参数估计理论

合集下载

第三讲 参数估计 (1)

第三讲 参数估计 (1)

L( x1 , x2 , x3;q ) =ˆ Pq { X1 = x1 , X 2 = x2 , X 3 = x3 }
= Pq { X1 = x1 }Pq { X 2 = x2 }Pq { X 3 = x3 }
= p( x1;q ) p( x2;q ) p( x3;q ) = q x1 (1 − q )1− x1q x2 (1 − q )1− x2 q x3 (1 − q )1− x3
其它
其中 −1
是未知参数,
X1,X2,…,Xn是取自X的样本,求参数 的矩估计.
解:
数学期望
是一阶
1
=
= E(X
( + 1)
)
1
1
= x( 0
x +1dx
+ =
1)

x dx +1
原点矩由矩估计法,
X
=
0

+1
+2
总体矩
样本矩
+2
从中解得 ˆ = 2 X − 1 , 即为 的矩估计.
Gauss
Fisher
最大似然法的基本思想
先看一个简单例子: 某位同学与一位猎人一起外 出打猎 . 一只野兔从前方窜过 . 只听一声枪响,野兔应声倒下 . 如果要你推测,是谁打中的呢? 你会如何想呢?
你就会想,只发一枪便打中, 猎人命中的概率 一般大于这位同学命中的概率 . 看来这一枪是猎人 射中的 .
最大似然估计法就是用使L(q )达到最大值的qˆ去估计q . 称qˆ为q 的最大似然估计(MLE).
怎样求最大似然估计呢? 因为lnx是x 的严格单增函数,lnL与L有相同的极大值点, 故一般只需求lnL的极大值点即可----令其一阶偏导为0,得到 似然方程(组),求解即可。

统计推断与参数估计的基本理论与方法

统计推断与参数估计的基本理论与方法

统计推断与参数估计的基本理论与方法统计推断是统计学中的一门重要的研究领域,它主要关注如何通过样本数据对总体特征进行推断。

参数估计则是统计推断的一个重要组成部分,它通过样本数据来估计总体参数。

本文将介绍统计推断和参数估计的基本理论和方法。

一、统计推断的基本理论统计推断的基本理论包括抽样理论、似然函数和假设检验等。

1. 抽样理论抽样理论是统计推断的基础,它研究的是如何从总体中抽取样本以便对总体进行推断。

通过合理的抽样方法,可以保证样本对总体的代表性。

2. 似然函数似然函数是参数估计的基本工具,它是样本观测值关于参数的函数。

通过最大似然估计可以得到参数的最优估计值。

3. 假设检验假设检验是统计推断的重要方法,用于检验某个关于总体参数的假设。

它包括构造检验统计量和确定拒绝域两个步骤,从而进行参数推断。

二、参数估计的基本方法参数估计是统计推断中的核心内容,它通过样本数据来估计总体参数。

参数估计的基本方法包括点估计和区间估计。

1. 点估计点估计是一种直接估计总体参数的方法,它通过样本数据来估计总体参数的具体值。

最常用的点估计方法是最大似然估计和矩估计。

2. 区间估计区间估计是一种间接估计总体参数的方法,它给出了参数的估计区间。

通过给出一个置信区间,可以对总体参数进行估计,并给出估计的精度。

三、常用的统计推断方法在实际应用中,统计学家们发展了许多常用的统计推断方法,包括假设检验、方差分析、回归分析等。

1. 假设检验假设检验是统计推断中最常用的方法之一,它用于检验某个关于总体参数的假设。

例如,检验某种药物对疾病的治疗效果是否显著。

2. 方差分析方差分析是一种用于比较多个总体均值的方法,它通过分析不同组之间的方差来判断各组均值是否有显著差异。

例如,在新产品开发中,可以通过方差分析评估不同市场的销售情况。

3. 回归分析回归分析是一种用于建立变量之间关系的方法,它可以推断自变量对因变量的影响程度。

通过回归分析可以得到回归方程,从而进行预测和解释。

概率论与数理统计-参数估计_图文

概率论与数理统计-参数估计_图文


于是得到
的置信水平为 的置信区间为
为已知
其中
于是得到
的置信水平为 的置信区间为
其中
例3 为比较 I ,ቤተ መጻሕፍቲ ባይዱⅡ 两种型号步枪子弹的枪口
速度 ,随机地取 I 型子弹 10 发 ,得到枪口速度的平
均值 为
标准差

机地取 Ⅱ 型子弹 20 发 ,得到枪口速度的平均值为
标准差
假设两总
体都可认为近似地服从正态分布.且生产过程可认
2. 估计的精度要尽可能的高. 如要求区间长度
尽可能短,或能体现该要求的其它准则.
可靠度与精度是一对矛盾,一般是在保证 可靠度的条件下尽可能提高精度.
二、置信区间的求法
在求置信区间时,要查表求分位点.
定义 设
, 对随机变量X,称满足
的点 为X的概率分布的上 分位点.
若 X 为连续型随机变量 , 则有 所求置信区间为
X~N( )
样本均值是否是 的一个好的估计量?
样本方差是否是 的一个好的估计量?
这就需要讨论以下几个问题: (1) 我们希望一个“好的”估计量具有什么特性? (2) 怎样决定一个估计量是否比另一个估计量“好”?
(3) 如何求得合理的估计量?
常用的几条标准是:
1.无偏性 2.有效性 3.相合性
这里我们重点介绍前面两个标准 .
概率论与数理统计-参数估计_图文.ppt
参数估计
现在我们来介绍一类重要的统计推断问题 参数估计问题是利用从总体抽样得到的信息来估 计总体的某些参数或者参数的某些函数.
估计新生儿的体重
估计废品率
在参数估计问题
估计降雨量 中,假定总体分 布形式已知,未
… 知的仅仅是一个 … 或几个参数.

