全等几何模型讲解
6、全等模型汇总--陆老师
全等模型汇总编辑:陆老师2023.10.15【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件. 【常见模型】【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【常见模型】【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直。
【常见模型】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
【模型图示】公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。
共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。
寻找共顶点旋转模型的步骤如下: (1)寻找公共的顶点(2)列出两组相等的边或者对应成比例的边(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。
两等边三角形 两等腰直角三角形 两任意等腰三角形 *常见结论:连接BD 、AE 交于点F ,连接CF ,则有以下结论: (1)BCD ACE ≅△△ (2)AE BD = (3)AFB DFE ∠=∠ (4)FC BFE ∠平分【常见模型】(等腰)(等边)(等腰直角)一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
全等模型-手拉手模型--常见几何模型归纳(学生版)
全等模型-手拉手模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(手拉手(旋转)模型)进行梳理及对应试题分析,方便掌握。
模型1.手拉手模型(三角形)【模型解读】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得△ABD≅△ACE。
【常见模型及证法】(等边)(等腰直角)(等腰)1(2022·北京东城·九年级期末)如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A顺时针旋转60°得到AP ,连接PP ,BP .(1)用等式表示BP 与CP的数量关系,并证明;(2)当∠BPC=120°时, ①直接写出∠P BP的度数为;②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.2(2022·黑龙江·中考真题)△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+ PB=PC(或PA+PC=PB)成立;请证明.(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A 旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.3(2023·黑龙江哈尔滨·九年级校考期中)如图,在△ABC中,∠C=90°,AC=BC,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则∠C′BA的度数为()A.15°B.20°C.30°D.45°4(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD= CE;(2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.图1 图25(2022秋·江苏·八年级期中)点D为△ABC外一点,∠ACB=90°,AC=BC.(1)如图1,∠DCE=90°,CD=CE,求证:∠ADC=∠BEC;(2)如图2,若∠CDB=45°,AE∥BD,CE⊥CD,求证:AE=BD;模型2.手拉手模型(正多边形型)【模型解读】将两个多边形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个多边形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
全等几何模型讲解
常见的几何模型一、旋转要紧分四大类:绕点、空翻、弦图、半角。
这四类旋转的分类似于平行四边形、矩形、菱形、正方形的分类。
1.绕点型(手拉手模型)(1)自旋转:⎪⎪⎩⎪⎪⎨⎧,造中心对称遇中点旋全等遇等腰旋顶角,造旋转,造等腰直角旋遇,造等边三角形旋遇自旋转构造方法0000018090906060 例题讲解:1. 如下图,P 是等边三角形ABC 内的一个点,PA=2,PB=32,PC=4,求△ABC 的边长。
CB2. 如图,O 是等边三角形ABC 内一点,已知:∠AOB=115°,∠BOC=125°,那么以线段OA 、OB 、OC 为边组成三角形的各角度数是多少?3.如图,P 是正方形ABCD 内一点,且知足PA :PD :PC=1:2:3,那么∠APD= .4.如图(2-1):P是正方形ABCD内一点,点P到正方形的三个极点A、B、C的距离别离为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(2)共旋转(典型的手拉手模型)模型变形:等边三角形共顶点共顶点等腰直角三角形共顶点等腰三角形共顶点等腰三角形例题讲解:1. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ‚ ②AC=CF+CD.(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是不是成立?假设不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由;(3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。
2.(13北京中考)在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得 到线段BD 。
专题10 几何变换中的三角形全等模型--2024年中考数学核心几何模型重点突破(解析版)
专题10几何变换中的三角形全等模型【模型1】全等三角形中的平移变换【说明】平移前后的三角形全等。
平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【模型2】全等三角形中的折叠变换模型【说明】折叠问题实质上是利用了轴对称的性质。
轴对称变换的性质:①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.【模型3】全等三角形中的旋转变换模型旋转变换的性质:图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.【例1】如图,DEF 是由ABC 经过平移得到的,AC 分别交DE 、EF 于点G 、H ,若120B ∠=︒,30C ∠=︒,则DGH ∠的度数为()A .150°B .140°C .120°D .30°【答案】A 【分析】根据平移可知:ABC DEF ≅ ,AC DF ∥,根据全等三角形对应角相等,得出120E B ∠=∠=︒,30F C ∠=∠=︒,即可得出∠D 的度数,再根据平行线的性质得出∠DGH 的度数即可.【解析】根据平移可知,ABC DEF ≅ ,AC DF ∥,∴120E B ∠=∠=︒,30F C ∠=∠=︒,∴180D E F∠=︒-∠-∠18012030=︒-︒-︒30=︒,∵AC DF ∥,∴180DGH D ∠+∠=︒,∴180********DGH D ∠=︒-∠=︒-︒=︒,故A 正确.故选:A .【例2】如图,纸片ABCD 的对边AD BC ∥,将纸片沿EF 折叠,CF 的对应边C F '交AD 于点G .若AG GF =,且144∠=︒,则2∠的大小是()A .44︒B .45︒C .46︒D .56︒【答案】C 【分析】利用等腰三角形和平行线的性质求得44AFG AFB ∠=∠=︒,再求得18092CFE C FE AFB AFG ∠+∠=︒-∠-∠=︒′,利用折叠的性质和平行线的性质即可求解.【解析】解:∵AG GF =,144∠=︒,∴144AFG ∠=∠=︒,∵AD BC ∥,144∠=︒,∴144AFB ∠=∠=︒,∴18092CFE C FE AFB AFG ∠+∠=︒-∠-∠=︒′,由折叠的性质可得CFE C FE '∠=∠,∴192=462CFE ∠=⨯︒︒,∵AD BC ∥,∴2==46CFE ∠∠︒,故选C【例3】如图,在等腰Rt ABC 和等腰Rt CDE 中,90ACB DCE ∠=∠=︒.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的关系是_________;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内转动一周,若10AC BC ==,5CE CD ==,AE 、BD 交于点P 时,连接CP ,直接写出BCP 最大面积_________.【答案】(1)AE BD =,AE BD ⊥;(2)结论仍成立,理由见解析;(3)252+.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒即可;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒即可;(3)如图:由题意可知点P 在以AB 为直径的O 上运动,点D 在C 上运动,观察图形,可知当BP 与C 相切时,BCP 面积最大;此时,四边形CDPE 为正方形,5PD CD ==;然后在Rt BDC 运用勾股定理求出BD ,进而求出BP 的最大值,最后运用三角形的面积公式求解即可.【解析】(1)解:AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅ ,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥.(2)解:结论仍成立,仍有:AE BD =,AE BD ⊥;理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE 和BCD △中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅ ,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥.(3)解:如图:∵90APB ∠=︒,∴点P 在以AB 为直径的O 上运动.∵5CD CE ==,∴点D 在C 上运动,观察图形,可知当BP 与C 相切时,BCP 面积最大.此时,四边形CDPE 为正方形,5PD CD ==.在Rt BDC中,BD ==当BCP的面积最大时,5BP BD DP =+=+,12S BP CD =⋅=一、单选题1.如图,三角形ABC ,三角形EFG 均为边长为4的等边三角形,点D 是BC 、EF 的中点,直线AG 、FC 相交于点M ,三角形EFG 绕点D 旋转时,线段BM 长的最小值为()A .43B .23C .232-D .434【答案】C 【分析】首先证明90AMF ∠=︒,判定出点M 在以AC 为直径的圆上运动,当M 运动到BM AC ⊥时,BM 最短来解决问题.【解析】解:如图,连接AE 、EC 、CG ,AD ,DE CD DF,==∠=∠,DEC DCE∴∠=∠,DFC DCF,∠+∠+∠+∠=︒180DEC DCE DFC DCFECF∴∠=︒,90∆是等边三角形,D是BC、EF的中点, 、EFG∆ABC∴∠=∠=︒,90ADC GDE∴∠=∠,ADE GDC∴∆≅∆,()ADE GDC SAS∴=,DAE DGCAE CG∠=∠,DA DG,=∴∠=∠,DAG DGAGAE AGC∴∠=∠,∴∆≅∆,AGE GAC SAS()∴∠=∠,GAK AGK∴=,KA KG,=AC EG∴=,EK KCKEC KCE∴∠=∠,,∠=∠AKG EKC∴∠=∠,KAG KCE\∥,EC AG∴∠=∠=︒,90AMF ECF∴点M在以AC为直径的圆上运动,∴当BM AC⊥时,且B、M在AC的同侧时,BM最短,Q,AB=4∴=2OB==,AO OM∴的最小值为2-.BM故选:C .2.如图,在正方形ABCD 中,AB =4,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为()A .3B .C .5D 【答案】C 【分析】连接BM .先判定FAE MAB ∆∆≌,即可得到EF BM =.再根据4BC CD AB ===,3CM =,利用勾股定理即可得到,Rt BCM ∆中,5BM =,进而得出EF 的长.【解析】解:如图,连接BM .AEM ∆ 与ADM ∆关于AM 所在的直线对称,AE AD ∴=,MAD MAE ∠=∠.ADM ∆ 按照顺时针方向绕点A 旋转90︒得到ABF ∆,AF AM ∴=,FAB MAD ∠=∠.FAB MAE ∴∠=∠,FAB BAE BAE MAE ∴∠+∠=∠+∠.FAE MAB ∴∠=∠.FAE MAB ∴∆∆≌(SAS ).EF BM ∴=.四边形ABCD 是正方形,4BC CD AB ∴===.1DM = ,3CM ∴=.∴在Rt BCM ∆中,5BM ,5EF ∴=,故选:C .3.如图,ABCD 是一张矩形纸片,AB =20,BC =4,将纸片沿MN 折叠,点B ',C '分别是B ,C 的对应点,MB′与DC 交于K ,若△MNK 的面积为10,则DN 的最大值是()A .7.5B .12.5C .15D .17【答案】D 【分析】作NE ⊥B M '于E ,NF ⊥BM 于F ,由折叠得∠1=∠2,根据角平分线的性质得NE =NF ,可得四边形BCNF 是矩形,则NF =BC =4,根据△MNK 的面积为10得NK =MK =5,根据勾股定理得KE =3,则MF =ME =MK ﹣KE =5﹣3=2,设DN =x ,则CN =20﹣x ,BM =BF +MF =20﹣x +2=22﹣x ,由折叠可得BM ≥KM ,即22﹣x ≥5.