人教版初一数学下册含参数的一元一次不等式组的解法
不等式含参题型及解题方法初一下册
不等式含参题型及解题方法初一下册初一下册学习数学时,不等式含参题型是一个重要的知识点。
学生需要掌握不等式的性质和解题方法,以便能够熟练地解决各种不等式问题。
本文将深入探讨不等式含参题型及解题方法,希望能够帮助学生更好地理解和掌握这一知识点。
一、不等式含参题型的基本概念不等式含参题型是指在不等式中含有未知数的题型。
通常情况下,不等式含参题型可以用代数的方法解决。
学生在解题时需要根据不等式的性质和解题方法进行分析和推演,最终得出解的过程。
不等式含参题型有以下几种常见形式:1.一元一次不等式:形如ax+b>c或ax+b≤c的不等式,其中a、b、c为常数,x为未知数。
2.一元二次不等式:形如ax^2+bx+c>0或ax^2+bx+c≥0的不等式,其中a、b、c为常数,x为未知数。
3.绝对值不等式:形如|ax+b|<c或|ax+b|≥c的不等式,其中a、b、c为常数,x为未知数。
二、不等式含参题型的解题方法解不等式的关键在于将不等式化为可以比较大小的形式,并找出未知数的取值范围。
下面将分别介绍解一元一次不等式、一元二次不等式和绝对值不等式的方法。
1.解一元一次不等式解一元一次不等式的方法主要有两种:用图形法和用代数法。
(1)图形法:将不等式对应的不等式式画出来,从图像上找出解集。
(2)代数法:通过代数运算和不等式的性质将不等式化为常见的形式,找出解的范围。
2.解一元二次不等式解一元二次不等式的方法通常采用代数法。
(1)先将不等式移项,将不等式转化为二次函数的问题。
(2)通过判别式求解二次不等式的解集,得出解的范围。
3.解绝对值不等式解绝对值不等式的方法也通常采用代数法。
(1)将绝对值不等式根据不同情况进行讨论:当ax+b≥0时,|ax+b|=ax+b;当ax+b<0时,|ax+b|=-(ax+b)。
(2)进一步化简绝对值不等式,得出解的情况。
三、不等式含参题型的解题技巧在解不等式含参题型时,学生可以借助一些解题技巧来提高解题效率和准确性。
数学人教版七年级下册含参数的一元一次不等式组的解法
含参数的一元一次不等式组的解法【教学目标】1、含参数的一元一次不等式组的概念;2、会解含参数的一元一次不等式组。
【教学重点】1、一元一次不等式组中字母参数的讨论;2、运用数轴分析含参数的不等式组的解集。
【教学难点】通过含参数不等式组的分析与讨论,让学生理解和掌握分类讨论和数形结合的数学思想。
【教学过程】一、学前准备师:同学们,上节课我们刚刚学习了不等式组的解法,谁来说一说这么解不等式组。
那么今天老师给同学们带来了这样一个不等式组,请观察和以前的不等式组有什么不同呢?(引入课题)请同学们拿出导学案,我们来看看同学们对这节课的课前准备工作做得怎么样呢?首先看到第一题,点名提问学生说出第一题的答案。
(出示ppt)第二题,某同学,说出你的答案,并口述你的做法。
(出示ppt)我们再来观察这个不等式,它除了有我们一般不等式里面的未知数x和常数外,还有什么?生:还有一个a师:这个a不是未知数,也不是数集里面的常数,我们把它叫做参数,在不等式里面当做常数看待。
同时,这样的不等式就叫做含参数的不等式。
第三题,某同学,说出你的答案。
(出示ppt )现在我们通过这道题目的解题过程,一起大声地总结出解不等式组的步骤。
生:(1)分别解出不等式组中的每个不等式;(2)利用数轴表示不等式中各个不等式解的公共部分;(3)写出不等式组的解集。
师:既然知道步骤了,我们解什么样的不等式组都应该没有问题了,对不对?学生:对二、新课讲解来看看这样一个不等式组:例 : 解关于x 的一元一次不等式组:⎪⎩⎪⎨⎧->---≥-1x 2133x )2(x x a 首先请大家观察,这个不等式组和第三题的不等式组有什么不同之处?学生:这个不等式组里面含有参数。
说得非常好,一针见血,今天我们要来学习的就是《含参数的一元一次不等式组的解法》(板书课题)那怎么解呢?我们有解题法宝是不是?就是解不等式组的解题步骤哦!根据步骤(1),男生解第一个不等式,女生解第二个不等式,时间一分钟。
人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案
人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
人教版数学七年级下册一元一次不等式第一课时一元一次不等式及其解法课件
褴褛衣内可藏志。 志不真则心不热,心不热则功不贤。
第九章 不等式与不等式组
1.下列不等式中,是一元一次不等式的是
A.13(x+2)>4x-1
B.(1+x)(1-x)>5
C.x+2 1-4≤x
第九章 不等式与不等式组
(2)2x-74≥94.
解:去分母,得2x-7≥9, 移项,得2x≥9+7, 合并同类项,得2x≥16. 系数化为1,得x≥8,其解集在数轴上表示,如图2所示.
第九章 不等式与不等式组
4.解下列各题: (1)解不等式:2(5x+3)≤x-3(1-2x); (2)解不等式:2x+ 3 2-3x+ 2 1<1,并把解集表示在数轴上. 解:(1)去括号,得 10x+6≤x-3+6x, 移项、合并同类项,得 3x≤-9, 系数化为 1,得 x≤-3. 所以原不等式的解集是 x≤-3.
解:移项,得 2x-4x>-3,即-2x>-3. 去括号,得4x+4-9x-3<6,
但方程两边同乘(或除以)一个负数时,方程的解不变. 6.已知3m-5x3+m>4是关于x的一元一次不等式, 系数化为1,得x>-1.
3 移项、合并同类项,得7x≥-14, 系数化为 1,得 x<2,其解集在数轴上表示,如图 1 所示. 去括号,得3x+12+4x+2≥0,
志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。 去括号,得3x+12+4x+2≥0, 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
(1)2x+3>4x; 解:(1)∵3m-5x3+m>4是关于x的一元一次不等式,
(2)求这个不等式的解集. 【第二关】 建议用时6分钟 ②不等式中,当两边同乘(或除以)一个负数时,不等号的方向改变;
数学人教版七年级下册含参数的一元一次不等式组的解法
无解
③当m—1>2m+5时
无解
2m+5 m-1 即m<—6 1 x 2 m 5 综上:当m>—6时,不等式组的解集是 m 当m —6时,无解
三、课堂小结
解含参数的一元一次不等式组的步骤:
解每个 不等式 数轴 找出公 共部分
分类讨论
综上所述
四、中考链接
x2m 解关于x的不等式组: 2x14m1
中 ab 其
a 0 b
x b 同 大 取 大
x a x b
a
0
b
x a 同 小 取 小
求一元一次不等式组的解集,可归纳为四种基本情况:
x a xb
a 0 b
中 ab 其
a x b 大 小 小 大 中 间 找
x a xb
a 0 b
无 解 大 大 小 小 解 集 无 处 找
例1.
10 ① x 解 不 等 式 组 ② x 2 0
由
②
分析:由 ① 得 : x 1
得 : x 2
在数轴上表示不等式①,②的解集
1 2 3 不 等 式 组 的 解 集 为 x 20Biblioteka 2 1二、学习新知
x m 1 例 2 :解关于 x 的不等式组 x 2 m 5
分析思考:m-1和2m+5谁大谁小?
m-1 < 2m+5 m-1 = 2m+5 m-1 > 2m+5
x m 1 例 2 :解关于 x 的不等式组 x 2 m 5
①当m—1<2m+5时 即m>—6
m-1
数学人教版七年级下册含参数的一元一次不等式组的解法及应用
<<含参数的一元一次不等式组的解法及应用>>教学设计——————初一中 向利军学习目标:1、会解含参数的一元一次不等式组;2、已知含参数的一元一次不等式组的解集或解的情况,会求参数的取值范围. 重点:1、会解含参数的一元一次不等式组;2、已知含参数的一元一次不等式组的解集或解的情况,会求参数的取值范围. 难点:已知含参数的一元一次不等式组的解集或解的情况,会构造含参数的方程或不等式.一、 情景导学设计2016年重庆中考题A 卷和B 卷选择题12题考的是含参数的一元一次不等式组和含参方程的一道综合型的题,同学们在上节课我们复习了含参方程的内容,今天这节课我们来探讨含参的一元一次不等式组的解法及应用.师:我来检查同学们课前做的学前准备,完成得怎么样?第1题由4个同学来回答,每人回答一道,第2题由一个同学到黑板上板演,第3题再由一个同学回答最后教师总结。
二、例题讲解 例1 : 解关于x 的一元一次不等式组:教师板书规范格式小结:(1)解每个不等式 ;(2)画数轴,分类讨论;(3)写出解集。
学生到黑板上板书练习1的答案练习1:解关于x 的一元一次不等式组:⎪⎩⎪⎨⎧->-≥-1x 2133--x )2(x x a师:我们会解含参不等式组中一个不等式含参数,那两个不等式都含参数又如何解呢?拓展: 解关于x 的不等式组:⎩⎨⎧+<>521-m x m x⎪⎩⎪⎨⎧>---≥-33124)(2x x x a提问:第一步还需解每个不等式吗?生:不解师:第一步做什么?生:画数轴表示解集师:先表示哪一个?生:都可以学生口答,教师用投影仪出示范灯片思考: (1)若练习1的不等式组有解,则a 的取值范围是 .(2)若练习1的不等式组无解,则a 的取值范围是 .三、能力提升例2 :已知关于x 的一元一次不等式组⎩⎨⎧->>3x a x 的解集为3->x ,则a 的取值范围 是 .由学生回答,投影仪展示。
人教版数学七年级下册9.3 一元一次不等式组-课件
④ x< -1 x≥ 2
A x ≥ -1
A x< -1
A x ≥ -1
A x< -1
B x≥ 2
B x< 2
B x< 2
B
x≥ 2
C -1≤ x≤ 2
C -1< x< 2
C -1≤ x< 2
C -1< x≥ 2
D 无解
D 无解
D 无解
D 无解
2 x-
1
x,
①
2.
解不等式组:
1
x
< 3.
②
2
解: 解不等式①,得 x > 1 .
因此,原不等式组的解集为 20<x <22.
2x+y=5m+6 ① 7.已知方程组 x-2y=-17 ② 的解x,y的值都是正数,且x<y,求m的取值范围.
解:①×2+②得:5x=10m-5,得:x=2m-1.
①-②×2得:5y=5m+40,得:y=m+8.
又∵x,y的值都是正数,且x<y.
∴ 2m-1>0 m+8>0 2m-1<m+8
a x>b
b
同大取大
a x<a b
同小取小
a a<x<b b
大小小大中间找
a 无解 b
大大小小无处找
练一练
填表:
不等式组
x
≥
-5,
x
>
-
3
x
>
-5,
x
≤
-3
x-
5
<
0,
x
+
3
<
0
不等式组的解集 x﹥-3 -5﹤x≤-3 x<-3
人教版初中数学七年级下册9.3.1《一元一次不等式组》课件(共19张PPT)
(1)求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 (3)根据几个不等式解集的公共部分,写出这个 不等式组的解集。
五、当堂检测
独立完成课本129页练习第1、2题.
2、学生分组完成后交流展示
要求:找出下列不等式组的公共部分
动手画一画, 一起找一找。
第一组
x 3, (1)x 7.
第二组
x 3, (3) x 7.
第三组
(5)
x x
3, 7.
第四组
(7)
x x
3, 7.
(2)
x x
1, 4.
x 1, (4) x 4.
x 1, (6) x 4.
x 1, (8) x 4.
让我们一起动手共同完成…
求下列不等式组的解集:(第一小组)
(1)xx
3, 7.
0 1 2 3 45 6 7 89
解:原不等式组的解集为
x7
x 1, (2) x 4 -3 -2 -1 0 1 2 3 4 5
解:原不等式组的解集为
x4
求下列不等式组的解集:(第二小组)
下列不等式中哪些是一元一次不等式?
2 y 7 6
x 1
(1)3x 3 1 (否) (2)x 2(是)
x 2 1
(3) 1 x
1
(否)
(4)32aa
7 3
(1是)
0
{3+x(1<)每4+个2不x等式必须为一元一次不等式;
(5) 5x-(32<)不4x等-1式必(须是是)只含有同一个未知数;
在同一个数轴上表示不等式①,②的解集为
0 —45 1
2
数学人教版七年级下册一元一次不等式(组)解题方法与技巧总结
2,一元一次不等式性质解题模决:
同加同加减号(不等号方向)不变,同乘同除负要变 (不等号方向),系数未知讨论管,互逆做题记心间。 模例1(1)-2x-3<5 (2)-3x+4>x+3 解:-2x-3+3<5-3 解:-3x+4-x>x-x+3
-2x<2 -2x\-2<2\-2 x>-1
-5x+4>3 -5x+4-4>3-4 -5x>-1 x<1\5
5,一元一次方程及方程组特殊 万能解法模诀:
求解看条件,数轴来判断,或者断区间, 左右移一点,等号来判断,难题真简单。 模例6(1)已知x、y的方程{x+y=2m+7(1)
x-y=4m-3 (2) 的解 为正数,求m的取值范围, 解:由(1)+(2)得:2x=6m+4 x=3m+2
由(1)-(2)得:2y=-2m+10 y=-m+5 ∵x>0 y>0∴3m+2>0 m>-2|3 (求解看条件来做题) (2)已知:{x+2<5(1) {x-a>0 (2) 的非负整数解为3个,求a的取值 范围。解:由(1)得:x<3,由(2)得:x>a,所以原不等式组 的解集为:a<x<3,∵元不等式组解非负整数解为3个,∴ -1≤a<0 (魔决来做题)
七年级下 一元一次不等式解题方法总 结
课件制作:安徽阜南焦陂中心校Biblioteka 课件制作人: 熊伟
模型强化训练
模决展示
模型例题展示
1,一元一次不等式定义型解题模决:
• 题目一元和一次(不等式),次数为1系不零,多 余项系等于0,这种方法真轻松。 • 模例1 (a+1)x² +y/b/<5是关于x的一元一次不等式, 求a+b的值。 • 解:由题意知:a+1=0 • a=-1 • |b|=1 • b=+1或-1 • ∴a+b=0或-2 • 练习:(a-3)x² +(b+2)X/c/>7关于x的一元一次 不等式,则a,b,c应满足的条件是?
人教版七年级数学下册一元一次不等式组(基础) 知识讲解
人教版七年级数学下册一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.【答案】(1)2x>;(2)3x<-;(3)32x-<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1)313112123x xx x+<-⎧⎪⎨++≤+⎪⎩①②(2)213(1)4x x x+>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x<-2解不等式②,得x≥-5故原不等式组的解集为-5≤x<-2.其解集在数轴上表示如图所示.(2)原不等式可变为:213(1)3(1)4x xx x+>-⎧⎨-≥-⎩①②解①得:4x<解②得:12 x≥-故原不等式组的解集为14 2x-≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】解:,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得: 88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:,解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
不等式含参题型及解题方法初一下册
不等式含参题型及解题方法初一下册一、不等式含参题型介绍不等式含参题型是初中数学中的重要知识点,通常在初一下册的数学教学中进行学习和训练。
不等式含参题型是指含有未知数的不等式,通过对不等式进行变形求解未知数的取值范围。
二、不等式含参题型的解题方法1.确定不等式的类型和形式在解不等式含参题型时,首先要确定不等式的形式,包括一元一次不等式、一元二次不等式等等。
根据不等式形式的不同,采取相应的解题方法。
2.移项变形对于一元一次不等式,通常采用移项变形的方法进行求解。
通过在不等式两边进行加减运算,将含有未知数的项移到一边,将常数项移到另一边,从而得到未知数的取值范围。
3.化简并求解对于一元二次不等式,通常需要先将不等式进行化简,然后再通过代数方法或图像法求解。
化简包括合并同类项、配方等步骤,通过化简后的形式求解未知数的取值范围。
4.运用不等式性质在解不等式含参题型时,还可以运用不等式的性质进行求解。
常用的不等式性质包括加法性质、乘法性质等,通过这些性质对不等式进行变形和运算,从而得到未知数的取值范围。
5.综合运用在实际的不等式含参题型中,通常需要综合运用以上的方法进行求解。
需要根据具体的不等式形式和题目要求,选择合适的解题方法进行求解,从而得到正确的结果。
三、不等式含参题型的典型例题及解析题目一:已知不等式2x + 3 < 7,求x的取值范围。
解析:首先将不等式进行移项变形,得到2x < 4。
然后将不等式两边都除以2,得到x < 2。
所以不等式2x + 3 < 7的解集为x < 2。
题目二:已知不等式x^2 - 3x + 2 > 0,求x的取值范围。
解析:首先将不等式进行化简,得到(x-1)(x-2) > 0。
然后通过代数方法或图像法对不等式进行求解,得到x < 1或x > 2。
所以不等式x^2 - 3x + 2 > 0的解集为x < 1或x > 2。
人教版七年级数学下册一元一次不等式的解法(基础)典型例题(考点)讲解+练习(含答案).doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】一元一次不等式的解法(基础)知识讲解责编:常春芳【学习目标】1.理解一元一次不等式的概念; 2.会解一元一次不等式.【要点梳理】【:一元一次不等式 370042 一元一次不等式 】 要点一、一元一次不等式的概念只含有一个未知数,未知数的次数是一次的不等式,叫做一元一次不等式,例如,2503x >是一个一元一次不等式. 要点诠释:(1)一元一次不等式满足的条件:①左右两边都是整式(单项式或多项式);②只含有一个未知数; ③未知数的最高次数为1.(2) 一元一次不等式与一元一次方程既有区别又有联系: 相同点:二者都是只含有一个未知数,未知数的次数都是1,“左边”和“右边”都是整式. 不同点:一元一次不等式表示不等关系,由不等号“<”、“≤”、“≥”或“>”连接,不等号有方向;一元一次方程表示相等关系,由等号“=”连接,等号没有方向. 要点二、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集. 要点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用. (2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项; ②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变. 3.不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来,能形象地说明不等式有无限多个解,它对以后正确确定一元一次不等式组的解集有很大帮助.要点诠释: 在用数轴表示不等式的解集时,要确定边界和方向: (1)边界:有等号的是实心圆点,无等号的是空心圆圈; (2)方向:大向右,小向左. 【典型例题】类型一、一元一次不等式的概念1.下列式子中,是一元一次不等式的有哪些?(1)3x+5=0 (2)2x+3>5 (3)384x (4)1x≥2 (5)2x+y≤8【思路点拨】根据一元一次不等式的定义判断,(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数.【答案与解析】解:(2)、(3)是一元一次不等式.【总结升华】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可.类型二、解一元一次不等式2.(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.【思路点拨】解不等式时去括号法则与解一元一次方程的去括号法则是一样的.【答案与解析】解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:【总结升华】在不等式的两边同乘以(或除以)负数时,必须改变不等号的方向.举一反三:【变式】不等式2(x+1)<3x+1的解集在数轴上表示出来应为()【答案】C3.(2015•巴中)解不等式:≤﹣1,并把解集表示在数轴上.【思路点拨】按基本步骤进行,注意避免漏乘、移项变号,特别注意当不等式两边同时乘以或除以一个负数时,不等号的方向要改变.【答案与解析】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.【总结升华】去分母时,不要漏乘没有分母的项. 举一反三: 【变式】若3511+-=x y ,14522--=x y ,问x 取何值时,21y y >. 【答案】 解:∵3511+-=x y ,14522--=x y , 若21y y >,则有1452351-->+-x x 即 6101<x∴当6101<x 时,21y y >.4.关于x 的不等式2x -a ≤-1的解集为x ≤-1,则a 的值是_________.【思路点拨】首先把a 作为已知数求出不等式的解集,然后根据不等式的解集为x≤-1即可得到关于a 的方程,解方程即可求解. 【答案】-1【解析】由已知得:12a x -≤,由112a -=-,得1a =-. 【总结升华】解不等式要依据不等式的基本性质,注意移项要改变符号.举一反三:【变式1】如果关于x 的不等式(a+1)x <a+1的解集是x >l ,则a 的取值范围是________. 【答案】1a -<【:一元一次不等式 370042 例6】 【变式2】已知关于x 的方程2233x m xx ---=的解是非负数,m 是正整数,求m 的值. 【答案】 解:由2233x m xx ---=,得x =22m -, 因为x 为非负数,所以22m-≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含参数的一元一次不等式组的解法
【教学目标】1、含参数的一元一次不等式组的概念;
2、会解含参数的一元一次不等式组。
【教学重点】1、一元一次不等式组中字母参数的讨论;
2、运用数轴分析含参数的不等式组的解集。
【教学难点】通过含参数不等式组的分析与讨论,让学生理解和掌握分类讨论和数形结合的数学思想。
【教学过程】
一、学前准备
师:同学们,上节课我们刚刚学习了不等式组的解法,谁来说一说这么解不等式组。
那么今天老师给同学们带来了这样一个不等式组,请观察和以前的不等式组有什么不同呢?(引入课题)请同学们拿出导学案,我们来看看同学们对这节课的课前准备工作做得怎么样呢?首先看到第一题,点名提问学生说出第一题的答案。
(出示ppt)
第二题,某同学,说出你的答案,并口述你的做法。
(出示ppt)我们再来观察这个不等式,它除了有我们一般不等式里面的未知数x和常数外,还有什么?
生:还有一个a
师:这个a不是未知数,也不是数集里面的常数,我们把它叫做参数,在不等式里面当做常数看待。
同时,这样的不等式就叫做含参数的不等式。
第三题,某同学,说出你的答案。
(出示ppt )
现在我们通过这道题目的解题过程,一起大声地总结出解不等式组的步骤。
生:(1)分别解出不等式组中的每个不等式;
(2)利用数轴表示不等式中各个不等式解的公共部分;
(3)写出不等式组的解集。
师:既然知道步骤了,我们解什么样的不等式组都应该没有问题了,对不对?
学生:对
二、新课讲解
来看看这样一个不等式组:
例 : 解关于x 的一元一次不等式组:⎪⎩⎪⎨⎧->---≥-1x 2
133x )2(x x a 首先请大家观察,这个不等式组和第三题的不等式组有什么不同之处?
学生:这个不等式组里面含有参数。
说得非常好,一针见血,今天我们要来学习的就是《含参数的一元一次不等式组的解法》(板书课题)
那怎么解呢?我们有解题法宝是不是?就是解不等式组的解题步骤哦!
根据步骤(1),男生解第一个不等式,女生解第二个不等式,时间一分钟。
某同学,第一个不等式的解是?
学生:
某同学,第二个不等式的解是?
学生:
师:大家赞不赞同他们俩的答案,赞同就说明对了,好,进行第二步,找这两个解的公共部分,通常利用什么找公共部分?
生:数轴
师:好,那我们来画数轴,我们先任意确定一个点-1,那3+2a 在哪儿呢?可以确定吗?它到底是比-1大,还是比-1小呢?还是等于-1呢?都是有可能的,所以我们得把这些情况都考虑到,就需要分情况讨论。
师:分几种情况?
生:三种
师:哪三种?
生:大于-1,等于-1,小于-1
师:好,我们来分情况讨论
当3+2a>-1时,
当3+2a=-1时,
当3+2a<-1时,
综上所述,
师小结:像这样,我们就把这个含参数的不等式组完整地解完了,解含参数的一元一次不等式组的基本思想就是之前学的解不等式组
的步骤,但在利用数轴找公共部分的时候要注意分类讨论,记住:你不知道哪个大,哪个小,你就要把所有的情况都讨论出来。
师:同学们会做了吗?试试吧!指定学生到黑板上板书。
练习:解关于x 的一元一次不等式组:()⎪⎩⎪⎨⎧-≤->-1
233312x a x x (学生写完)大家一起来当当小老师,看他做得是否正确。
师:像这种不等式组中一个不等式含有参数,另一个不等式中不含参数,我们已经学会解决了,如果两个不等式组中两个不等式都含有参数,怎么办呢?请同学们看到例2.
解关于x 的不等式组:⎩
⎨⎧+<-≥521
m x m x 其实万变不离其宗,还是根据解不等式组的解题步骤。
第一步:分别解出两个不等式;
第二步:利用数轴找出公共部分,同样,问题来了,画数轴时这两个数谁大?谁小?不知道吧,就要?
学生:分类讨论
(出示ppt )
三、课堂小结
师:像这样,我们就解答了两个不等式中都含有参数的不等式组,接下来就到同学们谈收获的时间了,谁愿意来给大家分享一下这节课你学到了什么呢?
生:......
师:同学们说得非常好,特别提醒,这节课的解决问题中体现出分类讨论、数形结合的数学思想,需要大家好好体会。
看来同学们这节课收获不浅啊!是不是真的收获这么多呢?动手检验一下吧,请大家完成“中考链接”。
(做完练习,订正答案)。