的应变情况的比值。
泊松比的计算公式为:ν = -ε_2 / ε_1,其中ε_1表示垂直方向上的线性应变,ε_2表示平行方向上的线性应变。
弹性体模量是描述材料在受力时的刚度的物理量,定义为单位体积的材料在受力时所发生的应变与应力之比。
弹性力学基础讲解
弹性力学基础讲解一、基本物理量应力张量:在直角坐标系中,过弹性体内任一点取分别平行于三个坐标平面的三个微平面,它们的外法线方向分别为三个坐标轴的方向,将三个剪应力平行于坐标轴的两个分量;由此共得九个应力分量,记为:=zz zy zx yz yy yx xz xy xx ττττττττττ;每个分量的第一下标表示应力分量所在平面的外法线方向,第二下标表示应力分量的方向。
应力分量的正负号规定为:当应力分量所在平面的外法线方向与某坐标轴同向时,应力分量的方向也与相应坐标轴同向;当应力分量所在平面的外法线方向与某坐标轴反向时,应力分量的方向也与相应坐标轴反向。
3、应变弹性体内某一点的正应变(线应变):设P 为弹性体内任意点,过P 点某一微元线段变形前的长度为l ?,变形后的长度为'l ?,定义P 点l 方向的正应变为:lll l ll ??-?=→?'lim 0ε。
即正应变表示单位长度线段的伸长或缩短。
弹性体内某一点的剪应变(角应变):设r l ?和s l ?为过P 点的两微元线段,变形前两线段相互垂直,定义变形后两线段间夹角的改变量(弧度)为角应变,夹角减小则角应变为正。
应变张量:在直角坐标系中,过弹性体内任一点取分别平行三个坐标轴的线段,按上述原则定义各应变分量,得:=zz zy zx yz yy yx xz xy xx εεεεεεεεεε;两个下标相同的分量为正应变,其它为剪应变。
关于主应变和主应变方向的讨论与主应力基本相同,可以证明,主应变方向与主应力方向重合。
4、外力体积力:作用于弹性体内部每一点上,如重力、电磁力、惯性力等。
设V ?为包含P 点的微元体,作用于该微元体上的体积力为V F ?,则定义P 点的体积力为:{}Tz y x V V f f f V=??=→?F f 0lim。
表面力:作用于弹性体表面,如压力,约束力等。
设S ?为包含P 点的微元面,作用于该微元面上的表面力为S F ?,则定义P 点的表面力为:{}Tz y x S S s s s S=??=→?F s 0lim 。
弹性力学基础知识
2.2 弹性力学基本概念
4.面力定义
2.2 弹性力学基本概念
二 内力
内力:物体在外界因素作用下,例如外力,温度变化等,物体内部各个部分之间将产生相互作用, 这种物体一部分与相邻部分之间的作用力。
2.1 弹性力学的基本假设 连续性假设 均匀性假设 各向同性假设 完全弹性假设 小变形假设 无初始应力的假设
2.1 弹性力学的基本假设
1. 连续性假设
•——假设所研究的整个弹性体内部完全由组成物体的介质所充满,各个质点之间不存在 任何空隙。
•——变形后仍然保持连续性。 •根据这一假设,物体所有物理量,例如位移、应变和应力等均为物体空间的连续函数。 •微观上这个假设不成立——宏观假设。
1 2 3
2.2 弹性力学基本概念
六 位移的概念
❖ 由于外部因素
——载荷或温度变化
❖
位移—— ❖ 位移形式
物体内部各点空间位置发生变化
❖ 刚体位移:物体内部各点位置变化,但仍保持初始状态相对位置不变。
❖ 变形位移:位移不仅使得位置改变,而且改变了物体内部各个点的相对位置。
❖ 位移u,v,w是单值连续函数
2.1 弹性力学的基本假设
基本假设的必要性
•工程问题的复杂性是诸多方面因素组成的。如果不分主次考虑所有因素,则问题的复杂, 数学推导的困难,将使得问题无法求解。 •根据问题性质,忽略部分暂时不必考虑的因素,提出一些基本假设。使问题的研究限定在 一个可行的范围。 •基本假设是学科的研究基础。 •超出基本假设的研究领域是固体力学其它学科的研究。
大学弹力力学知识点总结
大学弹力力学知识点总结弹性力学是力学的一个分支,主要研究物体在外力作用下的形变和应力,以及这些形变和应力之间的关系。
在这一领域中,我们主要研究弹性体的性质,包括拉伸、压缩、扭转和弯曲等。