可得x ≤17,即可得DN ≤17,则DN 的最大值是17.【解析】解:如图所示,过点N 作NE ⊥B M '于E ,NF ⊥BM 于F ,由折叠得∠1=∠2,∴NE =NF ,∵四边形ABCD 是矩形,∴∠B =∠C =∠BFN =90°,AB CD ∥,∴四边形BCNF 是矩形,∠DNM =∠2,∴NE =NF =BC =4,∠1=∠DNM ,∴NK =MK ,∵△MNK 的面积为10,∴12KM •NE =12KN •NF =10,∴NK =MK =5,∴KE 22KN NE -3,在△MEN 和△MFN 中,12MEN MFN ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MEN ≌△MFN (AAS ),∴MF =ME =MK ﹣KE =5﹣3=2,设DN =x ,则CN =BF =20﹣x ,∴BM =BF +MF =20﹣x +2=22﹣x ,由折叠得BM ≥KM ,即22﹣x ≥5.∴x ≤17,即DN ≤17,∴DN 的最大值是17.故选:D .4.如图,现有一张矩形纸片ABCD ,AB =4,BC =8,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①CQ =CD ;②四边形CMPN 是菱形;③P ,A 重合时,MN =PQM 的面积S 的取值范围是3≤S ≤5.其中正确的是()A .①②③④B .②③C .①②④D .①③④【答案】B 【分析】先判断出四边形CNPM 是平行四边形,再根据翻折的性质可得CN =NP ,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ =CD ,得Rt △CMQ ≌△CMD ,进而得∠DCM =∠QCM =∠BCP =30°,这个不一定成立,判断①错误;点P 与点A 重合时,设BN =x ,表示出AN =NC =8−x ,利用勾股定理列出方程求解得x 的值,进而用勾股定理求得MN ,判断出③正确;当MN 过D 点时,求得四边形CMPN 的最小面积,进而得S 的最小值,当P 与A 重合时,S 的值最大,求得最大值即可.【解析】解:如图1,∵四边形ABCD是矩形,∴PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM(折叠的性质),∴∠PMN=∠PNM,∴PM=PN,∵NC=NP(折叠的性质),∴PM=CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CM=CM,若CQ=CD,则Rt△CMQ≌Rt△CMD(HL),∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2所示:设BN=x,则AN=NC=8−x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8−x)2,解得x =3,∴CN =8−3=5,AC∴CQ =12AC =∴QN∴MN =2QN =当MN 过点D 时,如图3所示:此时,CN 最短,四边形CMPN 的面积最小(四边形CNPM 的边CN 上的高固定为AB 的长),此时四边形CNPM 是正方形,则S 最小=14S 菱形CMPN =14×4×4=4,当P 点与A 点重合时,CN 最长,四边形CMPN 的面积最大,则S 最大=14×5×4=5,∴4≤S ≤5,故④错误.故选:B .5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是()A .1B .2C .3D .4【答案】C 【分析】根据等腰直角三角形的性质可得∠CAD =∠B =45°,根据同角的余角相等求出∠ADF =∠BDE ,然后利用“角边角”证明△BDE 和△ADF 全等,判断出③正确;根据全等三角形对应边相等可得DE =DF 、BE =AF ,从而得到△DEF 是等腰直角三角形,判断出①正确;再求出AE =CF ,判断出②正确;根据BE +CF =AF +AE ,利用三角形的任意两边之和大于第三边可得BE +CF >EF ,判断出④错误.【解析】∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∠B =45°,∵点D 为BC 中点,∴AD =CD =BD ,AD ⊥BC ,∠CAD =45°,∴∠CAD =∠B ,∠BDE +∠ADE =∠ADB =90°∵∠MDN 是直角,∴∠ADF +∠ADE =90°,∴∠ADF =∠BDE ,在△BDE 和△ADF 中,CAD B AD BD ADF BDE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△BDE ≌△ADF (ASA ),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①正确;∵AE =AB -BE ,CF =AC -AF ,∴AE =CF ,故②正确;∵△BDE ≌△ADF∴BDE ADFS S = ∴12ADE ADF ADE BDE BDA ABC AEDF S S S S S S S =+=+==△△△△△△四边形故③正确;∵BE +CF =AF +AE >EF ,∴BE +CF >EF ,故④错误;综上所述,正确的是①②③,故选:C.6.如图,在ABC 中,AB BC =,将ABC 绕点B 顺时针旋转,得到11A BC V ,1A B 交AC 于点E ,11A C 分别交AC ,BC 于点D ,F ,则下列结论一定正确的是()A .CDF A∠=∠B .1AE CF =C .11A DE C ∠=∠D .DF FC=【答案】B 【分析】根据将△ABC 绕点B 顺时针旋转,得到△A 1BC 1,可证明△A 1BF ≌△CBE ,从而可得A 1E =CF ,即可得到答案.【解析】解:∵AB =BC ,∴∠A =∠C ,∵将△ABC 绕点B 顺时针旋转,得到△A 1BC 1,∴A 1B =AB =BC ,∠A 1=∠A =∠C ,在△A 1BF 和△CBE 中111A C AB CB A BF CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△A 1BF ≌△CBE (ASA ),∴BF =BE ,∴A 1B -BE =BC -BF ,即A 1E =CF ,故B 正确,其它选项的结论都不能证明,故选:B .7.如图,在矩形ABCD 中,点M 在AB 边上,把BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF EC ⊥,垂足为F ,若1,2CD CF ==,则线段AE 的长为()A2B1C .13D .12【答案】A 【分析】先证明△BFC ≌△CDE ,可得DE =CF =2,再用勾股定理求得CEAD =BCAE 的长.【解析】解:∵四边形ABCD 是矩形,∴BC =AD ,∠ABC =∠D =90°,AD ∥BC ,∴∠DEC =∠FCB ,∵BF EC ⊥,∴∠BFC =∠CDE ,∵把BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,∴BC =EC ,在△BFC 与△CDE 中,DEC FCB BFC CDE BC EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFC ≌△CDE (AAS ),∴DE =CF =2,∴CE ===∴AD =BC =CE∴AE =AD -DE2,故选:A .8.如图,正方形ABCD 中,AB =12,点E 在边BC 上,BE =EC ,将△DCE 沿DE 对折至△DFE ,延长EF 交边AB 于点G ,连接DG 、BF ,给出以下结论:①△DAG ≌△DFG ;②BG =2AG ;③S △DGF =48;④S △BEF =725.其中所有正确结论的个数是()A .4B .3C .2D .1【答案】B 【分析】①根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL ”判定Rt △ADG ≌Rt △FDG ;②再由GF +GB =GA +GB =12,EB =EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG =4,BG =8,即可判断;③根据①即可求出三角形DGF 的面积;④结合①可得AG =GF ,根据等高的两个三角形的面积的比等于底与底的比即可求出三角形BEF 的面积.【解析】解:①∵四边形ABCD 是正方形,∴AD =DC ,∠C =∠A =90°,由折叠可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =180°-∠DFE =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG=⎧⎨=⎩,∴Rt △ADG ≌Rt △FDG (HL ),故①正确;②∵正方形边长是12,∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12﹣x ,由勾股定理得:EG 2=BE 2+BG 2,即:(x +6)2=62+(12﹣x )2,解得:x =4,∴AG =GF =4,BG =8,BG =2AG ,故②正确;③∵Rt △ADG ≌Rt △FDG ,∴S △DGF =S △ADG =12×AG •AD =12×4×12=24,故③错误;④∵S △GBE =12BE •BG =12×6×8=24,∵GF =AG =4,EF =BE =6,∴23BFG BEF S GF S EF ==△△,∴337224555BEF GBE S S ==⨯=△△,故④正确.综上可知正确的结论的是3个,故选:B .二、填空题9.如图,矩形纸片ABCD 中,AB =8cm ,把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若AD =6cm ,则∠EAD 的正弦值为_____.【答案】724【分析】首先根据勾股定理计算出AC 的长,再根据折叠的方法可得△ABC ≌△AEC ,△ADF ≌△CEF ,进而可得到可知AE =AB =8cm,CE =BC =AD =6cm,再设AF =x ,则EF =DF =(8-x )cm,在Rt △ADF 中利用勾股定理可得22268x x +-=(),求得AF 的长,再通过勾股定理求得DF 的长,最后可得结果.【解析】解:∵四边形ABCD 是矩形,AD =6cm,∴BC =AD =6cm,∵AB =8cm,∴10cm AC =,矩形纸片沿直线AC 折叠,则△ABC ≌△AEC ,∠E =∠B =90°,∵四边形ABCD 为矩形,∴AD =BC=CE ,∠D =∠B =90°,∴∠E =∠D =90°,又∵∠AFD =∠EFC ,∴△ADF ≌△CEF (AAS ),可知AE =AB =8cm,CE =BC =AD =6cm,设AF =x ,则EF =DF =(8-x )cm,在Rt △ADF 中,222AD DF AF +=,即:22268x x +-=(),解得x =254.∴AF =254,∴74DF ===,∴774tan 624DF EAD AD ∠===故答案为:724.10.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将 DAE 绕点D 逆时针旋转90°,得到 DCM .若AE =1,则FM 的长为__.【答案】2.5【分析】由旋转可得DE =DM ,∠EDM 为直角,可得出∠EDF +∠MDF =90°,由∠EDF =45°,得到∠MDF 为45°,可得出∠EDF =∠MDF ,再由DF =DF ,利用SAS 可得出三角形DEF 与三角形MDF 全等,由全等三角形的对应边相等可得出EF =MF ;则可得到AE =CM =1,正方形的边长为3,用AB -AE 求出EB 的长,再由BC +CM 求出BM 的长,设EF =MF =x ,可得出BF =BM -FM =BM -EF =4-x ,在直角三角形BEF 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即为FM 的长.【解析】解:∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F 、C 、M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠FDM =90°,∵∠EDF =45°,∴∠FDM =∠EDF =45°,在△DEF 和△DMF 中,DE DM EDF FDM DF DF =⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△DMF (SAS ),∴EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得222EB BF EF +=,2222(4)x x +-=,解得: 2.5x =.故答案为:2.5.11.如图,点E 在正方形ABCD 的CD 边上,连结BE ,将正方形折叠,使点B 与E 重合,折痕MN 交BC 边于点M ,交AD 边于点N ,若tan ∠EMC =34,ME +CE =8,则折痕MN 的长为___________.【答案】【分析】过N 作NH ⊥BC 于H ,得到四边形ABHN 是矩形,根据矩形的性质得到NH =AB ,∠NHM =90°,证明△BCE ≌△NHM ,根据全等三角形的性质得到HM =CE ,设CE =3x ,则CM =4x ,根据勾股定理得到EM =5x ,求出x ,可得NH =9,再利用勾股定理计算即可.