高中数学经典例题、错题详解资料

合集下载

唐山市高考数学易错解答题含解析

唐山市高考数学易错解答题含解析

唐山市高考数学易错解答题解答题含答案有解析1.已知函数()sin y A ωx φ=+0,0,02A πωϕ⎛⎫>><<⎪⎝⎭的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相; (2)求函数在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值,并指出取得最值时的x 的值. 2.已知ABC ∆的顶点()5,1A ,AB 边上的中线CM 所在直线方程为250x y --=,B 的平分线BN 所在直线方程为250x y --=,求: (Ⅰ)顶点B 的坐标; (Ⅱ)直线BC 的方程3.已知向量()()4,3,1,2a b ==-. (1)求a 与b 的夹角θ的余弦值;(2)若向量a b λ-与2a b +垂直,求λ的值.4.在ABC ∆中,已知内角,,A B C 所对的边分别为,,a b c ,已知1a =,45B =,ABC ∆的面积2S =. (1)求边c 的长;(2)求ABC ∆的外接圆的半径R . 5.已知函数()3cos 22f x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期; (2)求函数()f x 的单调区间.6.据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长220%,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照[)50,60,[)60,70,…,[)90,100分成5组,制成如图所示的频率分布直方图.(1)求图中x 的值并估计样本数据的中位数;(2)已知满意度评分值在[)50,60内的男女司机人数比为3:2,从中随机抽取2人进行座谈,求2人均为女司机的概率.7.如图,在△ABC 中,cosC =35,角B 的平分线BD 交AC 于点D ,设∠CBD =θ,其中tanθ=2﹣1.(1)求sinA 的值;(2)若21CA CB ⋅=,求AB 的长.8.已知直线:(0)l y kx k =≠与圆22:230C x y x +--=相交于A ,B 两点. (1)若||14AB =,求k ;(2)在x 轴上是否存在点M ,使得当k 变化时,总有直线MA 、MB 的斜率之和为0,若存在,求出点M 的坐标:若不存在,说明理由. 9.设函数.(1)当时,函数的图像经过点,试求的值,并写出(不必证明)的单调递减区间; (2)设,,,若对于任意的,总存在,使得,求实数的取值范围.10.设等差数列的前n 项和为n S ,已知312a =,120S >,130S <; (1)求公差d 的取值范围;(2)判断67a a ⋅与0的大小关系,并说明理由; (3)指出1S 、2S 、⋅⋅⋅、12S 中哪个最大,并说明理由; 11.已知数列{}n a 满足11a =,121n n a a +=+,*n N ∈. (1)求证数列{}1n a +是等比数列,并求数列{}n a 的通项公式; (2)设()221log 1n n b a +=+,数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T,求证:11156nT ≤< 12.已知函数2()23sin cos 2cos 1f x x x x =+-. (1)求函数()y f x =的最小正周期和值域; (2)设,,A B C 为ABC ∆的三个内角,若1cos 3B =,()22C f =,求cos A 的值.13.已知1a =,2b =,且向量a 与b 的夹角为θ. (1)若3πθ=,求a b ⋅;(2)若a b -与a 垂直,求θ.14.已知集合{}2230A x x x =--<,集合{}2680B x x x =-+>. (1)求AB ;(2)若不等式20x ax b ++<的解集为AB ,求不等式20ax x b +-<的解集.15.已知函数()()212cos 1sin 2cos 42f x x x x =-⋅+. (1)求()f x 的最小正周期及单调递减区间; (2)若()0,απ∈,且248f απ⎛⎫-=⎪⎝⎭,求tan 3πα⎛⎫+ ⎪⎝⎭的值. 16.如图,直三棱柱111ABC A B C -中,90ACB ∠=,12AB BB ==,1BC =,11A E AC ⊥,E 为垂足.(1)求证:11A E AB ⊥(2)求三棱锥11B AB C -的体积.17.已知()()log 1a f x x =+,()()log 1a g x x =-,(0a >且)1a ≠ (1)求()()()F x f x g x =+的定义域.(2)判断()()()F x f x g x =+的奇偶性,并说明理由.18.某制造商3月生产了一批乒乓球,从中随机抽样133个进行检查,测得每个球的直径(单位:mm ),将数据分组如下:分组频数 频率 [1.95,1.97)13 [1. 97,1.99)23 [1.99,2.31)53 [2.31,2.33] 23 合计133(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为2.33 mm ,试求这批球的直径误差不超过3.33 mm 的概率;(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[1.99,2.31)的中点值是2.33作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).19.(6分)已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点. (1)当弦AB 被点P 平分时,写出直线l 的方程; (2)当直线l 的倾斜角为45º时,求弦AB 的长.20.(6分)已知离心率为22的椭圆2222:1(0)x y C a b a b +=>>过点(2,1)M .(1)求椭圆C 的方程;(2)过点(1,0)作斜率为2直线l 与椭圆相交于,A B 两点,求||AB 的长.21.(6分)已知ABC ∆的顶点()3,4B ,AB 边上的高所在的直线方程为30x y +-=,E 为BC 的中点,且AE 所在的直线方程为370x y +-=. (1)求顶点A 的坐标;(2)求过E 点且在x 轴、y 轴上的截距相等的直线l 的方程. 22.(8分)已知数列{}n a 满足:123(1)(41)236n n n n a a a na +-+++⋯+=,*n N ∈(1)求1a ,2a 的值; (2)求数列{}n a 的通项公式; (3)设11n n n b a a +=⋅,数列{}n b 的前n 项和n T ,求证:12n T <23.(8分)如图,AB 是O 的直径,PA O ⊥所在的平面,C 是圆上一点,60BAC ∠=︒,PA AB =.(1)求证:平面PAC ⊥平面PBC ; (2)求直线PC 与平面ABC 所成角的正切值.24.(10分)如图,在四棱锥S ABCD -中,底面ABCD 为菱形,E 、P 、Q 分别是棱AD 、SC 、AB 的中点,且SE ⊥平面ABCD .(1)求证:PQ ∥平面SAD ; (2)求证:AC ⊥平面SEQ .25.(10分)已知圆M 的方程为22430x y y +-+=,直线l 的方程为30x y -=,点P 在直线l 上,过点P 作圆M 的切线PA ,PB ,切点为A ,B. (1)若60APB ∠=︒,求点P 的坐标;(2)求证:经过A ,P ,M 三点的圆必经过异于M 的某个定点,并求该定点的坐标.26.(12分)已知数列{}n a 的前n 项和292n S n n =-++(*n N ∈);(1)判断数列{}n a 是否为等差数列; (2)设123||||||||n n R a a a a =++++,求n R ;(3)设1(12)n n b n a =-(*n N ∈),123n n T b b b b =++++,是否存在最小的自然数0n ,使得不等式32n n T <对一切正整数n 总成立?如果存在,求出0n ;如果不存在,说明理由; 27.(12分)在公差是整数的等差数列{}n a 中,17a =-,且前n 项和4n S S ≥. (1)求数列{}n a 的通项公式n a ;(2)令n n b a =,求数列{}n b 的前n 项和n T .28.假设关于某设备的使用年限x 和支出的维修费y(万元)有如下表的统计资料(1)画出数据的散点图,并判断y 与x 是否呈线性相关关系(2)若y 与x 呈线性相关关系,求线性回归方程y b x a ∧∧∧=+的回归系数a ∧,b ∧(3)估计使用年限为10年时,维修费用是多少? 参考公式及相关数据:2122111ˆ,,90,112.3ni in ni i i i ni i ii x y nxyb ay bx x x y xnx ====-==-==-∑∑∑∑ 29.在平面直角坐标系xOy 中,以Ox 轴为始边,作两个角,αβ,它们终边分别经过点P 和Q ,其中21,cos 2P θ⎛⎫⎪⎝⎭,()2sin ,1,Q θθ-∈R ,且4sin 5α.(1)求cos2θ的值; (2)求tan()αβ+的值.30.已知数列{}n a 为等差数列,n S 为{}n a 前n 项和,11a =,39S = (1)求{}n a 的通项公式n a ; (2)设12231111n n n T a a a a a a +=++⋅⋅⋅+,比较n T与2log (3)设函数,(),2n a n f n n f n ⎧⎪=⎨⎛⎫⎪⎪⎝⎭⎩为奇数为偶数,()()*24n n C f n N =+∈,求1C ,2C 和数列{}n C 的前n 项和n M . 参考答案解答题含答案有解析1.(1)函数的解析式为2sin 26y x π⎛⎫=+⎪⎝⎭,其振幅是2,初相是6π(2)12x π=-时,函数取得最大值0;3x π=-时,函数取得最小值勤-2【解析】 【分析】(1)根据图像写出A ,由周期求出ω,再由点,26π⎛⎫⎪⎝⎭确定ϕ的值.(2)根据x 的取值范围确定26x π+的取值范围,再由2sin y t = 的单调求出最值【详解】(1)由图象知,函数的最大值为2,最小值为-2,∴2A =, 又∵4612T ππ⎛⎫=-- ⎪⎝⎭,∴T π=,2ππω=,∴2ω=.∴函数的解析式为()2sin2y x ϕ=+.∵函数的图象经过点,26π⎛⎫⎪⎝⎭,∴2sin 23πϕ⎛⎫+=⎪⎝⎭,∴sin 13πϕ⎛⎫+= ⎪⎝⎭,又∵02πϕ<<,∴6π=ϕ. 故函数的解析式为2sin 26y x π⎛⎫=+⎪⎝⎭,其振幅是2,初相是6π. (2)∵,212x ππ⎡⎤∈--⎢⎥⎣⎦,∴52,066x ππ⎡⎤+∈-⎢⎥⎣⎦. 于是,当206x π+=,即12x π=-时,函数取得最大值0;当262x ππ+=-,即3x π=-时,函数取得最小值为-2.【点睛】本题考查由图像确定三角函数、给定区间求三角函数的最值,属于基础题. 2.(Ⅰ)(1,3)B --(Ⅱ)617450x y --= 【解析】 【分析】(Ⅰ)设()00,B x y ,可得AB 中点坐标,代入直线250x y --=可得00210x y --=;将B 点坐标代入直线250x y --=得00250x y --=,可构造出方程组求得B 点坐标;(Ⅱ)设A 点关于250x y --=的对称点为(),A x y ''',根据点关于直线对称点的求解方法可求得293,55A ⎛⎫'- ⎪⎝⎭,因为A '在直线BC 上,根据两点坐标可求得直线方程. 【详解】(Ⅰ)设()00,B x y ,则AB 中点坐标为:0051,22x y ++⎛⎫⎪⎝⎭ 005125022x y ++∴⨯--=,即:00210x y --= 又00250x y --=,解得:01x =-,03y =-()1,3B ∴--(Ⅱ)设A 点关于250x y --=的对称点为(),A x y '''则1255125022y x x y -⎧=-⎪⎪-⎨++⎪-'''⋅-=⎩'⎪,解得:293,55A ⎛⎫'-⎪⎝⎭ BC ∴边所在的直线方程为:()335312915y x -++=++,即:617450x y --=【点睛】本题考查直线方程、直线交点的求解;关键是能够熟练应用中点坐标公式和点关于直线对称点的求解方法,属于常考题型.3.(1(2)529λ= 【解析】 【分析】(1)分别求出a ,b ,a b ⋅,再代入公式cos a b a bθ⋅=求余弦值;(2)由向量互相垂直,得到数量积为0,从而构造出关于λ的方程,再求λ的值. 【详解】(1) 2435a =+=,21b =-+=14322a b ⋅=-⨯+⨯=,∴cos 2555a b a bθ⋅===⨯. (2) ()()()4,3,24,32a b λλλλλ-=--=+-.()()()28,61,27,8a b +=+-=若()()2a b a b λ-⊥+, 则()()748320λλ++-=, 解得529λ=. 【点睛】本题考查向量数量积公式的应用及两向量垂直求参数的值,考查基本的运算求解能力.4.(1)c =(2)R = 【解析】 【分析】(1)由三角形面积公式可构造方程求得结果;(2)利用余弦定理可求得b ;利用正弦定理即可求得结果. 【详解】(1)由1sin 2S ac B =得:1222c ⨯=,解得:c =(2)由余弦定理得:2222cos 132252b ac ac B =+-=+-= 5b ∴=由正弦定理得:2sin b R B ===2R ∴= 【点睛】本题考查利用正弦定理、余弦定理和三角形面积公式解三角形的问题,考查学生对于解三角形部分的公式掌握的熟练程度,属于基础应用问题.5. (1) ()f x 的最小正周期为2π (2) ()f x 的单调增区间为()72,266k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【解析】试题分析:(1)化简函数的解析式得()2sin 3f x x π⎛⎫=+⎪⎝⎭,根据周期公式求得函数的周期;(2)由()22232k x k k Z πππππ-+≤+≤+∈,求得x 的取值范围即为函数的单调增区间,由()322232k x k k Z ,πππππ+≤+≤+∈求得x 取值范围即为函数的单调减区间。