各种参数的极大似然估计

各种参数的极大似然估计

各种参数的极大似然估计1.引言在统计学中,参数估计是一项关键任务。

其中,极大似然估计是一种常用且有效的方法。

通过极大化似然函数,我们可以估计出最有可能的参数值,从而进行推断、预测和优化等相关分析。

本文将介绍各种参数的极大似然估计方法及其应用。

2.独立同分布假设下的参数估计2.1参数估计的基本理论在独立同分布假设下,我们假设观测数据相互独立且具有相同的概率分布。

对于一个已知的概率分布,我们可以通过极大似然估计来估计其中的参数。

2.2二项分布参数的极大似然估计对于二项分布,其参数为概率$p$。

假设我们有$n$个独立的二项分布样本,其中成功的次数为$k$。

通过极大似然估计,我们可以得到参数$p$的估计值$\h at{p}$为:$$\h at{p}=\f ra c{k}{n}$$2.3正态分布参数的极大似然估计对于正态分布,其参数为均值$\mu$和标准差$\si gm a$。

假设我们有$n$个独立的正态分布样本,记为$x_1,x_2,...,x_n$。

通过极大似然估计,我们可以得到参数$\mu$和$\si gm a$的估计值$\h at{\m u}$和$\ha t{\s ig ma}$分别为:$$\h at{\mu}=\f rac{1}{n}\su m_{i=1}^nx_i$$$$\h at{\si gm a}=\s q rt{\fr ac{1}{n}\s um_{i=1}^n(x_i-\h at{\mu})^2}$$3.非独立同分布假设下的参数估计3.1参数估计的基本理论在非独立同分布假设下,我们允许观测数据的概率分布不完全相同。

此时,我们需要更加灵活的方法来估计参数。

3.2伯努利分布参数的极大似然估计伯努利分布是一种二点分布,其参数$p$表示某事件发生的概率。

假设我们有$n$组独立的伯努利分布样本,其中事件发生的次数为$k$。

通过极大似然估计,我们可以得到参数$p$的估计值$\h at{p}$为:$$\h at{p}=\f ra c{k}{n}$$3.3泊松分布参数的极大似然估计泊松分布是一种描述罕见事件发生次数的概率分布,其参数$\la mb da$表示单位时间(或单位面积)内平均发生的次数。

第七章 参数估计

第七章   参数估计

第三节 总体均数估计
估计总体平均数的步骤: 估计总体平均数的步骤: X与S 1、 计算样本 2、 计算 σ X 3、 确定置信水平或显著性水平并查表 4、计算置信区间 5、解释总体平均数的置信区间
一、正态估计法 , σ2已知 、
1、前题条件: 、前题条件:
总体正态, n不论大小 总体正态, n不论大小
点估计与区间估计的比较
定义: 定义
直接以样本统计量(数轴上的一个点) 点估计 :直接以样本统计量(数轴上的一个点) 作为总体参数的估计值
区间估计:按一定概率要求, 区间估计:按一定概率要求,根据样本统计量估 计总体参数可能落入的范围的一种统计方法。 计总体参数可能落入的范围的一种统计方法。也 就是说整体参数所落的有把握的范围 整体参数所落的有把握的范围。 就是说整体参数所落的有把握的范围。
D=0.95时 时
75.7 ≤ µ ≤ 81.3
5、解释:用样本1估计,总体的平均数落在 、解释:用样本1估计, 73.6-82.4之间的可能性为95%, 之间的可能性为95% 73.6-82.4之间的可能性为95%,超出这一范 围的可能性为5% 5%。 围的可能性为5%。 用样本2估计,总体的平均数落在76.7 80.3之 76.7用样本2估计,总体的平均数落在76.7-80.3之 间的可能性为95% 落在75.7 81.3的可能性为 95%, 75.7间的可能性为95%,落在75.7-81.3的可能性为 99%。 99%
X ± 2.58σ X
置信限:就是总体参数所落区间的上下界限。 置信限:就是总体参数所落区间的上下界限。即
X − 1.96σ X ≤ µ ≤ X + 1.96σ X
置信下限 置信上限
标准误
标准误(中心极限定理 ) 标准误(中心极限定理3)