【解析】解:过N 作NH ⊥BC 于H ,则四边形ABHN是矩形,∴NH =AB ,∠NHM =90°,∵四边形ABCD 是正方形,∴∠C =90°,AB =BC ,∴NH =BC ,∵将正方形折叠,使点B 与E 重合,∴MN ⊥BE ,BM =ME ,∴∠HNM +∠NMH =∠EBC +∠BMN =90°,∴∠EBC =∠HNM ,在△BCE 与△NHM 中,NHM C NH BC HNM CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BCE ≌△NHM (ASA ),∴HM=CE,在Rt△EMC中,∵tan∠EMC=34 CECM=,∴设CE=3x,则CM=4x,由勾股定理得:EM=5x,∵ME+CE=8,∴5x+3x=8,∴x=1,∴EM=5,HM=CE=3,CM=4,∴BC=BM+CM=EM+CM=9,∴NH=9,∴MN=故答案为:12.如图,△ABC,△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.使△DEP 的顶点P与△ABC的顶点A重合,PD,PE分别与BC相交于点F、G,若BF=6,CG=4,则FG=_____.【答案】【分析】将△ABF绕A点逆时针旋转,使AB与AC重合,即可构建出直角三角形CGH,由勾股定理可求出GH的长度,再证明△FAG≌△GAH即可.【解析】解:将△ABF绕A点逆时针旋转,使AB与AC重合,∵△ACH由△ABF旋转得到,∴∠BAF=∠CAH,CH=BF=6,AF=AH,∠B=∠ACH∵△ABC,△DEP是两个全等的等腰直角三角形∴∠B=45°,∠ACB=45°∴∠HCG=90°在Rt△HCG中,由勾股定理得:GH=∵∠FAG=45°∴∠BAF+∠GAC=45°∴∠CAH+∠GAC=45°,即∠GAH=45°在△FAG和△GAH中,AF=AH,∠FAG=∠GAH,AG=AG∴△FAG≌△GAH∴FG=GH=故答案为:13.如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到AB=,则DP的长度为___________.点B的对应点为点F,延长EF交线段DC于点P,若6【答案】2【分析】连接AP,根据正方形的性质和翻折的性质证明Rt△AFP≌Rt△ADP(HL),可得PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,然后根据勾股定理即可解决问题.【解析】解:连接AP,如图所示,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,∵点E 是BC 的中点,∴BE =CE =12AB =3,由翻折可知:AF =AB ,EF =BE =3,∠AFE =∠B =90°,∴AD =AF ,∠AFP =∠D =90°,在Rt △AFP 和Rt △ADP 中,AP AP AF AD =⎧⎨=⎩,∴Rt △AFP ≌Rt △ADP (HL ),∴PF =PD ,设PF =PD =x ,则CP =CD −PD =6−x ,EP =EF +FP =3+x ,在Rt △PEC 中,根据勾股定理得:EP 2=EC 2+CP 2,∴(3+x )2=32+(6−x )2,解得x =2,则DP 的长度为2,故答案为:2.14.如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF 绕点A 顺时针旋转90°得到ABG ,若3DF =,则BE 的长为__________.【答案】2【分析】根据旋转的性质可知,△ADF ≌△ABG ,然后即可得到DF =BG ,∠DAF =∠BAG ,然后根据已知条件证明△EAG ≌△EAF ,设BE x =,在Rt CEF 中,由勾股定理可以求出BE 的长.【解析】解:由旋转可知,△ADF ≌△ABG ,∴3DF BG ==,∠DAF =∠BAG ,∵∠DAB =90°,∠EAF =45°,∴∠DAF +∠EAB =45°,∴∠BAG +∠EAB =45°,∴∠EAF =∠EAG ,在△EAG 和△EAF 中,AG AF EAG EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴GE =FE ,设BE x =,则3GE GB BE x =+=+,6CE x =-,∴3EF GE x ==+,∵CD =6,DF =3,∴633CF CD DF =-=-=,∵∠C =90°,∴在Rt CEF 中,222CE CF EF +=,即222(6)3(3)x x -+=+,解得,2x =,即BE =2.故答案为:2.三、解答题15.如图,在ΔABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连接CD ,将线CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE.(1)求证:ΔACD ≌ΔBCE ;(2)当AD =BF 时,求∠BEF 的度数.【答案】(1)证明见解析;(2)67.5BEF ∠= 【分析】(1)利用边角边证明三角形全等即可;(2)先推理得到△BEF 是等腰三角形,再由全等得到∠CBE =45 ,即可得到∠BEF 的度数.【解析】(1)证明:∵90ACB ∠=90ACD DCB ∴∠+∠=又∵CD 绕点C 按逆时针方向旋转90°得到线段CE∴90DCE ∠= ,CD =CE∴90BCE DCB ∠+∠=∴ACD BCE∠=∠在ACD △和BCE 中:AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩(2)解:由第一问知,ACD BCE≅△△∴AD =BE ,∠CAD =∠CBE又∵AD =BF∴BE =BF在ACB △中,AC =BC ,90ACB ∠=∴45CAD CBA ∠=∠=在BEF 中,BE =BF ,∠CBE =45 ∴1(18045)67.52BEF BFE ∠=∠=-= 16.如图,ABC 中,AB AC =,42BAC ∠=︒,D 为ABC 内一点,连接AD ,将AD 绕点A 逆时针旋转42︒,得到AE ,连接DE ,BD ,CE .(1)求证:BD CE =;(2)若DE AC ⊥,求BAD ∠的度数.【答案】(1)证明见解析;(2)21︒【分析】(1)根据旋转的性质得到AD AE =,42DAE ∠=︒,可得CAE BAD ∠=∠,然后证明ABD ACE △≌△,最后利用全等三角形的性质即可证明结论;(2)根据等腰三角形的性质得到1212CAE DAE ∠=∠=︒,根据全等三角形的性质可得到结论.【解析】(1)证明:∵将AD 绕点A 逆时针旋转42︒,得到AE ,∴AD AE =,42DAE ∠=︒,∵42BAC ∠=︒,∴BAC DAE ∠=∠,∴BAD CAE ∠=∠,在ABD △与ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≌,∴BD CE =.(2)解:由(1)知:AD AE =,42DAE ∠=︒,∵DE AC ⊥,∴1212CAE DAE ∠=∠=︒,∵BAD CAE ∠=∠,∴21BAD ∠=︒.17.如图(1),已知△ABC 的面积为3,且AB =AC ,现将△ABC 沿CA 方向平移CA 长度得到△EF A.(1)求△ABC 所扫过的图形面积;(2)试判断,AF 与BE 的位置关系,并说明理由;(3)若∠BEC =15°,求AC 的长.【答案】(1)9;(2)BE ⊥AF ,理由见解析;(3)【分析】(1)根据平移的性质及平行四边形的性质可得到S △EFA =S △BAF =S △ABC ,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA 为菱形,根据菱形的对角线互相垂直平分可得到AF 与BE 的位置关系为垂直;(3)作BD ⊥AC 于D ,结合三角形的面积求解.【解析】解:(1)由平移的性质得AF ∥BC ,且AF =BC ,△EFA ≌△ABC∴四边形AFBC 为平行四边形S △EFA =S △BAF =S △ABC =3∴四边形EFBC 的面积为9;(2)BE⊥AF证明:由(1)知四边形AFBC为平行四边形∴BF∥AC,且BF=AC又∵AE=CA∴BF∥AE且BF=AE∴四边形EFBA为平行四边形又已知AB=AC ∴AB=AE∴平行四边形EFBA为菱形∴BE⊥AF;(3)如上图,作BD⊥AC于D∵∠BEC=15°,AE=AB∴∠EBA=∠BEC=15°∴∠BAC=2∠BEC=30°∴在Rt△BAD中,AB=2BD设BD=x,则AC=AB=2x∵S△ABC =3,且S△ABC=12AC•BD=12•2x•x=x2∴x2=3∵x为正数∴x3∴AC318.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.直接写出BD和CE数量关系和位置关系.(2)如图2,当点D在线段BC延长线上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE,画出图形.(1)的结论还成立吗?若成立,请证明;若不成立,说明理由.【答案】(1)BD和CE的数量关系是相等,位置关系是互相垂直,理由见详解;(2)成立,理由见详解.【分析】(1)由题意易得AB=AC,∠BAC=∠DAE=90°,AD=AE,则有∠BAD=∠CAE,然后可证△ABD≌△ACE,进而问题可求解;(2)如图,然后根据(1)中的证明过程可进行求解.【解析】(1)解:BD⊥CE且BD=CE,理由如下:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∠ABC=∠ACB=45°,由旋转的性质可得:∠DAE=90°,AD=AE,∴∠BAD+∠DAC=∠CAE+∠DAC=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=45°,BD=CE,∴∠ACE+∠ACB=90°,即∠BCE=90°,∴BD⊥CE;(2)解:(1)中结论仍成立,理由如下:由题意可得如图所示:∵△ABC 是等腰直角三角形,∴AB =AC ,∠BAC =90°,∠ABC =∠ACB =45°,由旋转的性质可得:∠DAE =90°,AD =AE ,∴∠BAC +∠DAC =∠EAD +∠DAC ,∴∠BAD =∠CAE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE =45°,BD =CE ,∴∠ACE +∠ACB =90°,即∠BCE =90°,∴BD ⊥CE .19.如图,在ABC 中,45B ︒∠=,60C ︒∠=,点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF 折叠得到PEF .(1)如图1,当点P 落在BC 上时,求AEP ∠的度数.(2)如图2,当PF AC ⊥时,求BEP ∠的度数.【答案】(1)90°;(2)60°【分析】(1)证明BE=EP ,可得∠EPB=∠B=45°解决问题.(2)根据折叠的性质求出∠AFE=45°,根据三角形内角和求出∠BAC ,从而得到∠AEF 和∠PEF ,再根据平角的定义求出∠BEP .【解析】解:(1)如图1中,∵折叠,∴△AEF ≌△PEF ,∴AE=EP ,∵点E 是AB 中点,即AE=EB ,∴BE=EP ,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°-90°=90°.(2)∵PF ⊥AC ,∴∠PFA=90°,∵沿EF 将△AEF 折叠得到△PEF .∴△AEF ≌△PEF ,∴∠AFE=∠PFE=45°,∵∠B=45°,∠C=60°,∴∠BAC=180°-45°-60°=75°,∴∠AEF=∠PEF=180°-75°-45°=60°,∴∠BEP=180°-60°-60°=60°.20.如图1,AB AC =,EF EG =,ABC ≌EFG ,AD BC ⊥于点D ,EH FG ⊥于点H .(1)直接写出AD 、EH 的数量关系:______;(2)将EFG 沿EH 剪开,让点E 和点C 重合.①按图2放置EHG ,将线段CD 沿EH 平移至HN ,连接AN 、GN ,求证:AN GN ⊥;②按图3放置EHG ,B 、()C E 、H 三点共线,连接AG 交EH 于点M ,若1BD =,3AD =,求CM 的长度.【答案】(1)AD EH =;(2)①见解析;②2【分析】(1)利用全等三角形的性质即可解决问题;(2)①设∠CDN =a ,证明∠AND =∠HNG =45°-2a ,即可解决问题;②易证明AD =DM ,可得CM =DM -DC =3-1=2.【解析】(1)∵△ABC ≌△EFG ,AD ⊥BC 于点D ,EH ⊥FG 于点H ,∴AD =EH ;(2)①如图2中,由题意可知:△ABD ≌△ACD ≌△EFH ≌△EGH ,CD =HG ,AD =CH ,∠ADC =∠CHG =90°,∵DC 沿CH 平移至HN ,∴DN =CH ,DN //CH ,DC=NH ,∴AD=DN ,NH=GH ,∴∠DAN =∠DNA ,∠HNG =∠HGN ,设∠CDN =α,∵DC //NH ,DN //CH ,∴∠CDN +∠DNH =∠DNH +∠CHN =180°,∴∠DNH =180°−α,∠CDN =∠CHN =α,∴∠NHG =90°+α,∴∠AND =∠HNG =45°−2a ,∴∠ANG =∠DNH −∠AND −∠HNG =90°,∴AN ⊥GN .②解:如图3中,∵AC =GC ,∴∠CAG =∠CGA ,又∵∠CAD =∠GCH ,∴∠CAG +∠CAD =∠CGA +∠GCH ,即∠DAM =∠DMA ,又∵∠ADM =90°,∴∠DAM =∠DMA =45°,∴AD=DM =3,∵DC=BD =1,∴CM =DM −DC =3−1=2.21.