高中数学错题集及解析

高中数学错题集及解析

高中数学错题集及解析1. 题目:如图所示,已知AD∥CF,DE∥CF,∠ADE=40°,∠FCD=120°,求∠BCF的度数。

A B C DE F解析:根据题目所给的已知条件,我们可以得到如下信息:AD∥CF,DE∥CF,∠ADE=40°,∠FCD=120°。

要求∠BCF的度数,我们可以利用几何知识进行推理和计算。

首先,根据平行线的性质,我们知道∠ADE=∠FCD=40°。

由于∠FCD=120°,所以∠DCF=180°-120°=60°。

接下来,我们观察四边形ADCF,可以发现∠CAF和∠ADF是对顶角,因此它们的度数相等。

∠ADE和∠DCF是共顶角,它们的度数也相等。

由此,我们可以得到以下等式:∠CAF=∠ADF=40°∠ADE=∠DCF=60°现在我们来考虑三角形BCF。

已知∠CAF=∠ADF=40°,∠BCF为所求。

我们知道,三角形内角和为180°,因此有:∠CAF+∠ADF+∠BCF=180°带入已知信息,得到:40°+40°+∠BCF=180°化简得:80°+∠BCF=180°再进一步,我们可以得到:∠BCF=180°-80°∠BCF=100°因此,∠BCF的度数为100°。

2. 题目:已知函数f(x)=2x^3-3x^2+x-5,求f(-1)和f(2)的值。

解析:我们可以使用给定的函数,将x的值代入函数中进行计算,从而得到f(x)的值。

首先,计算f(-1)的值。

将x=-1代入函数f(x)中,有:f(-1)=2(-1)^3-3(-1)^2+(-1)-5化简得:f(-1)=-2-3+(-1)-5=-2-3-1-5=-11因此,f(-1)的值为-11。

接下来,计算f(2)的值。

高中数学高频错题总结 (含例题答案)

高中数学高频错题总结 (含例题答案)

高一上学期易错陷阱总结1、 对数型函数中,(易忽略真数位置大于0)5.已知y =log a (2-ax )在[0,1]上为减函数,则a 的取值范围为( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 2、 集合中,空集的特殊性(易忘记讨论空集)13.已知集合A ={x |2a +1≤x ≤3a -5},B ={x |x <-1,或x >16},分别根据下列条件求实数a 的取值范围. (1)A ∩B =∅; (2)A ⊆(A ∩B ). 3、集合中,元素的互异性(易忽略导致取值错误)[例2] 已知集合⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },求a 2 019+b 2 020的值.跟踪探究 2.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.4、集合中,元素的特殊要求(比如:易忽略x等条件)跟踪探究 1.若集合A ={x |1≤x ≤3,x ∈N },B ={x |x ≤2,x ∈N },则A ∩B =( )A.{x |1≤x ≤2} B .{x |x ≥1} C .{2,3}D .{1,2}5、抽象函数的定义域问题(定义域仅代表x ,括号内取值范围一致)14、函数的定义域为,则的定义域是___;函数的定义域为___.6、 区间中默认a<b14.已知函数f (x )=, x是偶函数,则a+b=7、 换元法求值域类问题(易忽略换元后,t 的取值范围)(1)f (x +1)=x +2x ,求f (x )的值域;8、动轴定区间类问题(分类讨论不重不漏)典型案例:求函数y =x 2-2ax -1在[0,2]上的最值.9同增异减求单调区间问题(对数型时不能忽略真数位置大于0)(多个区间,隔开)跟踪探究 2.求函数y =log 2(x 2-5x +6)的单调区间.10、分段函数单调性问题。

(易忽略结点处)13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax +4,(x ≤1),-ax +3a -4,(x >1)且f (x )在R 上递减,则实数a 的取值范围________.11.解分式不等式。

高考数学高频易错题举例解析共42页

高考数学高频易错题举例解析共42页

高考数学高频易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

⎩⎨⎧ x >0 y >0 ⇔ ⎩⎨⎧ x + y >0 xy >0 ,但 ⎩⎨⎧ x >1 y >2 与 ⎩⎨⎧ x + y >3 xy >2不等价。

【例1】已知f(x) = a x + xb,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。

错误解法 由条件得⎪⎩⎪⎨⎧≤+≤≤+≤-622303ba b a ②① ②×2-① 156≤≤a ③ ①×2-②得 32338-≤≤-b ④ ③+④得 .343)3(310,34333310≤≤≤+≤f b a 即错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数bxax x f +=)(,其值是同时受b a 和制约的。

当a 取最大(小)值时,b 不一定取最大(小)值,因而整个解题思路是错误的。

正确解法 由题意有⎪⎩⎪⎨⎧+=+=22)2()1(b a f ba f , 解得:).1(95)2(91633)3(f f b a f -=+=∴ 把)1(f 和)2(f 的范围代入得 .337)3(316≤≤f 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。

只有牢固地掌握基础知识,才能反思性地看问题。

●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。

利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα有的学生一看到449-,常受选择答案(A )的诱惑,盲从附和。

高考数学高频易错题举例解析

高考数学高频易错题举例解析

高考数学高频易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略.也就是在转化过程中,没有注意转化的等价性,会经常出现错误.本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助.加强思维的严密性训练. ● 忽视等价性变形,导致错误.,但 与 不等价.【例1】已知f 〔x 〕 = ax + ,若求的范围.错误解法 由条件得 ⎪⎩⎪⎨⎧≤+≤≤+≤-622303ba b a ②① ②×2-① 156≤≤a ③ ①×2-②得 32338-≤≤-b ④ ③+得 ④.343)3(310,34333310≤≤≤+≤f b a 即 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数,其值是同时受制约的.当取最大〔小〕值时,不一定取最大〔小〕值,因而整个解题思路是错误的.正确解法 由题意有, 解得:⎪⎩⎪⎨⎧+=+=22)2()1(b a f ba f)],2()1(2[32)],1()2(2[31f f b f f a -=-=).1(95)2(91633)3(f f b a f -=+=∴ 把和的范围代入得 )1(f )2(f .337)3(316≤≤f 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性.只有牢固地掌握基础知识,才能反思性地看问题.●忽视隐含条件,导致结果错误. 【例2】(1) 设是方程的两个实根,则的最小值是βα、0622=++-k kx x 22)1()1(-+-βα不存在)D (18)C (8)B (449)A (-思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当.利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα.449)43(42)(22)(1212)1()1(222222--=++--+=+-++-=-+-∴k βααββαββααβα 有的学生一看到,常受选择答案〔A 〕的诱惑,盲从附和.这正是思维缺乏反思性的体现.如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案.原方程有两个实根,∴ βα、0)6k (4k 42≥+-=∆⇒.3k 2k ≥-≤或当时,的最小值是8;3≥k 22)1()1(-+-βα 当时,的最小值是18.这时就可以作出正确选择,只有〔B 〕正确. 〔2〕 已知〔x+2〕2+ =1, 求x2+y2的取值范围.错解 由已知得 y2=-4x2-16x -12,因此 x2+y2=-3x2-16x -12=-3〔x+〕2+ ,∴当x=-时,x2+y2有最大值,即x2+y2的取值范围是〔-∞, ]. 分析 没有注意x 的取值范围要受已知条件的限制,丢掉了最小值. 事实上,由于〔x+2〕2+ =1 〔x+2〕2=1- ≤1 -3≤x ≤-1, 从而当x=-1时x2+y2有最小值1.∴ x2+y2的取值范围是[1, ].注意有界性:偶次方x2≥0,三角函数-1≤sinx ≤1,指数函数ax>0,圆锥曲线有界性等.●忽视不等式中等号成立的条件,导致结果错误.【例3】已知:a>0 , b>0 , a+b=1,求〔a+ 〕2+〔b+ 〕2的最小值. 错解 〔a+〕2+〔b+〕2=a2+b2+++4≥2ab++4≥4+4=8,∴〔a+〕2+〔b+〕2的最小值是8.分析 上面的解答中,两次用到了基本不等式a2+b2≥2ab ,第一次等号成立的条件是a=b=,第二次等号成立的条件是ab=,显然,这两个条件是不能同时成立的.因此,8不是最小值. 事实上,原式= a2+b2+++4=〔 a2+b2〕+〔+〕+4=[〔a+b 〕2-2ab]+[〔+〕2-]+4= 〔1-2ab 〕〔1+〕+4,由ab ≤〔〕2= 得:1-2ab ≥1-=, 且≥16,1+≥17, ∴原式≥×17+4= 〔当且仅当a=b=时,等号成立〕, ∴〔a + 〕2 + 〔b + 〕2的最小值是.●不进行分类讨论,导致错误 【例4】〔1〕已知数列的前项和,求错误解法 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a错误分析 显然,当时,.错误原因:没有注意公式成立的条件是. 因此在运用时,必须检验时的情形.即:. 〔2〕实数为何值时,圆与抛物线有两个公共点.错误解法 将圆与抛物线 联立,消去,012222=-+-+a ax y x x y 212=y 得 ①).0(01)212(22≥=-+--x a x a x因为有两个公共点,所以方程①有两个相等正根,得 , 解之得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a .817=a错误分析 〔如图2-2-1;2-2-2〕显然,当时,圆与抛物线有两个公共点.要使当方程①有一正根、一负根时,得解之,得⎩⎨⎧<->∆.0102a .11<<-a因此,当或时,圆与抛物线有两个公共点.思考题:实数为何值时,圆与抛物线,a 012222=-+-+a ax y x x y 212=(1) 有一个公共点;〔2〕有三个公共点;〔3〕有四个公共点;〔4〕没有公共点.●以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性.【例5】〔1〕设等比数列的全项和为.若,求数列的公比.21错误解法 ,,2963S S S =+ q q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131.012(363)=整理得--q q q.错误分析 在错解中,由,qq a q q a q q a --⋅=--+--1)1(21)1(1)1(916131时,应有.在等比数列中,是显然的,但公比q 完全可能为1,因此,在解题时应先讨论公比的情况,再在的情况下,对式子进行整理变形.正确解法若,则有但,即得与题设矛盾,故.1=q .9,6,3191613a S a S a S ===01≠a ,2963S S S ≠+1≠q 又依题意,即因为,所以所以解得963S 2S S =+⇒qq a q q a q q a --⋅=--+--1)1(21)1(1)1(916131⇒01q q 2(q 363)=--,0)1)(12(33=-+q q 1≠q ,013≠-q .0123=+q .243-=q 说明 此题为1996年全国高考文史类数学试题第〔21〕题,不少考生的解法同错误解法,根据评分标准而痛失2分.〔2〕求过点的直线,使它与抛物线仅有一个交点.错误解法 设所求的过点的直线为,则它与抛物线的交点为)1,0(1+=kx y⎩⎨⎧=+=xy kx y 212,消去得整理得 y .02)1(2=-+x kx .01)22(22=+-+x k x k 直线与抛物线仅有一个交点,解得所求直线为,0=∆∴∴=.21k .121+=x y 错误分析 此处解法共有三处错误:第一,设所求直线为时,没有考虑与斜率不存在的情形,实际上就是承认了该直线的斜率是存在的,且不为零,这是不严密的.第二,题中要求直线与抛物线只有一个交点,它包含相交和相切两种情况,而上述解法没有考虑相切的情况,只考虑相交的情况.原因是对于直线与抛物线“相切”和“只有一个交点”的关系理解不透.第三,将直线方程与抛物线方程联立后得一个一元二次方程,要考虑它的判别式,所以它的二次项系数不能为零,即而上述解法没作考虑,表现出思维不严密.正确解法 ①当所求直线斜率不存在时,即直线垂直轴,因为过点,所以即轴,它正好与抛物线相切. ②当所求直线斜率为零时,直线为y = 1平行轴,它正好与抛物线只有一个交点.③一般地,设所求的过点的直线为,则,)1,0(1+=kx y )0(≠k ⎩⎨⎧=+=xy kx y 212∴.01)22(22=+-+x k x k 令解得k = ,∴所求直线为,0=∆.121+=x y 综上,满足条件的直线为:.121,0,1+===x y x y《章节易错训练题》1、已知集合M = {直线} ,N = {圆} ,则M ∩N 中元素个数是 A 〔集合元素的确定性〕〔A 〕 0 〔B 〕 0或1〔C 〕 0或2〔D 〕 0或1或22、已知A = ,若A ∩R* = ,则实数t 集合T = ___.〔空集〕3、如果kx2+2kx -〔k+2〕<0恒成立,则实数k 的取值范围是C 〔等号〕 〔A 〕 -1≤k ≤0 〔B 〕 -1≤k<0 〔C 〕 -1<k ≤0 〔D 〕 -1<k<04、命题<3,命题<0,若A 是B 的充分不必要条件,则的取值范围是C 〔等号〕 〔A 〕 〔B 〕 〔C 〕 〔D 〕5、若不等式x2-logax<0在〔0, 〕内恒成立,则实数的取值范围是A 〔等号〕 〔A 〕 [,1〕 〔B 〕 〔1, + 〕〔C 〕 〔,1〕〔D 〕 〔,1〕∪〔1,2〕6、若不等式〔-1〕na < 2 +对于任意正整数n 恒成立,则实数的取值范围是A 〔等号〕 〔A 〕 [-2,〕 〔B 〕 〔-2,〕〔C 〕 [-3,〕〔D 〕 〔-3,〕7、已知定义在实数集上的函数满足:;当时,;对于任意R ()f x (1)1f =0x <()0f x < 的实数、都有.证明:为奇函数.〔特殊与一般关系〕8、已知函数f 〔x 〕 = ,则函数的单调区间是_____.递减区间〔-,-1〕和〔-1, +〕 〔单调性、单调区间〕9、函数y = 的单调递增区间是________.[-,-1〕〔定义域〕 10、已知函数f 〔x 〕= , f 〔x 〕的反函数f -1〔x 〕= . 0≤x<1〕〕〔漏反函数定义域即原函数值域〕11、函数 f 〔x 〕 = log 〔x 2 + a x + 2〕 值域为 R ,则实数 a 的取值范围是D 〔正确使用△≥0和△<0〕 〔A 〕 〔-2,2〕 〔B 〕 [-2,2] 〔C 〕 〔-,-2〕∪〔2,+〕 〔D〕〔-,-2]∪[2,+〕12、若x ≥0,y ≥0且x+2y=1,那么2x+3y2的最小值为B 〔隐含条件〕 〔A 〕2 〔B 〕〔C 〕〔D 〕013、函数y=的值域是________.〔-∞, 〕∪〔,1〕∪〔1,+∞〕 〔定义域〕 14、函数y = sin x 〔1 + tan x tan 〕的最小正周期是C 〔定义域〕〔A 〕 〔B 〕〔C 〕 2〔D 〕 315、已知 f 〔x 〕 是周期为 2 的奇函数,当 x [0,1〕 时,f 〔x 〕 = 2 x ,则 f 〔log 23〕 = D 〔对数运算〕〔A 〕 〔B 〕〔C 〕 -〔D 〕 -16、已知函数在处取得极值.〔1〕讨论和是函数的极大值还是极小值;〔2〕过点作曲线的切线,求此切线方程.〔2004天津〕〔求极值或最值推理判断不充分〔建议列表〕;求过点切线方程,不判断点是否在曲线上.〕 17、已知tan 〔-〕= - ,5〕 则tan = ;= .,2〕 、,3〕 〔化齐次式〕18、若 3 sin 2 + 2 sin 2 -2 sin = 0,则cos 2 + cos 2 的最小值是 __ .〔隐含条件〕 19、已知sin + cos = , 〔0,〕,则cot = _______.-〔隐含条件〕20、在△ABC 中,用a 、b 、c 和A 、B 、C 分别表示它的三条边和三条边所对的角,若a =2、 、,则∠B = B 〔隐含条件〕〔A 〕〔B 〕〔C 〕〔D 〕21、已知a>0 , b>0 , a+b=1,则〔a + 〕2 + 〔b + 〕2的最小值是_______.〔三相等〕 22、已知x ≠ k 〔k Z 〕,函数y = sin2x + 的最小值是______.5〔三相等〕 23、求的最小值.错解1 |cos sin |8cos 8sin 22cos 8sin 22222x x x x x x y =⋅⋅≥+=.16,.16|2sin |16min =∴≥=y x错解2.261182221)cos cos 8()sin sin 2(2222+-=-+≥-+++=x xx x y 错误分析 在解法1中,的充要条件是16=y .1|2sin |cos 8sin 222==x xx 且即这是自相矛盾的.在解法2中,的充要条件是261+-=y这是不可能的.正确解法1 x x y 22sec 8csc 2+=.18x tan 4x cot 2210)x tan 4x (cot 210)x tan 1(8)x cot 1(2222222=⋅⋅+≥++=+++=其中,当.18y 2x cot x tan 4x cot 222===时,,即.18min =∴y 正 确 解 法2 取正常数,易得kk x k xx k x y -+++=)cos cos 8()sin sin 2(2222.268222k k k k k -⋅=-⋅+⋅≥ 其中“”取“=”的充要条件是≥.18k 21x tan x cos k xcos 8x sin k x sin 222222====且,即且 因此,当,18k k 26y 21x tan 2=-⋅==时,.18min =∴y 24、已知a1 = 1,an = an -1 + 2n -1〔n ≥2〕,则an = ________.2n -1〔认清项数〕25、已知 -9、a1、a2、-1 四个实数成等差数列,-9、b1、b2、b3、-1 五个实数成等比数列, 则b2〔a2-a1〕=A 〔符号〕 〔A 〕 -8 〔B 〕 8 〔C 〕 -〔D〕26、已知 {an} 是等比数列,Sn 是其前n 项和,判断Sk ,S2k -Sk ,S3k -S2k 成等比数列吗?当q = -1,k 为偶数时,Sk = 0,则Sk ,S2k -Sk ,S3k -S2k 不成等比数列; 当q ≠-1或q = -1且k 为奇数时,则Sk ,S2k -Sk ,S3k -S2k 成等比数列. 〔忽视公比q = -1〕27、已知定义在R 上的函数和数列满足下列条件:)(x f }{n a,f 〔an 〕-f 〔an -1〕 = k 〔an -an -1〕〔n = 2,3,┄〕,其中a 为常数,k 为非零常数.〔1〕令,证明数列是等比数列;〔2〕求数列的通项公式;〔3〕当时,求.〔2004天津〕〔等比数列中的0和1,正确分类讨论〕28、不等式m2-〔m2-3m 〕i< 〔m2-4m + 3〕i + 10成立的实数m 的取值集合是________.{3}〔隐含条件〕29、i 是虚数单位,的虚部为〔 〕C 〔概念不清〕〔A 〕 -1 〔B 〕 -i〔C 〕 -3〔D 〕 -3 i30、实数,使方程至少有一个实根.错误解法 方程至少有一个实根,020m )m i 21(4)i 4m (22≥-=+-+=∆∴ 或⇒,52m ≥.52-≤m错误分析 实数集合是复数集合的真子集,所以在实数范围内成立的公式、定理,在复数范围内不一定成立,必须经过严格推广后方可使用.一元二次方程根的判别式是对实系数一元二次方程而言的,而此题目盲目地把它推广到复系数一元二次方程中,造成解法错误.正确解法 设是方程的实数根,则a.0i )m 2a 4(1m a a ,0m i 21a )i 4m (a 22=++++∴=++++由于都是实数,,解得 m a 、⎩⎨⎧=+=++∴24012m a ma a .2±=m 31、和a = 〔3,-4〕平行的单位向量是_________;和a = 〔3,-4〕垂直的单位向量是_________.〔,-〕或〔-,〕;〔,〕或〔- ,- 〕〔漏解〕32、将函数y= 4x -8的图象L 按向量a 平移到L/,L/的函数表达式为y= 4x ,则向量a=______. a = 〔h ,4h+8〕 〔其中h R 〕〔漏解〕 33、已知 ||=1,||=,若//,求·.①若,共向,则 ·=||•||=,a b a b a b2②若,异向,则·=-||•||=-.〔漏解〕34、在正三棱锥A -BCD 中,E 、F 是AB 、BC 的中点,EF ⊥DE ,若BC = a ,则正三棱锥A -BCD 的体积为____________.,24〕 a3 〔隐含条件〕35、在直二面角 -AB - 的棱 AB 上取一点 P ,过 P 分别在 、 两个平面内作与棱成 45° 的斜线 PC 、PD,那么∠CPD的大小为D 〔漏解〕 〔A 〕 45 〔B 〕 60 〔C 〕 120 〔D〕60或 12036、如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F. 〔1〕证明PA//平面EDB ; 〔2〕证明PB ⊥平面EFD ;〔3〕求二面角C —PB —D 的大小.〔2004天津〕〔条件不充分〔漏PA 平面EDB ,平面PDC ,DE ∩EF = E 等〕;运算错误,锐角钝角不分.〕 37、若方程 + y 2 = 1表示椭圆,则m 的范围是_______.〔0,1〕∪〔1,+ 〕〔漏解〕 38、已知椭圆 + y 2 = 1的离心率为 ,则 m 的值为 ____ .4 或 〔漏解〕39、椭圆的中心在原点,对称轴为坐标轴,椭圆短轴的一个顶点 B 与两焦点 F1、F2 组成的三角形的周长为 4 + 2且∠F1BF2 = ,则椭圆的方程是 .+ y 2 = 1或x 2 + = 1〔漏解〕40、椭圆的中心是原点O ,它的短轴长为,相应于焦点F 〔c ,0〕〔〕的准线与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点.〔1〕求椭圆的方程及离心率;〔2〕若,求直线PQ 的方程;〔3〕设〔〕,过点P 且平行于准线的直线与椭圆相交于另一点M ,证明.〔2004天津〕〔设方程时漏条件a>,误认短轴是b = 2;要分析直线PQ 斜率是否存在〔有时也可以设为x = ky + b 〕先;对一元二次方程要先看二次项系数为0否,再考虑△>0,后韦达定理.〕 41、求与轴相切于右侧,并与⊙也相切的圆的圆心y 06:22=-+x y x C的轨迹方程.错误解法 如图3-2-1所示,已知⊙C 的方程为.9)3(22=+-y x 设点为所求轨迹上任意一点,并且⊙P 与轴相切于M 点,)0)(,(>x y x P y 与⊙C 相切于N 点.根据已知条件得3||||+=PM CP ,即,化简得3x y )3x (22+=+-).0(122>=x xy错误分析 本题只考虑了所求轨迹的纯粹性〔即所求的轨迹上的点都满足条件〕,而没有考虑所求轨迹的完备性〔即满足条件的点都在所求的轨迹上〕.事实上,符合题目条件的点的坐标并不都满足所求的方程.从动圆与已知圆内切,可以发现以轴正半轴上任一点为圆心,此点到原点的距离为半径〔不等于3〕的圆也符合条件,所以也是所求的方程.即动圆圆心的轨迹方程是y2 = 12x 〔x>0〕和.因此,在求轨迹时,一定要完整的、细致地、周密地分析问题,这样,才能保证所求轨迹的纯粹性和完备性.42、〔如图3-2-2〕,具有公共轴的两个直角坐标平面和所成的二面角等于.已知内的曲线的方程是,求曲线在内的射影的曲线方程.错误解法 依题意,可知曲线是抛物线,C ' 在内的焦点坐标是β.0),0,2(>'p pF 因为二面角等于,βα轴-y -︒60且所以轴,轴轴,轴y x y x ⊥⊥'.60︒='∠x xo设焦点在内的射影是,那么,位于轴上,F 'α),(y x F F x 从而,90,60,0︒='∠︒='∠=FO F OF F y所以所以点是所求射影的焦点.的射影的曲线方程是错误分析 上述解答错误的主要原因是,凭直观误认为F 的焦点,其次,没有证明默认C/在 内的射影〔曲线〕是一条抛.正确解法 在内,设点是曲线上任意一点β),(y x M '' 〔如图3-2-3〕过点作,垂足为,过作轴,垂足为连接,N y NH ⊥.H MH 则轴.所以是二面角β-α轴-y 的平面角,依题意,.MHN ∠︒=60在.2160cos ,x HM HN MNH Rt '=︒⋅=∆中 又知轴〔或与重合〕, 轴〔或与重合〕,设,则 ⎩⎨⎧='='∴⎪⎩⎪⎨⎧'='=.221y y xx y y x x 因为点在曲线上,所以),(y x M '')0(22>'=p x p y ).2(22x p y = 即所求射影的方程为 ).0(42>=p px y数学推理是由已知的数学命题得出新命题的基本思维形式,它是数学求解的核心.以已知的真实数学命题,即定义、公理、定理、性质等为依据,选择恰当的解题方法,达到解题目标,得出结论的一系列推理过程.在推理过程中,必须注意所使用的命题之间的相互关系〔充分性、必要性、充要性等〕,做到思考缜密、推理严密.二、选择题:1.为了得到函数的图象,可以将函数的图象〔 〕 A 向右平移 B 向右平移 C 向左平移 D 向左平移6π3π6π3π错误分析:审题不仔细,把目标函数搞错是此题最容易犯的错误. 答案: B2.函数的最小正周期为 〔 〕A B C D ππ22π23π错误分析:将函数解析式化为后得到周期,而忽视了定义域的限制,导致出错.x y tan =π=T 答案: B 3. 曲线y=2sin 〔x+cos 〔x-〕和直线y=在y 轴右侧的交点按横坐标从小到大依次记为P1、P2、P3……,则P2P4等于 〔 〕 A . B .2 C .3 D .4正确答案:A 错因:学生对该解析式不能变形,化简为Asin 〔x+〕的形式,从而借助函数图象和函数的周期性求出P2P.4.下列四个函数y=tan2x ,y=cos2x ,y=sin4x ,y=cot 〔x+〕,其中以点〔,0〕为中心对称的三角函数有〔 〕个A .1B .2C .3D .4正确答案:D 错因:学生对三角函数图象的对称性和平移变换未能熟练掌握.5.函数y=Asin 〔x+〕〔>0,A0〕的图象与函数y=Acos 〔x+〕〔>0, A0〕的图象在区间〔x0,x0+〕上〔〕 A .至少有两个交点 B .至多有两个交点C .至多有一个交点D .至少有一个交点 正确答案:C 错因:学生不能采用取特殊值和数形结合的思想方法来解题. 6. 在ABC 中,2sinA+cosB=2,sinB+2cosA=,则C 的大小应为〔 〕A .B .C .或D .或6π3π6ππ653π32π正确答案:A 错因:学生求C 有两解后不代入检验.7.已知tan tan 是方程x2+3x+4=0的两根,若,〔-〕,则+=〔 〕A .B .或-C .-或D .-3π3ππ323ππ32π32正确答案:D 错因:学生不能准确限制角的范围.8. 若,则对任意实数的取值为〔 〕 A. 1 B. 区间〔0,1〕 C. D. 不能确定 解一:设点,则此点满足解得或 即 选A解二:用赋值法, 令 同样有 选A说明:此题极易认为答案A 最不可能,怎么能会与无关呢?其实这是我们忽略了一个隐含条件,导致了错选为C 或D.9. 在中,,则的大小为〔 〕 A. B. C. D. 解:由平方相加得 若 则 又 选A说明:此题极易错选为,条件比较隐蔽,不易发现.这里提示我们要注意对题目条件的挖掘. 10. 中,、、C 对应边分别为、、.若,,,且此三角形有两解,则的取值范围为 〔 〕 A. B. C. D. )22,2(22),2(+∞]22,2( 正确答案:A错因:不知利用数形结合寻找突破口.11.已知函数 y=sin 〔x+〕与直线y =的交点中距离最近的两点距离为,那么此函数的周期是〔 〕 A B C 2 D 43ππππ 正确答案:B错因:不会利用范围快速解题.12.函数为增函数的区间是………………………… 〔 〕 A.B.C.D. ]3,0[π]127,12[ππ]65,3[ππ],65[ππ 正确答案:C错因:不注意内函数的单调性.13.已知且,这下列各式中成立的是〔 〕A. B. C. D.πβα<+23πβα>+23πβα=+23πβα<+ 正确答案〔D 〕错因:难以抓住三角函数的单调性.14.函数的图象的一条对称轴的方程是〔〕正确答案A错因:没能观察表达式的整体构造,盲目化简导致表达式变繁而无法继续化简.15.ω是正实数,函数在上是增函数,那么〔 〕 A . B . C .D .230≤<ω20≤<ω7240≤<ω2≥ω 正确答案A错因:大部分学生无法从正面解决,即使解对也是利用的特殊值法.16.在〔0,2π〕内,使cosx >sinx >tanx 的成立的x 的取值范围是 〔 〕 A 、 〔〕 B 、 〔〕 C 、〔〕 D 、〔〕 正确答案:C17.设,若在上关于x的方程有两个不等的实根,则为()sin()4f x x π=+[]0,2x π∈()f x m =12,x x 12x x +A 、或B 、C 、D 、不确定2π52π2π52π正确答案:A18.△ABC 中,已知cosA=,sinB=,则cosC 的值为〔 〕 A 、 B 、 C 、或 D 、65166556651665566516-答案:A点评:易误选C.忽略对题中隐含条件的挖掘.19.在△ABC 中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C 的大小为〔 〕 A 、 B 、 C 、或 D 、或6π65π6π65π3π32π答案:A点评:易误选C ,忽略A+B 的范围. 20.设cos1000=k ,则tan800是〔 〕A 、B 、C 、D 、k k 21-k k 21--k k 21-±21kk -±答案:B点评:误选C ,忽略三角函数符号的选择.21.已知角的终边上一点的坐标为〔〕,则角的最小值为〔 〕.A 、B 、C 、D 、65π32π35π611π正解:Dπαπαπα61165,3332cos tan ==∴-==或,而032sin >π032cos <π所以,角的终边在第四象限,所以选D ,απα611=误解:,选B παπα32,32tan tan ==22.将函数的图像向右移个单位后,再作关于轴的对称变换得到的函数的图像,则可以是〔 〕.A 、B 、C 、D 、x cos 2-x cos 2x sin 2-x sin 2 正解:Bx x y 2cos sin 212=-=,作关于x 轴的对称变换得,然后向左平移个单位得函数 可得xy 2cos -=4π)4(2cos π+-=x y x x f x sin )(2sin ⋅==x x f cos 2)(=误解:未想到逆推,或在某一步骤时未逆推,最终导致错解.23. A ,B ,C 是ABC 的三个内角,且是方程的两个实数根,则ABC 是〔 〕A 、钝角三角形B 、锐角三角形C 、等腰三角形D 、等边三角形 正解:A由韦达定理得: ⎪⎪⎩⎪⎪⎨⎧==+31tan tan 53tan tan B A B A253235tan tan 1tan tan )tan(==-+=+∴B A B A B A在中,ABC ∆025)tan()](tan[tan <-=+-=+-=B A B A C π 是钝角,是钝角三角形.24.曲线为参数〕上的点到两坐标轴的距离之和的最大值是〔 〕.A 、B 、C 、1D 、21222正解:D.θθsin cos +=d由于所表示的曲线是圆,又由其对称性,可考虑的情况,即⎩⎨⎧==θθsin cos y x I ∈θθθcos sin +=d则∴⎪⎭⎫ ⎝⎛+=4sin 2πθd 2max =d误解:计算错误所致.25.在锐角⊿ABC 中,若,,则的取值范围为〔 〕A 、B 、C 、D 、),2(+∞),1(+∞)2,1()1,1(- 错解: B.错因:只注意到而未注意也必须为正.,0tan ,0tan >>B A C tan 正解: A.26.已知,〔〕,则 〔C 〕A 、B 、C 、D 、324--m m m m 243--±125-12543--或错解:A错因:忽略,而不解出1cos sin 22=+θθm 正解:C27.先将函数y=sin2x 的图象向右平移个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 〔 〕 A .y=sin 〔-2x+ 〕 B . y=sin 〔-2x -〕 C .y=sin 〔-2x+ 〕 D . y=sin 〔-2x -〕 错解:B错因:将函数y=sin2x 的图象向右平移个单位长度时,写成了)32sin(π-=x y正解:D28.如果,那么的取值范围是〔 〕 A ., B ., C .,, D .,,21[-]2121[-]121[-21()21 ]121[-23()23 ]1错解: D .错因:只注意到定义域,而忽视解集中包含.3π≠x 32π=x 正解: B .29.函数的单调减区间是〔 〕 A 、 〔〕 B 、 C 、 D 、)](22,42[z k k k ∈++ππππ)](2,4[z k k k ∈++ππππ答案:D 错解:B错因:没有考虑根号里的表达式非负. 30.已知的取值范围是〔 〕 A 、 B 、 C 、 D 、 ]21,21[-]21,23[-]23,21[-]1,1[- 答案:A 设,可得sin2x sin2y=2t,由.错解:B 、C错因:将由t y x t y x y x +=+==21)sin(sin cos 21cos sin 相加得与 选B ,相减时选C ,没有考虑上述两种情况均须满足.31.在锐角ABC 中,若C=2B ,则的范围是〔 〕 A 、〔0,2〕 B 、 C 、 D 、 答案:C 错解:B错因:没有精确角B 的范围 32.函数 〔 〕A 、3B 、5C 、7D 、9 正确答案:B错误原因:在画图时,0<<时,>意识性较差. 33.在△ABC 中,则∠C 的大小为 〔 〕A 、30°B 、150°C 、30°或150°D 、60°或150° 正确答案:A错误原因:易选C ,无讨论意识,事实上如果C=150°则A=30°∴,∴<<6和题设矛盾21sin =A BA cos 4sin 3+211 34. 〔 〕A 、B 、C 、D 、π2π2π4π正确答案:C错误原因:利用周期函数的定义求周期,这往往是容易忽视的,本题直接检验得()2,2ππ==⎪⎭⎫ ⎝⎛+T x f x f 故35. 〔 〕A 、B 、C 、D 、ππ22π23π正确答案:B错误原因:忽视三角函数定义域对周期的影响.36.已知奇函数等调减函数,又α,β为锐角三角形内角,则〔 〕 A 、f 〔cosα〕> f 〔cos β〕 B 、f 〔sinα〕> f 〔sinβ〕 C 、f 〔sinα〕<f 〔cosβ〕 D 、f 〔sinα〕> f 〔cosβ〕 正确答案:〔C 〕错误原因:综合运用函数的有关性质的能力不强. 37.设那么ω的取值范围为〔 〕A 、B 、C 、D 、20≤>ω230≤>ω7240≤>ω2≥ω 正确答案:〔B 〕错误原因:对三角函数的周期和单调性之间的关系搞不清楚.二填空题:1.已知方程〔a 为大于1的常数〕的两根为,,且、,则的值是_________________.α∈β ⎝⎛-2π,⎪⎭⎫2π2tanβα+ 错误分析:忽略了隐含限制是方程的两个负根,从而导致错误.βαtan ,tan 01342=+++a ax x 正确解法: ,1>a ∴a 4tan tan -=+βα0<o a >+=⋅13tan tan βα是方程的两个负根∴βαtan ,tan 01342=+++a ax x又 即⎪⎭⎫ ⎝⎛-∈2,2,ππβα⎪⎭⎫ ⎝⎛-∈∴0,2,πβα⎪⎭⎫⎝⎛-∈+0,22πβα 由===可得tan ()βα+βαβαtan tan 1tan tan ⋅-+()1314+--a a 34.22tan -=+βα答案: -2 .2.已知,则的取值范围是_______________.错误分析:由得代入中,化为关于的二次函数在上的范围,而忽视了的隐含限制,导致错误.αβαcos 4cos 4cos 522=+βα22cos cos +αβαcos 4cos 4cos 522=+ααβ22cos 45cos cos -=βα22cos cos +αcos []1,1-αcos答案: .⎥⎦⎤⎢⎣⎡2516,0略解: 由得 αβαcos 4cos 4cos 522=+ααβ22cos 45cos cos -=()1 []1,0cos 2∈β ⎥⎦⎤⎢⎣⎡∈∴54,0cos α将〔1〕代入得=.3.若,且,则_______________.()π,0∈A 137cos sin =+A A =-+AA AA cos 7sin 15cos 4sin 5错误分析:直接由,及求的值代入求得两解,忽略隐含限制出错.137cos sin =+A A 1cos sin 22=+A A A A cos ,sin ⎪⎭⎫ ⎝⎛∈ππ,2A 答案: .438 4.函数的最大值为3,最小值为2,则______,_______. 解:若则 1252a b ⎧=⎪⎪∴⎨⎪=⎪⎩若则说明:此题容易误认为,而漏掉一种情况.这里提醒我们考虑问题要周全. 5.若Sin cos ,则α角的终边在第_____象限. 正确答案:四错误原因:注意角的范围,从而限制α的范围.6.在△ABC 中,已知A 、B 、C 成等差数列,则的值为_________.2tan 2tan 32tan 2tan C A C A ++ 正确答案:3错因:看不出是两角和的正切公式的变形.7.函数的值域是 .sin (sin cos )y x x x =+([0,])2x π∈正确答案:10,2⎡⎤⎢⎥⎣⎦8.若函数的最大值是1,最小值是,则函数的最大值是 .正确答案:5cos y a x b =+7-cos sin y a x b x =+ 9.定义运算为:例如,,则函数f 〔x 〕=的值域为.正确答案:10.若,α是第二象限角,则=__________135sin =α2tan α答案:5点评:易忽略的范围,由得=5或.11.设ω>0,函数f 〔x 〕=2sinωx 在上为增函数,那么ω的取值范围是_____ 答案:0<ω≤32 点评:]2,2[]4,3[πππωπω-⊆-12.在△ABC 中,已知a=5,b=4,cos 〔A -B 〕=,则cosC=__________答案:81点评:未能有效地运用条件构造三角形运用方程思想实施转化.13.在中,已知,b ,c 是角A 、B 、C 的对应边,则①若,则在R 上是增函数;②若,则ABC 是;③的最小值为;④若,则A=B ;⑤若,则,其中错误命题的序号是_____.正解:错误命题③⑤.① 0sin sin ,sin sin >-∴>⇔>B A B A b a上是增函数。

高中数学错题精选解析几何部分

高中数学错题精选解析几何部分

高中数学解析几何部分错题精选1. (如中)若直线(1)y k x =-与抛物线243y x x =++的两个交点都在第二象,则k 的取值范围是______________.解 答: (-3, 0)易错原因:找不到确当的解答方法。

本题最好用数形结合法。

2. (如中)若双曲线22221x y a b-=-的离心率为54,则两条渐近线的方程为 A 0916X Y ±= B 0169X Y ±= C 034X Y ±= D 043X Y ±= 解 答:C易错原因:审题不认真,混淆双曲线标准方程中的a 和题目中方程的a 的意义。

3. (如中)椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是A B C D 解 答:D易错原因:短轴长误认为是b4.(如中)过定点(1,2)作两直线与圆2222150x y kx y k ++++-=相切,则k 的取值范围是A k>2B -3<k<2C k<-3或k>2D 以上皆不对解 答:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑2240D E F +-> 5.(如中)设双曲线22221(0)x y a b a b-=>>的半焦距为C ,直线L 过(,0),(0,)a b 两点,已知原点到直线L ,则双曲线的离心率为A 2B 2CD 解 答:D易错原因:忽略条件0a b >>对离心率范围的限制。

6.(如中)已知二面角βα--l 的平面角为θ,PA α⊥,PB β⊥,A ,B 为垂足,且PA=4,PB=5,设A 、B 到二面角的棱l 的距离为别为y x ,,当θ变化时,点),(y x 的轨迹是下列图形中的A B C D解答:D易错原因:只注意寻找,x y的关系式,而未考虑实际问题中,x y的范围。

7.(如中)已知点P是抛物线22y x=上的动点,点P在y轴上的射影为M,点A的8.(如中)若曲线y=(2)y k x=-+3有两个不同的公共点,则实数k 的取值范围是A 01k≤≤ B34k≤≤ C314k-<≤D10k-<≤解答:C易错原因:将曲线y=转化为224x y-=时不考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x=平行的直线与双曲线的位置关系。

(完整版)高中数学易错题

(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。

高三数学错题整理与解析

高三数学错题整理与解析

高三数学错题整理与解析在高三数学学习过程中,学生经常会遇到各种错题。

对于这些错题,我们需要进行仔细的整理与解析,以提高学生的数学水平。

本文将对高三数学错题进行整理分类,并给出详细的解答和解析。

一、代数与函数1. 题目:已知函数$f(x) = \frac{1}{x}$,求函数$f(f(x))$的表达式。

解析:将$f(x) = \frac{1}{x}$代入$f(f(x))$中,得到$f(f(x)) =\frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x$。

2. 题目:已知二次函数$f(x) = ax^2 + bx + c$的图像关于$x$轴对称,且顶点在直线$y = 2x + 1$上。

求$a$、$b$、$c$的值。

解析:由于图像关于$x$轴对称,所以顶点的纵坐标为0。

将顶点的横坐标代入直线方程$y = 2x + 1$中,得到$0 = 2x_0 + 1$,解得$x_0 = -\frac{1}{2}$。

将$x_0 = -\frac{1}{2}$代入二次函数$f(x)$中的横坐标,得到$a\left(-\frac{1}{2}\right)^2 + b\left(-\frac{1}{2}\right) + c = 0$。

根据顶点坐标的性质,我们知道顶点的横坐标为$-\frac{b}{2a}$,因此$-\frac{b}{2a} = -\frac{1}{2}$,解得$b = a$。

将$b = a$代入上述方程,得到$a\left(-\frac{1}{2}\right)^2 + a\left(-\frac{1}{2}\right) + c = 0$,整理得$c = \frac{1}{4}$。

综上所述,$a = b$,$c = \frac{1}{4}$。

二、几何与三角学1. 题目:已知$\triangle ABC$中,$AB = 7$,$AC = 9$,$BC = 5$,$D$为边$BC$上一点,且$\angle BAD = \angle CAD$。

高中数学易错题举例解析学生版

高中数学易错题举例解析学生版

高中数学易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

下面通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

⎩⎨⎧ x >0 y >0 ⇔ ⎩⎨⎧ x + y >0 xy >0 ,但 ⎩⎨⎧ x >1 y >2 与 ⎩⎨⎧ x + y >3 xy >2不等价。

【例1】已知f(x) = a x + x b,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。

●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是不存在)D (18)C (8)B (449)A (-(2) 已知(x+2)2+ y 24 =1, 求x 2+y 2的取值范围。

●忽视不等式中等号成立的条件,导致结果错误。

【例3】已知:a>0 , b>0 , a+b=1,求(a+ 1a )2+(b+ 1b)2的最小值。

●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=nn S ,求.n a(2)实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

●以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。

【例5】(1)设等比数列{}n a 的前n 项和为n S .若9632S S S =+,求数列的公比q . (2)求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点。

《章节易错训练题》1、已知集合M = {直线} ,N = {圆} ,则M ∩N 中元素个数是 (A) 0 (B) 0或1 (C) 0或2 (D) 0或1或22、已知A = {}x | x 2+ tx + 1 = 0 ,若A ∩R *= Φ ,则实数t 集合T = ___。

高考数学高频易错题举例解析,DOC

高考数学高频易错题举例解析,DOC

高考数学高频易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

?,但与不等价。

【例1时受a 和)3(f =∴●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是思路分析本例只有一个答案正确,设了3个陷阱,很容易上当。

利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα有的学生一看到449-,常受选择答案(A )的诱惑,盲从附和。

这正是思维缺乏反思性的体现。

如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。

原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆?.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18。

这时就可以作出正确选择,只有(B )正确。

(2)已知(x+2)2+=1,求x 2+y 2的取值范围。

错解分析从而当 【例错解∴分析21,第二 由ab ≤(2b a +)2=41得:1-2ab ≥1-21=21,且221b a ≥16,1+221ba ≥17, ∴原式≥21×17+4=225(当且仅当a=b=21时,等号成立), ∴(a+a 1)2+(b+b1)2的最小值是。

●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=n n S ,求.n a错误解法.222)12()12(1111----=-=+-+=-=n n n n n n n n S S a错误分析显然,当1=n 时,1231111=≠==-S a 。

高中数学第四章指数函数与对数函数重点易错题(带答案)

高中数学第四章指数函数与对数函数重点易错题(带答案)

高中数学第四章指数函数与对数函数重点易错题单选题1、若√4a 2−4a +1=√(1−2a)33,则实数a 的取值范围是( ) A .[12,+∞)B .(−∞,12]C .[−12,12]D .R 答案:B分析:根据根式与指数幂的运算性质,化简得到√(2a −1)2=√(1−2a)33,即可求解. 根据根式和指数幂的运算性质,因为√4a 2−4a +1=√(1−2a)33, 可化为√4a 2−4a +1=√(1−2a)33,即√(2a −1)2=√(1−2a)33, 可得|2a −1|=1−2a ,所以1−2a ≥0,即a ≤12.故选:B.2、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43,所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞). 故选:D.3、函数f(x)={a x ,(x <0)(a −2)x +3a,(x ≥0),满足对任意x 1≠x 2,都有f (x 1)−f (x 2)x 1−x 2<0成立,则a 的取值范围是( )A.a∈(0,1)B.a∈[13,1)C.a∈(0,13]D.a∈[13,2)答案:C分析:根据条件可知f(x)在R上单调递减,从而得出{0<a<1a−2<03a⩽1,解出a的范围即可.解:∵f(x)满足对任意x1≠x2,都有f(x1)−f(x2)x1−x2<0成立,∴f(x)在R上是减函数,因为f(x)={a x,(x<0)(a−2)x+3a,(x≥0)∴{0<a<1a−2<0(a−2)×0+3a⩽a0,解得0<a⩽13,∴a的取值范围是(0,13].故选:C.4、已知函数y=a x、y=b x、y=c x、y=d x的大致图象如下图所示,则下列不等式一定成立的是()A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B5、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,900=18,故至少需要志愿者18名.50故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.6、函数y=log2(2x−x2)的单调递减区间为()A.(1,2)B.(1,2]C.(0,1)D.[0,1)答案:A分析:先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果由2x −x 2>0,得0<x <2, 令t =2x −x 2,则y =log 2t ,t =2x −x 2在(0,1)上递增,在(1,2)上递减, 因为y =log 2t 在定义域内为增函数,所以y =log 2(2x −x 2)的单调递减区间为(1,2), 故选:A7、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a 3·√a 6=(−a )13⋅a 16=−a 13⋅a 16=−a 13+16=−a 12=−√a .故选:A.8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是( ) A .0<a <b <1B .b <a <0C .1<a <b D .a =b 答案:ABD解析:根据题目实数a ,b 满足2a +3a =3b +2b ,设f (x )=2x +3x ,g (x )=3x +2x ,画出函数图象,逐段分析比较解:因为实数a,b满足2a+3a=3b+2b.设f(x)=2x+3x,g(x)=3x+2x由图象可知①当x<0时,f(x)<g(x),所以2a+3a=3b+2b,即b<a<0,故B正确和②当x=0时,f(x)=g(x),所以2a+3a=3b+2b,即a=b=0,故D正确③当0<x<1时,f(x)>g(x),所以2a+3a=3b+2b,即0<a<b<1,故A正确④当x=1时,f(x)=g(x),所以2a+3a=3b+2b,即a=b=1,故D正确⑤当x>1时,f(x)<g(x),所以2a+3a=3b+2b,即1<b<a,故C错误.故选:ABD小提示:本题考查指数函数的图象和根据函数值大小比较指数,属于中档题.10、已知a>b>1>c>0,则()A.1a−c >1b−cB.log c(a−c)>log c(b−c)C.(a−c)c−1<(b−c)c−1D.(1−c)a−c<(1−c)b−c分析:由条件可知a −c >b −c >0,再利用函数的单调性,判断选项. 因为a −c >b −c >0,A :故1a−c <1b−c ,A 错误;B :y =log c x 为减函数,故B 错误;C :幂函数y =x c−1在(0,+∞)上为减函数,故C正确;D :函数y =(1−c )x 为减函数,故D 正确. 故选:CD11、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ). A .0<a <1B .a >1C .b >0D .b <0 答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0. 故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.12、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD13、下列运算(化简)中正确的有( ). A .(a 16)−1⋅(a−2)−13=a 12B .(x a −1y)a⋅(4y −a )=4x C .[(1−√2)2]12−(1+√2)−1+(1+√2)0=3−2√2D .2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=−52a 73b −23 答案:ABD分析:根据指数幂的运算法则逐一验证即可 对于A :(a 16)−1⋅(a −2)−13=a −16+23=a12,故A 正确;对于B :(x a −1y)a⋅(4y −a )=4x 1a ×a y a−a =4xy 0=4x ,故B 正确; 对于C :[(1−√2)2]12−(1+√2)−1+(1+√2)0=[(√2−1)2]12−1+√2+1=√2−1−(√2−1)+1=1,故C 错误;对于D :2a 3b 23⋅(−5a 23b 13)÷(4√a 4b 53)=[2×(−5)÷4]a3+23−43b23+13−53=−52a 73b −23,故D 正确;故选:ABD 填空题14、已知5a =2,5b =3,则log 2594=___________(用a 、b 表示). 答案:b −a ##−a +b分析:根据对数的运算性质可得log 2594=log 53−log 52,再由指对数关系有a =log 52,b =log 53,即可得答案.由log 2594=log 532=log 53−log 52,又5a =2,5b =3,∴a=log52,b=log53,故log2594=b−a.所以答案是:b−a.15、已知函数f(x)是指数函数,且f(2)=9,则f(12)=______.答案:√3分析:依题意设f(x)=a x(a>0且a≠1),根据f(2)=9即可求出a的值,从而求出函数解析,再代入计算可得.解:由题意,设f(x)=a x(a>0且a≠1),因为f(2)=9,所以a2=9,又a>0,所以a=3,所以f(x)=3x,所以f(12)=√3.所以答案是:√316、当x∈[k−12,k+12),k∈Z时,f(x)=k.若函数g(x)=xf(x)−mx−1没有零点,则正实数m的取值范围是___________.答案:[1,43)∪[85,2)分析:将问题转化为函数f(x)与ℎ(x)=1x+m图象的交点问题,结合图象得出正实数m的取值范围. 当x=0时,g(0)=−1≠0当x≠0时,xf(x)−mx−1=0可化为f(x)=1x+m作出函数f(x)与ℎ(x)=1x+m的图象由图可知当x <0时,要使得函数g(x)=xf(x)−mx −1没有零点 必须满足−1≤ℎ(−12)<0,解得1≤m <2当x >0时,要使得函数g(x)=xf(x)−mx −1没有零点必须满足1≤ℎ(32)<2或者2≤ℎ(52)<3,解得13≤m <43或85≤m <135综上,m ∈[1,43)∪[85,2) 所以答案是:[1,43)∪[85,2)小提示:关键点睛:解决本题的关键在于将问题转化为函数图象的交点问题,结合数形结合的思想方法解决问题. 解答题17、给出下面两个条件:①函数f (x )的图象与直线y =−1只有一个交点;②函数f (x )的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数f (x )的解析式确定. 已知二次函数f (x )=ax 2+bx +c 满足f (x +1)−f (x )=2x −1,且______. (1)求f (x )的解析式;(2)若对任意x ∈[19,27],2f (log 3x )+m ≤0恒成立,求实数m 的取值范围;(3)若函数g (x )=(2t −1)f (3x )−2×3x −2有且仅有一个零点,求实数t 的取值范围. 答案:(1)选①f (x )=x 2−2x ,选②f (x )=x 2−2x (2)(−∞,−16] (3){−√3+12}∪(12,+∞) 分析:(1)利用已知条件求出a 、b 的值,可得出f (x )=x 2−2x +c .选①,由题意可得出f (1)=−1,可得出c 的值,即可得出函数f (x )的解析式; 选②,由根与系数的关系求出c 的值,即可得出函数f (x )的解析式;(2)ℎ=log 3x ,ℎ∈[−2,3],由参变量分离法可得出m ≤[−2f (ℎ)]min ,结合二次函数的基本性质可求得实数m 的取值范围;(3)令n =3x >0,所以关于n 的方程(2t −1)f (n )−2n −2=0有且仅有一个正实根,对实数t 的取值进行分类讨论,结合二次函数的零点分布可得出关于实数n 的不等式组,综合可解得实数t 的取值范围. (1)解:因为二次函数f (x )=ax 2+bx +c 满足f (x +1)−f (x )=2x −1,f (x +1)−f (x )=a (x +1)2+b (x +1)+c −ax 2−bx −c =2ax +a +b =2x −1, 所以{2a =2a +b =−1,解得{a =1b =−2,所以f (x )=x 2−2x +c .选①,因为函数f (x )的图象与直线y =−1只有一个交点,所以f (1)=1−2+c =−1,解得c =0, 所以f (x )的解析式为f (x )=x 2−2x .选②,设x 1、x 2是函数f (x )的两个零点,则|x 1−x 2|=2,且Δ=4−4c >0,可得c <1, 由根与系数的关系可知x 1+x 2=2,x 1x 2=c ,所以|x 1−x 2|=√(x 1+x 2)2−4x 1x 2=√4−4c =2,解得c =0, 所以f (x )的解析式为f (x )=x 2−2x . (2)解:由2f (log 3x )+m ≤0,得m ≤−2f (log 3x ),当x ∈[19,27]时,log 3x ∈[−2,3],令ℎ=log 3x ,则ℎ∈[−2,3],所以对任意x ∈[19,27],2f (log 3x )+m ≤0恒成立,等价于m ≤−2f (ℎ)在ℎ∈[−2,3]上恒成立, 所以m ≤[−2f (ℎ)]min =−2f (−2)=−16,所以实数m 的取值范围为(−∞,−16]. (3)解:因为函数g (x )=(2t −1)f (3x )−2×3x −2有且仅有一个零点,令n =3x >0,所以关于n 的方程(2t −1)f (n )−2n −2=0有且仅有一个正实根, 因为f (x )=x 2−2x ,所以(2t −1)n 2−4tn −2=0有且仅有一个正实根, 当2t −1=0,即t =12时,方程可化为−2n −2=0,解得n =−1,不符合题意;当2t −1>0,即t >12时,函数y =(2t −1)x 2−4tx −2的图象是开口向上的抛物线,且恒过点(0,−2), 所以方程(2t −1)n 2−4tn −2=0恒有一个正实根;当2t −1<0,即t <12时,要使得(2t −1)n 2−4tn −2=0有且仅有一个正实根,{�=16t 2+8(2t −1)=02t 2t−1>0,解得t =−√3+12. 综上,实数t 的取值范围为{−√3+12}∪(12,+∞).18、大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为V (m/s),鲑鱼的耗氧量的单位数为Q ,研究中发现V 与log 3Q 100成正比,且当Q =900时,V =1.(1)求出V 关于Q 的函数解析式;(2)计算一条鲑鱼的游速是1.5 m/s 时耗氧量的单位数.答案:(1)V =12log 3Q 100;(2)2700个单位.分析:(1)根据成正比的性质,结合代入法进行求解即可;(2)利用代入法,结合对数与指数式互化公式进行求解即可.解:(1)设V =k ·log 3Q 100,∵当Q =900时,V =1,∴1=k ·log 3900100, ∴k =12,∴V 关于Q 的函数解析式为V =12log 3Q 100;(2)令V =1.5,则1.5=12log 3Q 100⇒log 3Q 100=3⇒Q 100=33=27,∴Q =2 700,即一条鲑鱼的游速是1.5 m/s 时耗氧量为2700个单位.。

高中数学经典例题及错题汇总

高中数学经典例题及错题汇总

高中数学经典例题及错题汇总
众所周知,数学以其特有的思维型,令无数学子望而生畏,尤其是高中数学,对于大部分考生而言或许就是个噩梦。

但是其实不管什么科目,都有一定的方法蕴藏其中,只要理解掌握,数学也可以变成你的优势科目,而不是累赘。

很多人觉得数学难,学不会而感到畏惧,所以不停地刷题磨炼自己的能力,事实上大部分人做完成堆的题效果并不明显,是因为同学们抓不住重难点知识,刷在多题都是无用功。

为此,小编特地为大家整理的高考重点难点例题及错题解析,吃透了差生也能拿高分。

篇幅有限,家长务必在文末给孩子免费取一份复习,方便巩固理解,加深记忆。

高中数学易错题举例解析学生版

高中数学易错题举例解析学生版

高中数学易错题举例解析学生版SANY GROUP system office room 【SANYUA16H-高中数学易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。

也就是在转化过程中,没有注意转化的等价性,会经常出现错误。

下面通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。

加强思维的严密性训练。

● 忽视等价性变形,导致错误。

⎩⎪⎨⎪⎧ x >0 y >0 ? ⎩⎪⎨⎪⎧ x + y >0xy >0 ,但 ⎩⎪⎨⎪⎧ x >1y >2 与 ⎩⎪⎨⎪⎧ x + y >3xy >2 不等价。

【例1】已知f(x) = a x + xb,若,6)2(3,0)1(3≤≤≤≤-f f 求)3(f 的范围。

●忽视隐含条件,导致结果错误。

【例2】(1) 设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是不存在)D (18)C (8)B (449)A (-(2) 已知(x+2)2+ y 24 =1, 求x 2+y 2的取值范围。

●忽视不等式中等号成立的条件,导致结果错误。

【例3】已知:a>0 , b>0 , a+b=1,求(a+ 1a )2+(b+ 1b)2的最小值。

●不进行分类讨论,导致错误【例4】(1)已知数列{}n a 的前n 项和12+=n n S ,求.n a (2)实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点。

●以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。

【例5】(1)设等比数列{}n a 的前n 项和为n S .若9632S S S =+,求数列的公比q .(2)求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点。

(完整版)高中数学易错题(含答案)

(完整版)高中数学易错题(含答案)

高中数学易错题一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.52.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=06.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是_________.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是_________.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是_________.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为_________.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为_________.13.△ABC中,AB=AC,,则cosA的值是_________.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为_________.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=_________.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.高中数学易错题参考答案与试题解析一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.5考点:三角形中的几何计算.专题:计算题.分析:设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,进而求得x和y的关系式,进而表示出xy的表达式,利用二次函数的性质求得xy的最大值.解答:解:如图,设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,即=4,所以4x=12﹣3y,y=,求xy最大,也就是那个矩形面积最大.xy=x•=﹣•(x2﹣3x),∴当x=时,xy有最大值3故选B.点评:本题主要考查了三角函数的几何计算.解题的关键是通过题意建立数学模型,利用二次函数的性质求得问题的答案.2.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.考点:三角形中的几何计算.专题:计算题.分析:直接利用正弦定理,两角差的正弦函数,即可求出三角形的外接圆的直径即可.解答:解:由正弦定理可知:====.故选D.点评:本题是基础题,考查三角形的外接圆的直径的求法,正弦定理与两角差的正弦函数的应用,考查计算能力.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.考点:三角形中的几何计算.专题:数形结合;转化思想.分析:画出图形,利用点到直线的距离之间的转化,三角形两边之和大于第三边,求出最小值与最大值.解答:解:由题意△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,在图(1)中,d=CE+PE+PF>CD==,在图(2)中,d=CE+EP+FP<CE+EG<AC=4;∴d的取值范围是;故选D.点评:本题是中档题,考查不等式的应用,转化思想,数形结合,逻辑推理能力,注意,P为△ABC内任一点,不包含边界.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.考点:三角形中的几何计算.专题:计算题.分析:由题意可知双曲线的焦点坐标就是A,B,利用正弦定理以及双曲线的定义化简即可得到答案.解答:解:由题意可知双曲线的焦点坐标就是A,B,由双曲线的定义可知BC﹣AB=2a=10,c=6,===;故选D.点评:本题是基础题,考查双曲线的定义,正弦定理的应用,考查计算能力,常考题型.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=0考点:三角形中的几何计算.专题:计算题.分析:通过向量求出直线的斜率,利用点斜式方程求出最新的方程即可.解答:解:过点A(1,﹣2),且与向量平行的直线的斜率为﹣,所以所求直线的方程为:y+2=﹣(x﹣1),即:3x+4y+5=0.故选C.点评:本题是基础题,考查直线方程的求法,注意直线的方向向量与直线的斜率的关系,考查计算能力.6.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④考点:三角形中的几何计算;恒过定点的直线.专题:应用题.分析:①由于基本不等式等号成立的条件不具备,故的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程,求出它与两坐标轴的交点,根据条件可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条.③将函数y=cos2x的图象向右平移个单位,可以得到函数y﹣sin(2x﹣)的图象,故③不正确.④若△ABC中,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形.解答:解:①∵≥2=2,(当且仅当x=0时,等号成立),故当x>0时,的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程为y﹣3=k(x﹣2),它与两坐标轴的交点分别为(2﹣,0),(0,3﹣2k),根据直线与两坐标轴围成的面积为13=,化简可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条,故②正确.③将函数y=cos2x的图象向右平移个单位,可以得到函数y=cos2(x﹣)=sin[﹣(2x﹣)]=sin()=﹣sin(2x﹣)的图象,故③不正确.④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形,故④正确.故选B.点评:本题基本不等式取等号的条件,过定点的直线,三角函数的图象变换,诱导公式的应用,检验基本不等式等号成立的条件,是解题的易错点.二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是[,4].考点:向量在几何中的应用;三角形中的几何计算.专题:综合题.分析:设三边分别为a,b,c,利用正弦定理和余弦定理结合向量条件利用三角形面积公式即可求出三边长.欲求x+y+z的取值范围,利用坐标法,将三角形ABC放置在直角坐标系中,通过点到直线的距离将求x+y+z的范围转化为,然后结合线性规划的思想方法求出范围即可.解答:解:△ABC为Rt△ABC,且∠C=90°,设三角形三内角A、B、C对应的三边分别为a,b,c,∵(1)÷(2),得,令a=4k,b=3k(k>0)则∴三边长分别为3,4,5.以C为坐标原点,射线CA为x轴正半轴建立直角坐标系,则A、B坐标为(3,0),(0,4),直线AB方程为4x+3y﹣12=0.设P点坐标为(m,n),则由P到三边AB、BC、AB的距离为x,y,z.可知,且,故,令d=m+2n,由线性规划知识可知,如图:当直线分别经过点A、O时,x+y+z取得最大、最小值.故0≤d≤8,故x+y+z的取值范围是.故答案为:[].点评:本题主要考查了解三角形中正弦定理、余弦定理、平面向量数量积的运算、简单线性规划思想方法的应用,综合性强,难度大,易出错.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=4.考点:二倍角的余弦;三角形中的几何计算.专题:计算题.分析:首先根据三角形的面积公式求出b的值,然后将所给的式子写成+=3进而得到acosC+ccosA+a+c=6,再根据在三角形中acosC+ccosA=b=2,即可求出答案.解答:解:∵S=absinC=asinC∴b=2∴acos2+ccos2=3∴+=3即a(cosC+1)+c(cosA+1)=6∴acosC+ccosA+a+c=6∵acosC+ccosA=b=2∴2+a+c=6∴a+c=4故答案为:4.点评:本题考查了二倍角的余弦以及三角形中的几何运算,解题的关键是巧妙的将所给的式子写成+=3的形式,属于中档题.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是.考点:三角形中的几何计算.专题:计算题.分析:先根据求得sin(A+B)的值,进而求得sinC的值,根据同角三角函数的基本关系求得cosC,根据韦达定理求得a+b和ab的值,进而求得a2+b2,最后利用余弦定理求得c的值.解答:解:∵,∴sin(A+B)=∴sinC=sin(π﹣A﹣B)=sin(A+B)=∴cosC==∵a,b是方程的两根∴a+b=2,ab=2,∴a2+b2=(a+b)2﹣2ab=8∴c===故答案为:点评:本题主要考查了三角形中的几何计算,余弦定理的应用,韦达定理的应用.考查了考生综合运用基础知识的能力.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是.考点:三角形中的几何计算;正弦定理.专题:计算题;解三角形.分析:构造以BC为正三角形的外接圆,如图满足,即可观察推出|AM|的取值范围.解答:解:构造以BC为正三角形的外接圆,如图,显然满足题意,由图可知红A处,|AM|值最大为,A与B(C)接近时|AM|最小,所以|AM|∈.故答案为:.点评:本题考查三角形中的几何计算,构造法的应用,也可以利用A的轨迹方程,两点减距离公式求解.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.考点:棱柱的结构特征;三角形中的几何计算.专题:计算题.分析:由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.解答:解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.点评:本小题主要考查棱柱的结构特征、三角形中的几何计算等基础知识,考查空间想象力.属于基础题.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为1或.考点:三角形中的几何计算.专题:计算题.分析:先利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2;再分∠A=30°以及∠C=30°两种情况分别求出对应的面积.解答:解:因为2,转化为边长和角所以有2acosB=c可得:cosB==⇒a2=b2⇒a=b=2.当∠A=30°=∠B时,∠C=120°,此时S△ABC=×2×2×sinC=;当∠C=30°时,∠A=∠B=75°,此时S△ABC=×2×2×sinC=1.故答案为:或1.点评:本题主要考查余弦定理的应用以及三角形中的几何计算.解决本题的关键在于利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2.13.△ABC中,AB=AC,,则cosA的值是.考点:三角形中的几何计算.专题:计算题.分析:根据AB=AC可推断出B=C,进而利用三角形内角和可知cosA=cos(π﹣2B)利用诱导公式和二倍角公式化简整理,把cosB的值代入即可.解答:解:∵AB=AC,∴B=C∴cosA=cos(π﹣2B)=cos2B=2cos2B﹣1=﹣1=﹣故答案为:﹣点评:本题主要考查了三角形中的几何计算,二倍角公式的应用.考查了学生综合运用三角函数基础知识的能力.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为x+y+z=3.考点:三角形中的几何计算.专题:计算题.分析:设等边三角形的边长为a,高为h将P与三角形的各顶点连接,进而分别表示出三角形三部分的面积,相加应等于总的面积建立等式求得x+y+z的值.解答:解:设等边三角形的边长为a,高为h将P与三角形的各顶点连接根据面积那么:ax+ay+az=ah所以x+y+z=h因为等边三角形的边长为2,所以高为h=3所以x.y.z所满足的关系是为:x+y+z=3故答案为:3点评:本题主要考查了三角形中的几何计算.考查了学生综合分析问题的能力和转化和化归的思想.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为.考点:三角形中的几何计算.专题:计算题.分析:根据已知可得△AOC是等边三角形,从而得到OA=AC=2,则可以利用勾股定理求得AD的长.解答:解:(2)∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=2,∵∠OAD=90°,∠D=30°,∴AD=•AO=.故答案为:.点评:本题考查和圆有关的比例线段,考查同弧所对的圆周角等于弦切角,本题在数据运算中主要应用含有30°角的直角三角形的性质,本题是一个基础题.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=.考点:三角形中的几何计算.专题:计算题.分析:先利用三个内角成等差数列求得A,根据,∠B=30°求得C,然后利用tan30°=表示出a,代入三角形面积公式求得b.解答:解:三角形ABC中,三个内角A,B,C成等差数列A+B+C=3A=180°∴∠A=60°∵∠A=30°,∴C=90S=ab=∵tan30°=∴a=∴b=故答案为:点评:本题主要考查了三角形的几何计算.考查了学生基础知识综合运用的能力.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.考点:三角形中的几何计算.专题:计算题.分析:设出BD,利用余弦定理分别在△ABC,△ABD中表示出AB,进而建立等式求得b﹣x=2acosC代入四边形ABCD的面积表达式中,利用正弦函数的性质求得问题的答案.解答:解:设BD=x,则由余弦定理可知b2+a2﹣2abcosC=AB2=a2+x2+2axcosC∴b﹣x=2acosC.∵S=(absinC)﹣(axsinC)=a(b﹣x)sinC=a2•sin2C,∴当C=时,S有最大值.点评:本题主要考查了三角形的几何计算.注意灵活利用正弦定理和余弦定理以及其变形公式.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.考点:三角形中的几何计算;二倍角的正弦.专题:计算题.分析:(1)利用同角三角函数关系及三角形内角的范围可求;(2)利用正弦定理可知b=2a,再利用余弦定理,从而求出a、b的值,进而可求面积.解答:解:(1)由题意,,∴(2)由sinB=2sinA可知b=2a,又22=a2+b2﹣2abcosC,∴a=1,b=2,∴点评:此题考查学生灵活运用三角形的面积公式,灵活运用正弦、余弦定理求值,是一道基础题题.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.考点:三角形中的几何计算;正弦定理的应用;余弦定理的应用.专题:计算题;综合题.分析:(1)由三角形的面积公式,结合余弦定理求出的值,进而有sinA=.(2)利用,结合正弦定理,求出b+c的值,利用三角形的面积公式和基本不等式求出面积的最大值.解答:解:(1)得进而有(2)∵,∴即所以故当b=c=8时,S最大=.点评:本题是中档题,考查三角函数的化简,正弦定理、余弦定理的应用,三角形的面积公式以及基本不等式的应用,考查计算能力,逻辑推理能力.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.考点:三角形中的几何计算;正弦定理.专题:计算题.分析:(1)利用余弦定理和题设等式求得cosA的值,进而求得A.(2)利用正弦定理把题设中的正弦转化成边的关系,进而求得bc的值,最后利用三角形面积公式求得答案.解答:解:(1)因为b2+c2﹣a2=2bccosA=bc所以所以(2)因为sin2B+sin2C=2sin2A所以b2+c2=2a2=2因为b2+c2﹣a2=bc所以bc=1所以=点评:本题主要考查了正弦定理和余弦定理的应用.注意挖掘题设中关于边,角问题的联系.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?考点:三角形中的几何计算.专题:综合题.分析:(1)由题意画出简图,设CN=x,则QD=5﹣x,路灯高BD为h,利用三角形相似建立方程解德;(2)由题意当小迪移到BD所在线上(设为DH),连接AH交地面于E,则DE长即为所求的影长,利用三角形相似建立方程求解即可.解答:解:如图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯的底部.由题中已知得MN=PQ=1.6m,NQ=5m,CD=10m(1)设CN=x,则QD=5﹣x,路灯高BD为h∵△CMN∽△CBD,即⇒又△PQD∽△ACD即⇒由①②式得x=2.5m,h=6.4m,即路灯高为6.4m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求的影长.∵△DEH∽△CEA⇒⇒解得DE=m,即他在A路灯下的身影长为m.点评:此题考查了学生理解题意的能力,还考查了利用三角形相似及方程思想求解变量及学生的计算能力.22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.考点:三角形中的几何计算.专题:计算题.分析:(1)求AB长,关键是求sinB,sinC,利用已知条件可求;(2)根据三角形的面积公式,故关键是求sinA的值,利用sinA=sin(B+C)=sinBcosC+cosBsinC可求解答:解:(1)设AB、BC、CA的长分别为c、a、b,,∴,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为.∴sinA=sin(B+C)=sinBcosC+cosBsinC=﹣﹣﹣﹣﹣﹣﹣(12分)故所求面积﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题的考点是三角形的几何计算,主要考查正弦定理得应用,考查三角形的面积公式,关键是正确记忆公式,合理化简.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②考点:三角形中的几何计算.专题:计算题;分类讨论.分析:(1)先根据正弦定理以及大角对大边求出角C,再根据三角形内角和为180°即可求出角A.(2)分情况分别代入三角形的面积计算公式即可得到答案;(3)直接根据前两问的结论填写即可.解答:解:(1)∵,…(2分)∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°…(2分)(2)∵S=bcsinA∴A=90°,S=bcsinA=;A=30°,S=bcsinA=.…(2分)(3)点评:本题主要考查三角形中的几何计算.解决本题的关键在于根据正弦定理以及大角对大边求出角C.24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.考点:三角形中的几何计算;解三角形.专题:计算题;数形结合.分析:(1)由正弦定理知===2R,根据题目中所给的条件,不难得出弦AB的长;(2)若∠C是钝角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可证得结果;(3)根据图形进行分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分成三类讨论即可.解答:解:(1)在△ABC中,BC=2,∠ABC=45°===2R⇒b=2sinA=∵A为锐角∴A=30°,B=45°∴C=75°∴AB=2Rsin75°=4sin75°=;(2)∠C为钝角,∴cosC<0,且cosC≠1cosC=<0∴a2+b2<c2<(2R)2即a2+b2<4R2(8分)(3)a>2R或a=b=2R时,△ABC不存在当时,A=90,△ABC存在且只有一个∴c=当时,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个∴c=2RsinC=2Rsin2AC=当时,∠B总是锐角,∠A可以是钝角,可是锐角∴△ABC存在两个∠A<90°时,c=∠A>90°时,c=点评:本题考查三角形中的几何计算,综合考查了三角形形状的判断,解三角形,三角形的外接圆等知识,综合性很强,尤其是第三问需要根据a,b两边以及直径的大小比较确定三角形的形状.再在这种情况下求第三边的表达式,本解法主观性较强.难度较大.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.考点:三角形中的几何计算.专题:计算题.分析:(Ⅰ)根据∥和两向量的坐标可求得,利用正弦定理把边转化成角的正弦,然后利用两角和公式化简整理求得cosA的值,进而求得A(Ⅱ)把A的值代入,利用两角和公式整理后,利用正弦函数的性质求得2cos2B+sin(A﹣2B)的最小值.解答:解:(Ⅰ)由得.由正弦定理得,.∴.∵A,B∈(0,π),∴sinB≠0,,∴.(Ⅱ)解:∵∴2cos2B+sin(A﹣2B)==,.2cos2B+sin(A﹣2B)的最小值为点评:本题主要考查了三角形中的几何计算,正弦定理的应用和两角和公式的化简求值.注意综合运用三角函数的基础公式,灵活解决三角形的计算问题.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.考点:正弦定理的应用;三角形中的几何计算.专题:计算题.分析:(1)由已知结合正弦与余弦定理=化简可求b,由余弦定理可得,cosA=代入可求cosA,及A(2)代入三角形的面积公式可求解答:解:(1)∵∵∴=化简可得,b2﹣2b﹣8=0∴b=4由余弦定理可得,cosA==∴;(2)==点评:本题主要考查了解三角形的基本工具:正弦定理与余弦定理的应用,解题的关键是具备综合应用知识解决问题的能力27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.考点:三角函数中的恒等变换应用;三角形中的几何计算.专题:计算题.分析:(Ⅰ)利用正弦定理化简(2a+c)cosB+bcosC=0,得到三角形的角的关系,通过两角和与三角形的内角和,求出B的值;(Ⅱ)通过S=,利用B=以及a+c=4,推出△ABC面积S的表达式,通过平方法结合a的范围求出面积的最大值.解答:解(Ⅰ)由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sinCcosB+cosCsinB=0得2sinACcosB+sin(C+B)=0,因为A+B+C=π,所以sin(B+C)=sinA,得2sinAcosB+sinA=0,因为sinA≠0,所以cosB=﹣,又B为三角形的内角,所以B=.(Ⅱ)因为S=,由B=及a+c=4得S===,又0<a<4,所以当a=2时,S取最大值…(3分)点评:本题是中档题,考查三角形面积的最值,三角形的边角关系,三角函数的公式的灵活应用,考查计算能力.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.考点:三角函数的恒等变换及化简求值;三角形中的几何计算.专题:综合题.分析:(1)由,推出,利用坐标表示化简表达式,结合余弦定理求角C;(2)利用(1)中c2=a2+b2﹣ab,应用正弦定理和基本不等式,求三角形ABC的面积S的最大值.解答:解答:解:(1)∵∴且,由正弦定理得:化简得:c2=a2+b2﹣ab由余弦定理:c2=a2+b2﹣2abcosC∴,∵0<C<π,∴(2)∵a2+b2﹣ab=c2=(2RsinC)2=6,∴6=a2+b2﹣ab≥2ab﹣ab=ab(当且仅当a=b时取“=”),所以,.点评:本题考查数量积判断两个平面向量的垂直关系,正弦定理,余弦定理的应用,考查学生分析问题解决问题的能力,是中档题.。

高中数学经典题型50道(另附详细答案)

高中数学经典题型50道(另附详细答案)
由 ,
的取值范围是
[思维点拔]对于弦长公式一定要能熟练掌握、灵活运用民。本题由于 的方程由 给出,所以可以认定 ,否则涉及弦长计算时,还要讨论 时的情况。
9、已知抛物线 与直线 相交于A、B两点
(1)求证:
(2)当 的面积等于 时,求 的值。
(1)证明:图见教材P127页,由方程组 消去 后,整理得 。设 ,由韦达定理得 在抛物线 上,
(2)解:设直线与 轴交于N,又显然 令
[思维点拔]本题考查了两直线垂直的充要条件,三角形的面积公式,函数与方程的思想,以及分析问题、解决问题的能力。
10、在抛物线y2=4x上恒有两点关于直线y=kx+3对称,求k的取值范围。
〖解〗设B、C关于直线y=kx+3对称,直线BC方程为x=-ky+m代入y2=4x得:
解析:不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,即4a+6b=12,即2a+3b=6,而 = ,故选A.
点评:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求 的
(Ⅱ)解: ,令 得 .
当x变化时, ﹑ 的变化情况如下表:
x
(-∞,-2)
-2
(-2,0)
f(x)
+
0
-
f(x)

极大值

注意到 ,从而
①当 ,此时 无极小值;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例1】设M={1、2、3},N={e、g、h},从M至N的四种对应方式,其中是从M 到N的映射是()M NA M NBM NCM ND映射的概念:设A、B是两个集合,如果按照某一个确定的对应关系f,是对于集合A中的每一个元素x,在集合B中都有一个确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射。

函数的概念:一般的设A、B是两个非空数集,如果按照某种对应法则f,对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫集合A 到集合B的一个函数。

(函数的本质是建立在两个非空数集上的特殊对应)映射与函数的区别与联系:函数是建立在两个非空数集上的特殊对应;而映射是建立在两个任意集合上的特殊对应;函数是特殊的映射,是数集到数集的映射,映射是函数概念的扩展,映射不一定是函数,映射与函数都是特殊的对应。

映射与函数(特殊对应)的共同特点:○1可以是“一对一”;○2可以是“多对一”;○3不能“一对多”;○4A中不能有剩余元素;○5B中可以有剩余元素。

映射的特点:(1)多元性:映射中的两个非空集合A、B,可以是点集、数集或由图形组成的集合等;(2)方向性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;(3)映射中集合A的每一个元素在集合B中都有它的象,不要求B中的每一个元素都有原象;(4)唯一性:映射中集合A中的任一元素在集合B中的象都是唯一的;(5)一一映射是一种特殊的映射方向性上题答案应选C【分析】根据映射的特点○3不能“一对多”,所以A、B、D都错误;只有C完全满足映射与函数(特殊对应)的全部5个特点。

本题是考查映射的概念和特点,应在完全掌握概念的基础上,灵活掌握变型题。

【例2】已知集合A=R,B={(x、y)︱x、y∈R},f是从A到B的映射fx:→(x+1、x2),(1)求2在B中的对应元素;(2)(2、1)在A中的对应元素【分析】(1)将x=2代入对应关系,可得其在B中的对应元素为(2+1、1);(2)由题意得:x+1=2,x2=1 得出x=1,即(2、1)在A中的对应元素为1【例3】设集合A={a、b},B={c、d、e},求:(1)可建立从A到B的映射个数();(2)可建立从B到A的映射个数()【分析】如果集合A中有m个元素,集合B中有n个元素,则集合A到集合B 的映射共有n m 个;集合B到集合A的映射共有m n个,所以答案为23=9;32=8【例4】 若函数f(x)为奇函数,且当x ﹥0时,f(x)=x-1,则当x ﹤0时,有( ) A 、f(x) ﹥0 B 、f(x) ﹤0 C 、f(x)·f(-x)≤0 D 、f(x)-f(-x) ﹥0 奇函数性质: 1、图象关于原点对称; 2、满足f(-x) = - f(x) ;3、关于原点对称的区间上单调性一致; 4、如果奇函数在x=0上有定义,那么有f(0)=0; 5、定义域关于原点对称(奇偶函数共有的) 偶函数性质:1、 图象关于y 轴对称;2、满足f(-x) = f(x) ;3、关于原点对称的区间上单调性相反;4、如果一个函数既是奇函数有是偶函数,那么有f(x)=0;5、定义域关于原点对称(奇偶函数共有的) 基本性质:唯一一个同时为奇函数及偶函数的函数为其值为0的常数函数(即对所有x ,f(x)=0)。

通常,一个偶函数和一个奇函数的相加不会是奇函数也不会是偶函数;如x + x 2。

两个偶函数的相加为偶函数,且一个偶函数的任意常数倍亦为偶函数。

两个奇函数的相加为奇函数,且一个奇函数的任意常数倍亦为奇函数。

两个偶函数的乘积为一个偶函数。

两个奇函数的乘积为一个偶函数。

一个偶函数和一个奇函数的乘积为一个奇函数。

两个偶函数的商为一个偶函数。

两个奇函数的商为一个偶函数。

一个偶函数和一个奇函数的商为一个奇函数。

一个偶函数的导数为一个奇函数。

一个奇函数的导数为一个偶函数。

两个奇函数的复合为一个奇函数,而两个偶函数的复合为一个偶函数。

一个偶函数和一个奇函数的复合为一个偶函数【分析】 f(x)为奇函数,则f(-x) = -f(x),当X ﹤0时,f(x) = -f(-x) = -[-(-x) – 1] = -x+1>0,所以A 正确,B 错误; f(x)·f(-x)=(x-1)(-x+1)﹤0,故C 错误; f(x)-f(-x)= (x-1)-(-x+1)﹤0,故D 错误【例5】 已知函数f(x)是偶函数,且x ≤0时,f(x)=xx-+11,求:(1)f(5)的值; (2)f(x)=0时x 的值;(3)当x >0时,f(x)的解析式【考点】 函数奇偶性的性质 【专题】计算题,函数的性质及应用 【分析及解答】(1)根据题意,由偶函数的性质f(x)= f(-x),可得f(5)= f(-5)=)()(5--15-1+=—32(2)当x ≤0时,f(x)=0 可求x ,然后结合f(x)= f(-x),即可求解满足条件的x , 即当x ≤0时,xx-+11=0 可得x=—1;又f(1)= f(-1),所以当f(x)=0时,x=±1 (3)当x >0时,根据偶函数性质f(x)= f(-x)=)(1)(1x x ---+=xx+-11【例6】 若f(x)=e x+ae -x为偶函数,则f(x-1)<ee 12+的解集为( )A.(2,+∞)B.(0,2)C.(-∞,2)D.(-∞,0)∪(2,+∞) 【考点】 函数奇偶性的性质 【专题】转化思想;综合法;函数的性质及应用 【分析及解答】根据函数奇偶性的性质先求出a 值,结合函数单调性的性质求解即可 ∵f(x)=e x +ae -x 为偶函数,∴f(-x)=e -x +ae x = f(x)= e x +ae -x ,∴a=1, ∴f(x)=e x +e -x 在(0,+∞)上单调递增,在(-∞,0)上单调递减,则由f(x-1)<ee 12+=e+e 1, ∴ -1 <x-1<1, 求得 0 <x <2 故B 正确【点评】 本题主要考查不等式的求解,根据函数奇偶性的性质先求出a 值是解题关键【例7】 函数f(x)=21x b ax ++是定义在(-1,1)上的奇函数,且f(21)=52,(1)确定函数f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(2x-1)+ f(x) <0【考点】 函数奇偶性与单调性的综合 【专题】函数的性质及应用 【分析及解答】(1) 因为f(x)为(-1,1)上的奇函数,所以f(0)=0,可得b=0,由f(21)=52,所以2)21(121+a=52,得出a=1,所以f(x)= 21x x + (2) 根据函数单调性的定义即可证明任取-1 <x 1<x 2<1,f(x 1)—f(x 2)=2111x x +—2221x x +=)1)(1()1)((22212121x x x x x x ++--因为-1 <x 1<x 2<1,所以x 1-x 2<0,1—x 1x 2>0,所以f(x 1)—f(x 2) <0, 得出f(x 1) <f(x 2),即f(x)在(-1,1)上为增函数(3) 根据函数的奇偶性、单调性可去掉不等式中的符号“f ”,再考虑到定义域可得一不等式组,解出即可:f(2x-1)+ f(x)= <0,f(2x-1) <—f(x),由于f(x)为奇函数,所以f(2x-1) <f(—x),因为f(x)在(-1,1)上为增函数,所以2x-1<—x ○1, 因为-1 <2x-1<1○2,-1 <x <1○3,联立○1○2○3得 0 < x <31,所以解不等式f(2x-1)+ f(x) <0的解集为(0,31) 【点评】 本题考查函数的奇偶性、单调性及抽象不等式的求解,定义是解决函数单调性、奇偶性的常用方法,而抽象不等式常利用性质转化为具体不等式处理。

【例8】 定义在R 上的奇函数f(x)在(0,+∞)上是增函数, 又f(-3)=0,则不等式x f(x) <0的解集为( )【考点】 函数单调性的性质 【专题】综合题;函数的性质及应用【分析及解答】 易判断f(x)在(-∞,0)上的单调性及f(x)图像所过特殊点,作出f(x)草图,根据图像可解不等式。

解:∵ f(x)在R 上是奇函数,且f(x)在(0,+∞)上是增函数,∴ f(x)在(-∞,0)上也是增函数,由f(-3)=0,可得- f(3)=0,即f(3)=0,由f(-0)=-f(0),得f(0)=0 作出f(x)的草图,如图所示:由图像得:x f(x) <0⇔⎩⎨⎧〈〉0)(0x f x 或⎩⎨⎧〉〈0)(0x f x ⇔0﹤x ﹤3或-3﹤x ﹤0,∴ x f(x) <0的解集为:(-3,0)∪(0,3),故答案为:(-3,0)∪(0,3)【点评】 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键。

【例9】 已知f (x+1)的定义域为[-2,3],则f (2x+1)的定义域为( ) 抽象函数定义域求法总结:(1)函数y=f[g(x)]的定义域是(a ,b ),求f (x )的定义域:利用a <x <b ,求得g (x )的范围就是f (x )的定义域;(2)函数y=f (x )的定义域是(a ,b ),求y=f[g(x)]的定义域:利用a <g(x)<b ,求得x 的范围就是y=f[g(x)]的定义域。

【考点】 函数定义域极其求法【分析及解答】 由f (x+1)的定义域为[-2,3],求出 f (x )的定义域,再由2x+1在函数f (x )的定义域内求解x 的取值集合,得到函数f (2x+1)的定义域。

解:由f (x+1)的定义域是[-2,3],得-1≤x+1≤4 ;再由-1≤2x+1≤4 ⇒0≤x ≤25 ∴ f (2x+1)的定义域是[0,25],故选A 【点评】 本题考查了复合函数定义域的求法,给出函数f[g(x)]的定义域是(a ,b ),求函数f (x )的定义域,就是求x ∈(a ,b )内的g(x)的值域;给出函数f (x )的定义域是(a ,b ),只需由a <g(x) <b ,求解x 的取值集合即可。

【例10】 已知函数f(x)=x 7+ax 5+bx-5,且f(-3)= 5,则f(3)= ( )A. -15B. 15C.10D.-10 【考点】 函数的值;奇函数【分析及解答】 令g(x)= x 7+ax 5+bx ,则g(-3)=解法1:f(-3)= (-3)7+ a(-3)5+b(-3)-5=-(37+a35+3b-5)-10=- f(3)-10=5,∴f(3)=-15 解法2:设g(x)= x7+ax5+bx ,则g(x)为奇函数,f(-3)= g(-3)-5=- g(3)-5 ∴g(3)=-10, ∴f(3)= g(3)-5=-15③当-a /2≥2时,当x ∈[-2,2]时,f(x)最小值≥a 即:f(2)=4+2a+3≥a ,得-7≤a ≤-4 综上所述得:-7≤a ≤2 解法2:【例16】下列各组函数表示相等函数的是( )A. y=39x 2--x 与y=x+3 B. y=12-x 与y=x-1C. y=x 0(x ≠0)与y=1(x ≠0)D. y=2x+1(x ∈Z )与y=2x-1(x ∈Z )解:A. y=392--x x =x+3(x ≠3)与y=x+3定义域不同,不是相等的函数;B. y=2x -1=|x|-1与 y=x-1对应关系不同,不是相等的函数;C. y=x 0=1(x ≠0)与y=1(x ≠0)是相等函数;正确D. y=2x+1,x ∈Z 与y=2x-1,x ∈Z 对应关系不同,不是相等函数.【例17】函数y=4x 2-mx+5在区间[-2,+∞)上时增函数,在区间(-∞,2]上是减函数,则f(1)=( ) A.-7 B.1 C.17 D.25解: -2x 2+12x-18≧0,2x 2-12x+18≦0,(x-3)2≦0,则X=3,即:定义域为{3}11、若不等式ax 2+bx+2>0的解集为{ x ︱-1/2<x<2},则实数a=______,b=______ 解:由题意方程ax 2+bx+2=0的两个根为x 1=-1/2,x 2=2即⎪⎩⎪⎨⎧-===⋅=+-=-=+12232212121a a c x x a b x x ⇒a=-2,b=3 12、不等式ax 2+bx+c ≧0的解集为{x ︱-1/3≦x ≦2},则不等式cx 2+bx+a<0的解集为( )解:由题意方程ax 2+bx+c=0的两个根为x 1=-1/3,x 2=2即⎪⎩⎪⎨⎧-==⋅=-=+32352121a c x x a b x x 不等式cx 2+bx+a<0,转化为x 2+(b/c)x+c/a<0,即x 2+5/2x-3/2<0,解得方程x 2+5/2x-3/2=0的两个根为x 1=-3,x 2=1/2),因为x 2+(b/c)x+c/a<0,则解集为(-3,1/2)13、不等式ax 2+bx+c>0的解集为(-3,4),求b x 2+2ax-c-3b<0的解集14、关于x 的不等式(1+m )x 2+mx+m<x 2+1对x ∈R 恒成立,求实数x 的取值 解:由(1+m )x 2+mx+m<x 2+1⇒mx 2+mx+m-1<015、函数bx ax x f +=2)( (a ≠0)满足f(-3)=2,则f (3)的值为( )16、函数14--)(2+=x x x f (-3≦x ≦3)的值域是( )解:14--)(2+=x x x f =—(x+2)2+5 (-3≦x ≦3)当x=-2时,函数最大值为5,当x=3时函数有最小值为-2017、偶函数f(x)的定义域[-5,5],其在[0,5]的图象如图所示,则f(x)的解集为( ) 本题考查偶函数的性质,函数的单调性及应用和不等式的解法,数形结合思想. 当时,函数图像如图,由图知:只有当时,函数的图像在x 轴上方,即时,因为函数收偶函数,偶函数的图像关于y 轴对称,所以时,函数的图像在x 轴上方时,只有则不等式的解集为故选D18、如果函数f(x)=x2+2(a-1)x+2在区间(-∞,4]行单调递减,那么实数a 的取值范围是( )A.a ≦-3 B.a ≧-3 C.a ≦5 D.a ≧519、定义在R 上的函数)(x f 对任意两个不相等实数a ,b ,总有ba b f a f --)()(>0成立,则必有_______ A. )(x f 在R 上是增函数 B. )(x f 在R 上是减函数C.函数)(x f 是先增加,后减少D.函数)(x f 是先减少,后增加解:利用函数单调性定义,在定义域上任取x 1,x 2∈R ,且x 1<x 2,因为b a b f a f --)()(>0 所以f(a)-f(b)<0,所以)(x f 在R 上是增函数。

相关文档
最新文档