五种估计参数的方法

五种估计参数的方法

五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。

参数估计的目标是通过样本数据来推断总体参数的值。

下面将介绍五种常用的参数估计方法。

一、点估计点估计是最常见的参数估计方法之一。

它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。

点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。

常见的点估计方法有最大似然估计和矩估计。

最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。

它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。

最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。

矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。

它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。

矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。

二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。

为了更全面地描述参数的估计结果,我们需要使用区间估计。

区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。

常见的区间估计方法有置信区间和预测区间。

置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。

置信区间的计算依赖于样本数据的统计量和分布假设。

一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。

预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。

预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。

与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。

三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。

它将参数看作是一个随机变量,并给出参数的后验分布。

贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。

第7章参数估计

第7章参数估计
对于是非标志(即服从两点分布的变量)来说,若 将其具体表现分别用1、0数量化 ,成数就是其平 均数 是非标志的方差=P(1-P)
x 1 0
f P 1-p
x
xf f
1 p 0 (1 p) p (1 p)
p
2 (x x)2 f (1 p)2 p (0 p)2 (1 p)
f
p (1 p)
似然函数常简记为L或 L 1,2, ,k
未知参数的函数。
38
若有 ˆi (x1, x2,..., xn ) i 1, 2, k 使得
L x1, x2,..., xn;ˆ1, ˆ 2,
, ˆ k
max L (1 ,2 , ,k )
x1, x2,..., xn; 1, 2,
, k
则 ˆi (X1, X2,..., Xn) 为参数θi的极大似然估计量。
中选出一个使样本观察值出现的概率为最大的 ˆ 作
为θ的估计量。
称 ˆ 为θ 的极大似然估计量。
37
2.似然函数的数学表达式
设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度 (连续型)或联合分布律 (离散型)为 :
f (x; 1,2 , , k )
定义似然函数为:
n
L L x1,..., xn; 1, 2, , k f xi; 1, 2, , k i 1 x1, x2 ,..., xn 给定的样本观察值
§7.1.4抽样误差
1.误差:调查结果与实际值之间的差异 抽样调查中的误差
登记性误差(非抽样误差) 误差代表性误差随系机统误误差差((抽非样抽误样差误)差)
2.抽样误差—由于抽样的随机性而产生的 样本指标对总体指标的代表性误差。抽样误 差可以计算并加以控制,但不可以避免。

参数估计的介绍

参数估计的介绍

参数估计的介绍一、总体参数估计概述统计推断(Statistical inference)就是根据样本的实际数据,对总体的数量特征作出具有一定可靠程度的估计和判断。

统计推断的基本内容有参数估计和假设检验两方面。

概括地说,研究一个随机变量,推断它具有什么样的数量特征,按什么样的模式来变动,这属于估计理论的内容,而推测这些随机变量的数量特征和变动模式是否符合我们事先所作的假设,这属于检验理论的内容。

参数估计和假设检验的共同点是它们都对总体无知或不很了解,都是利用部分观察值所提供的信息,对总体的数量特征作出估计和判断,但两者所要解决问题的着重点的所有方法有所不同。

本节先研究总体参数估计的问题。

总体参数估计是以样本统计量(即样本数字特征)作为未知总体参数(即总体数字特征)的估计量,并通过对样本单位的实际观察取得样本数据,计算样本统计量的取值作为被估计参数的估计值。

不论社会经济活动还是科学试验,人们作出某种决策之前总是要对许多情况进行估计。

例如商品推销人员要估计新式时装可能为消费者所学好的程度,自选商场经理要估计附近居民的购买能力,民意调查机构要估计竞选者的得票率,医药生产部门要推广某种药品的新配方,必须估计新药疗效的提高程度等等。

这些估计通常是在信息不完全、结果不确定的情况下作出。

参数估计为我们提供一套在满足一定精确度要求下根据部分信息来估计总体参数的真值,并作出同这个估计相适应的误差说明的科学方法。

科学的抽样估计方法要具备三个基本条件。

首先是要有合适的统计量作为估计量。

我们知道统计量是样本随机变量的函数,根据样本随机变量可以构造许多统计量,但不是所有的统计量都能够充当良好的估计量。

例如,从一个样本可以计算平均数、中位数、众数等等,现在要用来估计总体平均数,究竟以哪个样本统计量作为估计量更合适,如果采用样本平均数作为估计量,这就需要回答样本平均数和总体平均数存在什么样的内在联系,以样本平均数作为良好估计量的标准是什么等等。

统计基础知识学习之参数估计

统计基础知识学习之参数估计

总体总量、总体平均数、总体成数、总 体方差和标准差
总体平均数:是总体所研究标志的平均值, 用 表示。 X 例如:研究某县102个行政村的人均纯收入, 那么该县每个村的纯收入之和除以该县常 住人口数得到的平均数就是总体平均数。
X=
∑x
i =1
i
n
其中:xi为每个村的纯收入,n为该县常住人口数。
总体总量、总体平均数、总体成数、总 体方差和标准差
参数估计
二00八年六月 八年六月
主要内容
总体参数 统计量 估计的理论依据 统计误差 点估计 区间估计
一、参数估计的概念
估计就是根据从样本中收集的信息对总 体未知量进行推断的过程。参数估计就是 根据随机抽样调查得来的样本数据,对未 知的总体水平、结构、规模等数量特征进 行估计,即样本指标估计总体指标。
中心极限定理的意义
只要是服从正态分布,我们就有可能 开展抽样调查。 中心极限定理为点估计和区间估计奠 定了理论基础 。 我们就可以用样本代替总体,用样本 值来推断总体数。
二、统计误差
●统计误差是指统计数据与客观实际数量之
间的差异。 间的差异。
(一)登记误差和代表性误差
1、登记误差 登记误差又称工作误差,是指在调查、整理工作 中,由于各种主观原因引起的误差。 例如:由于指标含义不清、口径不同而造成的误 差;在登记、计算、抄写上有差错造成的误差。
2、样本指标
●样本指标是根据样本各单位标志值计算的综合
指标。 ●常用的样本指标有样本平均数、样本成数、样 本方差和样本标准差。
●样本指标一般用小写字母表示。
x
(三)参数估计的理论基础
●大数定律:
它说明:如果被研究的总体是由大 量的相互独立的随机因素组成,而且 每个因素对总体的影响都相对小,那 么对这些大量因素加以综合平均,因 素的个别影响将相互抵消,而呈现出 其共同作用的影响,使总体具有稳定 的性质。