如图1,已知在Rt △ABC 中,∠ACB =90°,∠A =30°,将Rt △ABC 绕C 点顺时针旋转α(0°<α<90°)得到Rt △DCE(1)当α=15°,则∠ACE =°;(2)如图2,过点C 作CM ⊥BF 于M ,作CN ⊥EF 于N ,求证:CF 平分∠BFE .(3)求Rt △ABC 绕C 点顺时针旋转,当旋转角α(0°<α<90°)为多少度时,△CFG 为等腰三角形.【答案】(1)15;(2)见解析;(3)40゜或20゜【分析】(1)由旋转性质知:∠ACE DCB α=∠=,求出∠ACE 即可;(2)由等面积法证明出CM =CN ,再结合角平分线的判定,即可证CF 平分∠BFE ;(3)根据旋转性质得BFD BCD α∠=∠=,由CF 平分∠BFE 得1190,22CFG CFB BFE α︒∠=∠=∠=-由∠A 为30°得1602ACF α∠=︒-,由AFG BFD α∠=∠=得∠CGF =30°+α,再分CF =CG 或CF =FG 或CG =FG 三种情况讨论,求出α即可.【解析】解:(1)由旋转性质,得:15ACE DCB α∠=∠==︒,故答案为:15;(2)证明:由旋转性质,得:≌ACB ECD △△;∴ABC EDC AB DE S S == ,,∵CM BF CN EF ⊥⊥,,∴1122AB CM DE CN ⋅⋅=,∴CM CN =,∴CF 平分∠BFE ;(3)∵9030ACB A ∠=︒∠=︒,,∴9060B A ∠=︒-∠=︒,由旋转性质,得:60B D BCD α∠=∠=︒∠=,,∵B BCD D BFD ∠+∠=∠+∠,∴BFD BCD α∠=∠=,∴AFG BFD α∠=∠=,∴30180180CGF BFE BFD αα∠=︒+∠=︒-∠=︒-,,由(2)知CF 平分∠BFE ,∴119022CFG CFB BFE α∠=∠=∠=︒-,∴1602ACF CFB A α∠=∠-∠=︒-,①当CF =CG 时,∠CFG =∠CGF ,∴190302αα︒-=︒+,解得:α=40°,②当CF =FG 时,∠FCG =∠CGF ,∴160302αα︒-=︒+,解得:α=20°,③当CG =FG 时,∠FCG =∠CFG ,∴11906022αα︒-=︒-,此方程无解,综上所述,α=20°或40°时,△CFG 为等腰三角形.22.如图1,在Rt △ABC 中,∠A =90°,AB =AC 1,点D ,E 分别在边AB ,AC 上,且1AD AE ==,连接DE .现将△ADE 绕点A 顺时针方向旋转,旋转角为α,如图2,连接CE ,BD ,CD .(1)当0180α︒<<︒时,求证:CE BD =;(2)如图3,当90α=︒时,延长CE 交BD 于点F ,求证:CF 垂直平分BD .【答案】(1)证明见解析;(2)证明见解析【分析】(1)利用“SAS ”证得ACE ABD ≌即可得到结论;(2)利用“SAS ”证得ACE ABD ≌,由性质推出ACE ABD ∠=∠,计算得出22CD BC =,再利用等腰三角形“三线合一”的性质即可得到结论;【解析】(1)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90︒,∵∠CAE +∠BAE =∠BAD +∠BAE =90︒,∴∠CAE =∠BAD ,在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≅△ABD (SAS),∴CE =BD ;(2)根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90︒,在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ABD (SAS),∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90︒,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90︒,∴∠EFB =90︒,∴CF ⊥BD ,∵AB =AC 21,AD =AE =1,∠CAB =∠EAD =90︒,∴BC2+,CD =AC +AD2+,∴BC =CD ,∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线.23.【问题提出】如图①,在ABC 中,若8,4AB AC ==,求BC 边上的中线AD 的取值范围.【问题解决】解决此问题可以用如下方法:延长AD 到点E ,使DE AD =,再连结BE (或将ACD △绕着点D 逆时针旋转180︒得到EBD △),把AB 、AC 、2AD 集中在ABE △中,利用三角形三边的关系即可判断.由此得出中线AD 的取值范围是____________.【应用】如图②,在ABC 中,D 为边BC 的中点、已知5,3,2AB AC AD ===.求BC 的长.【拓展】如图③,在ABC 中,90A ∠=︒,点D 是边BC 的中点,点E 在边AB 上,过点D 作DE DE ⊥交边AC 于点F ,连结EF .已知10,12BE CF ==,则EF 的长为____________.【答案】[问题解决]26AD <<;[应用][拓展]【分析】[问题解决]证明DAC DEB ∆≅∆得AC EB =,再根据三角形三边关系求得AE 的取值范围,进而得结论;[应用]延长AD 到E ,使得AD DE =,连接BE ,证明DAC DEB ∆≅∆得AC EB =,再证明90AEB =︒∠,由勾股定理求得BD ,进而得BC ;[拓展]延长FD 到G ,使得DG FD =,连接BG ,EG ,证明CDF BDG ∆≅∆,得BG CF =,DCF DBG ∠=∠,再证明90EBG ∠=︒,由勾股定理求得EG ,由线段垂直平分线性质得EF .【解析】解:[问题解决]在DAC ∆和DEB ∆中,AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩,()DAC DEB SAS ∴∆≅∆,4AC EB ∴==,AB BE AE AB BE -<<+ ,8AB =,412AE ∴<<,26AD ∴<<,故答案为:26AD <<;[应用]延长AD 到E ,使得AD DE =,连接BE,如图②,在DAC ∆和DEB ∆中,AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩,()DAC DEB SAS ∴∆≅∆,6AC EB ∴==,28AE AD == ,10AB =,2226810+= ,222BE AE AB ∴+=,90AEB ∴∠=︒,BD ∴===2BC BD ∴==[拓展]延长FD 到G ,使得DG FD =,连接BG ,EG,如图③,在BDG ∆和CDF ∆中,BD CD BDG CDF DG DF =⎧⎪∠=∠⎨⎪=⎩,()BDG CDF SAS ∴∆≅∆,6BG CF ∴==,DG DF =,DBG DCF ∠=∠,DE DF ⊥ ,EG EF ∴=,90A ∠=︒ ,90ABC ACB ∴∠+∠=︒,90ABC DBG ∴∠+∠=︒,EG ∴==EF ∴=故答案为:24.已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE ,CF .(1)如图1,求证:ADE ≌CDF ;(2)直线AE 与CF 相交于点G .①如图2,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 是正方形;②如图3,连接BG ,若4AB =,2DE =,直接写出在DEF 旋转的过程中,线段BG 长度的最小值.【答案】(1)见解析;(2)①见解析②【分析】()1根据SAS 证明三角形全等即可;()2①根据邻边相等的矩形是正方形证明即可;②作DH AG ⊥交AG 于点H ,作BM AG ⊥于点M ,证明BMG △是等腰直角三角形,求出BM 的最小值,可得结论.【解析】(1)证明: 四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒.DE DF = ,90EDF ∠=︒.ADC EDF ∴∠=∠,ADE CDF \Ð=Ð,在ADE 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩ADE ∴V ≌()SAS CDF △;(2)①证明:如图2中,设AG 与CD 相交于点P.90ADP ∠=︒ ,90DAP DPA ∴∠+∠=︒.ADE ≌CDF ,DAE DCF ∴∠=∠.DPA GPC ∠∠= ,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒.90PGN ∠∴=︒,BM AG ⊥ ,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒.四边形ABCD 是正方形,AB BC ∴=,90ABC MBN ∠∠==︒.ABM CBN ∴∠=∠.又90AMB BNC ∠∠==︒ ,AMB ∴ ≌CNB △.MB NB ∴=.∴矩形BMGN 是正方形;②解:作DH AG ⊥交AG 于点H ,作BM AG ⊥于点M ,∵90,90,DHA AMB ADH DAH BAM AD AB∠=∠=︒∠=︒-∠=∠=∴AMB ≌DHA .BM AH ∴=.222AH AD DH =- ,4=AD ,DH ∴最大时,AH 最小,2DH DE ==最大值.23BM AH ∴==最小值最小值由()2①可知,BGM 是等腰直角三角形,226BG BM ∴==最小值25.折纸是一项有趣的活动,同学们小时候都玩过折纸,如折小花、飞机、小船等,在折纸过程中,我们通过研究图形的性质发展空间观念,在思考问题的过程中建立几何直观.【操作发现】(1)如图1将一个正方形先沿EF 折叠得到图2,再将图2进行第二次折叠,使点E 和点F 重合,折痕与正方形的边交于点M 、N ,如图3,打开这张正方形的纸得到两条折痕EF 和MN ,如图4这两条折痕的位置关系为,EF MN =.【探究证明】(2)如图5,将AB =1,AD =3的长方形按(1)的方式进行折叠,同样得到两条折痕EF 和MN ,(1)中的结论是否还成立,如果成立请证明,如果不成立请说明理由.【拓展延伸】(3)Rt △ABC 中,BC =1,AC =3,将△ABC 沿着斜边AB 翻折后得的三角形与原来三角形组合成一个四边形ACBD ,将四边形ACBD 分别沿着顶点A 和顶点D 折叠得到两条互相垂直的折痕,交四边形的另两条边于点M 和点N ,AN DM =.【答案】(1)垂直,1;(2)位置关系成立,EF MN=1不成立,理由见解析(3)53【分析】(1)过点没M 作MG ⊥BC 于G ,过点E 作EH ⊥CD 于H ,利用ASA 证明△EHF ≌△MGN ,得MN =EF ,即可得出答案;(2)过点M 作MG ⊥BC 于G ,过点E 作EH ⊥CD 于H ,根据两个角相等证明△EHF ∽△MGN ,得3EF EH AD M N M G AB===;(3)连接CD ,交AB 于G ,则AB 垂直平分CD ,证明△DCM ∽△ABN ,得AN AB DM CD =,利用勾股定理求出AB ,利用等积法求出CG ,从而得出CD ,即可解决问题.【解析】解:(1)如图,过点M 作MG ⊥BC 于G ,过点E 作EH ⊥CD 于H ,则MG =EH=AB=BC ,∠EHF =∠MGN ,MG ⊥EH ,由折叠知,∠MOE =90°,∴∠GMN =∠HEF ,∴△EHF ≌△MGN (ASA ),∴MN =EF ,∴EF MN=1,故答案为:垂直,1;(2)位置关系成立,EF MN =1不成立,过点M 作MG ⊥BC 于G ,过点E 作EH ⊥CD 于H ,则∠EHF =∠MGN =90°,MG ⊥EH ,由折叠知,∠MOE =90°,∴∠GMN =∠HEF ,∴△EHF ∽△MGN ,∴3EF EH AD M N M G AB===;(3)连接CD ,交AB 于G ,∵AC =AD ,BC =BD ,∴AB 垂直平分CD ,∵AN ⊥DM ,∴∠BAN =∠CDM ,∵∠ACB =∠CGB =90°,∴∠MCD =∠ABN ,∴△DCM ∽△ABN ,∴AN AB DM CD=,∵Rt △ABC 中,BC =1,AC =3,∴AB ,∴CG=⋅=AC BC AB10,∴CD =2CG=10,∴=AB CD 53,∴53AN DM =,故答案为:53.26.如图1所示,将一个长为6宽为4的长方形ABEF ,裁成一个边长为4的正方形ABCD 和一个长为4、宽为2的长方形CEFD 如图2.现将小长方形CEFD 绕点C 顺时针旋转至CE F D ''',旋转角为a.(1)当点D ¢恰好落在EF 边上时,求旋转角a 的值;(2)如图3,G 为BC 中点,且0°<a <90°,求证:GD E D ''=;(3)小军是一个爱动手研究数学问题的孩子,他发现在小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD ' 与CBD '△存在两次全等,请你帮助小军直接写出当DCD ' 与CBD '△全等时,旋转角a 的值.【答案】(1)30°;(2)见解析;(3)135°,315°【分析】(1)由含30°角的直角三角形的性质可知∠CD ′E =30°,再根据平行线的性质即得出∠α=30°;(2)由题意可得出CE =CE ′=CG =2,由矩形的性质和旋转的性质可得出∠GCD ′=∠DCE ′=90°+α,进而可利用“SAS”证明△GCD ′≌△E ′CD ,即得出GD ′=E ′D ;(3)根据正方形的性质可得CB =CD ,而CD CD '=,则BCD ' 和DCD ' 为腰相等的两个等腰三角形,所以当两个三角形顶角相等时它们全等.再分类讨论①当BCD ' 和DCD ' 为钝角三角形时,则旋转角135α=︒;②当BCD ' 和DCD ' 为锐角三角形时,则315α=︒.【解析】(1)∵长为4,宽为2的长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,∴CD ′=CD =4,在Rt △CED ′中,CD ′=4,CE =2,。