弹性力学不仅在工程领域有着广泛的应用,也是现代物理学、材料学和地质学等领域的基础。
1.基本概念在弹性力学中,我们首先需要了解一些基本概念,包括应力、应变、杨氏模量和泊松比等。
应力是单位面积上的外力,通常用符号σ表示。
应力可以分为正应力、剪切应力等。
应变是单位长度上的形变量,通常用符号ε表示。
应变也可以分为正应变、剪切应变等。
杨氏模量是描述材料刚度的参数,通常用符号E表示。
杨氏模量越大,说明材料越难以变形。
泊松比描述了材料在垂直拉伸时横向收缩的程度,通常用符号ν表示。
2.拉伸在弹性力学中,拉伸是一个非常重要的概念,它描述了物体在外力作用下的长度变化。
拉伸实验通常利用应变计来测量物体的应变,从而得到应力-应变曲线。
根据应力-应变曲线,我们可以得到杨氏模量和屈服强度等重要参数。
3.压缩压缩是拉伸的逆过程,它描述了物体在外力作用下的长度减小。
同样,通过压缩实验可以得到物体的杨氏模量和屈服强度等参数。
4.扭转扭转是指物体在外力作用下的扭转形变。
扭转实验可以得到物体的剪切模量。
5.弯曲弯曲是物体在外力作用下产生的弯曲形变。
在弯曲实验中,我们通常关注的是杨氏模量和截面惯性矩等参数。
弯曲实验还可以用来研究材料的疲劳性能。
6.弹性体的稳定性在弹性力学中,我们还需要研究弹性体的稳定性问题。
通常情况下,我们关注的是杆的稳定性和壳的稳定性。
通过分析弹性体的形变和应力分布,我们可以得到弹性体的稳定性条件。
7.应力分析应力分析是弹性力学的重要内容,它主要研究物体内部的应力分布。
应力分析可以帮助我们理解物体在外力作用下的形变特性,以及预测物体的破坏情况。
总之,弹性力学是一门重要的力学分支,它不仅在工程领域有着广泛的应用,也在物理、材料和地质等领域发挥着重要作用。
弹性力学基础
现在,假设弹性体发生了某种虚
位移,与各个外力分量相应的虚 位移分量为ui*、vi*,wi*,uj*, vj*,wj*,等等,总起采用列阵 {δ* }表示,而引起的虚应变用列 阵{ε* }表示
这个虚位移和虚应变一般并不是 上述实际外力引起的,而是另外 的外力或其他原因引起的。
更多的是我们为了分析问题而假 想在弹性体中发生的。
因此,这6个量可以完全确定该点的形变 状态,它们就称为在该点的应变分量。
当然,一般说来,应变分量也是坐标x, y、z的函数。
6个应变分量的总体,可用应变矢 量表示:
几何方程
应变分量与位移分量之间有一定的 几何关系。这就是所谓几何方程。
6个几何方程的总体可以用一个矩阵方 程来表示
刚体位移
由几何方程可见,当弹性体的位移分量 完全确定时,应变分量是完全确定的。 反过来,当应变分量是完全确定,位移 分量却不完全确定。 这是因为,具有确定形状的物体,可能 发生不同的刚体位移。
于是由上述推理得到
这就是弹性体的虚功方程,它通过 虚位移和虚应变表明外力与应力之 间的关系。
6 两种平面问题
任何实际问题都是空间问题,都必须考虑 所有的位移分量、应变分量和应力分量。
但是,如果所考虑的弹性体具有特殊的形 状,并且承受的是特殊外力,就有可能把 空间问题简化为近似的平面问题,不考虑 某些位移分量、应变分量或应力分量。
假设物体是均匀的。
假设物体是各向同性的。即物体内每一 点各个不同方向的物理性质和机械性质 都是相同的。
假设物体的变形是微小的。
2. 应力的概念
弹性体受外力以后,其内部将发生 应力。 为了描述弹性体内某一点P的应力, 在这一点从弹性体内割取一个微小 的平行六面体PABC,它的六面分别 垂直于相应的坐标轴,如图1。
公共基础知识弹性力学基础知识概述
《弹性力学基础知识概述》一、引言弹性力学作为固体力学的一个重要分支,主要研究弹性体在外力作用下的应力、应变和位移。
弹性力学的理论和方法在工程结构设计、材料科学、地球物理学等众多领域都有着广泛的应用。
本文将对弹性力学的基础知识进行全面的阐述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 弹性体弹性体是指在外力作用下,能够产生弹性变形,当外力去除后,能够完全恢复到原来形状和尺寸的物体。
