矩阵分析期末考试学习资料
华南理工大学研究生矩阵分析复习资料1
)
1 1 (10) 设方阵 A ,则有 A 2 A F 。( ) 0 1
二、 填空(30 分)
a b 0 (2) 线性子空间 W { A | A b a b , a, b, c R} 的维数为___________. 0 b c
1 0.5 0.6 1 1.1 0 0.6 0.8 (10) 若 A ,则矩阵 A 盖尔圆为_______________. 0.2 0 2 1 0.3 0.3 2.0 3
(11)若矩阵 A 的初级因子为 ( 1),( 1),( 1)2 ,则 A 的约当标准形为________
1 1 0 五、 (20 分)设 A 0 1 0 ,求: 0 0 2
(1) A 的特征值和特征向量; (2) det(sinAt); (3)
e At 。
自测题二
一、 判断正误(对正确的打“√” ,对错误的打“×” )(20 分) (1) 设 V1 V2 为直和,则 V1 V2 一定含有非零元素。 ( )
a 2 2 a 2
a 3 2 a 3
a 4 a 4
, 3 a 5
0} 2 a 5 0}
的交 V W 一个基,并求相应的标准正交基。
4 6 0 四、 (15 分)已知矩阵 A 3 5 0 ,求: 3 6 1
(1)所用的矩阵 P 及 P1 ,将 A 化为约当标准形 J; (2)矩阵 A 的最小多项式。
1 0 2 (6) 若矩阵 A 0 1 1 ,则矩阵 B A3 2 A 2E _______________ 0 1 0
1 1 0 1 (7) 若 A 1 2 0 ,则 det( A ) _______________. 0 0 3
矩阵分析期末考试
错误!2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A)一、(共30分,每小题6分)完成下列各题:(1)设4R 空间中的向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=23121α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=32232α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=78013α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=43234α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=30475αSpan V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V 的维数.解:=A {}54321,,,,ααααα⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→00000410003011020201 21V V +和21V V 的维数为3和1(2) 设()Ti i 11-=α,()Ti i 11-=β是酉空间中两向量,求内积()βα,及它们的长度(i =). (0, 2, 2);(3)求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A 的满秩分解. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→0000747510737201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=775211⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----747510737201* (4)设-λ矩阵⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ,求)(λA 的Sm ith 标准形及其行列式因子.解:⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ()()⎪⎪⎪⎭⎫ ⎝⎛++→2111λλλλ(5)设*A 是矩阵范数,给定一个非零向量α,定义 *Hx x α=,验证x 是向量范数.二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基.解:(1)由题意知 T [ε1,ε2,ε3]=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-021110111,,321εεε 线性变换T的值域为T(V)= {}321312,span εεεεε+++ 所以A (V)的维数为2, 基为{}321312,εεεεε+++(2)矩阵A的核为AX=0的解空间。
