生物化学复习重点

合集下载

生物化学重点知识

生物化学重点知识

生物化学重点知识生物化学是生物学与化学的交叉领域,研究生物体内的化学反应和生物分子之间的相互作用。

在生物化学的学习过程中,有一些重点知识是必须要掌握的,下面将对一些重点知识进行详细介绍。

一、生物大分子生物大分子是构成生物体的主要分子,包括蛋白质、核酸、多糖和脂质。

其中,蛋白质是生物体内最为重要的大分子之一,具有结构和功能的双重性。

蛋白质的结构由氨基酸组成,氨基酸通过肽键连接而成。

蛋白质的功能多种多样,包括参与代谢反应、传递信号、构建细胞结构等。

另外,核酸是生物体内贮存和传递遗传信息的分子,包括DNA和RNA两类。

DNA是遗传信息的载体,其双螺旋结构能够稳定保存大量的遗传信息。

而RNA主要参与蛋白质的合成过程,包括转录和翻译。

多糖是生物体内的能量储备和结构支持物质,如淀粉、糖原和纤维素等。

多糖的结构复杂多样,具有不同的功能和生物活性。

脂质是生物体内最不溶于水的大分子,包括脂肪酸、甘油和磷脂等。

脂质在细胞膜的构建和代谢调节中起着重要作用。

二、酶和酶促反应酶是生物体内催化化学反应的蛋白质,具有高度的特异性和效率。

酶可以加速生物体内代谢反应的进行,并且在反应结束后不被消耗。

酶的催化活性受到温度、pH值等环境因素的影响。

酶促反应是在酶的催化下进行的生物体内化学反应。

酶促反应遵循米氏动力学,包括亲和力、酶底物复合物和酶活性等步骤。

酶促反应在维持生物体内稳态和平衡中起着不可替代的作用。

三、代谢途径代谢是生物体内所有化学反应的总称,包括合成代谢和分解代谢两个方面。

在代谢中,有一些重要的途径是需要重点掌握的。

糖代谢途径是生物体内最主要的能量来源,包括糖原异生途径和糖酵解途径。

细胞通过这些途径产生ATP能量,供给细胞代谢和功能活动。

脂肪酸代谢途径是细胞内脂质代谢的关键过程,包括脂质合成和脂质分解。

脂肪酸代谢可以提供额外的能量供应,同时也参与胆固醇合成等生物学过程。

氨基酸代谢途径是蛋白质合成和代谢的基础,主要包括氨基酸转氨、氨基酸降解和尿素循环等步骤。

生物化学期末复习重点总结

生物化学期末复习重点总结

一.n解释1.氨基酸的等电点(pI):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。

2. .蛋白质的等电点(pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。

蛋白质溶液的pH大于等电点时,该蛋白质颗粒带负电荷,反正则带正电荷。

3.蛋白质变性:在某些理化因素的作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。

4.核酸的变性:在某些理化因素作用下,核酸分子中的氢键断裂,双螺旋结构松散分开,理化性质改变,失去原有的生物学活性。

5解链温度、溶解温度或Tm:在解链过程中,紫外吸光度的变化△A260达到最大变化值的一半时所对应的温度称为DNA的解链温度。

6.Km:等于酶促反应速度为最大速度一半时的底物浓度。

6.酶的活性中心或活性部位:这些必需基团在一级结构上可能相距很远,但在空间上彼此靠近,组成具有特定空间结构的区域,能和底物特异的结合并将底物转化为产物。

这一区域称为酶的活性中心或活性部位。

辅酶或辅基参与酶活性中心的组成。

7.同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质乃至免疫学性质不同的一组酶。

8.变构酶:变构效应的剂与酶分子活性中心以外的部位可逆的组合,使酶分子发生构象改变,从而改变了催化活性的酶称为变构酶。

9.酶原的激活:酶原向酶的转化过程称为酶原的激活,酶原的激活实际上是酶的活性中心形成或暴露的过程。

10.糖酵解:在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原成乳酸的过程称为糖酵解。

11.糖的有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化。

是体内糖代谢最主要途径。

12.糖异生:从非糖化合物(乳酸,甘油,生糖氨基酸,丙酮酸)转化为葡萄糖或糖原的过程称为糖异生。

生物化学复习重点

生物化学复习重点

12
6 肽键;蛋白质的等电点;分子病 肽键;蛋白质的等电点; 7 试述蛋白质一级结构和高级结构的概念及维持各 级结构的键和力; 级结构的键和力; 8 什么是蛋白质变性?举例说明蛋白质变性在实际 什么是蛋白质变性? 工作中的意义
13
1. 组成核酸的基本结构单位是 A.嘌呤碱与嘧啶碱 B.核糖与脱氧核糖 D.核苷酸 E.寡核苷酸
11
4.维系蛋白质一级结构的化学键是 4.维系蛋白质一级结构的化学键是 A.氢键 B.肽键 C.盐键 D.疏水键 A.氢键 B.肽键 C.盐键 D.疏水键 E.范德华力 E.范德华力
5.蛋白质的一级结构及高级结构决定于 5.蛋白质的一级结构及高级结构决定于 A.亚基 B.分子中盐键 C.氨基酸组成和顺序 A.亚基 B.分子中盐键 C.氨基酸组成和顺序 D.分子内部疏水键 E.分子中氢键 D.分子内部疏水键 E.分子中氢键

葡萄糖或糖原 磷酸丙糖
甘油三酯 α-磷酸甘油 脂肪酸
脂肪
氨 基 酸 、 糖 及 脂 肪 代 谢 的 联 系
氨酸 酰 丙氨酸 半胱氨酸 丝氨酸
PEP 丙酮酸
苏氨酸 色氨酸
异亮氨酸
亮氨酸
乙酰CoA 乙酰CoA
乙酰乙酰CoA 乙酰乙酰CoA
酮体
色氨酸
酰乙酸 酸
亮氨酸 赖氨酸
氨酸 色氨酸 丙氨酸
C
A C
酸 酰CoA 酰CoA α- 酮 C
7. 维持蛋白质二级结构的主要化学键是 A.疏水键 B.盐键 C.肽键 D.氢键 A.疏水键 B.盐键 C.肽键 D.氢键 二硫键
E.
8.蛋白质的一级结构及高级结构决定于 8.蛋白质的一级结构及高级结构决定于 A.亚基 B.分子中盐键 C.氨基酸组成和顺序 A.亚基 B.分子中盐键 C.氨基酸组成和顺序 D.分子内部疏水键 E.分子中氢键 D.分子内部疏水键 E.分子中氢键 9.蛋白质的二级结构不包括 9.蛋白质的二级结构不包括 β折叠 A. 无规则卷曲 B. β折叠 β转角 D. β转角 E. 双螺旋

生物化学复习提要

生物化学复习提要

生物化学复习提要糖类提要一、定义糖、单糖、寡糖、多糖、结合糖、呋喃糖、吡喃糖、糖苷、手性二、结构1.链式:Glc、Man、Gal、Fru、Rib、dRib2.环式:顺时针编号,D型末端羟甲基向下,α型半缩醛羟基与末端羟甲基在两侧。