弹性体的变形通常是微小的,其应力与应变之间存在着一定的关系。
2. 应力应力是指单位面积上所承受的力。
在弹性力学中,应力通常分为正应力和切应力。
正应力是垂直于作用面的应力,切应力是平行于作用面的应力。
应力的单位是帕斯卡(Pa)。
3. 应变应变是指物体在受力作用下,形状和尺寸的改变量与原来形状和尺寸的比值。
应变通常分为正应变和切应变。
正应变是长度的改变量与原来长度的比值,切应变是角度的改变量。
应变是无量纲的量。
4. 弹性模量弹性模量是衡量材料弹性性质的指标,它表示材料在受力作用下产生弹性变形的难易程度。
弹性模量通常分为杨氏模量、剪切模量和体积模量。
杨氏模量是正应力与正应变的比值,剪切模量是切应力与切应变的比值,体积模量是体积应力与体积应变的比值。
三、核心理论1. 平衡方程平衡方程是弹性力学的基本方程之一,它描述了弹性体在受力作用下的平衡状态。
平衡方程可以表示为:$\sigma_{ij,j}+f_i=0$其中,$\sigma_{ij}$是应力张量,$f_i$是体积力,$j$表示对坐标的偏导数。
2. 几何方程几何方程描述了弹性体在受力作用下的变形情况。
几何方程可以表示为:$\epsilon_{ij}=\frac{1}{2}(u_{i,j}+u_{j,i})$其中,$\epsilon_{ij}$是应变张量,$u_i$是位移矢量,$j$表示对坐标的偏导数。
3. 物理方程物理方程描述了应力与应变之间的关系。
弹性力学知识点总结
弹性力学知识点总结弹性力学是力学的一个重要分支,研究固体物体的变形和回复过程。
在本文中,将对弹性力学的几个重要概念和原理进行总结和介绍。
1. 弹性模量弹性模量是衡量固体物体抵抗形变的能力的物理量。
根据胡克定律,弹性模量E可以通过应力σ和应变ε的比值得到:E = σ/ε。
其中,应力表示受力物体单位面积上的力的大小,应变表示物体在应力作用下产生的形变程度。
2. 胡克定律胡克定律是弹性力学的基本原理,描述了理想弹性体在弹性应变范围内的力学行为。
根据胡克定律,应变与应力成正比。
即ε = σ/E,其中E为杨氏模量。
3. 杨氏模量杨氏模量是衡量固体材料抗拉性能的物理量,表示固体在单位面积上受到的拉力与单位长度的伸长量之比。
杨氏模量的定义为:E =F/AΔL/L0,其中F为受力物体的拉力,A为受力物体的横截面积,ΔL为拉伸后的长度增量,L0为原始长度。
4. 泊松比泊松比是衡量固体材料体积收缩性的物理量。
泊松比定义为物体在一轴方向上受力引起的形变量与垂直方向上的形变量之比。
公式表示为:μ = -εlateral/εaxial。
5. 应力-应变关系弹性力学中的应力-应变关系描述了材料在受力作用下的力学行为。
对于弹性材料,应力与应变成线性关系,即应力和应变成比例。
6. 弹性极限弹性极限是指固体材料可以弹性变形的最大程度。
超过弹性极限后,材料将会发生塑性变形。
7. 弹性势能弹性势能是指物体在形变后能够恢复到初始状态的能力。
弹性势能可以通过应变能来表示,其大小等于物体在受力作用下形变所储存的能量。
8. 弹性波传播弹性波是在固体中传播的一种机械波。
根据介质的不同,弹性波可以分为纵波和横波。
9. 斯内尔定律斯内尔定律描述了弹性力学体系中应力与应变之间的关系。
根据斯内尔定律,弹性变形是由应力和应变之间的线性关系所描述的。
10. 压力容器设计弹性力学在压力容器设计中起着重要作用。
根据弹性力学的原理,可以计算压力容器在不同压力下的变形情况,从而设计出满足安全要求的容器结构。
弹性力学基础知识归纳
弹性力学基础知识归纳第一篇:弹性力学基础知识归纳一.填空题1.最小势能原理等价于平衡微分方程和应力边界条件2.一组可能的应力分量应满足平衡微分方程和相容方程。
二.简答题1.简述圣维南原理并说明它在弹性力学中的作用。
如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。
作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。
(2)将次要的位移边界条件做应力边界条件处理。
2.写出弹性力学的平面问题的基本方程。