参数估计

参数估计

6. 参数估计6.1. 参数估计概述统计学包括四个方面的问题,其中之一就是统计推断。

所谓统计推断就是指,如果有一个总体,其分布和统计量都不知道,如一批生产出来的产品的质量。

这样就需要对其进行推断,如一批灯泡的平均使用寿命是多少,是否为合格品等。

统计推断就是解决这些问题。

统计推断分为两个方面,一方面是参数估计,另一方面是假设检验。

6.1.1.参数估计所谓参数估计就是通过对样本的研究,来确定总体的统计量。

其中又可分为点估计和区间估计两类。

点估计就是估计出总体的某一统计量的确切值,如总体的均值、方差等。

通常可以通过样本的相应值来进行估计。

如:样本的平均值∑=i X nx 1是总体平均值的估计量; 样本的方差为∑=--=ni i x x n s 122)(11是总体方差的估计量; 点估计的优点在于它能明确地给出所估计的参数。

但是一般说来,估计的数值与实际值之间是肯定会有误差存在的。

在实际工作中常常需要对这种误差进行衡量,也就是说还需要确定这个估计值的精度,或误差范围和可信程度。

因此就产生了区间估计的问题。

区间估计是通过样本来估计总体参数可能位于的区间。

例如说一批产品的平均使用寿命为1000小时,这仅仅是一个点估计,还需要说明大多数产品(95%)的使用寿命的上限和下限值,比如说位于800~1200小时之间,这就是一个区间估计值。

因此,在进行区间估计时,除了要给出一个区间值外,还需要同时指明可以信赖的程度,即在进行区间估计时,需要确定的是αθθθ-=<<1)ˆˆ(21p ,其中α为事先给定的一个很小的正数,如0.10, 0.05, 0.01或0.001等,称之为显著水平;1-α称为参数θ的置信概率,或置信水平。

θ1和θ2为所估计的参数θ的区间范围的上下限。

其含为我们有100(1-α)%的把握相信所估计的参数θ位于θ1和θ2的区间范围内。

6.1.2.估计量的评价标准对于所给出的估计来说,有些是好的,有些则不是。

第二章 参数估计

第二章 参数估计

0


x 2de
x

2xe
x
dx

2

xde
x
0
x
0
0
2 e dx 2 2
0
9
例4:设X1, … , Xn为取自 N ( , 2 ) 总体的
样本,求参数 , 2 的矩估计。
: E( X ) D( X ) 2 E( X 2 ) [E( X )]2
极大似然法是由德国数学家G.F.Gauss在1821年提 出的.然而这个方法通常归于英国统计学家 R.A.Fisher,因为他在1912年里发现了这一方法,并 且首先研究了这种方法的性质.
设总体的密度函数为f(x,θ), θ为待估参数,θ∈Θ,Θ
为参数空间.当给定样本观察值 x (x1, x2 , xn )后,f(x,
以随便给的,所以根据统计思想建立各种点估计方法
和评价点估计的好坏标准便是估计问题的研究中心.
这里先介绍三个常用的标准:无偏性、有效性和一致
性.
1
有效性
^
^
设 i i ( X1,, X n ), i 1, 2分别是参数 的两个无偏估计,
^
^
^
^
若D 1 D 2 至少有一个n使 成立 , 则称 1比 2 有效.
总体k阶矩 样本k阶矩
k E(Xk )
Ak

1 n
n i 1
X
k i
的矩估计量是
约定:若


是未知参数的矩估计,则u()的矩
估计为u(


),
6
例2、:设X1, … , Xn为取自参数为的指数分布 总体的样本,求的矩估计。

随机模型的参数估计方法研究

随机模型的参数估计方法研究

随机模型的参数估计方法研究一、引言随机模型是研究系统及其行为的数学模型之一。

参数估计是随机模型应用的关键步骤之一,其目的是利用随机抽样数据对随机模型的参数进行估计。

本文将针对随机模型参数估计的研究,探讨参数估计方法的基本理论和应用。

二、参数估计理论1.点估计点估计是基于样本原理,利用样本数据估计未知参数的值。

其中最小二乘法、矩估计法和最大似然估计法是常用的点估计方法。

(1)最小二乘法最小二乘法是一种基于平方误差的估计方法,其原理是最小化样本数据与理论值的平方误差。

最小二乘法用于估计线性回归模型的系数,非线性问题需转化为线性问题再进行估计。

(2)矩估计法矩估计法是基于样本矩的估计方法,其原理是使用样本矩估计总体矩,从而得到未知参数的估计值。

(3)最大似然估计法最大似然估计法是基于样本数据的概率分布模型,利用样本数据寻找最大的似然函数,从而得到未知参数的估计值。

2.区间估计区间估计是对点估计结果的一种修正,考虑估计误差,给出参数值估计的一个置信区间。

常用的区间估计方法有置信区间法和区间估计法。

(1)置信区间法置信区间法是在一定置信水平下,求得估计参数的置信区间。

置信水平一般常取95%或99%。

(2)区间估计法区间估计法是利用区间统计量构造参数置信区间。

常用的区间统计量有T检验、F检验、卡方检验以及正态分布的区间估计等。

三、参数估计应用1.线性回归模型线性回归模型是一种描述因变量与一个或多个自变量关系的模型。

常用的参数估计方法是最小二乘法。

2.方差分析模型方差分析模型是一种描述不同因素对因变量影响的模型。

常用的参数估计方法是方差分析法。

3.时间序列模型时间序列模型是一种描述时间序列数据的模型。

常用的参数估计方法是自回归模型和滑动平均模型。

四、总结本文简要探讨了随机模型参数估计的基本理论和应用。

随机模型是多学科交叉的领域,参数估计方法的研究对于随机模型应用的提高和发展有着重要的作用。

各种参数估计方法各有优缺点,在实际应用时需要根据具体情况选择合适的方法。

参数估计的基本理论

参数估计的基本理论

第3章 参数估计的基本理论信号检测:通过准则来判断信号有无;参数估计:由观测量来估计出信号的参数;解决1)用什么方法求取参数,2)如何评价估计质量或者效果严格来讲,这一章研究的是参数的统计估计方法,它是数理统计的一个分支。