3.构象:椅式稳定,β稳定,因其较大基团均为平键。

三、反应与酸:莫里斯试剂、西里万诺夫试剂。

与碱:弱碱互变,强碱分解。

氧化:三种产物。

还原:葡萄糖生成山梨醇。

酯化成苷:有α和β两种糖苷键。

成沙:可根据其形状与熔点鉴定糖。

四、衍生物氨基糖、糖醛酸、糖苷五、寡糖蔗糖、乳糖、麦芽糖和纤维二糖的结构六、多糖淀粉、糖原、纤维素的结构七、计算比旋计算,注意单位。

脂类提要一、概念脂类、类固醇、萜类、多不饱和脂肪酸、必需脂肪酸、皂化值、碘值、酸价、酸败、油脂的硬化、甘油磷脂、鞘氨醇磷脂、神经节苷脂、脑苷脂、乳糜微粒二、脂类的性质与分类单纯脂、复合脂、非皂化脂、衍生脂、结合脂三、单纯脂1.脂肪酸的俗名、系统名和缩写、双键的定位2.油脂的结构和化学性质(1)水解和皂化值 (2)加成反应碘值 (3)酸败3.蜡是由高级脂肪酸和长链油脂族一元醇或固醇构成的酯。

四、磷脂(复合脂)(一)甘油磷脂类(二)鞘氨醇磷脂五、非皂化脂(一)萜类是异戊二烯的衍生物(二)类固醇都含有环戊烷多氢菲结构固醇类:主要有动物固醇、植物固醇、酵母固醇固醇衍生物类:胆汁酸、强心苷和蟾毒、性激素和维生素D(三)前列腺素六、结合脂1.糖脂:它分为中性和酸性两类,分别以脑苷脂和神经节苷脂为代表。

2.脂蛋白血浆脂蛋白根据其密度由小到大分为五种:蛋白质提要一、概念简单蛋白、结合蛋白、基本氨基酸、等电点、甲醛滴定法、Edman降解、一级结构、肽键、构型与构象、二面角、二级结构、超二级结构、结构域、三级结构、四级结构、亚基、别构蛋白、分子病、水化层、双电层、蛋白质的变性与复性、盐析与盐溶二、氨基酸分类、基本氨基酸的结构、分类、名称、符号、化学反应、鉴定、蛋白质的水解三、蛋白质的结构1.一级结构结构特点、测定步骤、常用方法、酶2.二级结构四种结构特点、数据、超二级结构3.三级结构主要靠疏水键维持4.四级结构变构现象5.结构与功能的适应、结构变化对功能的影响、典型蛋白质四、蛋白质的性质五、分子量的测定方法、酸碱性、溶解性、变性、颜色反应酶学一、概念辅因子、全酶、活力、活力单位、比活、转化数、活性中心、同工酶、米氏常数、激活剂、抑制剂、竞争性抑制、非竞争性抑制、反竞争性抑制、别构酶、正协同效应、Hill系数、诱导酶、多酶体系二、酶的命名与分类:6大类三、酶的活力:定义、换算四、酶的动力学及影响因素:米氏方程、米氏常数的意义及作图方法、Bi-Bi反应机制、pH、温度、激活剂、抑制剂、三种可逆抑制的特点五、酶的作用机制:酶与底物的结合、降低活化能的因素六、酶的调节:活性调节(变构调节、共价修饰、酶原激活)和数量调节核酸一、概念核苷酸、核苷、超螺旋、发夹结构、帽子结构、DNA的变性、退火、分子杂交、限制性内切酶二、核苷酸:碱基、核苷、核苷酸的结构、命名、核苷酸的功能三、DNA:DNA一级结构与书写、二级结构种类、B-DNA结构要点、超螺旋与其功能四、RNA:与DNA的区别、分类、tRNA的二、三级结构、mRNA的结构、rRNA的种类与核糖体五、性质:紫外吸收用途、变性与杂交、密度大小维生素一、概念维生素、抗坏血酸二、分类、特点三、脂溶性维生素:A、D、E、K,名称、功能、缺乏后果四、水溶性维生素:B族、V-C,名称、功能、与辅酶关系、缺乏后果激素一、概念激素、内分泌、激素受体、细胞内受体、第二信使、级联放大二、分类与特点三、作用机制:四类,第二信使的产生与功能四、重要激素:肾上腺素(五步级联放大)、与血糖有关的四种激素(肾上腺素、胰高血糖素、肾上腺皮质激素、胰岛素)对血糖的调节、其他各类激素的代表抗生素一、概念:抗生素、耐药性、β-内酰胺、半合成抗生素二、作用机制:5种,各种的具体机制及代表三、重要抗生素:β-内酰胺类抗生素机制及用途、其他各类的代表。

生物化学重点复习点

生物化学重点复习点

●绪论●生物化学定义研究任务目的●第一章糖第一节单糖一、葡萄糖的分子结构构象:指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的空间排布。

一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。

构型:指一个分子由于其中各原子特有的固定的空间排列,而使该分子所具有的特定的立体化学形式。

构型改变要求共价键的断裂和重新形成。

不对称碳原子:连接四个不同原子或基团的碳原子。

镜像对映体:旋光异构现象和旋光度:异头物:二、单糖的分类糖:含多羟基的醛或酮的化合物醛糖:含醛基酮糖:含酮基三、单糖的物理性质和化学性质『一』物理性质『二』化学性质四、重要的单糖第二节寡糖一、双糖1、麦芽糖:两个葡萄糖以α(1-4)糖苷键缩合2、蔗糖:由α-D-葡萄糖和β-D -果糖各一分子以α,β(1-2)糖苷键型缩合。

3、乳糖:由α-D-葡萄糖和β-D -半乳糖各一分子以β(1-4)糖苷键型缩合。

第三节多糖1、淀粉支链淀粉直链淀粉2、糖原3、纤维素●第二章脂类定义生物功能第一节脂酰甘油类定义一、脂肪酸二、甘油三酯的类型三、甘油三酯的理化性质皂化和皂化值酸败和酸值卤化和碘值●第三章蛋白质第一节蛋白质通论一、蛋白质的化学组成:平均含氮量16%,是凯氏定氮法的基础平均分子量110第二节蛋白质的基本结构单位-氨基酸一、氨基酸的分类蛋白质氨基酸:20种α氨基酸:脯氨酸为亚氨基酸,其余都是。

旋光性:除甘氨酸外,都有旋光性各类氨基酸:二、氨基酸的酸碱性质广义酸碱:酸,质子供体。

碱,质子受体。

等电点:PI=1/2(PK1+PK2)在等电点以上的任何PH,氨基酸带净负电荷,并由此在电场中将向正级移动,在低于等电点的任一PH,氨基酸将带净正电荷,在电场中将向负极移动。

三、氨基酸的化学反应:Sanger反应Edman降解印三酮反应四、氨基酸的分析分离离子交换层析第三节蛋白质的共价结构(一级结构)一、肽和肽键的结构肽单位肽键共价主链肽平面同源蛋白质二、N末端和C末端氨基酸残基的测定Sanger反应DNS(丹蟥酰氯法)Edman降解第四节蛋白质的二级结构和纤维状蛋白质二级结构:多肽链中有规则重复的构象。

生物化学复习重点

生物化学复习重点

⽣物化学复习重点⽣物化学复习重点第⼀章蛋⽩质1.蛋⽩质的元素组成:C、H、O、N、S及其他微量元素,蛋⽩质含氮量:16%公式:每克样品含氮量×6.25×100=100克样品蛋⽩质含量(克%)2.氨基酸通式特点:α-L -氨基酸,只有⽢氨酸没有⼿性(旋光性),脯氨酸为亚氨基酸。

3.氨基酸分类:(1)、酸性氨基酸:⼀氨基⼆羧基氨基酸,有天冬氨酸、⾕氨酸,带负电荷(2)、碱性氨基酸:⼆氨基⼀羧基氨基酸,有赖氨酸、精氨酸、组氨酸,带正电荷(3)、中性氨基酸:⼀氨基⼀羧基氨基酸,有⽢氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、⾊氨酸、酪氨酸、脯氨酸、天冬酰胺、⾕氨酰胺、丝氨酸、苏氨酸。