矩阵分析考试题及答案
矩阵分析考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A和矩阵B的乘积AB是()。
A. 可逆的B. 不可逆的C. 非方阵D. 零矩阵答案:A2. 矩阵的秩是指()。
A. 矩阵中非零元素的个数B. 矩阵中行向量的最大线性无关组的个数C. 矩阵中列向量的最大线性无关组的个数D. 矩阵中行向量和列向量的最大线性无关组的个数答案:B3. 矩阵的特征值是()。
A. 矩阵的对角线元素B. 矩阵的非对角线元素C. 矩阵的特征多项式的根D. 矩阵的行列式答案:C4. 矩阵A和矩阵B相似的条件是()。
A. A和B的行列式相等B. A和B的迹相等C. A和B有相同的特征值D. A和B的秩相等答案:C5. 矩阵A的逆矩阵记作()。
A. A'B. A^TC. A^-1D. A^*答案:C二、填空题(每题2分,共10分)1. 如果矩阵A的行列式为0,则矩阵A是不可逆的。
答案:不可逆的2. 矩阵A和矩阵B的乘积AB等于BA的条件是A和B都是方阵。
答案:方阵3. 矩阵的秩等于矩阵的。
答案:行秩或列秩4. 矩阵的特征值是矩阵的特征多项式的根。
答案:特征多项式5. 矩阵的转置记作。
答案:A^T三、计算题(每题10分,共20分)1. 计算矩阵A=\(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)的行列式。
答案:\(\boxed{-2}\)2. 求矩阵B=\(\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}\)的特征值。
答案:特征值为\(\boxed{1}\)和\(\boxed{5}\)四、证明题(每题15分,共30分)1. 证明如果矩阵A和B是可逆的,则它们的乘积AB也是可逆的。
答案:略2. 证明矩阵A的特征值的和等于矩阵A的迹。
答案:略。
矩阵分析期末试题及答案
矩阵分析期末试题及答案矩阵分析是一门重要的数学课程,在科学、工程和经济等领域都有广泛的应用。
期末试题的设置既考查学生对于矩阵分析理论的理解,也测试其应用能力和解决问题的能力。
本文将为您提供一套矩阵分析的期末试题,并附有答案解析。
1. 简答题(每小题2分,共20分)(1) 请简述矩阵的定义和基本术语。
答案:矩阵是由数个数排成m行n列的一个数表。
行数和列数分别称作矩阵的行数和列数。
矩阵的元素用a[i, j]表示,其中i表示所在的行数,j表示所在的列数。
(2) 请解释什么是方阵和对角矩阵。
答案:方阵是行数和列数相等的矩阵。
对角矩阵是除了主对角线上的元素外,其他元素都为零的矩阵。
(3) 请解释矩阵的转置和逆矩阵。
答案:矩阵的转置是指将矩阵的行和列进行互换得到的新矩阵。
逆矩阵是满足A * A^(-1) = I的矩阵A的逆矩阵,其中I是单位矩阵。
(4) 请简述特征值和特征向量的定义。
答案:特征值是方阵A满足方程A * X = λ * X的标量λ,其中X是非零的列向量。
特征向量是对应特征值的零空间上的非零向量。
(5) 请解释矩阵的秩和行列式。
答案:矩阵的秩是指矩阵中线性无关的行或列的最大个数。
行列式是将矩阵的元素按照一定规则相乘并相加得到的一个标量。
(6) 请解释正交矩阵和幂等矩阵。
答案:正交矩阵是满足A * A^T = I的矩阵A。
幂等矩阵是满足A *A = A的矩阵A。
(7) 请解释矩阵的特征分解和奇异值分解。
答案:矩阵的特征分解是将一个矩阵表示为特征向量矩阵、特征值矩阵和其逆的乘积。
奇异值分解是将一个矩阵表示为三个矩阵相乘的形式,其中一个是正交矩阵,一个是对角矩阵。
(8) 请解释矩阵的迹和范数。
答案:矩阵的迹是指矩阵对角线上元素的和。
范数是用来衡量矩阵与向量的差异程度的指标。
(9) 请解释矩阵的稀疏性和块状矩阵。
答案:矩阵的稀疏性是指矩阵中大部分元素为零的特性。
块状矩阵是由多个子矩阵组成的一个矩阵。
(10) 请解释矩阵的正定性和对称性。
矩阵分析 史荣昌 魏丰 第三版 第一章-第四章 期末复习总结
定义:若v1 ∩ v =0,则称v1与v 2 的和空间v1 + v 2 是直和,用记号v1 ⊕ v 2 表示
交
定理:设v1与v 2 是线性空间 v 的两个子空间,则下列命题是等价的
与
和