推荐两本参考书高等教育出版社《数理统计导论》,《Nonlinear Parameter Estimation 》。

我们首先从一个估计问题入手,来了解参数估计的基本概念。

3.1 估计的基本概念3.1.1 估计问题对于观察值x 是信号s 和噪声n 叠加的情况:()x s n θ=+其中θ是信号s 的参数,或θ就是信号本身。

若能找到一个函数()f x ,利用()12,,N f x x x 可以得到参数θ的估计值 θ,相对估计值 θ,θ称为参数的真值。

则称()12,,N f x x x 为参数θ的一个估计量。

记作 ()12,,Nf x x x θ= 。

在上面的方程中,去掉n 实际上是一个多元方程求解问题。

这时,如果把n 看作是一种干扰或摄动,那么就可以用解确定性方程的方法来得出()f x 。

但是我们要研究的是参数的统计估计方法,所以上面的描述并不适合我们的讨论。

下面给出估计的统计问题描述。

(点估计)设随机变量x 具有某一已知函数形式的概率密度函数,但是该函数依赖于未知参数θ,Ω∈θ ,Ω称为参数空间。

因此可以把x 的概率密度函数表示为一个函数族);(θx p 。

N x x x ,,,21 表示随机样本,其分布取自函数族);(θx p 的某一成员,问题是求统计量 ()12,,Nf x x x θ= ,作为参数θ的一个估计量。

以上就是用统计的语言给出的参数估计问题的描述。

数。

统计量的两个特征:1,随机变量的函数,因此也是随机变量;2,不依赖于未知参数,因此当我们得到随机变量的一组抽样,就可以计算得到统计量的值。

例3-1:考虑由(1,2,,)i ix s n i N =+= ,给定的观测样本。

数理统计 第七章-参数估计

数理统计 第七章-参数估计

休息
结束
2. 最大似然法
是在总体类型已知条件下使用的一 种参数估计方法 。 它首先是由德国数学家高斯在1821 年提出的 ,费歇在1922年重新发现了这 一方法,并首先研究了这 种方法的一些 性质 。
休息 结束
最大似然法的基本思想:
已发生的事件具有最大概率。
休息
结束
先看一个简单例子: 在军训时,某位同学与一位教官同 时射击,而在靶纸上只留下一个弹孔。 如果要你推测,是谁打中的呢? 你会如何想呢?

max f ( xi , )

i 1
n
休息
结束
X 假设X 为连续型总体: f ( x; )
( X 1 , , X n ) 为子样
( x1 , , xn ) 为子样观察值。
已发生的事件为:
x x ,X {{X 11 1x, X 1 nx1 ,n } , xn x X n xn } x

休息
结束
ˆ
1 n ( X i X )2 n i 1
1 n ˆ X ( X i X )2 n i 1
休息
结束
矩法的优点是简单易行,并不需要 事先知道总体是什么分布 。 缺点是,当总体类型已知时,没有 充分利用分布提供的信息 . 一般场合下, 矩估计量不具有唯一性 。
( 1 )x , 0 x 1 f( x) 0, 其它
1
其中 1 是未知参数,
X1,X2,…,Xn是取自X的样本,求参数 的矩估计. 解:
1 E( X ) x( 1 )x dx

0
( 1 )
从 中解得
1
0
x
1

参数估计理论与应用(第三章 )

参数估计理论与应用(第三章 )

那么它仍然有可能是一个好的估计。
考虑实随机过程{xk}的相关函数的两种估计量:
Rˆ1( )
1
N
N
xk xk ,
k 1
Rˆ2 ( )
1 N
N k 1
xk
xk
假定数据{xk}是独立观测的,容易验证
E[
Rˆ1
(
)]
E[
N
1
N
xk xk ]
k 1
1
N
N
E[ xk xk ]
k 1
Fisher 信息 Fisher 信息用J(θ)表示,定义为
J ( )
E{[
ln
p(x
| ]2}
E[
2
2
ln
p(x
| )]
(3.1.1)
2020/4/9
第三章 参数估计理论与应用
当考虑 N 个观测样本 X={ x1,…,xN }, 此时,联合条件分 布密度函数可表示为
p(x | ) p(x1, , xN | )
0
lim P{|
N
1 N
N
xi2 x 2 (E[ x2 ] E2[x]) | }
i 1
lim
N
P{|
ˆ
2 N
2
|
}
0,
0
2020/4/9
第三章 参数估计理论与应用
于是
lim
N
P{ | ˆ1
1
|
}
3
lim
N
P{|ˆ N
|
}
0
lim
N
P{ | ˆ2
2
|
}
2
3

数理统计之参数估计

数理统计之参数估计

X )2 ,
S2
1 n1
n
(Xi
i 1
X )2,试
比较 E(Sn2 - σ2)2 与 E(S 2 - σ2)2.
解: 由于
(n 1)S 2
2
~
2 (n 1)

(n 1)S 2
2
2(n 1)
(n 1)2
4
D(S 2 ),D(S 2 )
2
n1
4
D(Sn2 )
D( n 1 S2 )
j
j
解出似然估计 ˆjL ˆjL( X1, , Xn ).
否则可通过单调性或放大缩小的方法直接推求.
极大似然估计的性质:
(1) 若(^θ1, …, ^θm)是(θ1, …, θm)的极大似然计, η = g(θ1, …, θm)存在单值反函数,则g(θ^1, …, ^θm)是g(θ1, …, θm)的极大似然估计.
设X1,…,Xn 是来自总体 X 的样本,则
μk = E(Xk )= ∑ xk p(x; θ1, θ2), X 为离散型

μk = E(Xk )= xk f (x; θ1, θ2)dx,
X 为连续型
Ak
1 n
n i 1
Xik
1 n
X
k 1
1 n
X
k 2
1 n
X
k n
矩法思想: 用样本矩Ak 作为总体同阶矩μk 的近似,
例 设某种设备的寿命X (小时)服从指数分布,概
率密度为
et , t 0
f ( x; )
0,
其他
其中 λ>0为未知参数. 现从这批设备中任取n台在t =0
时刻开始寿命试验,试验进行到预定时间T0 结束, 此时有 k(0< k < n)台失效,求

参数估计与非参数估计

参数估计与非参数估计

i=1,2,…M
所后来验概率
P(
|
X
i)
P( X i | ).P() P( X i | )P()d(贝叶斯公式)
因为N个样本是独立抽取旳,所以上式能够写成
N
P( | X i) a P(X k | ).P()
k 1
其中 a
1 P( X i | )P()d 为百分比因子,只与x有关,与μ无关
1 (X
2
k
1)
0
N
k 1
2
log P(X k
| i)
N
[
k 1
1 2 2
( X k 1)2 ]
2
2 2
0
1
1
1 N
N k 1
Xk
即学习样本旳算术平均
2
2 1
1 N
N k 1
Xk
2
样本方差
• 讨论: 1.正态总体均值旳最大似然估计即为学习样本旳算术平均 2.正态总体方差旳最大似然估计与样本旳方差不同,当N较 大旳时候,两者旳差别不大。
若PN(x)收敛于P(x)应满足三个条件:

lim
N
V
N
0
,当N↑时,VN↓,N→∞,VN→0
这时虽然样本数多,但因为VN↓,落入VN内旳样本KN
也减小,所以空间变化才反应出来

lim K N
N
,N ↑ ,kN ↑ ,N与KN同相变化

lim
N
KN N
0
,KN旳变化远不大于N旳变化。
所以尽管

1 N 2
N 2
1
2 0
N
N 2
1
2

统计学 第四章 参数估计

统计学 第四章  参数估计

由样本数量特征得到关于总体的数量特征 统计推断(statistical 的过程就叫做统计推断 的过程就叫做统计推断 inference)。 统计推断主要包括两方面的内容一个是参 统计推断主要包括两方面的内容一个是参 数估计(parameter estimation),另一个 数估计 另一个 假设检验 。 是假设检验(hypothesis testing)。
ˆ P(θ )
无偏 有偏
A
B
θ
ˆ θ
估计量的无偏性直观意义
θ =µ



• •
• • • •

2、有效性(efficiency)
有效性:对同一总体参数的两个无偏点估计 有效性: 量,有更小标准差的估计量更有效 。
ˆ P(θ )
ˆ θ1 的抽样分布
B A
ˆ θ2 的抽样分布
θ
ˆ θ
பைடு நூலகம்
3、一致性(consistency)
置信区间与置信度
1. 用一个具体的样本 所构造的区间是一 个特定的区间, 个特定的区间,我 们无法知道这个样 本所产生的区间是 否包含总体参数的 真值 2. 我们只能是希望这 个区间是大量包含 总体参数真值的区 间中的一个, 间中的一个,但它 也可能是少数几个 不包含参数真值的 区间中的一个
均值的抽样分布
总体均值的区间估计(例题分析)
25, 95% 解 : 已 知 X ~N(µ , 102) , n=25, 1-α = 95% , zα/2=1.96。根据样本数据计算得: x =105.36 96。 总体均值µ在1-α置信水平下的置信区间为 σ 10 x ± zα 2 = 105.36 ±1.96× n 25 = 105.36 ± 3.92

关于参数估计

关于参数估计

关于参数估计虽然⾮计算机专业,但因为⼀些原因打算学习西⽠书,可由于长时间没有碰过概率统计的知识,有所遗忘。

所以特意重新复习了⼀遍类似的知识,写在这⾥权当总结。

主要参考《概率论与数理统计》(陈希孺)。

参数估计就是根据样本推断总体的均值或者⽅差、或者总体分布的其他参数。

可以分两种,⼀种是点估计(估计⼀个参数的值),另⼀种是区间估计(估计⼀个参数的区间)。

参数估计的⽅法有多种,各种估计⽅法得出的结果不⼀定相同,很难简单的说⼀个必定优于另⼀个。

点估计点估计主要有三种⽅法:矩估计、最⼤似然估计、贝叶斯估计。

矩估计定义k阶样本原点矩为 $$a_k=\frac{1}{n}\sum n_{i=1}X_i k$$若k=1则原点矩显然就是样本均值\bar{X};再定义k阶样本中⼼矩为m_k=\frac{1}{n}\sum^n_{i=1}(X_i-\bar{X})^k.另⼀⽅⾯,总体分布设为f(x;\theta_1,\theta_2,...,\theta_k)则有m阶原点矩\alpha_m=\int x^mf(x;\theta_1,\theta_2,...,\theta_k){\rm d}x.矩估计的思想就是:令样本k阶矩等于总体k阶矩,得到⼀组⽅程,由此反解出\{\theta_i\}.⼀般原则是要求解n个参数,就选n个最低阶的矩,令它们相等并反解。

例题:设X_1,...,X_n为区间[\theta_1,\theta_2]上均匀分布总体中抽出的n个样本,估计出\theta_1,\theta_2.计算出样本中⼼矩m_1=\sum_iX_i/n和m_2=\sum_iX_i^2/n.再计算出总体中⼼矩分别为\frac{\theta_1+\theta_2}{2}和\frac{(\theta_1+\theta_2)^2}{12},令它们对应相等,解出来两个\theta即可。

极⼤似然估计符号同前,样本(X_1,...,X_n)的联合概率密度(PDF)为f(x_1;\theta_1,...,\theta_k)f(x_2;\theta_1,...,\theta_k)...f(x_n;\theta_1,...,\theta_k).现在反过来,固定样本\{X_i\}⽽把上⾯PDF看作关于\{\theta_i\}的“密度函数”,加引号是因为实际上\{\theta_i\}是固定参数⽽⾮随机变量,这⾥可以叫做似然函数(likehood, ⽽⾮probability)。

参数估计PPT课件

参数估计PPT课件
参数估计
目录
• 参数估计简介 • 最小二乘法 • 最大似然估计法 • 贝叶斯估计法 • 参数估计的评估与选择
01 参数估计简介
参数估计的基本概念
参数估计是一种统计学方法,用于估计未知参数的值。通过使用样本数据和适当的统计模型,我们可 以估计出未知参数的合理范围或具体值。
参数估计的基本概念包括总体参数、样本参数、点估计和区间估计等。总体参数描述了总体特征,而 样本参数则描述了样本特征。点估计是使用单一数值来表示未知参数的估计值,而区间估计则是给出 未知参数的可能范围。
到样本数据的可能性。
最大似然估计法的原理是寻找 使似然函数最大的参数值,该 值即为所求的参数估计值。
最大似然估计法的计算过程
确定似然函数的表达式
根据数据分布和模型假设,写出似然函数的表达式。
对似然函数求导
对似然函数关于参数求导,得到导数表达式。
解导数方程
求解导数方程,找到使似然函数最大的参数值。
确定参数估计值
04
似然函数描述了样本数据与参数之间的关系,即给定参数值下观察到 样本数据的概率。
贝叶斯估计法的计算过程
首先,根据先验信息确定参数的先验分布。 然后,利用样本信息和似然函数计算参数的后验分布。 最后,根据后验分布进行参数估计,常见的估计方法包括最大后验估计(MAP)和贝叶斯线性回归等。
贝叶斯估计法的优缺点
参数估计的常见方法
最小二乘法
最小二乘法是一种常用的线性回归分析方法,通过最小化误差的平方和来估计未知参数。这种方法适用于线性回归模 型,并能够给出参数的点估计和区间估计。
极大似然法
极大似然法是一种基于概率模型的参数估计方法,通过最大化样本数据的似然函数来估计未知参数。这种方法适用于 各种概率模型,并能够给出参数的点估计和区间估计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
T
则功率谱密度定义为
| X T ( f ) |2 Pxx ( f ) lim E T 2T 对于零均值的平稳随机信号而言,存在
Pxx ( f ) Rxx ( )e j 2 f d


Rxx ( ) Pxx ( f )e j 2 f d
2

随机信号x(t)的方差表达式为: 1 T 2 2 x E[( x x ) ] lim [ x(t ) x ]2 dt T T 0 方差是信号幅值相对于均值分散程度的一种表示, 也是信号纯波动(交流)分量大小的反映。
6
离散随机信号的数字特征
若x(n)是离散的各态历经的平稳随机信号序列。类 似连续随机信号,其数字特征可由下面式子来表示: 均值 1 n x E[ x(n)] x(i) n i 1
25
40
第一节 估计子的性能
Performance of estimator
26
1、估计的基本概念

最简单的情况:
根据观测值(随机信号N个样本值x(1),x(2),…, x(N))估计出信号的一些统计特征量,如信号的均
值、方差、均方和相关函数等
1 N x x(i) N i 1 1 N 2 1 2 E[ x 2 (n)] x (i) x N i 1 N
8
单个平稳随机信号的二阶统计量
Rxx ( ) E{x(t ) x* (t )}
Cxx ( ) E{[ x(t ) x ][ x(t ) x ] } Rxx ( ) x
* 2
对于数字信号x(n),怎样估计自相关函数?
(1)按照自相关函数定义来估计
ˆ Rxx (m) E{x(n) x(n m)} 1 n x(i) x(i m) n m n n i 1
缺点:运算量大,速度慢
9
功率谱密度

定义:考虑在一有限时间段取值的随机过程x(t) , -T<t<T。计算其Fourier变换
X T ( f ) [ x(t ) x ]e j 2 ft dt

均方值
1 n 2 E[ x 2 (n)] x (i ) n i 1 1 n E[( x(n) x ) ] ( x(i) x ) 2 n i 1
2 x 2

方差
7
【例1】计算以长度N=100000的正态分布高斯随机 信号的均值、均方值、均方根值、方差和均方差





N=100000; %数据个数 randn('state',0); %设置产生随机数的状态 y=randn(1,N); %产生一个随机序列 disp('平均值:'); yMean=mean(y) %计算随机序列的均值 disp('均方值:'); y2p=y*y'/N %计算其均方值,这里利用了矩阵相乘的算法 disp('均方根:'); ysq=sqrt(y2p) %计算其均方根值 disp('标准差:'); ystd=std(y,1) %计算标准差 disp('方差:'); yd=ystd.*ystd
c=xcorr(x,maxlags)
12

【例2】求带有白噪声干扰的频率为10HZ的正弦 信号和白噪声信号的自相关函数并进行比较。






clf; N=1000; Fs=500; %数据长度和采样频率 n=0:N-1;t=n/Fs; %时间序列 Lag=100; %延迟样点数 randn('state',0); %设置产生随机数的初始状态 x=sin(2*pi*10*t)+0.6*randn(1,length(t)); %原始信号 [c, lags] = xcorr (x, Lag, 'unbiased'); %对原始信号进行无偏 自相关估计 subplot(2,2,1),plot(t,x); %绘原始信号x xlabel('时间/s');ylabel('x(t)');title('带噪声周期信号');grid on; subplot(2,2,2);plot(lags/Fs, c); %绘x信号自相关,lags/Fs为时 间序列 xlabel('时间/s');ylabel('Rx(t)'); title('带噪声周期信号的自相关');grid on;
19
模板互相关法

两点注意 (1)模板的构造 在这种QRS检测方法中,构造模板有两种方法: a.分段函数法; b.典型信号法; 并将信号模板以数据形式存储起来。
20
模板互相关法
(2)对准的问题
求一个信号与另一个信号相关,要求这两个信号互
相对准。有两种方法:
a.利用每个信号上的基准点将模板和输入信号对准,
根据观测值从多种假设中选择出最合适的一种(假
设检验) 从含噪声的观测值中判断某种信号是否存在(估计)

参数估计:
假设数据服从一已知结构的概率模型,但模型某 些参数未知;从观测值中估计出信号的参数,如信 号的幅度、频率和相位等

24
随机信号处理的大部分内容侧重于参数化的
理论与方法:现代谱估计本质上是参数化谱 估计、自适应滤波器介绍的是时域或空域滤 波器参数的自适应更新;等等
Cxy ( ) Cxx (0)C yy (0)
16
两个平稳随机信号的统计关系
统计独立 统计不相关

f X ,Y ( x, y) f X ( x) fY ( y)
xy ( ) 0,
Cxy ( ) E{[ x(t) x ][ y(t ) y ]*} 0,
严格平稳:概率密度函数与时间无关的随机
信号x(t)称为严格平稳随机信号
广义平稳:
(1)其均值为常数,即E{x(t)}=μx(常数)
(2)其二阶矩有界,即
E{x(t) x*(t)}=E{|x(t)|2}<∞
(3)其协方差函数与时间无关,仅与时间间隔
有关即 Cxx(τ)=E{[x(t)- μx][x(t- τ)- μx]*}
18
模板互相关法

基本思路
如果两个信号波形形状相互匹配,就称这些信
号是相关的。互相关系数可确定两个或更多信号形
状间匹配的程度。
相关系数的值总是位于0和1之间。1值表明信号 与模板准确匹配。这个系数值确定了研究中的两信 号形状的匹配程度,而实际信号的幅值对相关函数 来说是无关紧要的.这种形状匹配,或QRS复波的 识别过程,与识别信号的自然途径是一致的.
3
遍历性
平稳随机过程的概率分布不随时间的平移而
变化,全体随机变量集合的平均就可以用无 穷时间的平均来代替,这就是各态遍历假设。
4
随机信号的数字特征

若连续平稳随机信号x(t)是各态遍历的,则随机信号 x(t)均值可表示为: 1 T Ex(t ) x lim x(t )dt 0 T T
参数估计的基本理论
复习上次课的内容


随机信号和确定信号

是两类性质完全不同的信号,对它们的描述、分 析和处理方法也不相同。

随机信号是一种不能用确定数学关系式来描述的, 无法预测未来某时刻精确值的信号,随机信号在
任何时间的取值都是不能先验确定的随机变量

随机信号可用概率分布特性统计地描述。
2
平稳随机信号
11
MATALB函数XCORR

MATLAB信号处理工具箱提供了计算随机信号相关 函数xcorr。

函数xcorr用于计算随机序列自相关和互相关函数。 调用格式为:
[c,lags]=xcorr(x,y[,maxlags,’option’])

式中,x,y为两个独立的随机信号序列,长度均为N; c为x,y的互相关估计;lags为相关估计c的序号向量, 其范围为[-maxlags:maxlags]。 该函数也可用于求一个随机信号序列x(n)的自相关 函数,调用格式为:

维纳-辛钦定理 (Wiener-Khinchine)
10
估计自相关函数的第二个方法: 功率谱密度反变换

(1)求数字信号x(n)的FFT
(2)估计功率谱密度
X(ω)=FFT{x(n)}

| X ( ) |2 Pxx ( ) lim E N N

(3)估计自相关函数 Rxx(m) = FFT-1{Pxx(ω)}
均值描述了随机信号的静态(直流)分量,它不随 时间而变化。 随机信号x(t)的均方值表达式为: 1 T 2 2 2 x E{x (t )} lim x (t )dt T T 0 均方值 表示了信号的强度或功率。
5
随机信号的数字特征

随机信号x(t)的均方根值表示为:
1 T 2 x E[ x (t )] lim x (t )dt T T 0 也是信号能量或强度的一种描述。
14
15
两个平稳随机信号的二阶统计量

互相关函数
Rxy (t1 , t2 ) E{x(t1 ) y* (t2 )}
def
def
Cxy (t1 , t2 ) E{[ x(t1 ) x ][ y(t 2 ) y ]*} 互协方差函数

互相关系数
xy ( )
功率谱密度与系统传递函数的模平方之乘积。
22
内容与要求
了解:参数估计的意义和作用 理解:
相关文档
最新文档