不带电荷。

(4)含S氨基酸:甲硫氨酸、半胱氨酸(5)含羟基氨基酸:丝氨酸、苏氨酸(6)芳⾹族氨基酸:苯丙氨酸、⾊氨酸、酪氨酸(7)含酰胺基氨基酸:天冬酰胺、⾕氨酰胺4.氨基酸的等电点PI:氨基酸所带正负电荷相等时的溶液pH。

pI=(pK1,+pK2,)/25.氨基酸紫外吸收:280nm,苯丙氨酸、⾊氨酸、酪氨酸有紫外吸收6.蛋⽩质的⼀级结构(Primary structure):它是指蛋⽩质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。

肽键:⼀个氨基酸的a-COOH 和相邻的另⼀个氨基酸的a-NH2脱⽔形成共价键。

7.蛋⽩质⼆级结构的概念:多肽链在⼀级结构的基础上,按照⼀定的⽅式有规律的旋转或折叠形成的空间构象。

其实质是多肽链在空间的排列⽅式蛋⽩质⼆级结构主要类型有:a-螺旋、β-折叠、β-转⾓维持⼆级结构的作⽤⼒:氢键a-螺旋(a-Helix)⼜称为3.613螺旋,Φ= -57。

,Ψ= -47。

结构要点:(1)、多个肽键平⾯通过α-碳原⼦旋转,主链绕⼀条固定轴形成右⼿螺旋。

(2)、每3.6个氨基酸残基上升⼀圈,相当于0.54nm。

(3)、相邻两圈螺旋之间借肽键中C=O和N-H形成许多链内氢健,即每⼀个氨基酸残基中的NH和前⾯相隔三个残基的C=O 之间形成氢键,这是稳定α-螺旋的主要键。

生物化学考试复习要点总结

生物化学考试复习要点总结

一、蛋白质的结构与功能1.蛋白质的含氮量平均为16%.2.氨基酸是蛋白质的基本组成单位,除甘氨酸外属L-α-氨基酸。

3.酸性氨基酸:天冬氨酸、谷氨酸;碱性氨基酸:赖氨酸、精氨酸、组氨酸。

4.半胱氨酸巯基是GSH的主要功能基团。

5.一级结构的主要化学键是肽键。

6.维系蛋白质二级结构的因素是氢键7.并不是所有的蛋白质都有四级结构。

8.溶液pH>pI时蛋白质带负电,溶液pH<pl时蛋白质带正电。

9.蛋白质变性的实质是空间结构的改变,并不涉及一级结构的改变。

二、核酸的结构和功能1. RNA和DNA水解后的产物。

2.核苷酸是核酸的基本单位。

3.核酸一级结构的化学键是3′,5′-磷酸二酯键。

4. DNA的二级结构的特点。

主要化学键为氢键。

碱基互补配对原则。

A与T, c 与G.5. Tm为熔点,与碱基组成有关6. tRNA二级结构为三叶草型、三级结构为倒L型。

7.ATP是体内能量的直接供应者。

cAMP、cGMP为细胞间信息传递的第二信使。

三酶1.酶蛋白决定酶特异性,辅助因子决定反应的种类与性质。

2.酶有三种特异性:绝对特异性、相对特异性、立体异构特异性酶活性中心概念:必须基因集中存在,并构成一定的空间结构,直接参与酶促反应的区域叫酶的活性中心3.B族维生素与辅酶对应关系。