应用这些方程时,应注意什么问题?(1).平衡微分方程:决定应力分量的问题是超静定的。
(2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。
(3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。
但是形变分量完全确定时,位移分量不完全确定。
3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。
4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?由六个分量决定。
在确定方向的时候,正面上的应力沿正方向为正,负方向为负。
负面上的应力沿负方向为正,正方向为负。
5.什么叫平面应力问题和平面应变问题?举出工程实例。
平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。
例如工程中的深梁和平板坝的平板支墩。
平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。
例如6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。
(1)完全弹性假定。
(2)均匀性假定。
(3)连续性假定。
(4)各向同性假定。
(5)小变形假定。
满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。
一般混凝土构件和一般土质地基可以看做为理想弹性体。
弹性力学基本概念和考点汇总
基本概念:(1)面力、体力与应力、应变、位移的概念及正负号规定(2)切应力互等定理:作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。
(3)弹性力学的基本假定:连续性、完全弹性、均匀性、各向同性和小变形。
(4)平面应力与平面应变;设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
同时,体力也平行与板面并且不沿厚度方向变化。
这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。
设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。
由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。
因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。
(5)一点的应力状态;过一个点所有平面上应力情况的集合,称为一点的应力状态。
(6)圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。
(7)轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。
这种问题称为空间轴对称问题。
一、平衡微分方程:二、(1)平面问题的平衡微分方程;00yxx x xy yy f x yf x yτστσ∂∂++=∂∂∂∂++=∂∂(记)(2)平面问题的平衡微分方程(极坐标);10210f f ρρϕρϕρϕρϕρϕϕ∂σ∂τσσ∂ρρ∂ϕρ∂σ∂ττρ∂ϕ∂ρρ-+++=+++=1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。
弹性力学知识要点(1~3章)
ε 3 − J1ε 2 + J 2ε − J 3 = 0
J1 =θ =ε ii =ε1 + ε 2 + ε 3 1 2 2 2 J2 = − ε 23 − ε 31 (ε iiε jj − ε ij ε ij = ) ε11ε 22 + ε 22ε 33 + ε 33ε11 − ε12 2 = ε1ε 2 + ε 2ε 3 + ε 3ε1 = = ε ε1ε 2ε 3 J 3 det