1) v1 + v 2 是直和
直和
2) dim(v1 + v 2 )= dim v1 + dim v 2
3)
设
α1, αn1
α α α 定理:(1) R(T)=span{T( 1 ),T( 2 ),……T( n )} (2)rank(T)=rank(A)(A 为线性映射在基下的矩阵表示)
值
域
性质:
设 A 是 n 维线性空间V1 到 m 维线性空间V2 的线性映射,α1,α2, αn
是V1
的一组基,β1,
β
2
,
,βm
是V2 的一组基。线性映射 A 在这组基下的矩阵表示是 m*n 矩阵 A=( A1,A2, An
特征子
空间
V 性质:特征子空间 λi 是线性变换 T 的不变子空间。
定义:设v1和v 2 是数域 F 上的两个线性空间,映射 A:v1 → v 2 ,如果对任何两个向量 α1,α2 ∈ v1和任何数λ ∈ F
有 A( α1 + α2 )=A( α1 )+A( α2 ),A( λα1 )= λ A( α1 ),便称 映射 A 是由v 1到v 2 的线性映射
α1,α
2
,
αr
生成的子空间为
T
的不变子空间。
0 0 an,r +1 ann
λ α λ λ λ 定义:设 T 是数域 F 上 n 维线性空间 V 的线性变换,如果 V 中存在非零向量α,使得 T(α)= 0 , 0 ∈F.那么称 0 是 T 的一个特征值,称α是 T 的属于 0 的一个特征向量。
矩阵分析考试重点
2、会求 矩阵的行列式因子、不变因子、初等因子
3、会求数字矩阵A的Jordan标准形J及其变换矩阵P: (1)初等变换法 (2)矩阵秩的方法 4、掌握证明两个矩阵相似的方法: (1)有相同的行列式因子(2)有相同的不变因子(3)有相同的初等因 子 5、会用Jordan标准形求矩阵的幂
l2
8
3、能给出线性映射(线性变换)在给定基下的矩 阵表示; 会求线性映射的值域空间及核空间的基与维数
设a1,a2 , ,an,1, 2 , , m分别是V1,V2的基, 是V1 V2的线性映射,A为 在相应基下的
矩阵表示,则
(a1,a2, ,an ) (1, 2 , , m )A
证明: A 0
证明: 设
为 的全部特征值,由于 是半正定的,
所以所有的 1.,而且2 ,由于, n A
A ,一定存在某个特征值大于0,于是有i 0
A0
A I (1 1)(1 2 ) (1 n ) 1
37
习题3-20 设 是一A个半正定的H-阵且 B是一个正定的H-阵, 证明:
10
设:V1 V2的线性映射,dimV1 n, dimV2 m
a1, a2 , , an与1, 2 , , m分别为V1,V2的基, 在这对基下的矩阵为Amn =(1, ,n ),则
R( ) span( { 1, 2 , , m)1, ( , 1, 2 , , m)n}
27
2-6 设 为A数域 上的 F阶方阵且n满足
A2 ,A证明: 与对角A矩阵
1
1
J
0
矩阵分析所有习题及标准答案
习题3-22设A,B均是正规矩阵,试证:A 与B相似的充要条件是A与B酉相似
证:因为A,B是正规矩阵,所以存在U,VUnn 使得 A=Udiag(1,…,n)U*, B=Vdiag(1,…,n)V*, 其中1,…, n,,1,…,n分别是A,B的特征值集 合的任意排列. 必要性:若A与B相似,则i=i,i=1…,n,于是 B=VU*AUV*=W*AW, W=UV*Unn 即得证A与B酉相似. 充分性:显然,因为,酉相似必然相似.
习题 3-3(1) 0 8 3
V*AV=
子矩阵A1的特征值仍是-1,对应的单位特征向量 是1=(-2/5,1/5)T,作2阶酉矩阵 1 10 T * W1=(1,2),2=(1/5,2/5) ,则W1 A1W1= 0 1 作3阶酉矩阵W=diag(1,W1),U=VW,则 U*AU= 为上三角矩阵.
解,得证AA*与A*A有相同的非零特征值.
习题3-28设A为正规矩阵.试证:①若 Ar=0,则A=0.②若A2=A,则A*=A.
证:因为A是正规矩阵,所以存在UUnn 使得 A=Udiag(1,…,n)U*, 其中1,…, n是A的特征值.于是, Ar=Udiag(1r,…,nr)U*=0 蕴涵ir=0,i=1,…,n.后者又蕴涵 1=…=n=0. ∴ A=Udiag(0,…,0)U*=0. 若 A2=A, 则i2=i,i=1,…,n. 后者又蕴涵i=0 或1, i=1,…,n,(即正规矩阵A的特征值全为 实数). ∴ A*=Udiag(1,…,n)U*=A.
习题3-30
#3-30:若ACnn,则A可唯一地写为 A=B+C,其中BHnn,CSHnn.