4. Km含义;Km值一般由一个数乘以测量单位所表示的特定量的大小. 对于不能由一个数乘以测量单位所表示的量,可参照约定参考标尺,或参照测量程序,或两者都参照的方式表示。

5.竞争性抑制特点。

某些与酶作用底物相识的物质,能与底物分子共同竞争酶的活性中心。

酶与这种物质结合后,就不能再与底物相结合,这种作用称酶的竞争性抑制作用。

抑制是可逆的,抑制作用的大小与抑制剂和底物之间的相对浓度有关。

四糖代谢1.糖酵解限速酶:己糖激酶,磷酸果糖激酶,丙酮酸激酶;净生成ATP:2分子ATP;产物:乳酸2.糖原合成的关键酶是糖原合成酶。

糖原分解的关键酶是磷酸化酶。

生物化学重点知识

生物化学重点知识

生物化学是研究生物体内生物分子的结构、功能和代谢过程的学科。

以下是一些生物化学中的重点知识:
1. 生物大分子:生物化学研究的主要对象包括碳水化合物、脂类、蛋白质和核酸等生物大分子。

它们在生物体内发挥着重要的结构和功能作用。

2. 酶:酶是生物体内催化反应的蛋白质,可以降低活化能,加速生物化学反应的进行。

酶在生物体内参与代谢、信号传导、免疫等多个生理过程。

3. 代谢途径:生物体内的代谢途径包括糖酵解、三羧酸循环、氧化磷酸化、脂肪酸代谢等。

这些途径将营养物质转化为能量和生物体内所需的物质。

4. DNA和RNA:DNA是遗传信息的载体,RNA参与基因表达调控。

DNA复制、转录和翻译是细胞内重要的生物化学过程。

5. 蛋白质结构与功能:蛋白质的结构决定了其功能。

蛋白质通过折叠成特定的空间结构来实现其生物学功能,如酶活性、结构支持等。

6. 细胞膜结构与运输:细胞膜是细胞的重要组成部分,具有选择性
通透性。

细胞膜上的载体蛋白质参与物质的跨膜运输。

7. 信号转导:细胞内外的信号转导是生物体内重要的调控机制,包括激素信号、神经递质信号等的传递与响应。

以上是生物化学中的一些重点知识,深入了解这些知识可以帮助理解生物体内生命活动的分子基础和机制。

生物化学在解释疾病发生机制、药物作用以及生物技术等领域有着重要的应用。

医学生物化学考试重点复习内容

医学生物化学考试重点复习内容

医学生物化学考试重点复习内容医学生物化学是医学专业中的一门重要课程,它研究生物体内生物化学过程的基本原理和分子机制。

在医学生物化学考试中,学生需要掌握一系列的重点内容,下面将从分子生物学、代谢途径和生化分析等方面进行论述。

一、分子生物学分子生物学是医学生物化学的基础,它研究生物体内的基因表达、蛋白质合成和细胞信号传导等过程。

在考试中,学生需要掌握DNA的结构和复制、RNA的转录和翻译、基因调控以及蛋白质的结构和功能等内容。

1. DNA的结构和复制:DNA是生物体内存储遗传信息的分子,它由核苷酸组成。

学生需要了解DNA的双螺旋结构、碱基配对规律以及DNA的复制过程,包括DNA的解旋、复制酶的作用和DNA链的合成等。

2. RNA的转录和翻译:RNA是DNA的转录产物,它在细胞中起着重要的信息传递和蛋白质合成的作用。

学生需要了解RNA的结构和功能,以及RNA的转录过程和翻译过程中的密码子和氨基酸对应关系。

3. 基因调控:基因调控是细胞内基因表达的调节过程,它包括转录因子的结合和启动子的活化等。

学生需要了解基因调控的机制,包括DNA甲基化、组蛋白修饰和非编码RNA的调控等。

4. 蛋白质的结构和功能:蛋白质是生物体内功能最为复杂和多样的分子,它们具有结构和功能的密切关联。

学生需要了解蛋白质的结构层次、氨基酸序列和蛋白质的功能调控机制等。

二、代谢途径代谢途径是医学生物化学的核心内容,它研究生物体内物质的合成、分解和能量的转化。

在考试中,学生需要掌握糖代谢、脂代谢和蛋白质代谢等重点内容。

1. 糖代谢:糖代谢是维持生命活动所必需的能量供应途径,它包括糖原的合成和分解、糖酵解和糖异生等过程。

学生需要了解糖代谢途径中的关键酶和调控机制,以及糖尿病等疾病的发生机制。

2. 脂代谢:脂代谢是维持细胞结构和功能的重要途径,它包括脂肪酸的合成和分解、胆固醇代谢和脂蛋白转运等过程。

学生需要了解脂代谢途径中的关键酶和调控机制,以及高血脂症等疾病的发生机制。

基础生物化学复习知识要点

基础生物化学复习知识要点

基础生物化学重要知识要点(一)名词解释1.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

2.氢键:指负电性很强的氧原子或氮原子与N-H或O-H的氢原子间的相互吸引力。

3.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。

4.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则的、在空间上能辨认的二级结构组合体。

5.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。

6.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。

7.蛋白质变性:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。

蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。

8.蛋白质复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。

9.肽平面:组成肽键的四个原子和与之相边的α-碳原子都处于同平面内,此刚性结构的平面叫肽平面或酰胺平面。

10.反密码子(anticodon):在tRNA链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA链上的密码子。

反密码子与密码子的方向相反。

11.核酸的变性、复性(denaturation、renaturation):当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。

在适宜的温度下,分散开的两条DNA链可以完全重新结合成和原来一样的双股螺旋。

这个DNA螺旋的重组过程称为“复性”。

12.DNA退火(annealing):当将双股链呈分散状态的DNA溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。

13.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。

高级生物化学复习资料

高级生物化学复习资料

高级生物化学复习资料生物化学作为生命科学领域的重要基础学科,对于深入理解生命现象和生物过程具有至关重要的作用。

高级生物化学则在基础生物化学的基础上,进一步拓展和深化了相关知识,涵盖了更多复杂和前沿的内容。

以下是为您精心整理的高级生物化学复习资料,希望能对您的学习和复习有所帮助。

一、蛋白质结构与功能蛋白质是生命活动的主要承担者,其结构与功能的关系是高级生物化学中的重点内容。

蛋白质的一级结构是指氨基酸的线性排列顺序。

通过肽键连接的氨基酸序列决定了蛋白质的基本性质和潜在功能。

二级结构包括α螺旋、β折叠、β转角和无规则卷曲等。

α螺旋是常见的结构,每个氨基酸残基沿中心轴旋转 100°,上升 015nm,每圈螺旋包含 36 个氨基酸残基。

β折叠则是通过链间的氢键形成片层结构。

三级结构是指整条多肽链的三维构象,主要由疏水相互作用、氢键、离子键和范德华力等维持其稳定。

例如,肌红蛋白就是具有典型三级结构的蛋白质。

四级结构是指多个亚基聚合形成的蛋白质复合物。

血红蛋白就是由四个亚基组成的具有四级结构的蛋白质。

蛋白质的功能与其结构密切相关。

例如,酶的催化活性依赖于其活性中心的特定结构;抗体通过其可变区的结构与抗原特异性结合。

二、核酸的结构与功能核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA 是双螺旋结构,两条链反向平行,碱基之间通过氢键互补配对。

A 与 T 配对,G 与 C 配对。

这种碱基互补配对原则是 DNA 复制和遗传信息传递的基础。

RNA 有多种类型,如信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)等。

mRNA 携带遗传信息,指导蛋白质的合成;tRNA 则在蛋白质合成过程中转运氨基酸;rRNA 是核糖体的组成成分。

核酸在生命活动中具有重要的功能,如遗传信息的储存、传递和表达。

三、酶学酶是生物体内具有催化作用的蛋白质或 RNA。

酶的催化特点包括高效性、专一性、可调节性和不稳定性。

生物化学复习题

生物化学复习题

生物化学复习题生物化学是研究生物体内化学过程和物质的科学,它涵盖了从分子水平到细胞水平的广泛领域。

以下是一些生物化学的复习要点:1. 蛋白质结构与功能- 氨基酸是蛋白质的基本单位,它们通过肽键连接形成多肽链。

- 蛋白质具有一级结构(氨基酸序列)、二级结构(α-螺旋、β-折叠)、三级结构(多肽链的空间排列)和四级结构(多肽链的聚集)。

2. 酶的作用机制- 酶是生物催化剂,能够加速化学反应。

- 酶作用的机制包括底物结合、过渡态稳定和产物释放。

3. 核酸的结构与功能- DNA和RNA是核酸的两种主要形式,它们由核苷酸组成。

- DNA主要负责遗传信息的存储和传递,而RNA在蛋白质合成中发挥作用。

4. 代谢途径- 代谢途径包括合成代谢(合成生物分子)和分解代谢(分解生物分子)。

- 糖酵解、三羧酸循环和氧化磷酸化是细胞能量代谢的关键途径。

5. 细胞信号传导- 细胞信号传导是细胞内外信息传递的过程,涉及多种信号分子和受体。

- 信号传导途径包括G蛋白偶联受体、离子通道受体和酶联受体等。

6. 遗传信息的表达- 遗传信息的表达包括转录和翻译两个主要步骤。

- 转录是DNA信息转录成mRNA的过程,而翻译是mRNA翻译成蛋白质的过程。

7. 细胞呼吸- 细胞呼吸是细胞产生能量的过程,包括有氧呼吸和无氧呼吸。

- 有氧呼吸通过电子传递链产生大量的ATP,而无氧呼吸则产生较少的ATP。

8. 脂质代谢- 脂质包括脂肪、磷脂和固醇等,它们在细胞膜结构和能量储存中起重要作用。

- 脂质代谢涉及脂肪酸的合成、分解和转化。

9. 氨基酸代谢- 氨基酸是蛋白质的构建模块,它们可以通过转氨作用和脱氨作用进行代谢。

- 氨基酸代谢对于维持细胞内氮平衡和能量供应至关重要。

10. 维生素和辅酶- 维生素是必需的微量有机化合物,它们作为辅酶或辅基参与许多代谢反应。

- 辅酶是酶的辅助分子,它们帮助酶催化特定的化学反应。

通过这些复习要点,可以对生物化学的基本概念和原理有一个全面的了解。

生物化学复习重点自整

生物化学复习重点自整

⽣物化学复习重点⾃整1.⽣物化学的概念P1是研究⽣物体的化学组成和⽣命过程中的化学变化规律的⼀门科学。

具体来讲,它是从分⼦⽔平来研究⽣物体(包括⼈类、动物、植物、微⽣物)内基本物质的化学组成、结构及在⽣命活动中这些物质所进⾏的化学变化(即代谢反应)的规律及其与⽣理功能的关系的⼀门科学,是⼀门⽣物学与化学相结合的基础学科。

2. ⽣物化学研究的基本内容P1静态⽣化:研究⽣物体内物质的化学组成、结构、性质、功能及结构与功能的关系。

发现和阐明构成⽣命物体的分⼦基础——⽣物分⼦的化学组成、结构和性质。

⽣物分⼦的结构、功能与⽣命现象的关系。

动态⽣化:研究⽣物体内物质代谢(新陈代谢)、能量转变及其调控机理⽣物分⼦在⽣物体中的相互作⽤及其变化规律。

蛋⽩质的化学3.组成蛋⽩质的元素P62主要有C(50-55)、H(6-8)、O(19-24)、N(13-19)和S。

有些蛋⽩质含有少量磷或⾦属元素铁、铜、锌、锰、钴、钼,个别蛋⽩质还含有碘。

4.凯式定氮法及蛋⽩质含量计算凯⽒定氮法是测定化合物或混合物中总氮量的⼀种⽅法。

即在有催化剂的条件下,⽤浓硫酸消化样品将有机氮都转变成⽆机铵盐,然后在碱性条件下将铵盐转化为氨,随⽔蒸⽓馏出并为过量的酸液吸收,再以标准碱滴定,就可计算出样品中的氮量。