∂ 2ε z ∂ 2ε x ∂ 2γ xz + 2 =, ∂x 2 ∂z ∂x∂z ∂ 2ε y ∂z 2 +
2 ∂ 2ε z ∂ γ yz , = ∂y 2 ∂y∂z
∂ 2ε z ∂ ∂γ yz ∂γ xz ∂γ xy ( )= 2 + − ∂x ∂x ∂y ∂z ∂x∂y
几何意义:变形前后均连续。对单元体来说,当单元变形不满足协调方程,则单元间会产生 裂缝。
弹性力学总任务
一、15 个基本变量[定义、含义、张量表示] 6 个应力分量 ji ;6 个应变分量 ji ;3 个位移分量 ui 二、15 个求解方程+2 种边界条件[应力边条、位移边条] 平衡方程(3 个) : ji , j f i 几何方程(6 个) : ij
i u
9、Laplace 算子 ∆ : ∆ = ∇ 2 = ∇ ⋅ ∇ = ei 熟悉张量的一些基本运算
1、如 n 为单位矢量, A 为二阶张量,试证明 n.A .n = n.A.n
T
2、设 a 为矢量, A 为二阶张量,试证明:
(1) a× A = −( A T ×a) T ,(2) A ×a = − (a × A T ) T
弹力知识点高一
弹力知识点高一弹力是物体在受力作用下能够发生形变并具有恢复原状能力的性质。
在高中物理课程中,弹力是一个重要的知识点。
本文将对高一学生在弹力方面需要掌握的知识点进行详细介绍。
一、弹性力学基础概念在学习弹力之前,我们首先需要了解一些基本概念。
1. 形变:物体受到外力作用而发生的尺寸、形状的改变称为形变。
2. 恢复力:当物体发生形变后,它具有恢复原状的能力,这种恢复力称为弹力。
3. 弹性物体的特点:物体只有在作用力撤销后才能恢复原状,并且弹力与物体形变的大小成正比。
4. 弹簧定律:描述了弹性物体弹力与形变大小的关系,即弹簧的弹性力F与形变x成正比,可以用公式F = kx来表示,其中k 是弹簧的弹性系数。
二、胡克定律与弹性势能1. 胡克定律:胡克定律是一种描述弹簧弹性力大小的定律,它指出弹簧的弹力与形变之间正比,可以用公式F = kx表示。
其中,F是弹簧的弹力,x是形变,k是弹簧的弹性系数。
2. 弹性势能:当形变消失时,物体所具有的能量称为弹性势能。
弹簧弹性势能可以用公式E = 1/2kx²表示,其中E是弹性势能,k是弹簧的弹性系数,x是弹簧的形变。
三、弹簧的串联和并联1. 弹簧的串联:当多个弹簧按照一定的顺序连接在一起时,称为弹簧的串联。
串联弹簧的总弹性系数可以通过各个弹簧的弹性系数之和来计算。
2. 弹簧的并联:当多个弹簧同时受到相同的形变并且连接在一起时,称为弹簧的并联。
并联弹簧的总弹性系数可以通过各个弹簧的倒数之和来计算。
四、弹簧振子与简谐振动1. 弹簧振子:弹簧振子由一个弹簧和一个连接在弹簧下端的质点组成。
当弹簧振子受到外力作用时,会发生振动。
2. 简谐振动:当振子的振动是周期性的、且振幅恒定时,称为简谐振动。
简谐振动的周期和频率与振子的质量和弹性系数有关,可以用公式T = 2π√(m/k)和f = 1/T表示,其中T是周期,f是频率,m是振子的质量,k是弹簧的弹性系数。
五、应用实例及弹力的工程应用1. 弹簧秤:弹簧秤利用弹簧的弹力来测量物体的重量,在日常生活中得到广泛应用。
弹力的知识点总结
弹力的知识点总结1. 弹性体弹性体是指在外力的作用下会发生形变,但在撤去外力后,又能恢复原状的物质。
具有弹性的物体有金属、橡胶、弹簧等。
而没有弹性的物体如塑料、玻璃等就不是弹性体。
2. 弹性力物体受到外力作用时,会产生形变,而这种形变所产生的恢复力称之为弹性力。
弹性力的大小与形变的大小成正比,方向与形变的方向相反。
根据胡克定律,如果形变不大,弹性力与形变成线性关系。
3. 胡克定律胡克定律是弹性力学的基本定律,它描述了弹簧弹性力与形变的关系。
胡克定律表述为F=kx,其中F表示弹簧的弹性力,k表示弹簧的弹性系数,x表示形变的大小。
弹簧的弹性系数越大,说明弹簧越硬,形变相同时产生的弹性力也就越大。
4. 弹性形变弹性形变是指当外力作用在弹性体上时,会导致物体发生形变,但当外力消失时,物体会恢复到原状。