证:存在性 取 B=(1/2)(A+A*),C=(1/2)(A-A*), 则显然B,C分别是Hermite矩阵和反Hermite矩阵, 并且满足A=B+C. 唯一性 若 A=B+C,其中BHnn,CSHnn,则 A*=(B+C)*=B*+C*=B-C. 于是 B=(1/2)(A+A*),C=(1/2)(A-A*). 证毕 注:令T=-iC,则T*=iC*=i(-C)=T,即THnn.由此推 出:A可唯一地写为A=B+iT,其中B,THnn.
矩阵试题及答案
矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。
答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。
答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。
答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。
答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。
答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。
矩阵及其性质知识点及题型归纳总结
矩阵及其性质知识点及题型归纳总结
1. 矩阵基本概念
- 矩阵是一个二维数组,由行和列组成。
- 矩阵的元素可以是实数、复数或其他数域中的元素。
2. 矩阵的性质和运算
- 矩阵的转置:交换矩阵的行和列, 记作A^T。
- 矩阵的加法:对应位置元素相加。
- 矩阵的数乘:将矩阵的每个元素乘以一个数。
- 矩阵的乘法:满足左乘法则和右乘法则。
- 矩阵的逆:对于可逆方阵,存在逆矩阵使得矩阵乘法满足乘法逆的要求。
3. 矩阵的特殊类型和性质
- 单位矩阵:一个方阵的主对角线上元素为1,其他元素为0。
- 零矩阵:所有元素都为0的矩阵。
- 对角矩阵:只有主对角线上元素非零,其他元素为0。
- 对称矩阵:矩阵的转置等于它本身。
- 上三角矩阵:主对角线及其以下的元素都不为0。
- 下三角矩阵:主对角线及其以上的元素都不为0。
4. 矩阵的题型归纳
- 矩阵的基本运算:加法、数乘、乘法和转置操作。
- 矩阵的性质判断:检查矩阵是否为对称矩阵、上三角矩阵、下三角矩阵等。
- 矩阵的逆和行列式:求逆矩阵、计算行列式的值等。
- 矩阵的方程求解:解线性方程组、求矩阵的特征值和特征向量等。
以上是矩阵及其性质的基本知识点及题型归纳总结。
通过掌握这些知识,你将能够更好地理解和应用矩阵在数学和工程等领域的相关问题。
矩阵分析试题中北大学33
矩阵分析试题中北⼤学33§9. 矩阵的分解矩阵分解是将⼀个矩阵分解为⽐较简单的或具有某种特性的若⼲矩阵的和或乘积,这是矩阵理论及其应⽤中常见的⽅法。
由于矩阵的这些特殊的分解形式,⼀⽅⾯反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另⼀⽅⾯矩阵分解⽅法与过程往往为某些有效的数值计算⽅法和理论分析提供了重要的依据,因⽽使其对分解矩阵的讨论和计算带来极⼤的⽅便,这在矩阵理论研究及其应⽤中都有⾮常重要的理论意义和应⽤价值。
这⾥我们主要研究矩阵的三⾓分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。
⼀、矩阵的三⾓分解——是矩阵的⼀种有效⽽应⽤⼴泛的分解法。
将⼀个矩阵分解为⾣矩阵(或正交矩阵)与⼀个三⾓矩阵的乘积或者三⾓矩阵与三⾓矩阵的乘积,这对讨论矩阵的特征、性质与应⽤必将带来极⼤的⽅便。
⾸先我们从满秩⽅阵的三⾓分解⼊⼿,进⽽讨论任意矩阵的三⾓分解。
定义1 如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈<=- ij a C R i j i n1,2,),=++ j i i n 则上三⾓矩阵11121222000??= ?n n nn a a a a a R a称为正线上三⾓复(实)矩阵,特别当1(1,2,,)ii a i n == 时,R 称为单位上三⾓复(实)矩阵。
定义2如果(1,2,,)ii a i n = 均为正实数,()(,1,2,1;∈>=- ij a C R i j i n1,2,),=++ j i i n 则下三⾓矩阵11212212000??= ?n n nn a a a L a a a称为正线下三⾓复(实)矩阵,特别当1(1,2,,)ii a i n == 时,L 称为单位下三⾓复(实)矩阵。
定理1设,?∈n nn A C (下标表⽰秩)则A 可唯⼀地分解为1=A U R其中1U 是⾣矩阵,R 是正线上三⾓复矩阵;或者A 可唯⼀地分解为2=A LU其中2U 是⾣矩阵,L 是正线下三⾓复矩阵。
矩阵分析考试重点ppt课件
在 这 对 基 下 的 矩 阵 为 A m n = ( 1 , , n ) , 则
R ( ) s p a n ( { 1 ,2 ,,m ) 1 ,( ,1 ,2 ,,m ) n }
x1
A2 A ,证明: A 与对角矩阵
1
1
J
0
0
相似。
ppt课件完整
28
证明:设 A 的Jordan标准形为
J1
J
J2
i 1
,
Ji
a
1
a
与
a 1
B
a
1
不相似。
a
ppt课件完整
证明:对矩阵A而言,因det(I - A) ( a)n, 故Dn () ( a)n,
对矩阵B而言,因
det(I - B) ( a)n (1)n1( )(1)n1 ( a)n 故Dn () ( a)n ,
所以A与B的第n阶行列式因子不相同, 从而A与B不相似。
V 1 + V 2 = a a 1 a 2 |a 1 V 1 且 a 2 V 2 和子空间
定理:设 V 1span {a 1,a2,,as}
V 2sp a n { 1, 2,, k}
则:V 1 + V 2 s p a n { a 1 , a 2 , ,a s ,1 ,2 ,,k }
ppt课件完整
2、会求 矩阵的行列式因子、不变因子、初等因子
3、会求数字矩阵A的Jordan标准形J及其变换矩阵P: (1)初等变换法 (2)矩阵秩的方法 4、掌握证明两个矩阵相似的方法: (1)有相同的行列式因子(2)有相同的不变因子(3) 有相同的初等因子 5、会用Jordan标准形求矩阵的幂
矩阵论期末试题及答案
矩阵论期末试题及答案1. 选择题题目1:矩阵的秩是指矩阵中非零行(列)线性无关的最大个数,下面关于矩阵秩的说法中,错误的是:A. 若矩阵A的秩为r,则只能确定 A 中有r个行(列)线性无关。
B. 若矩阵A的秩为r,则只能确定 A 中有r个坐标线性无关。
C. 设A,B为n×m矩阵,若A的秩为r,B的秩为s,则AB的秩至少为max{r,s}。
D. 同一矩阵的行秩与列秩相等。
题目2:对于阶梯形矩阵,以下说法正确的是:A. 阶梯形矩阵的行秩与列秩相等。
B. 阶梯形矩阵的行秩等于主元的个数。
C. 阶梯形矩阵的列秩等于主元的个数。
D. 阶梯形矩阵的行秩与列秩之和等于矩阵的阶数。
题目3:设A为n阶矩阵,下列说法正确的是:A. 若A为可逆矩阵,则A的行秩和列秩都为n。
B. 若A的行秩和列秩都为n,则A为可逆矩阵。
C. 若对于非零向量 x,都有Ax=0,则称矩阵A为零矩阵。
D. 若A为可逆矩阵,则方程Ax=b存在唯一解。
题目4:对于实对称矩阵A,以下说法正确的是:A. A一定有n个线性无关的特征向量。
B. A的所有特征值都是实数。
C. 若A的特征向量构成的特征子空间的维数为n,则称A为满秩矩阵。
D. A一定可以对角化。
2. 计算题题目1:已知矩阵A = [1, 2; 3, 4],求矩阵A的转置矩阵。
解答:转置矩阵的行与列互换,故矩阵A的转置矩阵为:A^T = [1, 3; 2, 4]题目2:已知矩阵B = [2, 1; -1, 3],求矩阵B的逆矩阵。
解答:逆矩阵满足BB^(-1) = I,其中I为单位矩阵。
对于矩阵B,可以使用伴随矩阵法求解:B^(-1) = (1/(ad-bc)) * [d, -b; -c, a]其中a、b、c、d分别为矩阵B的元素:B^(-1) = (1/(2*3-(-1)*1)) * [3, -1; 1, 2] = [3/7, -1/7; 1/7, 2/7]题目3:已知矩阵C = [1, 2, 3; 4, 5, 6],求矩阵C的行列式的值。
关于矩阵考试题及答案
关于矩阵考试题及答案1. 矩阵的基本概念题目:定义矩阵,并说明矩阵的行数和列数如何确定。
答案:矩阵是由行和列组成的矩形数组,其中的元素按照一定的规则排列。
矩阵的行数是指矩阵中行的总数,列数是指矩阵中列的总数。
2. 矩阵的加法题目:给定两个矩阵A和B,其中A = \(\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}\),B = \(\begin{bmatrix} 5 & 6 \\ 7 &8 \end{bmatrix}\),计算矩阵A和B的和。
答案:矩阵A和B的和为C = \(\begin{bmatrix} 1+5 & 2+6 \\3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12\end{bmatrix}\)。
3. 矩阵的乘法题目:给定两个矩阵A和B,其中A = \(\begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}\),B = \(\begin{bmatrix} 5 & 6 \\ 7 &8 \end{bmatrix}\),计算矩阵A和B的乘积。
答案:矩阵A和B的乘积为C = \(\begin{bmatrix} 1 \cdot 5 +2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\3 \cdot 5 +4 \cdot 7 &3 \cdot 6 +4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}\)。
4. 矩阵的转置题目:给定矩阵A = \(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}\),求矩阵A的转置。
矩阵期末练习题及答案
矩阵期末练习题及答案例1若A 是对称矩阵,则A T -A=______。
答案:0例2若矩阵A 可逆,则(A T )-1=____.答案:(A -1)T例3设A ,B 均为方阵,若AB =I ,则A -1=_____,B -1=______.答案:B ,A例2 矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020100,则A -1=( )。
答案:⎢⎢⎢⎣⎡001 0210 ⎥⎥⎥⎦⎤-100 例3、 设A 、B 均为方阵,则下列结论正确的是( )。
A .(AB )T =A T B TB .AA T =A T AC .若A T =A ,则(A 2)T =A 2D .若A T =A ,B T =B ,则(AB )T =AB 。
答案:(C )。
例4、 设A 是三角形矩阵,若主对角线上元素( ),则A 可逆。
A .全部为0B .可以有零元素C .不全为0D .全不为0答案:(D )例5、设A=⎢⎢⎢⎣⎡-342 ⎥⎥⎥⎦⎤-101,B=⎢⎣⎡-87 ⎥⎦⎤-109,求A.B 。
解:A.B=⎢⎢⎢⎣⎡-342 ⎥⎥⎥⎦⎤-101⎢⎣⎡-87 ⎥⎦⎤-109=⎢⎢⎢⎣⎡-132822 ⎥⎥⎥⎦⎤--173628例6、设A=⎢⎢⎢⎣⎡321 422 ⎥⎥⎥⎦⎤313,求A -1。
解:(AE )=⎢⎢⎢⎣⎡321 422 313 001 010 ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 222-- 653-- 321-- 010 ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 022- 153-- 121-- 110- ⎥⎥⎥⎦⎤100→⎢⎢⎢⎣⎡001 022 153 121 110-⎥⎥⎥⎦⎤-100→⎢⎢⎢⎣⎡001 022 100 132-- 163-- ⎥⎥⎥⎦⎤-153→⎢⎢⎢⎣⎡001 020 100 131- 163- ⎥⎥⎥⎦⎤--152→⎢⎢⎢⎣⎡001 010 100 1231- 133- ⎥⎥⎥⎥⎦⎤--1252 ∴A -1=⎢⎢⎢⎣⎡1231- 133- ⎥⎥⎥⎥⎦⎤--1252例7.设矩阵 ⎥⎦⎤⎢⎣⎡-=021201A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200010212B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=242216C ,计算C BA -T . 解 C BA -T =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010212⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-042006⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+242216 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200210例8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321221211A ,求1-A . .解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110011010001211100321010221001211)(I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→110100011010001211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→110100*********011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→110100*********001 所以,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1100112121A . 例9.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=143102010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,求1)(-+A I . 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+243112011A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-103210012110001011100243010112001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→115100012110001011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→115100127010001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→115100127010126001所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+-115127126)(1A I 例10、解矩阵方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--214332X . 解 因为⎥⎦⎤⎢⎣⎡--10430132⎥⎦⎤⎢⎣⎡→10431111 ⎥⎦⎤⎢⎣⎡--→23101111⎥⎦⎤⎢⎣⎡--→23103401 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---233443321 所以,X =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--212334=⎥⎦⎤⎢⎣⎡-12例8、证明:若A 2=I ,且AA T =I ,则A 为对称矩阵。
矩阵理论历年试题汇总及答案
矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。
历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。
以下是对矩阵理论历年试题的汇总及答案解析。
矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。
答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。
接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。
特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。
答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。
计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。
矩阵论考试试题(含答案)精选全文
可编辑修改精选全文完整版矩阵论试题一、(10分)设函数矩阵 ()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin 求:()⎰tdt t A 0和(()⎰20t dt t A )'。
解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 000sin cos cos sin =⎪⎪⎭⎫⎝⎛---t tt t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。
解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-==()321332αααβασ++-== 因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。
()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛133223*********1111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。
矩阵分析课后习题答案
矩阵分析课后习题答案矩阵分析是一门重要的数学学科,广泛应用于各个领域,如物理学、工程学和经济学等。
通过矩阵分析,我们可以更好地理解和解决实际问题。
然而,学习矩阵分析过程中,经常会遇到各种复杂的习题,给学生带来困扰。
在这篇文章中,我将为大家提供一些常见矩阵分析课后习题的答案,希望能够帮助大家更好地掌握这门学科。
1. 矩阵乘法的性质矩阵乘法是矩阵分析中的基础概念,了解其性质对于解决复杂的习题非常重要。
下面是几个常见的矩阵乘法性质的答案:- 乘法结合律:对于三个矩阵A、B和C,满足(A*B)*C = A*(B*C)。
- 乘法分配律:对于三个矩阵A、B和C,满足A*(B+C) = A*B + A*C。
- 乘法单位元:对于任意矩阵A,满足A*I = I*A = A,其中I为单位矩阵。
2. 矩阵的转置和逆矩阵矩阵的转置和逆矩阵是矩阵分析中常见的概念,它们在解决线性方程组和求解特征值等问题中起到重要作用。
以下是一些常见的矩阵转置和逆矩阵的答案:- 矩阵的转置:矩阵A的转置记作A^T,即将A的行变为列,列变为行。
- 逆矩阵的存在性:如果一个n阶矩阵A存在逆矩阵A^-1,那么AA^-1 =A^-1A = I,其中I为单位矩阵。
- 逆矩阵的计算:对于2阶矩阵A = [a b; c d],如果ad-bc≠0,则A的逆矩阵为A^-1 = 1/(ad-bc) * [d -b; -c a]。
3. 矩阵的特征值和特征向量特征值和特征向量是矩阵分析中的重要概念,它们在解决线性方程组和矩阵对角化等问题中起到关键作用。
以下是一些常见的特征值和特征向量的答案:- 特征值和特征向量的定义:对于一个n阶矩阵A,如果存在一个非零向量x和一个标量λ,使得Ax = λx,那么λ称为A的特征值,x称为对应于λ的特征向量。
- 特征值的计算:特征值可以通过解方程|A-λI|=0来计算,其中I为单位矩阵。
- 特征向量的计算:对于给定的特征值λ,可以通过求解(A-λI)x=0来计算对应的特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京交通大学
2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A)
一、(共30分,每小题6分)完成下列各题:
(1)设4R 空间中的向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=23121α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=32232α,⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡=78013α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=43234α,⎥⎥⎥⎥
⎦⎤
⎢⎢⎢⎢⎣⎡--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和2
1V V I 的维数.
解:=A {}54321,,,,ααααα⎥
⎥
⎥⎥⎦
⎤
⎢⎢⎢
⎢⎣⎡--→000004100030110
202
01 21V V +和21V V I 的维数为3和1
(2) 设()T
i i 11-=α,()T
i i 11-=β是酉空间中两向量,求内积()βα,
及它们的长度(i =). (0, 2, 2);
(3)求矩阵⎥⎥
⎥⎦⎤
⎢⎢⎢⎣⎡----=137723521111A 的满秩分解. 解:⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎥⎥⎥⎦
⎤
⎢⎢⎢
⎢⎢⎢⎣⎡
--
--→0000747510737201
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=137723521111A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=775211⎥⎥⎥⎥⎥⎥⎦
⎤
⎢⎢
⎢⎢⎢
⎢⎣⎡
----747
510737201* (4)设-λ矩阵⎪⎪⎪
⎭
⎫ ⎝⎛++=2)1(0000
00
)1()(λλλλλA ,求)(λA 的Smith 标准形及其行列式因子.
解:⎪⎪⎪⎭⎫ ⎝⎛++=2)1(000000)1()(λλλλλA ()()⎪⎪⎪
⎭
⎫
⎝⎛++→2111λλλλ
(5)设*A 是矩阵范数,给定一个非零向量α,定义 *
H x x α=,验证x 是
向量范数.
二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-=021110111A ,
(1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基.
解:(1)由题意知 T [ε1,ε2,ε3]=[]⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡-021110111,,321εεε 线性变换T 的值域为T (V )= {}321312,span εεεεε+++ 所以A (V )的维数为2, 基为{}321312,εεεεε+++
(2)矩阵A 的核为AX=0的解空间。
不难求得AX=0的基础解系是[2, -1, 1]T , 因此)(A N 的维数为1, 基为3212εεε+-.
三、(8分)求矩阵⎥⎥⎥
⎦
⎤⎢⎢⎢
⎣
⎡=66
0606
066A 的正交三角分解UR A =,其中U 是酉矩阵,R 是正线上三角矩阵.
解: ⎥⎥⎥⎦⎤⎢⎢⎢
⎣
⎡=66
0606
066
A =⎪⎪⎪⎪⎭
⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪
⎭
⎫
⎝
⎛-
-
2213
3332*316
20
316
121316121
四、(8分)设⎪⎪⎭
⎫
⎝⎛--=0111021i i A ,求矩阵范数1A ,∞A ,2A ,F A .(这里12-=i ).
解:{}1max 2,3,1,13A ==,(2分)
{}max 3,44A ∞== ,
(2分) 1
2
42
211F
A ij j i a ===⎛⎫∑∑ ⎪⎝⎭
()12
1141113=+++++= (2分)
1120110H
i i A
⎛⎫ ⎪- ⎪= ⎪- ⎪⎝⎭
, 6113H AA -⎛⎫= ⎪-⎝⎭ (2分) 2
6
1
9171
3
H
E AA λλλλλ-=
=-+--
1,2λ=
=
2
A
⇒
=
(2分)
五、(共24分,每小题8分)证明题:
(1)设A 是正定Hermite 矩阵,B 是反Hermite 矩阵,证明B A +是可逆矩阵. (2)设A 是n 阶正规矩阵,证明A 是Hermite 矩阵的充要条件是A 的特征值为
实数.
(3)若1A <,证明A E +为非奇异矩阵,且A
A E -≤
+-11
)(1,这里A 是诱导范数.
六、(共20分,每小题5分)设⎪⎪⎪
⎭
⎫ ⎝⎛---=213111213A ,
(1) 求A E -λ的Smith 标准形(写出具体步骤); (2) 求A 的初等因子、最小多项式及Jordan 标准形J ; (3) 求相似变换矩阵P 及其逆矩阵阵1-P ; (4) 求)sin(At . 解
A E -λ()⎪⎪⎪
⎭
⎫
⎝⎛-→2111λλ,
初等因子λ,()21-λ;最小多项式()2
1-λλ; Jordan 标准⎪⎪⎪⎭
⎫
⎝⎛1110
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112101111P ,⎥⎥
⎥⎦⎤⎢⎢⎢⎣⎡---=-11101110
11P )sin(At ⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡--+---+=t t t t
t t t t t t t t t t t
t t t t cos sin cos cos sin 2sin sin sin cos sin cos cos sin 2。