由于蛋⽩质含氮量⽐较恒定,可由其氮量计算蛋⽩质含量,故此法是经典的蛋⽩质定量⽅法。

各种蛋⽩质的含氮量很接近,平均为16%。

蛋⽩质的⼤致含量:100克样品中蛋⽩质的含量( g % )= 每克样品含氮克数×6.25×100即蛋⽩质的含量= 蛋⽩质含氮量× 6.255.氨基酸结构通式P63存在⾃然界中的氨基酸有300余种,但组成⼈体蛋⽩质的氨基酸仅有20种,且均属L-氨基酸(⽢氨酸除外)-氨基酸:各种氨基酸的区别在于侧链R基的不同。

20种基本氨基酸按R的极性可分为⾮极性氨基酸、极性性氨基酸、酸性氨基酸和碱性氨基酸按R基极性分两类:极性AA:11种亲⽔性丝、苏、酪⽢半光⾮极性AA:9种疏⽔性按⽔溶性酸碱性分为三类:1、中性AA(有极性与⾮极性15种):2、酸性AA(2种):天冬氨酸、⾕氨酸3、碱性AA(3种):组、赖、精⾕氨酸:⽢氨酸:丝氨酸:半胱氨酸组氨酸6.氨基酸的化学性质P65★两性解离: 等电点:在某⼀pH环境中,氨基酸解离成阳性离⼦及阴性离⼦的趋势相等,所带净电荷为零,在电场中不泳动。

《生物化学》知识点总结

《生物化学》知识点总结

生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从份子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学。

其研究内容包括①生物体的化学组成,生物份子的结构、性质及功能②生物份子的分解与合成,反应过程中的能量变化③生物信息份子的合成及其调控,即遗传信息的贮存、传递和表达。

生物化学主要从份子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题(1)生物化学的发展史分为哪几个阶段?生物化学的发展主要包括三个阶段:①静态生物化学阶段 (20 世纪之前):是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成份以及生物体的排泄物和分泌物②动态生物化学阶段(20 世纪初至20 世纪中叶):是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段(20 世纪中叶以后):这一阶段的主要研究工作是探讨各种生物大份子的结构与其功能之间的关系。

(2)组成生物体的元素有多少种?第一类元素和第二类元素各包含哪些元素?组成生物体的元素共28 种第一类元素包括C、H、O、N 四中元素,是组成生命体的最基本元素。

第二类元素包括S 、P 、Cl、Ca、Na、Mg,加之C、H、O、N 是组成生命体的基本元素。

第二章蛋白质1. 名词解释(1)蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高份子含氮化合物(2)氨基酸等电点:当氨基酸溶液在某一定pH 时,是某特定氨基酸份子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极挪移,此时溶液的pH 即为该氨基酸的等电点(3) 蛋白质等电点:当蛋白质溶液处于某一pH 时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH 称为蛋白质的等电点(4) N 端与 C 端:N 端(也称N 末端)指多肽链中含有游离α-氨基的一端, C 端(也称C 末端)指多肽链中含有α-羧基的一端(5)肽与肽键:肽键是由一个氨基酸的α -羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽(6)氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残存部份称为氨基酸残基(7)肽单元(肽单位):多肽链中从一个α -碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH 间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转(8)结构域:多肽链的二级或者超二级结构基础上进一步绕蜿蜒叠而形成的相对独立的三维实体称为结构域。

生化复习重点

生化复习重点

一、名词解释生物化学复习材料1. 血糖:通过各种途径进入血液的葡萄糖称为血糖。

2. 糖原合成与分解:由单糖合成糖原的过程称为糖原合成,糖原分解是指糖原分解成葡萄糖的过程。

3. 糖异生:由非糖物质合成葡萄糖的过程。

4. 糖酵解:在供氧不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸(同时释放少量能量合成ATP)的过程。

5. 三羧酸循环:在线粒体内,乙酰CoA与草酰乙酸缩合生成柠檬酸,柠檬酸在经过一系列酶促反应之后又生成草酰乙酸,形成一个反应循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环。

6. 有氧氧化:在供养充足时,葡萄糖在细胞液中分解生成的丙酮酸进入线粒体,彻底氧化成CO2和H2O,并释放大量能量,称为有氧氧化途径。

7. 血脂:血浆中脂类的总称。

主要包括甘油三酯、磷脂、胆固醇和游离脂肪酸。

8. 血浆脂蛋白:是脂类在血浆中的存在形式和转运形式。

(一类由脂肪、磷脂、胆固醇及其酯与不同载脂蛋白按不同比例组成的,便于通过血液运输的复合体,包括CM、VLDL、LDL 和HDL。

)9. 脂肪动员:脂肪细胞内的甘油三酯被脂肪酶水解生成甘油和脂肪酸,释放入血,供给全身各组织氧化利用的过程。

10. 酮体:包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。

11. 必需脂肪酸:亚油酸、α亚麻酸和花生四烯酸是多不饱和脂肪酸,是维持人和动物正常生命活动所必需的脂肪酸,但哺乳动物体内不能合成或合成量不足,必须从食物中摄取,所以称为必需脂肪酸。

12. 必需氨基酸:8种体内需要而自身又不能合成、必须由食物供给的氨基酸称为必需氨基酸。

13. 食物蛋白质的互补作用:将不同种类营养价值较低的蛋白质混合食用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值,称为蛋白质的互补作用。

14. 转氨基作用:是指由氨基转移酶催化,将氨基酸的α-氨基转移到一个α-酮酸的羧基位置上,生成相应的α-酮酸和一个新的α-氨基酸。

生物化学期末复习重点

生物化学期末复习重点

生物化学期末复习重点一.名词解释1.脱氧核苷酸:是脱氧核糖核酸(DNA)的基本单位。

2.增色效应:当DNA从双螺旋结构变为单链的无规则卷曲状态时,它在260nm处的吸收便增加,这叫增色效应。

3.DNA一级结构:是指将脱氧核苷酸按照有序的顺序排列起来而形成的原始脱氧核苷酸链。

4.DNA复性:在适宜的温度下.分散开的两条DMA链可以完全重新结合成和原来一样的双股螺旋。

这个DNA螺旋的重组过程称为复性。

5.B-DNA:DNA钠盐在较高温度下的纤维结构,是B型双螺旋,称为B-DNA结构。

6.核酸分子杂交:按照互补碱基配对而使不完全互朴的两条多核苷酸相互结合的过程称为分子杂交。

7.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。

8.蛋白质等电点:存在一个PH使蛋白质的表面净电荷为零即等电点。

9.蛋白质三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。

10.变构效应:是寡聚蛋白与配基结合改变蛋白质构象,导致蛋白质生物活性改变的现象。

11.蛋白质变性:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,称为蛋白质的变性。

12.酶:是由活细胞产生的在体内外都具有催化作用的一类生物催化剂。

13.酶活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心。

14.酶原激活:使酶原转变为有活性酶的作用称为酶原激活。

15.酶活力单位:是指在特定条件(25c其它为最适条件)下,在1分钟内能转化1微摩尔底物的酶量,或是转化底物中1微摩尔的有关基团的酶量。

16.别构酶:具有别构效应的酶称为别构酶。

17.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶。

18.固定化酶:是指在一定的空间范围内起催化作用,并能反复和连续使用的酶。

19.EMP:指糖酵解,是细胞将葡萄糖转化为丙酮酸的代谢过程。

生物化学期末复习重点

生物化学期末复习重点

第1章绪论1、生物化学:主要是从分子水平研究生物体的化学组成及其在生命活动过程中化学变化的一门科学,又称生命的化学2、生物化学主要的研究对象:①生物体的化学组成;②物质与能量代谢及其调节第2章糖类化学1、糖:糖是一类多羟基醛或多羟基酮,或通过水解可以产生多羟基醛或酮的物质2、糖的分类:1)单糖:单糖是最简单的糖,只含一个多羟基醛或多羟基酮单位,分为醛糖和酮糖2)寡糖:又称低聚糖,是由几个(一般为2~10个)3)多糖:多糖由10个以上糖单位组成3、手性碳原子(不对称碳原子):连接有四个原子或原子团的碳原子,在空间呈不对称排布4、对于含有多个手性碳原子的糖分子,其相对构型是根据其分子结构中离羟基最远的手性碳原子连接的-OH来确定的5、葡萄糖分子的特点:1)四个手性碳原子(2、3、4、5);2)距羰基最远的手性碳原子C5上的-OH 在右侧,为D-葡萄糖3)天然葡萄糖为D-(+)-葡萄糖6、单糖的主要化学性质:①成苷反应;②成脂反应;③氧化反应;④还原反应认识糖苷键的位置7、糖苷结构中没有半缩醛羟基,不能转变为开链结构,所以糖苷没有还原性8、氧化反应:托伦试剂银镜班氏试剂砖红色9、凡是能被碱性弱氧化剂氧化的糖,都称为还原糖。

单糖都是还原糖10、二糖:1)麦芽糖:由2分子D-葡萄糖,具有还原性2)蔗糖:由1分子D-葡萄糖和1分子D-果糖以α-1,2-β-糖苷键相连而成,无还原性3)乳糖:由1分子D-半乳糖和1分子D-葡糖糖以β-1,4-糖苷键相连而成,具有还原性11、多糖:(一)同多糖1)淀粉—淀粉是直链淀粉和支链淀粉的混合物,由-D-葡萄糖组成①直链淀粉由D-葡萄糖以α-1,4-糖苷键相连而成线性分子,支链淀粉由D-葡萄糖以α-1,4-糖苷键接成短链,α-1,6-糖苷键相连形成分支②淀粉的主要性质:A.淀粉遇碘呈蓝色B.淀粉在酸或酶的作用下,形成糊精(紫~、红~、无色~2)糖原—由-D-葡萄糖组成,结构与支链淀粉相似,分支比支链淀粉更短、更密,遇碘呈紫红色或红褐色含有α-1,4-糖苷键和α-1,6-糖苷键3)其他多糖:①纤维素:含有β-1,4-糖苷键(二)杂多糖第3章脂质化学1、脂肪是由甘油与脂肪酸形成的三酰甘油(TAG),又称甘油三酯脂类包括:类脂:磷脂、糖脂、类固醇甘油三酯2、脂肪酸的结构:1)大多数天然脂肪酸是含偶数碳原子的直链一元酸2)碳原子数目一般在4~26之间,尤以C16和C18为最多3)结构通式:R-COOH3、根据是否含有碳-碳双键可分为饱和与不饱和脂肪酸4、必需脂肪酸:维持人和动物正常生命活动所必需的,但哺乳动物体内不能合成或合成量不足,需由食物提供的脂肪酸,包括亚油酸,亚麻酸和花生四烯酸5、皂化值:水解1g脂肪所消耗氢氧化钾的毫克数称为皂化值,皂化值越大表示脂肪中的脂肪酸的平均分子量越小6、碘值(或碘价):通常将100g脂肪通过加成反应所消耗碘的克数称为碘值(或碘价),碘值越大表示脂肪中的脂肪酸的不饱和程度越高7、酸败:脂肪长期暴露在空气中,分子中的碳碳双键和酯键发生氧化水解等反应,产生难闻的气味,这种现象称为酸败8、磷脂:1)甘油磷脂—磷脂酸及其衍生物;既含有亲水基又含有疏水基①磷脂酰胆碱:俗称卵磷脂(PC),是各种膜性结构的主要成分,具有协助脂类运输的作用,可用于防治脂肪肝②磷脂酰乙醇胺:俗称脑磷脂(PE),构成生物膜,参与凝血③磷脂酰肌醇(PI)2)鞘磷脂(略)9、类固醇:类固醇是胆固醇及其衍生物体内重要的类固醇:胆固醇、胆固醇酯、维生素D、胆汁酸和类固醇激素等1)胆固醇及其酯:既是其它类固醇化合物的合成原料,又是细胞膜的重要成分两种存在形式:胆固醇和胆固醇酯2)胆汁酸:是人和动物胆汁的主要成分,分为游离型胆汁酸、结合型胆汁酸3)类固醇激素:①肾上腺皮质激素:是由肾上腺皮质分泌的一类激素;皮质醇和皮质酮具有很强的调节糖代谢的作用,故称为糖皮质激素;醛固酮对盐和水的平衡具有较强的调节作用,被称为盐皮质激素②性激素:分为雄激素、雌激素和孕激素。

生物化学复习重点

生物化学复习重点

生物化学复习重点第二章糖类化学一、名词解释糖:糖俗称碳水化合物,是指多羟基醛或多羟基酮及其衍生物或多聚物。

补充知识:糖主要可分为以下四大类:① 单糖:葡萄糖、果糖② 寡糖:二糖、三糖等③ 多糖:淀粉、糖原、纤维素④ 结合糖:糖与非糖物质的结合物糖脂:是糖与脂类的结合物。

糖蛋白:是寡糖链与蛋白质的结合物,以蛋白质为主,其性质更接近蛋白质。

蛋白聚糖:又称为粘蛋白、粘多糖, 是由糖胺聚糖与多肽链共价相连构成的分子,其性质与多糖更为接近。

第三章蛋白质一、名词解释蛋白质一级结构:多肽链中氨基酸的排列顺序。

主要化学键:肽键★ ;二硫键也属于一级结构的研究范畴。

肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键称为肽键,新生成的物质称为肽。

亚基:具有四级结构的蛋白质中,每一条具有独立三级结构的多肽链为亚基。

亚基之间的结合力主要是氢键和离子键。

必需氨基酸:不能在体内合成,必需由食物提供的氨基酸称为必需氨基酸,包括赖、色、苯丙、甲硫(蛋)、苏、亮、异亮和缬氨酸等8 种。

(记忆口诀:假设来写一本书)氨基酸的等电点:在一定pH 值的溶液中,氨基酸分子所带正、负电荷相等,此时溶液的pH值称为氨基酸的等电点(pI)。

通过改变溶液的pH 可使氨基酸分子中弱碱性或弱酸性基团的解离状态发生改变(这种改变是可逆的)。

蛋白质变性:在某些物理和化学因素作用下,蛋白质分子的特定空间构象被破坏,从而导致其理化性质改变和生物活性的丧失的现象。

*变性的本质:非共价键和二硫键被破坏,蛋白质的一级结构不发生改变。

*变性的理化因素---如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等。

*蛋白质变性后的性质改变:溶解度降低、粘度增加、结晶能力消失、生物活性丧失及易受蛋白酶水解。

*应用举例:1、应用变性因素进行消毒与灭菌。

2、预防蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。

蛋白质的复性---蛋白质变性的可逆性*蛋白质变性后,绝大多数情况下是不能复性的;*如变性程度浅,蛋白质分子的构象未被严重破坏;或者蛋白质具有特殊的分子结构,并经特殊处理去除变性因素后,则可以复性。

生物化学复习资料(全)

生物化学复习资料(全)

生物化学复习资料第一章蛋白质化学第一节蛋白质的基本结构单位——氨基酸凯氏定氮法:每克样品蛋白质含量(g)=每克样品中含氮量x 6.25氨基酸结构通式:蛋白质是由许多不同的α-氨基酸按一定的序列通过肽键缩合而成的具有生物学功能的生物大分子。

氨基酸分类:(1)脂肪族基团:丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甘氨酸、脯氨酸(2)芳香族基团:苯丙氨酸、色氨酸、酪氨酸(3)含硫基团:蛋氨酸(甲硫氨酸)、半胱氨酸(4)含醇基基团:丝氨酸、苏氨酸(5)碱性基团:赖氨酸、精氨酸、组氨酸(6)酸性基团:天冬氨酸、谷氨酸(7)含酰胺基团:天冬酰胺、谷氨酰胺必需氨基酸(8种):人体必不可少,而机体内又不能合成,必需从食物中补充的氨基酸。

蛋氨酸(甲硫氨酸)、缬氨酸、赖氨酸、异亮氨酸、苯丙氨酸、亮氨酸、色氨酸、苏氨酸氨基酸的两性性质:氨基酸可接受质子而形成NH3+,具有碱性;羧基可释放质子而解离成COO-,具有酸性。

这就是氨基酸的两性性质。

氨基酸等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH值。

蛋白质中的色氨酸和酪氨酸两种氨基酸具有紫外吸收特性,在波长280nm处有最大吸收值。

镰刀形细胞贫血:血红蛋白β链第六位上的Glu→Val替换。

第二节肽肽键:一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水综合而形成的酰胺键叫肽键。

肽键是蛋白质分子中氨基酸之间的主要连接方式,它是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合脱水而形成的酰胺键。

少于10个氨基酸的肽称为寡肽,由10个以上氨基酸形成的肽叫多肽。

谷胱甘肽(GSH)是一种存在于动植物和微生物细胞中的重要三肽,含有一个活泼的巯基。

参与细胞内的氧化还原作用,是一种抗氧化剂,对许多酶具有保护作用。

化学性质:(1)茚三酮反应:生产蓝紫色物质(2)桑格反应第三节蛋白质的分子结构蛋白质的一级结构:是指氨基酸在肽链中的排列顺序。

蛋白质的二级结构:是指蛋白质分子中多肽链本身的折叠方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学复习资料1天然不饱和脂肪酸的碳-碳双键都是顺式构型。

2.亚油酸,α亚麻酸和花生四烯酸是维持人体和动物正常生命活动所必需的脂肪酸,但哺乳动物体内不能合成或合成量不足,必须从食物中摄取,所以称为必须脂肪酸。

3氨基酸是蛋白质的结构单位,自然界中的氨基酸有300多种,但用来合成蛋白质的氨基酸只有20种,这20种氨基酸称为标准氨基酸。

4肽键:在蛋白质分子内,一个氨基酸的α-羧基与另一个氨基酸的α-氨基缩合形成的化学键称为肽键。

5肽:氨基酸通过肽键连接构成的分子称为肽。

6蛋白质的一级结构:蛋白质分子内的氨基酸的排列顺序称为蛋白质的一级结构,包括二硫键的位置。

7蛋白质的二级结构:是指多肽链主链的局部构象,不涉及侧链的空间排布。

8蛋白质的二级结构的四种类型:α螺旋,β折叠,β转角,无规卷曲。

9.蛋白质一级结构与其功能的关系:蛋白质的一级结构决定其构象,进而决定其生理功能。

改变蛋白质的一级结构可以直接影响其功能。

每一种蛋白质分子都有自己特定的氨基酸组成和排列顺序即一级结构,蛋白质的一级结构包含了指导其形成天然构象所需的全部信息。

10蛋白质的一般性质:紫外线吸收特征;11两性解离与等电点:蛋白质是两性电解质,因为它们有肽键主链C端的羧基、谷氨酸的γ-羧基和天冬氨酸的β-羧基,可以给出H+而带负电荷;也有肽链主链N端的氨基、赖氨酸的ε-氨基、精氨酸的胍基和组氨酸的咪唑基,可以结合成H﹢而带正电荷。

这些基团的解离状态决定蛋白质的带电荷状态,而解离状态受溶液的pH值影响。

在某一pH值下,蛋白质的静电荷为零,则该pH值称为蛋白质的等电点(pI)。

如果溶液pH<pI,则蛋白质带正电荷;如果溶液pH>pI,则蛋白质带负电荷。

人体许多蛋白质的等电点在5.0左右,低于体液的pH值,所以带负电荷。

12蛋白质溶液是胶体溶液:蛋白质分子的直径已经达到胶体颗粒的范围,所以其水溶液是一种比较稳定的胶体溶液,电荷和水化膜是其主要稳定因:①蛋白质在非等电点状态下带有同性电荷,同性电荷使蛋白质分子相互排斥,不易形成可以沉淀的大颗粒。

②球状蛋白质分子表面有较多的亲水基团,可以与水结合,使蛋白质分子表面为多层水分子包裹,形成水化膜,从而阻止蛋白质分子的聚集。

如果这两种因素被破坏,蛋白质就会从溶液中析出。

13蛋白质沉淀:蛋白质分子从溶液中析出的现象称为蛋白质沉淀。

怎样沉淀:凡能破坏蛋白质溶液稳定因素的方法都可使蛋白质分子聚集成颗粒并沉淀。

如果将蛋白质溶液的pH值调到等电点,使蛋白质分子静电荷为零,此时虽然分子之间同性电荷的相互排斥作用消失了,但是还有水化膜起保护作用,一般不会导致蛋白质沉淀。

如果再加入脱水剂破坏水化膜,则蛋白质分子就会凝聚成颗粒并沉淀;或者,如果先加入脱水剂破坏水化膜,然后再调溶液的pH值到等电点,也可以使蛋白质凝聚成颗粒而沉淀。

(盐析:在蛋白质溶液中加入大量的中性盐会破坏其胶体溶液稳定性而使其沉淀)14蛋白质变性:在一些因素作用下,蛋白质的天然构象被破坏,从而导致其理化性质改变,生物活性丧失,这一现象称为蛋白质变性。

15导致蛋白质变性的物理因素:高温,高压,振荡,紫外线和超声波等;化学因素有强酸,强碱,乙醇,丙酮,尿素,重金属盐和去污剂(如十二烷基硫酸钠)等。

16有些蛋白质的变性是可逆的。

当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原来的构象及功能,这一现象称为蛋白质复性。

17水解核苷酸可以得到它的三种组成成分:磷酸,戊糖和含氮碱基。

核苷酸的功能:①核酸的合成原料②能量物质,ATP为生命提供能量③参与代谢调控,UTP参与糖原合成,CTP参与磷脂合成④参与生物催化作用,腺苷酸构成酶的辅助因子,包括FAD,NAD,NADP,辅酶A。

18不同物种DNA的碱基组成均存在以下关系A=T,G=C,A+G=T+C。

DNA的二级结构是右手螺旋结构,反向互补。

如AGGCp对应的是pTCCG或GCCTp。

19.RNA(核糖核酸)包括传递遗传信息的mRNA(种类多,寿命短,含量少),转运氨基酸的tRNA(细胞内含量最多),构成核糖体的rRNA和具有催化活性的核酶。

20因为碱基中都有共轭双键,所以核苷酸和核酸具有特殊的紫外吸收光谱,吸收峰在260nm附近,这一性质可用于核苷酸和核酸的定量分析。

21.DNA变性是指双链DNA解旋、解链、形成无规线团,从而发生性质改变。

缓慢降低温度,恢复生理条件,变性DNA单链会自发互补结合,重新形成原来的双螺旋结构,称为DNA复性,也称为退火。

单链DNA的紫外线吸收比双链DNA 高40%,所以DNA变性导致其紫外吸收增加,称为增色效应。

反之,复性导致变性DNA恢复其天然构象时,其紫外吸收减少,称为减色效应。

可以通过检测DNA紫外吸收的变化来研究DNA变性与复性。

22使DNA变性解链达到50%时的温度称为解链温度。

又称变性温度、溶解温度、熔点。

绝大多数酶的化学本质是蛋白质。

23.酶的活性中心又称为活性部位,是酶蛋白构象的一个特定区域,能与底物特异结合,并催化底物发生反应生成产物。

酶的活性中心具有特定的空间结构,或为裂缝,或为凹陷,多数由氨基酸的疏水基团构成,是一个疏水环境。

24.酶具有和一般催化剂一样的特点:①它们只催化热力学上允许的化学反应。

②它们可以提高化学反应速度,但不改变化学平衡。

③它们的催化机制都是降低化学反应的活化能。

④它们本身在化学反应前后没有质和量的改变,并且很少量就可以有效地催化反应。

25.酶自己的特点:酶的催化效率极高(因为它们能降低化学反应的活化能);酶具有很高的特异性(与一般催化剂不同,酶对所催化反应的底物和反应类型具有选择性,这种现象称为酶的特异性。

根据酶对其底物结构选择的严格程度不同,一般可以将酶的特异性分为绝对特异性、相对特异性和立体结构特异性。

)酶蛋白容易失活;酶活性可以调节。

26.有些酶在细胞内刚合成或初分泌时只是酶的无活性前体,必须水解掉一个或几个特定肽段,使酶蛋白质构象发生改变,从而表现出酶的活性。

酶的这种无活性前体称为酶原。

酶原向酶转化的过程称为酶原的激活。

酶原的激活实际上是指形成或暴露酶的活性中心的过程。

27.酶原的生理意义:①酶原适于酶的安全转运;②酶原适于酶的安全储存。

28.同工酶是指能催化相同的化学反应、但酶蛋白的分子组成、分子结构和理化性质乃至免疫学性质和电泳行为都不相同的一组酶,是生命在长期进化过程中基因分化的产物。

同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,在代谢中起重要作用。

29.米氏方程:V=Vmax[S]/Km+[S]Km值的意义:①Km值是反应速度为最大反应速度一半时的底物浓度。

(Km值最小的底物在同等条件下反应最快,该底物称为酶的天然底物或最适底物)②Km值是酶的特征常数(Km值与酶的浓度无关);③Km值反映酶与底物的亲和力30.有些抑制剂与底物结构相似,也能与酶的活性中心结合,所以能与底物竞争酶的活性中心,抑制酶与底物结合,从而抑制酶促反应,这类抑制剂称为竞争性抑制剂,这种抑制作用称为竞争性抑制作用。

31.竞争性抑制作用的特点:①抑制剂和底物结构相似,都能与酶的活性中心结合。

②酶的活性中心既可以结合底物也可以结合抑制剂,但不能同时结合。

③酶的活性中心与抑制剂结合后,酶活性丧失。

④竞争性抑制作用的强弱取决于抑制剂和底物的相对浓度([I] /[S])以及它们与酶的相对亲和力,若[I]不变,增加[S]可以削弱甚至消除抑制剂的竞争性抑制作用。

32.维生素是维持生命正常代谢所必须的一类小分子有机化合物,是人体重要的营养物质之一。

特点:①维生素既不是构成机体组织结构的原料,也不是功能物质,但在代谢过程中发挥着重要作用,它们大多数参与构成酶的辅助因子。

②维生素种类很多,化学结构各异,本质上都属于小分子有机化合物。

③维生素的需要量很少,但多数不能在体内合成或合成量不足,必须从食物中摄取。

④维生素摄取不足会造成代谢障碍,但若应用不当或长期过量摄取,也会出现中毒症状。

33.生物氧化是指糖类、脂类和蛋白质等营养物质在体内氧化分解、最终生成CO2和H2O并释放能量满足生命活动需要的过程。

34.呼吸链由位于真核生物线粒体内膜上的一组排列有序的递氢体和递电子体构成,其功能是将营养物质氧化释放的电离子传递给O2生成H2O。

35.呼吸链的组成:利用胆酸类物质反复处理线粒体内膜,可以分离到呼吸链的组成部分,包括泛醌、Cyt c和四种具有传递电子功能的呼吸链复合体。

36.四种复合体:NADH脱氢酶、琥珀酸脱氢酶、Q-Cyt c还原酶、Cyt c氧化酶。

37.细胞液的NADH的氧化:呼吸链的入口在线粒体内,细胞液NADH传递的电子是通过特定转运途径送入呼吸链的。

已经阐明的转运途径有3-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭。

38.体内合成ATP的方式有两种:底物水平磷酸化和氧化磷酸化,以氧化磷酸化为主。

39.在生物氧化过程中,底物因脱氢、脱水等反应而使能量在分子内重新分布,形成高能磷酸基团,然后将高能磷酸基团转移给ADP,生成ATP,这一过程称为底物水平磷酸氧化。

40.在生物氧化过程中,营养物质氧化释放的电子经呼吸链传递给O2生成H2O,所释放的自由能推动ADP磷酸化生成ATP,这一过程称为氧化磷酸化。

氧化磷酸化所占的ATP约占ATP总量的80%。

41.血糖的来源:食物糖消化吸收、肝糖原分解、肝脏内糖异生作用。

42.血糖的去路:氧化分解供能;合成糖原;转化成其它糖类和非糖物质;血糖过高时随尿液排出体外。

43.正常情况下血糖浓度:3.9~6.1mmol/L44.在供养不足时,葡萄糖在细胞液中分解成丙酮酸,丙酮酸进一步还原成乳酸,称为糖酵解途径。

糖酵解途径在细胞液中进行。

糖酵解释放的自由能较少,一分子葡萄糖酵解成两分子乳酸的同时净生成两分子ATP ,化学方程式为:葡萄糖+2Pi+2ATP====2乳酸+2ATP+2H 2O45.糖酵解的生理意义:①糖酵解是在相对缺氧时机体补充能量的一种有效方式。

②某些组织在有氧时也通过酵解供能。

③糖酵解的中间产物是其它物质合成的原料。

46.在线粒体内,乙酰CoA 与草酰乙酸缩合成柠檬酸,柠檬酸在经过一系列酶促反应之后又生成草酰乙酸,形成一个反应循环,该循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以称为三羧酸循环,或柠檬酸循环。

47.三羧酸循环的反应特点:①每一循环氧化1个乙酰基,通过两次脱羧生成两个CO 2,通过4次脱氢给出4对氢(4×2H ),其中3×2H 以NAD +为受氢体,1×2H 以FAD 为受氢体。

4×2H 通过氧化磷化可以推动合成11个ATP ,另外三羧酸循环通过底物水平磷酸化合成1个ATP(GTP),这样每氧化1个乙酰基共产生12个ATP 。

相关文档
最新文档