(完整版)全等正方体常见的几何模型
(完整版)全等正方体常见的几何模型全等正方体常见的几何模型
全等正方体是指具有相同边长和相同角度的正方体。
它是一种非常常见的几何模型,广泛应用于数学、工程和制造领域。
下面介绍几种常见的全等正方体模型。
1. 立方体:立方体是最基本的全等正方体模型。
它具有六个相等的正方形面和八个相等的顶点,每个角度都为90度。
立方体常用于几何学教学、建筑设计和游戏开发等领域。
2. 魔方:魔方,也称为魔方立方体或鲁比克方块,是一种三维拼图游戏。
它由27个小正方体组成,每个面上有一个大正方体。
魔方的六个面都是全等并且可以自由旋转,目标是将魔方还原成六个完整的单色面。
3. 雪花立方体:雪花立方体是指一种全等正方体模型,其六个面上各有一个凹入,使得整个模型形状类似于雪花的外观。
雪花立方体常用于装饰和艺术领域,为空间增添独特的美感。
4. 六面体骰子:六面体骰子,也称作骰子或者色子,是一种常用的博弈工具。
每个面上分别标有1至6个点数,六个面都是全等的正方形。
骰子常用于各种棋类游戏和赌博等活动。
5. 三维液晶显示器:三维液晶显示器是一种先进的显示技术,其中的像素采用全等正方体结构排列。
这种显示器可以呈现更加真实和立体的图像,广泛应用于电视、电脑和虚拟现实等领域。
以上是几种常见的全等正方体模型,它们在不同领域发挥着重要的作用。
全等正方体的几何特性和结构使得它们成为设计和制造中不可或缺的元素。
判定三角形全等的基本思路与模型总结
判定三角形全等的基本思路与模型总结前言在几何学中,判定两个三角形是否全等是一个非常基础且重要的问题。
全等的两个三角形具有完全相等的形状和大小,它们的对应边长和对应角度都相等。
本文将介绍判定三角形全等的基本思路与模型总结。
三角形全等的基本判定条件判定两个三角形全等的基本条件可以归纳为以下几点:1.三边全等(SSS):两个三角形的三条边对应相等。
2.两边一角全等(SAS):两个三角形的两条边和夹角对应相等。
3.两角一边全等(ASA):两个三角形的两个角和夹边对应相等。
4.直角三角形的斜边和斜边上的高(HS):两个直角三角形的斜边和斜边上的高对应相等。
三角形全等的基本思路判定三角形全等的基本思路可以归纳为以下几个步骤:步骤1:获取三个三角形的边长和角度首先,需要获取待判定的两个三角形的边长和角度。
可以通过已知条件和测量手段来获取。
步骤2:根据所给的条件判断边长和角度是否相等根据三角形全等的基本判定条件,逐个判断两个三角形的边长和角度是否相等。
如果两个三角形的边长和角度满足全等的条件,那么它们就是全等的。
步骤3:总结判定结果根据判定结果,总结两个三角形是否全等。
可以用文字说明或以符号表示,例如用“≌”表示全等。
三角形全等的模型总结基于三角形全等的基本思路,我们可以将其总结为如下模型:模型1:SSS如果两个三角形的三条边对应相等,则它们是全等的。
表示为:△ABC ≌ △DEF模型2:SAS如果两个三角形的两条边和夹角对应相等,则它们是全等的。
表示为:△ABC ≌ △DEF模型3:ASA如果两个三角形的两个角和夹边对应相等,则它们是全等的。
表示为:△ABC ≌ △DEF模型4:HS如果两个直角三角形的斜边和斜边上的高对应相等,则它们是全等的。
表示为:△ABC ≌ △DEF总结通过对判定三角形全等的基本思路与模型总结,我们可以更好地理解和应用这一概念。
根据给定的条件,我们可以使用不同的模型来判定三个三角形是否全等。
全等正方形9种经典几何模型
全等正方形9种经典几何模型
正方形是一种特殊的四边形,具有相等的边长和直角的特点。
在几何学中,全等正方形是指具有相等边长和角度的正方形。
以下是全等正方形的九种经典几何模型:
1. 基本模型:全等正方形的基本模型是具有四个相等边长和四个直角的正方形。
它是其他九个模型的基础。
2. 反射模型:通过沿对角线折叠,将一个全等正方形的两个角度重叠,可以得到一个全等的镜像状正方形。
3. 旋转模型:将一个全等正方形绕其中心旋转180度,可以得到一个全等于原正方形的旋转状正方形。
4. 拉伸模型:将一个全等正方形的一条边分成两段,使其中一段变长,另一段变短,可以得到一个全等于原正方形的拉伸状正方形。
5. 缩放模型:将一个全等正方形的四条边同时拉伸或收缩,使边长不变,可以得到一个全等于原正方形的缩放状正方形。
6. 组合模型:通过组合两个或多个全等正方形,可以得到一个全等于原正方形的多组合状正方形。
7. 平移模型:将一个全等正方形平移一段距离,可以得到一个全等于原正方形的平移状正方形。
8. 对称模型:以某个点为中心,将一个全等正方形对称成一个全等的对称状正方形。
9. 重叠模型:将两个全等正方形重叠在一起,可以得到一个全等于原正方形的重叠状正方形。
这些全等正方形的几何模型在建筑设计、工程制图和数学研究等领域中具有重要的应用价值。
对于理解正方形的性质和特点,了解这些模型是非常有帮助的。
全等模型-角平分线模型—2024年中考数学常见几何模型全归纳(全国通用)(解析版)
全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。
模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线、CA OA ⊥于点A 时,过点C 作CA OB ⊥.结论:CA CB =、OAC ∆≌OBC ∆.图1 图2常见模型1(直角三角形型)条件:如图2,在ABC ∆中,90C ∠=︒,AD 为CAB ∠的角平分线,过点D 作DE AB ⊥.结论:DC DE =、DAC ∆≌DAE ∆.(当ABC ∆是等腰直角三角形时,还有AB AC CD =+.)图3常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。
结论:①180BOA ACB ∠+∠=︒;②AD BE =;③2OA OB AD =+.例1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==, ∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1. 【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键. 例2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =( )A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,{PA PA PM PF==,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.八年级校联考期中)如图,ABC中,ACF∠A.①②B.①③C.②③④D.①②③④【答案】D【分析】过点P作PD AC⊥于D,根据角平分线的判定定理和性质定理即可判断①结论;证明()Rt Rt HLPAM PAD≌,()Rt Rt HLPCD PCN≌,得出APM APD∠=∠,CPD CPN∠=∠,进而得到2MPN APC∠=∠,再利用四边形内角和,即可判断②结论;根据角平分线的定义和三角形的外角性质,即可判断③结论;根据全等三角形的性质,即可判断④结论.【详解】解:①如图,过点P作PD AC⊥于D,BP 平分ABC ∠,PM BE ⊥,PN BF ⊥,PM PN ∴=, AP 平分EAC ∠,PM BE ⊥,PD AC ⊥,PM PD ∴=,PN PD ∴=,PN BF ⊥,PD AC ⊥,CP ∴平分ACF ∠,①结论正确;②PM BE ⊥,PD AC ⊥,PN BF ⊥,90PMA PDA PNB ∴∠=∠=∠=︒,在Rt PAM 和Rt PAD △中,PM PD PA PA =⎧⎨=⎩,()Rt Rt HL PAM PAD ∴≌,APM APD ∴∠=∠,同理可得,()Rt Rt HL PCD PCN ≌,CPD CPN ∴∠=∠,()22MPN APM APD CPD CPN APD CPD APC ∴∠=∠+∠+∠+∠=∠+∠=∠,360ABC PNB MPN PMA ∠+∠+∠+∠=︒,360180ABC MPN PNB PMA ∴∠+∠=︒−∠−∠=︒,2180ABC APC ∴∠+∠=︒,②结论正确;③AP 平分EAC ∠, 2CAE MAP ∴∠=∠,CAE ABC ACB ∠=∠+∠,MAP ABP APB ∠=∠+∠,()2ABC ACB ABP APB ∴∠+∠=∠+∠, BP 平分ABC ∠,2ABC ABP ∴∠=∠,222ABP ACB ABP APB ∴∠+∠=∠+∠,2ACB APB ∴∠=∠,③结论正确; ④由②可知,Rt Rt PAM PAD ∴≌,Rt Rt PCD PCN ≌,PAM PAD SS ∴=,PCD PCN S S =, PAC PAD PCD S S S =+,PAC PAM PCN S S S =+APM CPN APC S S S ∴+=△△△,④结论正确,∴正确的结论是①②③④,故选:D【点睛】本题考查了角平分线的平分线的判定定理和性质定理,全等三角形的判定和性质,四边形内角和,三角形的外角性质,熟练掌握角平分线上的点到角两边的距离相等是解题关键. 例4.(2023秋·浙江·八年级专题练习)如图,四边形ABDC 中,90D ABD ∠=∠=︒,点O 为BD 的中点,且OA平分BAC ∠.(1)求证:OC 平分ACD ∠;(2)求证:OA OC ⊥;(3)求证:AB CD AC +=.【答案】(1)见解析(2)见解析(3)见解析【分析】(1)过点O 作OE AC ⊥于E ,根据角平分线上的点到角的两边的距离相等,可得OB OE =,从而求出OE OD =,然后根据到角的两边距离相等的点在角的平分线上证明即可;(2)利用HL ,证明Rt Rt ABO AEO ≌,根据全等三角形对应角相等,可得AOB AOE ∠=∠,同理可得COD COE ∠=∠,然后求出=90AOC ∠︒,再根据垂直的定义即可证明;(3)根据全等三角形对应边相等,可得AB AE =,CD CE =,然后根据线段之间的数量关系,即可得出结论.【详解】(1)证明:过点O 作OE AC ⊥于E ,∵90ABD Ð=°,OA 平分BAC ∠∴OB OE =,∵点O 为BD 的中点,∴OB OD =,∴OE OD =,又∵90D Ð=°,∴OC 平分ACD ∠;(2)证明:在Rt ABO △和Rt AEO △中,AO AO OB OE =⎧⎨=⎩,∴()Rt Rt HL ABO AEO △≌△,∴AOB AOE ∠=∠,在Rt CEO △和Rt CDO △中,CO CO OE OD =⎧⎨=⎩,∴()Rt Rt HL CEO CDO ≌,∴COD COE ∠=∠,∴1180902AOC AOE COE ∠=∠+∠=⨯︒=︒,∴OA OC ⊥;(3)证明:∵Rt Rt ABO AEO ≌,∴AB AE =,∵Rt Rt CEO CDO ≌,∴CD CE =,∵AE CE AC +=,∴AB CD AC +=.【点睛】本题考查了角平分线的判定与性质、全等三角形的判定与性质、垂线的定义,熟记性质并作辅助线构造出全等三角形是解题的关键.例5.(2022·河北·九年级专题练习)已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120°,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120°,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60°(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60°,∴∠MCO=90°-60° =30°,∠NCO=90°-60° =30°,∴∠MCN=30°+30°=60°,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG (全等三角形对应边相等).【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线,AB OC ⊥,结论:△AOC ≌△BOC ,OAB ∆是等腰三角形、OC 是三线合一等。
(完整版)全等四边形常见的几何模型
(完整版)全等四边形常见的几何模型
全等四边形是指具有相等边长和相等内角的四边形。
在几何学中,全等四边形是一种常见的几何模型,它具有一些常见的特征和性质。
本文档将介绍几种常见的全等四边形模型及其特点。
矩形
矩形是一种具有两对相等的对边和四个内角均为直角的全等四边形。
矩形的特点是具有相等的对边长度和相等的内角度数(均为90度)。
除此之外,矩形还具有对角线相等和相互垂直的性质。
矩形常用于建筑设计和数学计算中。
正方形
正方形是一种特殊的矩形,具有四条相等的边和四个内角均为直角。
正方形的特点是具有相等的边长和相等的内角度数(均为90度)。
正方形也具有对角线相等和相互垂直的性质。
正方形在几何学和日常生活中广泛应用,如图形设计、棋盘格等。
平行四边形
平行四边形是指具有两对平行边的全等四边形。
平行四边形的特点是具有两对相等的对边和相等的内角对(错位两角互补)。
平行四边形的对角线互相平分,且对角线之间互相垂直。
平行四边形在建筑设计和力学分析中有广泛的应用。
菱形
菱形是一种具有相等的对边和相等的内角度数(均为90度)的全等四边形。
菱形的特点是具有相等的对边长度和相等的内角度数,但与矩形不同的是,菱形的对角线相互垂直,而不是平行。
菱形广泛应用于珠宝设计和图案设计领域。
总结:全等四边形是一种具有相等边长和相等内角的四边形。
矩形、正方形、平行四边形和菱形都属于全等四边形的常见模型。
它们在几何学和各个领域中都有广泛的应用,具有特定的特点和性质。
2024年中考数学常见几何模型全归纳(全国通用)专题18 全等与相似模型之十字模型(解析版)
是解题的关键.
例 3.(2023 安徽省芜湖市九年级期中)如图,正方形 ABCD 中,点 E、F、H 分别是 AB、BC、CD 的中 点, CE、DF 交于 G,连接 AG、HG .下列结论:① CE DF ;② AG DG ;③ CHG DAG ; ④ 2HG AD .正确的有( )
A.1 个
在正方形 ABCD 中,AD∥BC,∠D=90°,CD⊥BC, ∴∠DAE+∠AED=90°,∴∠AED=∠APQ,∴∠APQ=∠PQM,∴∠PQM=∠APQ=∠AED, ∵PM⊥BC,∴PM=AD,∵∠D=∠PMQ=90°,∴△PQM≌△ADE,∴PQ=AE,
在 Rt△ADE 中, DE 5 ,AD=12,由勾股定理得: AE 52 122 13 , ∴PQ=13.故选:A.
专题 18 全等与相似模型之十字模型
几何学是数学的一个重要分支,研究的是形状、大小和相对位置等几何对象的性质和变换。在初中几 何学中,十字模型就是综合了上述知识的一个重要模型。 本专题就十字模型相关的考点作梳理,帮助学生 更好地理解和掌握。 模型 1.正方形的十字架模型(全等模型) “十字形”模型,基本特征是在正方形中构成了一个互相重直的 “十字形”,由此产生了两组相等的锐角 及一组全等的三角形。 1)如图 1,在正方形 ABCD 中,若 E、F 分别是 BC、CD 上的点,AE⊥BF;则 AE=BF。
【点睛】本题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,Байду номын сангаас到△PQM≌△ADE 是解
题的关键.
例 2.(2023 年辽宁省丹东市中考数学真题)如图,在正方形 ABCD 中, AB 12 ,点 E,F 分别在边 BC ,
CD 上, AE 与 BF 相交于点 G,若 BE CF 5 ,则 BG 的长为
(专题)全等三角形常用模型(含答案解析)
(专题)全等三角形常用模型(含答案解析)全等三角形常用模型(含答案解析)全等三角形是初中数学中一个重要的内容,也是高中几何学的基础。
掌握全等三角形的基本性质和判定条件,对于解题和证明都有重要的作用。
在这篇文章中,我们将介绍全等三角形的常用模型,并给出答案解析。
一、全等三角形的基本性质全等三角形是指具有相同形状和大小的三角形。
它们的内角相等,对应的边长也相等。
了解全等三角形的基本性质,对于后面的模型理解和应用非常重要。
1. 边边边(SAS)判定法当两个三角形的两边分别相等,并且夹角也相等时,可以判定它们全等。
2. 边角边(SAS)判定法当两个三角形的一对边分别相等,并且夹角也相等时,可以判定它们全等。
3. 角边角(ASA)判定法当两个三角形的两个角分别相等,并且夹边也相等时,可以判定它们全等。
二、全等三角形的常用模型及答案解析下面将介绍一些常见的全等三角形模型,它们在实际解题中经常出现,了解并掌握它们对于解题有很大的帮助。
1. 等腰三角形等腰三角形是指两边相等的三角形。
当两个等腰三角形的底边相等,并且底边夹角也相等时,可以判定它们全等。
答案解析:设两个等腰三角形为ΔABC和ΔDEF,已知AB = DE,∠BAC = ∠EDF,同时∠ABC = ∠DEF。
根据角边角(ASA)判定法,可以判定ΔABC ≌ ΔDEF。
2. 直角三角形直角三角形是指一个角为直角(90°)的三角形。
当两个直角三角形的一条直角边相等,并且斜边也相等时,可以判定它们全等。
答案解析:设两个直角三角形为ΔABC和ΔDEF,已知∠BAC =∠EDF = 90°,并且AB = DE,AC = DF。
根据边边边(SAS)判定法,可以判定ΔABC ≌ ΔDEF。
3. 等边三角形等边三角形是指三条边都相等的三角形。
当两个等边三角形的一条边相等时,可以判定它们全等。
答案解析:设两个等边三角形为ΔABC和ΔDEF,已知AB = DE。
全等模型:一线三等角(K字)2023-2024学年八年级数学上册常见几何模型解读(浙教版)解析版
全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅ ,已知:在ABC 中,【答案】(1)见解析;(2)成立,见解析【分析】(1)根据AAS 可证明ADB CEA ≌,可得AE BD AD CE ==,,可得DE BD CE =+.(2)由已知条件可知180BAD CAE α∠+∠=︒−,180DBA BAD α∠+∠=︒−,可得DBA CAE ∠=∠,结合条件可证明ADB CEA ≌,同(1)可得出结论.【详解】证明:(1)如图1,∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠,在ADB 和CEA 中,BDA CEA CAE ABDAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADB CEA ≌△△,∴AE BD AD CE ==,,∴DE AE AD BD CE =+=+;(2)如图2,∵BDA BAC α∠=∠=,∴180DBA BAD BAD CAE ∠∠∠∠α+=+=︒−,∴DBA CAE ∠=∠,在ADB 和CEA 中,BDA CEA CAE ABDAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADB CEA ≌△△,∴AE BD AD CE ==,,∴DE AE AD BD CE =+=+.【点睛】本题主要考查了全等三角形的判定和性质,由条件证明三角形全等得到AE BD AD CE ==,是解题的关键.例2.(2023春·上海·七年级专题练习)在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE △的面积之和.【答案】(1)DE =BD+CE(2)DE =BD+CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD+∠EAC =∠BAD+∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD+CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD+∠EAC =∠BAD+∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD+CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【详解】(1)解:DE =BD+CE ∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD+∠EAC =∠BAD+∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD+AE =BD+CE ,故答案为:DE =BD+CE .(2)DE =BD+CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD+∠EAC =∠BAD+∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD+AE =BD+CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC•h =12,S △ABF =12BF•h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF+S △ABD =S △FBD+S △ACE =4,∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.【答案】(1)△ACP 与△BPQ 全等,理由见解析;(2)PC ⊥PQ ,证明见解析;(3)存在,当t =1s ,x =2cm/s或t =94s ,x =289cm/s 时,△ACP 与△BPQ 全等.【分析】(1)利用SAS 定理证明ACP BPQ ∆≅∆;(2)根据全等三角形的性质判断线段PC 和线段PQ 的位置关系;(3)分ACP BPQ ∆≅∆,ACP BQP ∆≅∆两种情况,根据全等三角形的性质列式计算.【详解】(1)△ACP 与△BPQ 全等,理由如下:当t =1时,AP =BQ =2,则BP =9﹣2=7,∴BP =AC ,又∵∠A =∠B =90°,在△ACP 和△BPQ 中,AP BQ A B CA PB =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS );(2)PC ⊥PQ ,证明:∵△ACP ≌△BPQ ,∴∠ACP =∠BPQ ,∴∠APC+∠BPQ =∠APC+∠ACP =90°.∴∠CPQ =90°,即线段PC 与线段PQ 垂直;(3)①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴9﹣2t =7,解得,t =1(s ),则x =2(cm/s );②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,则2t =12×9,解得,t =94(s ),则x =7÷94=289(cm/s ),故当t =1s ,x =2cm/s 或t =94s ,x =289cm/s 时,△ACP 与△BPQ 全等.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分 类讨论思想的灵活运用是解题的关键.例4.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =.(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =−+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.【答案】(1)见详解;(2)点M 的坐标为(1,3);(3)R (203,0)【分析】(1)先判断出∠ACB=∠ADC ,再判断出∠CAD=∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(2)过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,判断出MF=NG ,OF=MG ,设M (m ,n )列方程组求解,即可得出结论;(3)过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H ,先求出OP=4,由y=0得x=1,进而得出Q (1,0),OQ=1,再判断出PQ=SQ ,即可判断出OH=5,SH=OQ=1,进而求出直线PR 的解析式,即可得出结论.【详解】(1)证明:∵∠ACB =90°,AD ⊥l ,∴∠ACB =∠ADC .∵∠ACE =∠ADC+∠CAD ,∠ACE =∠ACB+∠BCE ,∴∠CAD =∠BCE ,∵∠ADC =∠CEB =90°,AC =BC .∴△ACD ≌△CBE ,∴CD =BE ,(2)解:如图2,过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,交FM 的延长线于G ,由已知得OM =ON ,且∠OMN =90°,∴由(1)得△OFM ≌△MGN ,∴MF =NG ,OF =MG ,设M (m ,n ),∴MF =m ,OF =n ,∴MG =n ,NG =m ,∵点N 的坐标为(4,2)∴42m n n m +=⎧⎨−=⎩解得13m n =⎧⎨=⎩∴点M 的坐标为(1,3);(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H ,对于直线y =﹣4x+4,由x =0得y =4,∴P (0,4),∴OP =4,由y =0得x =1,∴Q (1,0),OQ =1,∵∠QPR =45°,∴∠PSQ =45°=∠QPS .∴PQ =SQ .∴由(1)得SH =OQ ,QH =OP .∴OH =OQ+QH =OQ+OP =4+1=5,SH =OQ =1.∴S (5,1),设直线PR 为y =kx+b ,则451b k b =⎧⎨+=⎩,解得435b k =⎧⎪⎨=−⎪⎩.∴直线PR 为y =35-x+4. 由y =0得,x =203,∴R (203,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
八年级全等模型第1讲一线三等角课件
中位线定理
证明角度相等方法
④角度的和差关系
⑤证明角所在的三角形全等或类似
⑥四点共圆,对角互补
⑦圆周角定理
⑧等(同)角的余(补)角相等
课堂练习
例1、已知:在△ABC中,AB=AC,∠BAC=90° ,过点A作直线l,过B,C分别作BD⊥l于点D,CE⊥l于点E.
(1)如图1,当直线l在△ABC的外部时,求证:DE= BD+CE;
CD= DE,∠CDE=45°求证:BD= BC.
【解答】已知在等腰Rt△ABC中,∠ACB=90°
∴∠B=45°∵CD= DE,∠CDE=45°
∴∠DCE=
180°−∠
2
= 67.5°
在△DCB中,同理∠CDB=180°-∠DCE-∠B=67.5°
∴∠DCE=∠CDB
∴BD= BC
对应边相等即可,再根据线段的和差关系不难解出答案。
课堂练习
二、等边三角形中的“一线三等角”
例1、如图,△ABC为等边三角形,D,E,F分别AB , BC,AC上的点,∠DEF= 60°, BD=CE.求证:BE= CF.
【解答】
已知△ABC为等边三角形
∴∠B=∠C=60°
∴∠BED+∠BDE=120°
∵∠DEF=60°
∴∠BED+∠FEC=120°
∴∠BDE=∠FEC
在△BED和△FCE中
∠ = ∠ = 60°
∵ ቐ =
∠ = ∠
∴△BED≌△FCE(ASA)
∴BE=CF
【分析】本题关键在于求证△BED≌△FCE(ASA)
一线三等角
全等模型知识点总结
全等模型知识点总结在几何学中,全等模型是指两个图形在形状和大小上完全相同,被称为全等图形。
这意味着它们的所有对应边长度相等,对应角度相等,因此它们是相似的。
全等模型是几何学中的重要概念,它在解决问题和证明定理时起着重要的作用。
本文将对全等模型的相关知识点进行总结,包括全等模型的定义、性质、判定条件、应用以及相关定理等内容。
一、全等模型的定义全等模型是指两个图形在形状和大小上完全相同,其定义如下:定义1:如果两个图形A和B,它们之间存在一个一一对应关系,使得A中的每一个点都与B中的一个点对应,并且对应的边和对应的角度相等,则称图形A和图形B是全等的。
符号表示为A≌B。
根据这个定义,全等图形必顋满足以下条件:1. 对应的边相等:即A和B中的每一条边都有对应的边,且这些对应的边的长度相等。
2. 对应的角度相等:A和B中的每一个角度都有对应的角度,且这些对应的角度相等。
3. 所有对应的点都在同一直线上:即A和B中的每一个点都有对应的点,并且这些对应的点在同一条直线上。
二、全等模型的性质全等模型具有许多重要的性质,其中一些性质如下:1. 对应边和对应角相等:全等图形的对应边和对应角都相等,即它们所对应的边长度相等,对应的角度也相等。
2. 全等模型是相似的:由全等模型的定义可知,全等图形必须是相似的。
因此,全等模型也满足相似三角形的性质,如正弦定理、余弦定理等。
3. 全等模型的对应边相等性质:如果两个全等模型A和B,那么它们的对应边是两两相等的。
4. 全等模型的对应角相等性质:如果两个全等模型A和B,那么它们的对应角是两两相等的。
5. 全等模型的角平分线相等性质:如果两个全等模型A和B,那么它们的对应角的角平分线也相等。
6. 全等模型的对应中线相等性质:如果两个全等模型A和B,那么它们的对应中线也相等。
7. 全等模型的对应高相等性质:如果两个全等模型A和B,那么它们的对应高也相等。
8. 全等模型的对应中线、高线所成角相等性质:如果两个全等模型A和B,那么它们的对应中线、高线所成角相等。
全等模型知识点总结归纳
全等模型知识点总结归纳全等模型的性质和应用可以总结为以下几个方面:1. 全等模型的定义和性质全等模型的定义是指,当两个几何图形(通常是多边形)的对应部分完全相等时,这两个几何图形就是全等的。
在全等模型中,对应的边长相等,对应的角度相等,对应的面积相等。
这些性质是判断两个几何图形是否全等的重要依据。
2. 全等模型的判定在实际问题中,我们需要对给定的几何图形进行全等模型的判定。
全等模型的判定方法包括SSS、SAS、ASA和HL四种判定条件。
其中SSS表示三边全等,SAS表示两边及夹角全等,ASA表示两角及一边全等,HL表示斜边和一条直角边全等。
利用这些判定条件,我们可以快速准确地判断两个几何图形是否全等。
3. 全等模型的性质和应用全等模型在几何学中有着许多重要的性质和应用。
例如,全等模型可以用来证明几何定理,如等腰三角形的性质、垂直平分线的性质等;它也可以用来解决实际问题,如在建筑设计中确定不规则图形的面积,或者在工程测量中确定地图上不同地点之间的距离等。
全等模型还可以帮助我们理解和推导其他几何图形的性质,如相似图形、对称图形等。
4. 全等模型的应用举例全等模型在实际问题中有着广泛的应用。
下面举几个例子来说明全等模型的应用:例1:建筑设计中的全等模型应用在建筑设计中,经常需要计算不规则图形的面积。
我们可以利用全等模型来帮助计算。
例如,一块不规则形状的瓷砖需要计算其面积,可以将其分割成多个三角形或梯形,通过计算这些三角形或梯形的面积,然后将它们相加,即可得到整个不规则图形的面积。
这种方法利用了全等模型中对应部分面积相等的性质,简化了面积的计算过程。
例2:工程测量中的全等模型应用在工程测量中,经常需要测量不同地点之间的距离。
我们可以利用全等模型来帮助测量。
例如,要测量两座山之间的距离,可以在地面上测量两个位置到山顶的距离,并测量出山顶之间的夹角。
然后利用全等模型中斜边和一个直角边全等的性质,可以计算出两座山之间的距离。
全等模型-倍长中线与截长补短模型(学生版)-2024年中考数学常见几何模型
全等模型-倍长中线与截长补短模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.证明思路:延长AD至点E,使得AD=DE.若连结BE,则ΔBDE≅ΔCDA;若连结EC,则ΔABD≅ΔECD;2、中点型:如图2,C为AB的中点.证明思路:若延长EC至点F,使得CF=EC,连结AF,则ΔBCE≅ΔACF;若延长DC至点G,使得CG=DC,连结BG,则ΔACD≅ΔBCG.3、中点+平行线型:如图3, AB⎳CD,点E为线段AD的中点.证明思路:延长CE交AB于点F(或交BA延长线于点F),则ΔEDC≅ΔEAF.1(2023·江苏徐州·模拟预测)(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.2(2023·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.(2)如图2,AD是△ABC的中线,BE交AC干E,交AD于F,且AE=EF.请判昕AC与BF的数量关系,并说明理由.3(2022·山东·安丘市一模)阅读材料:如图1,在△ABC中,D,E分别是边AB,AC的中点,小亮在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF=DE,连接CF,证明△ADE≌△CFE,再证四边形DBCF是平行四边形即得证.类比迁移:(1)如图2,AD是△ABC的中线,E是AC上的一点,BE交AD于点F,且AE=EF,求证:AC=BF.小亮发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD=FD,连接MC,⋯⋯请根据小亮的思路完成证明过程.方法运用:(2)如图3,在等边△ABC中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE,F是线段BE的中点,连接DF、CF.请你判断线段DF与AD的数量关系,并给出证明.4(2022·河南商丘·一模)阅读材料如图1,在△ABC中,D,E分别是边AB,AC的中点,小明在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF=DE,连接CF,证明△ADE≌△CFE,再证四边形DBCF是平行四边形即得证.(1)类比迁移:如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.小明发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD=FD,连接MC,⋯⋯请根据小明的思路完成证明过程.(2)方法运用:如图3,在等边△ABC中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE.F是线段BE的中点,连接DF,CF.请你判断线段DF与AD的数量关系,并给出证明;模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
三角形中常见的全等模型
三角形中常见的全等模型引言三角形是几何学中重要的概念之一,全等三角形则是指具有相同形状和相等大小的三角形。
在几何学中,全等三角形是一种非常重要的概念,它们之间存在着一些特殊的性质和关系。
本文将介绍三角形中常见的全等模型,以便读者更好地理解和应用这些几何学概念。
等腰三角形全等模型等腰三角形是指两边长度相等的三角形。
在等腰三角形中,由于两边长度相等,可以得出两边的夹角相等的结论。
根据全等三角形定义,如果两个三角形的两边长度相等,且夹角也相等,那么这两个三角形是全等的。
具体而言,如果两个等腰三角形的两个边分别相等,且两个等腰三角形的夹角也相等,那么这两个等腰三角形是全等的。
这个模型可以用来解题中寻找全等三角形的依据。
直角三角形全等模型直角三角形是指其中一个角是90度的三角形。
在直角三角形中,根据勾股定理可以得到较为简单的边长关系。
如果两个直角三角形的一个直角角度相等,且两个直角三角形的一个边相等,那么这两个直角三角形是全等的。
具体而言,如果两个直角三角形的一个直角角度相等,且两个直角三角形的一个边相等,那么这两个直角三角形是全等的。
这个模型可以用来解题中确定全等三角形的条件。
一般三角形全等模型一般三角形指没有特殊性质的三角形,即三个边都不相等且三个角也不相等的三角形。
对于一般三角形,我们可以利用边角边(SAS)全等判定法来确定两个三角形是否全等。
具体而言,如果两个三角形的一对边分别相等,并且这对边之间的夹角也相等,那么这两个三角形是全等的。
这个模型可以应用于解题中确定一般三角形的全等关系。
总结通过分析等腰三角形、直角三角形和一般三角形的全等模型,我们可以更好地理解和应用三角形的全等概念。
等腰三角形全等模型通过边长和夹角的相等关系来确定全等,直角三角形全等模型通过直角角度和一边的相等关系来确定全等,一般三角形全等模型通过边角边的相等关系来确定全等。
通过熟练掌握这些全等模型,我们可以更好地解决与全等三角形相关的几何问题。
全等三角形的模型归纳总结
全等三角形的模型归纳总结引言全等三角形是初中数学中的重要概念,也是几何学中的基础知识点之一。
本文将从几何模型的角度出发,详细探讨全等三角形的特点、性质和应用,帮助读者更好地理解和运用全等三角形。
全等三角形的定义在几何学中,全等三角形是指具有相同形状和相等的对应边长的三角形。
在判断两个三角形是否全等时,需要比较它们的对应边长和对应角度。
对应边长全等三角形的对应边长是相等的,即三角形的对应边长分别相等或比例相等。
例如,如果三角形ABC和三角形DEF的对应边长满足AB=DE,BC=EF,AC=DF,则可以判断这两个三角形全等。
对应角度全等三角形的对应角度也是相等的,即三角形的对应角度互相相等。
例如,如果三角形ABC和三角形DEF的对应角度满足∠A=∠D,∠B=∠E,∠C=∠F,则可以判断这两个三角形全等。
综上所述,两个三角形全等的条件可以归纳为“SSS”(边-边-边)、“SAS”(边-角-边)、“ASA”(角-边-角)、“AAS”(角-角-边)等。
全等三角形的性质全等三角形具有一些重要的性质,在解决几何题目和证明过程中起到重要的作用。
一一对应性质全等三角形的对应边长和对应角度一一对应。
这意味着,如果已知两个三角形的一对对应边长和一对对应角度相等,那么可以确定这两个三角形全等。
符号关系性质全等三角形的符号关系性质包括以下几个方面: 1. 全等三角形的对应边长相等可以表示为AB=DE、BC=EF、AC=DF; 2. 全等三角形的对应角度相等可以表示为∠A=∠D、∠B=∠E、∠C=∠F; 3. 全等三角形的对应中线相等可以表示为AM=DN、BP=EQ、CQ=FP,其中M、N、P、Q分别为对应边的中点。
对于解题和证明过程中,通过利用这些符号关系性质,可以简化问题,提高解题效率。
全等三角形的三辅线全等三角形的三辅线是指三角形的垂直平分线、中位线和角平分线。
全等三角形的辅线有以下几个性质: 1. 三角形三辅线的交点为三角形的内心,称为内心I; 2. 三角形的垂直平分线经过三角形三个顶点的中点; 3. 三角形的中位线经过三角形三个顶点的中点; 4. 三角形的角平分线分别经过三个内角的平分点。
全等三角形八大基本模型
全等三角形八大基本模型1. 引言全等三角形是指具有相同形状和大小的三角形。
在数学中,全等三角形是一个重要的概念,它涉及到三角形的各个方面,包括边长、角度、面积等。
全等三角形的研究对于解决各种几何问题具有重要意义。
本文将介绍全等三角形的八大基本模型,包括对应角、对应边、SSS准则、SAS准则、ASA准则、AAS准则、HL准则和45°-45°-90°三角形。
2. 对应角全等三角形的对应角是指两个全等三角形中相等的角。
当两个三角形的对应角相等时,可以推断出这两个三角形是全等的。
对应角的相等性是全等三角形判定的基础。
3. 对应边全等三角形的对应边是指两个全等三角形中相等的边。
当两个三角形的对应边相等时,可以推断出这两个三角形是全等的。
对应边的相等性是全等三角形判定的重要条件之一。
4. SSS准则SSS准则是指两个三角形的三边分别相等时,这两个三角形是全等的。
SSS准则是全等三角形判定的基本方法之一。
具体而言,如果两个三角形的三条边分别相等,则可以推断出这两个三角形是全等的。
5. SAS准则SAS准则是指两个三角形的两边和夹角分别相等时,这两个三角形是全等的。
SAS准则是全等三角形判定的常用方法之一。
具体而言,如果两个三角形的两边和夹角分别相等,则可以推断出这两个三角形是全等的。
6. ASA准则ASA准则是指两个三角形的两角和夹边分别相等时,这两个三角形是全等的。
ASA准则是全等三角形判定的常用方法之一。
具体而言,如果两个三角形的两角和夹边分别相等,则可以推断出这两个三角形是全等的。
7. AAS准则AAS准则是指两个三角形的两边和夹角分别相等时,这两个三角形是全等的。
AAS准则是全等三角形判定的常用方法之一。
具体而言,如果两个三角形的两边和夹角分别相等,则可以推断出这两个三角形是全等的。
8. HL准则HL准则是指两个直角三角形的斜边和一个直角边分别相等时,这两个三角形是全等的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的几何模型一、旋转主要分四大类:绕点、空翻、弦图、半角。
这四类旋转的分类似于平行四边形、矩形、菱形、正方形的分类。
1.绕点型(手拉手模型)(1)自旋转:⎪⎪⎩⎪⎪⎨⎧,造中心对称遇中点旋全等遇等腰旋顶角,造旋转,造等腰直角旋遇,造等边三角形旋遇自旋转构造方法0000018090906060例题讲解:1.如图所示,P是等边三角形ABC内的一个点,PA=2,PB=3 2,PC=4,求△ABC的边长。
CABP2. 如图,O是等边三角形ABC内一点,已知:∠AOB=115°,∠BOC=125°,则以线段OA、OB、OC为边构成三角形的各角度数是多少?3.如图,P是正方形ABCD内一点,且满足PA:PD:PC=1:2:3,则∠APD= .4.如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
AB CO(2)共旋转(典型的手拉手模型)模型变形:等边三角形共顶点共顶点等腰直角三角形共顶点等腰三角形共顶点等腰三角形例题讲解:1. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF. (1) 如图1,当点D 在边BC 上时,求证:① BD=CF ‚ ②AC=CF+CD.(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由; (3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。
2.(13北京中考)在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得 到线段BD 。
(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。
2.半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
例题:1.在等腰直角△ABCD 的斜边上取两点M,N,使得45=︒∠MCN ,记AM=m,MN=x,BN=n , 求证以m ,x ,n 为边长的三角形为直角三角形。
m xnBCAMN2.如图,正方形ABCD 的边长为1,AB,AD 上各存在一点P 、 Q ,若△APQ 的周长为2,求PCQ ∠的度数。
D ACBQ P3.E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为 垂足,求证:AH AB =.4. 已知,正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N ,AH ⊥MN 于点H .CH FED BA(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)5.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.6.(14房山2模). 边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设MBN ∆的周长为p ,在旋转正方形ABCD 的过程中,p 值是否有变化?请证明你的结论.7. (2011石景山一模)已知:如图,正方形ABCD 中,AC ,BD 为对角线,将∠BAC 绕顶点A逆时针旋转α°(0<α<45),旋转后角的两边分别交BD 于点P 、点Q ,交BC ,CD 于点E 、点F ,连接EF ,EQ .(1)在∠BAC 的旋转过程中,∠AEQ 的大小是否改变?若不变写出它的度数;若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明); (2)探究△APQ 与△AEF 的面积的数量关系,写出结论并加以证明.8.已知在ABC △中,90=∠ACB ,26==CB CA ,AB CD ⊥于D ,点E 在直线CD 上,CD DE 21=,点F 在线段AB 上,M 是DB 的中点,直线AE 与直线CF 交于N 点.(1)如图1,若点E 在线段CD 上,请分别写出线段AE 和CM 之间的位置关系和数量关系:___________,___________;(2)在(1)的条件下,当点F 在线段AD 上,且2AF FD =时,求证:45=∠CNE ;(3)当点E 在线段CD 的延长线上时,在线段AB 上是否存在点F ,使得45=∠CNE .若存在,请直接写出AF 的长度;若不存在,请说明理由.M'AB CDEF MNDCBA9.(2014平谷一模24)(1)如图1,点E 、F 分别是正方形ABCD 的边BC 、CD 上的点,∠EAF =45°,连接EF ,则EF 、BE 、FD 之间的数量关系是:EF =BE +FD .连结BD ,交AE 、AF 于点M 、N ,且MN 、BM 、DN 满足222DN BM MN +=,请证明这个等量关系; (2)在△ABC 中, AB =AC ,点D 、E 分别为BC 边上的两点.①如图2,当∠BAC =60°,∠DAE =30°时,BD 、DE 、EC 应满足的等量关系是②如图3,当∠BAC =α,(0°<α<90°),∠DAE =α21时,BD 、DE 、EC 应满足的等量关系是___________.【参考:1cos sin 22=+αα】 注意:2222AM BM DM =+A B CD EF 图1B CDE 图2AB CDE 图3AMN(1) 在正方形ABCD 中,AB =AD ,∠BAD =90°,∠ABM =∠ADN=45°.把△ABM 绕点A 逆时针旋转90°得到M AD '∆. 连结M N '.则,,AM AM BM M D =='',︒=∠='∠45ABM M AD ,BAM M DA ∠='∠.∵∠EAF =45°,∴∠BAM +∠DAN =45°,∠DAM′+∠DAF =45°, ︒=∠=∠45'MAN AN M . ∴N AM '∆≌AMN ∆. ∴N M '=MN .在N DM '∆中,︒=∠+∠=∠90''ADM ADN DN M , 222''DM DN N M +=∴222BM DN MN +=(2)① 222EC EC BD BD DE +⋅+=; ② 222cos 2EC EC BD BD DE +⋅⋅+=αNM FED CBA 图1备用图3.空翻模型例题:1.如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?N E B M A DGNEB M A D【解析】 猜测DM MN =.过点M 作MG BD ∥交AD 于点G ,AG AM =,∴GD MB =又∵120ADM DMA +∠=∠,120DMA NMB +=∠∠ ∴ADM NMB =∠∠,而120DGM MBN ==∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.2.如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线 交于点N ,MD 与MN 有怎样的数量关系?N CDE B M A NCDEB M A【解析】 猜测DM MN =.在AD 上截取AG AM =,∴DG MB =,∴45AGM =∠∴135DGM MBN ==︒∠∠,∴ADM NMB =∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.3.【探究发现】如图1,ABC ∆是等边三角形,60AEF ︒∠=,EF 交等边三角形外角平分线CF 所在的直线于点F .当点E 是BC 的中点时,有AE =EF 成立;【数学思考】某数学兴趣小组在探究AE 、EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E 是直线BC 上(B ,C 除外)任意一点时(其它条件不变),结论AE =EF 仍然成立.假如你是该兴趣小组中的一员,请你从“点E 是线段BC 上的任意一点”;“点E是线段BC 延长线上的任意一点”;“ 点E是线段BC 反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并进行证明.【拓展应用】当点E 在线段BC 的延长线上时,若CE = BC ,在备用图2中画出图形,并运用上述结论求出:ABC AEF S S ∆∆的值.4.弦图模型外弦图 内弦图 总统图 例题:1.两个全等的30°,60°三角板ADE,BAC,如右下图所示摆放,E 、A 、C 在一条直线上,连接BD,取BD 的 中点M ,连接ME ,MC .(1)求证:△EDM ≌△CAM ;(2)求证:△EMC 为等腰直角三角形.2.如图△ABC 中,已知∠A=90°,AB=AC,CABCABFCABE(1)D为AC中点,AE⊥BD于E,延长AE交BC于F,求证:∠ADB=∠CDF(2)若D,M为AC上的三等分点,如图2,连BD,过A作AE⊥BD于点E,交BC于点F,连MF,判断∠ADB与∠CMF的大小关系并证明.3.(14朝阳二模)已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上的一点,直线AE、CD相交于点P,且∠APD=45°,求证BD=CE.二、对称全等模型下图依次是450、300、22.50、150及有一个角是300直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。