弹性形变是弹力学研究的重要对象,弹性体的弹性形变可以分为线弹性形变和非线性弹性形变。
5. 线性弹性形变如果形变不大,弹力和形变成线性关系,满足胡克定律F=kx,这种形变称之为线性弹性形变。
线性弹性形变通常发生在材料的弹性极限以内。
6. 非线性弹性形变当形变超出了材料的弹性极限范围时,弹性力与形变的关系不再是线性的,这种形变称之为非线性弹性形变。
非线性弹性形变通常发生在材料的弹性极限以外,而这时材料的弹性力不再满足胡克定律。
7. 弹性势能当外力作用在弹性体上时,会使得弹性体发生形变,并且在撤去外力后会恢复到原状。
在这个过程中,外力所做的功转变为弹性体的弹性势能。
弹性势能可以用来描述弹性体的弹性形变。
8. 弹性波当物体受到外力作用时,会产生形变,并且在去掉外力后会产生回复力,这种形变和恢复过程会导致力的传播,形成一种波动。
这种波动称之为弹性波。
弹性波的传播速度与物体的密度和弹性模量有关。
9. 弹性模量弹性模量是描述物体对外力的响应程度的物理量,是衡量材料弹性性质的重要参数。
常见的弹性模量包括杨氏模量、剪切模量和泊松比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学基础知识归
纳
一.填空题
1.最小势能原理等价于平衡微分方程和应力边界条件
2.一组可能的应力分量应满足平衡微分方程和相容方程。
二.简答题
1.简述圣维南原理并说明它在弹性力学中的作用。
如果把物体一小部分边界上的面力变换为分布不同但是静力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。
作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单的分布的面力。
(2)将次要的位移边界条件做应力边界条件处理。
2.写出弹性力学的平面问题的基本方程。
应用这些方程时,应注意什么问题?
(1).平衡微分方程:决定应力分量的问题是超静定的。
(2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。
(3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。
但是形变分量完全确定时,位移分量不完全确定。
3.按照边界条件的不同,弹性力学分为哪几类边界问题?应力边界条件,位移边界条件和混合边界条件。
4.弹性体任意一点的应力状态由几个分量决定?如何确定他们的正负号?
由六个分量决定。
在确定方向的时候,正面上的应力沿正方向为正,负方向为负。
负面上的应力沿负方向为正,正方向为负。
5.什么叫平面应力问题和平面应变问题?举出工程实例。
平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。
例如工程中的深梁和平板坝的平板支墩。
平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。
例如
6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。
(1)完全弹性假定。
(2)均匀性假定。
(3)连续性假定。
(4)各向同性假定。
(5)小变形假定。
满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。
一般混凝土构件和一般土质地基可以看做为理想弹性体。
7.什么是差分法?写出基本差分公式?
差分法是把基本方程和边界条件近似地看改用差分方程(代数方程)来表示。
把求解微分方程的问题变为求解代数方程问题。
204222420
2031022310
2222h f f f y f h f f y f h f f f x f h f f x f -+=⎪⎪⎭⎫ ⎝
⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-+=⎪⎪⎭⎫ ⎝
⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂。