高中数学必修三《分层抽样》课后练习(含答案)

合集下载

高中数学必修三习题:第二章2.1-2.1.3分层抽样含答案

高中数学必修三习题:第二章2.1-2.1.3分层抽样含答案

第二章 统计 2.1 随机抽样 2.1.3 分层抽样A 级 基础巩固一、选择题1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法解析:总体(500名学生)中的个体(男、女学生)有明显差异,应采用分层抽样法. 答案:D2.下列实验中最适合用分层抽样法抽样的是( ) A .从一箱3 000个零件中抽取5个入样 B .从一箱3 000个零件中抽取600个入样 C .从一箱30个零件中抽取5个入样D .从甲厂生产的100个零件和乙厂生产的200个零件中抽取6个入样 解析:D 中总体有明显差异,故用分层抽样. 答案:D3.具有A 、B 、C 三种性质的总体,其容量为63,将A 、B 、C 三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A 、B 、C 三种元素分别抽取的个数是( )A .12、6、3B .12、3、6C .3、6、12D .3、12、6解析:因为A 、B 、C 三种性质的个体按1∶2∶4的比例进行分层抽样, 所以A 种元素抽取的个数为21×17=3,B 种元素抽取的个数为21×27=6,C 种元素抽取的个数为21×47=12.答案:C4.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A .简单随机抽样B.系统抽样C.先从中年人中剔除1人,再用分层抽样D.先从老年人中剔除1人,再用分层抽样解析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.答案:D5.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A.30 B.36 C.40 D.无法确定解析:分层抽样中抽样比一定相同,设样本容量为n,由题意得,n120=2790,解得n=36.答案:B二、填空题6.(2015·福建卷)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为______.解析:设男生抽取x人,则有45900=x900-400,解得x=25.答案:257.(2014·湖北卷)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.解析:设乙设备生产的产品总数为x件,则甲设备生产的产品总数为(4 800-x)件.由分层抽样的特点,结合题意可得5080=4 800-x4 800,解得x=1 800.答案:1 8008.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:高二年级学生人数占总数的310,样本容量为50,则50×310=15.答案:15三、解答题9.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.解:其抽样过程如下:(1)由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本. (2)确定每层抽取个体的个数,在3个区分别抽取的学生人数之比也是2∶3∶5,所以抽取的学生人数分别是200×22+3+5=40;200×32+3+5=60;200×52+3+5=100.(3)在各层分别按系统抽样法抽取样本. (4)综合每层抽样,组成容量为200的样本.10.某市化工厂三个车间共有工人1 000名,各车间男、女工人数见下表:(1)求x 的值;(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名? 解:(1)由x1 000=0.15,得x =150.(2)因为第一车间的工人数是173+177=350,第二车间的工人数是100+150=250, 所以第三车间的工人数是1 000-350-250=400.设应从第三车间抽取m 名工人,则由m 400=501 000,得m =20.所以应在第三车间抽取20名工人.B 级 能力提升1.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x2+x2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8.答案:A2.某企业3月中旬生产A 、B 、C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 产品的数量是________件.解析:抽样比为130∶1 300=1∶10,又A 产品的样本容量比C 产品的样本容量多10,故C 产品的数量是[(3 000-1 300)-100]×12=800(件).答案:8003.某批零件共160个,其中一级品有48人,二级品有64个,三级品有32个,等外品有16个.从中抽取一个容量为20的样本.试简要叙述用简单随机抽样、系统抽样、分层抽样法进行抽样都是等可能抽样.解:(1)简单随机抽样法:可采用抽签法,将160个零件按1~160编号,相应地制作1~160号的160个号签,从中随机抽20个即可.每个个体被抽到的概率为20160=18,每个个体被抽到的可能性相同.(2)系统抽样法:将160个零件按1~160编号,按编号顺序分成20组,每组8个.先在第一组用抽签法抽得k 号(1≤k ≤8),则在其余组中分别抽得第k +8n (n =1,2,3,…,19)号,每个个体被抽到的概率为18,每个个体被抽到的可能性相同.(3)分层抽样法:按比例20160=18,分别在一级品、二级品、三级品、等外品中抽取48×18=6(个),64×18=8(个),32×18=4(个),16×18=2(个),每个个体被抽到的概率分别为648,864,432,216,即都是18,每个个体被抽到的可能性相同. 综上所述,无论采取哪种抽样方式,总体中每个个体被抽到的概率都是18.。

人教A版高中数学必修三_第2章_21-213分层抽样2(有答案)

人教A版高中数学必修三_第2章_21-213分层抽样2(有答案)

人教A版高中数学必修三第2章 2.1-2.1.3分层抽样2一、单选题1. 某市对大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2∶3∶5,若采用分层抽样的方法抽取一个样本,且中学生中被抽到的人数为150,则抽取的样本容量n等于()A.1500B.1000C.500D.1502. 某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8B.12C.16D.243. 某商场有四类食品,食品类别和种数见下表:现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.7B.6C.5D.44. 某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法二、填空题某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取________名学生.防疫站对学生进行身体健康调查.红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________.三、解答题一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.参考答案与试题解析人教A版高中数学必修三第2章 2.1-2.1.3分层抽样2一、单选题1.【答案】C【考点】分层抽样方法【解析】设抽到的大、中、小学生的人数分别为2×3×5x,由|3x=150,得x=50,所以n= 100+150+250=500故选C【解答】此题暂无解答2.【答案】D【考点】分层抽样方法频率分布直方图列举法计算基本事件数及事件发生的概率【解析】设放在该校门口的绿色公共自行车的辆数是x,则x36=21+2,解得x=24故选D【解答】此题暂无解答3.【答案】B【考点】分层抽样方法【解析】依题意有:20⋅10+2040+10+30+20=6种【解答】此题暂无解答4.【答案】B【考点】分层抽样方法收集数据的方法离散型随机变量的期望与方差【解析】此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【解答】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第①项调查总体中个体较少,应采用简单随机抽样法.故选B.二、填空题【答案】60【考点】分层抽样方法独立性检验系统抽样方法【解析】采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查的.【解答】.该校一年级、二年级、三年级、四年级的本科生人数之比为4.5.5.6=60…应从一年级本科生中抽取学生人数为:300×44+5+5+6故答案为60.【答案】760【考点】分层抽样方法系统抽样方法收集数据的方法【解析】由题意知样本和总体比为200:1600=1.8,设抽取女生为X人,则男生为x+10,∵x+x+10=2x+10=200,解得x=95人,根据样本和总体比可得该校的女生人数为95×8=760,该校的男生人数为1600−760=840,故答案为840.【解答】此题暂无解答三、解答题【答案】见解析【考点】分层抽样方法收集数据的方法频率分布直方图【解析】因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:(1)将30万人分成5层,一个乡镇为一层.(2)按照各乡镇的人口比例随机抽取各乡镇的样本:00×33+2+5+2+3=60(人),300×23+2+5+2+3=40{人),300×53+2+5+2+3=100(人),300×23+2+5+2+3=40(人),300×33+2+5+2+3=60(人).各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60.(3)将抽取的这300人组到一起,即得到一个样本.【解答】此题暂无解答。

高中数学苏教版必修3分层测评习题10系统抽样含解析

高中数学苏教版必修3分层测评习题10系统抽样含解析

学业分层测评 (十 )(建用: 45 分 )[ 学达 ]一、填空1.某商场想通票及售的2%来迅速估每天的量,采取以下方法:从某票的存根中随机抽出一,如15 号,而后按序今后将65号, 115 号, 165 号,⋯, 915 号抽出,票上的售成一个本.种抽取本的方法 ________.【分析】上述抽方法是将票均匀分红若干,每50 .从第一中抽取 15 号,此后各抽 15+50n(n=1,2,⋯,18)号,切合系抽的特色.【答案】系抽2.从 2 013 个号中抽取 20 个号入,采纳系抽的方法,抽的分段隔 ________.先从 2 013 个个体中剔除 13 个,分段隔2 000【分析】20=100.【答案】1003.某班共有学生52 人,依据学生的学号,用系抽的方法,抽取一个容量 4 的本 .已知 2 号、 28 号、 41 号同学在本中,那么有一个同学的学号是 ________.52【分析】由意知 k=4= 13,∴ 有一个同学的学号2+13=15.【答案】154.某企利用系抽的方法抽取一个容量60 的本,若每一个工入的可能性 0.2,企的工人数________.【分析】系抽中,每个个体被抽到是等可能的,企工人数60n,n=0.2,故 n= 300.【答案】300本,将 160 名学生从 1~160 号,按 号 序均匀分红二十(1~ 8 号, 9~16号,⋯, 153~160 号 ),若第十六 抽出的号125, 第一 中按此抽方法确立的号 是 ________.【分析】因 第十六 的号 在 121~128 号范 内,所以125 是第十六的第 5 个号,所以第一 确立的号5.【答案】56.某班 有 50 名学生, 要采纳系 抽 的方法在50 名学生中抽出 10名学生,将 50 名学生随机 号1~50 号,并分 ,第一 1~5 号,第二 6~10 号,⋯,第十46~50 号,若在第三 中抽得号12 的学生, 在第八中抽得号 ________的学生 .【分析】∵ 距 5,∴(8-3)×5+12=37.【答案】377.一个 体有 80 个个体, 号0,1,2,⋯, 79,挨次将其分红8 个小 ,号 0,1,2,⋯, 79,要用系 抽 法抽取一个容量 8 的 本,若在第随机抽取一个号 6, 所抽到的8 个号 分 ________.【分析】 k =80= ,∴在第 1抽取的号 16,第 216+ = ,81010 26第 3 6+ 3×10=36, ⋯,第 7 6+ 10×7=76.所抽 8 个号 6,16,26,36,46,56,66,76.【答案】6,16,26,36,46,56,66,768.在一次 中, 定一个人 的条件是: (1)在 中得票最多; (2)得票数不低于 票数的一半 .假如在 票 ,周 得票数据 失, 依据 数据回答 :候 人明 李 周得票数3001003060x假如周 ,那么周 的得票数 x 起码是 ________.【分析】依据条件,假如周 ,周 的得票数 x 不低于 票数的一半,x1490 票.即≥ ? x≥490,且 x∈N 即周得票数起码300+100+30+60+x2【答案】490二、解答9.了某路口一个月的流量状况,交警采纳系抽的方法,本距7,从每周中随机抽取一天,正好抽取的是礼拜日,后做出告 .你交警的抽方法有什么?当怎改?假如是一年的流量状况呢?【解】交警所的数据以及由此所推测出来的,只好代表礼拜日的交通流量 .因为礼拜日是歇息,好多人不上班,不可以代表其余几日的状况.改方法能够将所要的段的每天先随机地号,再用系抽方法来抽,或许使用随机抽来抽亦可.假如是一年的交通流量,使用随机抽法然不适合,比可行的方法是把本距改8.10.某工厂有工人 1 021 人,此中高工程 20 人,抽取一般工人 40 人,高工程 4 人成代表去参加某活,怎抽?【解】(1)将 1 001 名一般工人用随机方式号.(2)从体中剔除 1 人(剔除方法可用随机数表法),将剩下的 1 000 名工重新号 (分 0001,0002,⋯,1000),并均匀分红 40 段,此中每一段包括1 00040=25 个个体 .(3)在第一段 0001,0002,⋯, 002525 个号顶用随机抽法抽出一个 (如 0003)作开端号 .(4)将号 0003,0028,0053,⋯,0978 的个体抽出 .(5)将 20 名高工程用随机方式号1,2,⋯,20.(6)将 20 个号分写在大小、形状同样的小条上,揉成小球,制成号.(7)将获得的号放入一个不透明的容器中,充足拌均匀.(8)冷静器中逐一抽取 4 个号,并上边的号.(9)从体中将与所抽号的号相一致的个体拿出.以上获得的个体即是代表成.[ 能力提高 ]1.某位有 840 名工,采纳系抽方法抽取 42 人做卷,将 840 人按 1,2,⋯,840 随机号,抽取的 42 人中,号落入区 [481,720]的人数________.840【分析】抽隔42=20.在 1,2,⋯,20 中抽取号 x0(x0∈[1,20]) ,在 [481,720]之抽取的号 20k+x0, 481≤20k+ x0≤720,k∈N* .1x0∴2420≤ k+20≤36.x01∵∈,1,20 20∴k= 24,25,26,⋯,35,∴k 共有 35- 24+1=12(个),即所求人数12.【答案】122.将参加夏令的 600 名学生号: 001,002,⋯, 600.采纳系抽方法抽取一个容量 50 的本,且随机抽得的号 003. 600 名学生疏住在三个区,从 001 到 300 在第Ⅰ 区,从 301 到 495 在第Ⅱ 区,从 496 到 600 在第Ⅲ 区,三个区被抽中的人数挨次 ________. 【学号: 90200038】600【分析】由意知隔50=12,故抽到的号12k+3(k=0,1,⋯,49),可解得:第Ⅰ 区抽25 人,第Ⅱ 区抽17 人,第Ⅲ 区抽8 人.【答案】25,17,83.采纳系抽从含有8 000 个个体的体 (号 0000,0001,⋯, 7999)中抽取一个容量50 的本,最后一段号的范________,已知最后一个入号是 7894,开 5 个入号是 ________.【分析】因 8 000 ÷50= 160,所以最后一段的号号最后的160 个号,即从 7840 到 7999 共 160 个号 .从 7840 到 7894 共 55 个数,所以从 0000到第 55 个号 0054,而后逐一加上160 得, 0214,0374,0534,0694.【答案】7840~79990054,0214,0374,0534,06944.一个体中有 1 000 个个体,随机号 0,1,2,3,⋯,999,以号序将其均匀分红10 个小,号挨次 0,1,2,3,⋯,9,要用系抽方法抽取一容量 10 的本,定:假如在第0 小中随机抽取的号 x,那么挨次位地获得后边各中的号,即第 k 小中抽取的号的后两位数字与 x+33k 的后两位数字同样 .(1)当 x=24 ,写出所抽取本的10 个号;(2)若所抽取本的10 个号中有一个号的后两位数字是87,求 x 的取范 .【解】(1) 当x = 24,所抽取本的10个号依次24,157,290,323,456,589,622,755,888,921.(2)当 k=0,1,2,⋯,9 ,33k 的挨次 0,33,66,99,132,165,198,231,264,297.由所抽取本的 10 个号中有一个号的后两位数字是87,可得 x 的取可能 87,54,21,88,55,22,89,56,23,90.所以 x 的取范是 {21,22,23,54,55,56,87,88,89,90}.。

2021高中数学必修三练习:2.1抽样方法(三) Word版含答案

2021高中数学必修三练习:2.1抽样方法(三) Word版含答案

2021高中数学必修三练习:2.1抽样方法(三) Word版含答案2021高中数学必修三练习:2.1抽样方法(三)word版含答案数学2.1样本方法(三)【新知导读】1.为了确保分层抽样时每个个体被抽到的可能性成正比,建议()a.每层等可能将样本b.每层挑同样多的样本容量c.所有层用同一方法等可能将样本d.相同层用相同的样本方法样本2.某地区高中分三类.a类校共有学生4000人.b类校共有学生2000人.c类校共有学生3000人.现欲抽样分析某次考试的情况,若抽取900份试卷进行分析,则从a类校抽取的试卷份数应为()a.450b.400c.300d.2003.某市为了了解职工家庭生活情况,先把职工按所在国民经济行业分为13类,然后每个行业抽1的职工家庭展开调查,这种样本就是_______________.100【范例点睛】例1.某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数老年中年青年小计管理408040160技术开发40120160320营销40160280480生产802407201040小计20060012002000(1)若要抽取40人调查身体情况,则应该怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对北京奥运会筹备情况的了解,则应怎样抽样?【课外链接】1.某学校青年志愿者协会存有250名成员,其中88名高一学生,112名低二学生,50名高三学生.为了调查出席志愿者协会活动与学习成绩的关系,准备工作提取50名学生,展开调查,哪种方法更最合适,如何实行呢?数学【随堂演练】1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是()a.分层抽样法,系统抽样法b.分层抽样法,简单随机抽样法c.系统抽样法,分层抽样法d.简单随机抽样法,分层抽样法2.简单随机抽样、系统抽样、分层抽样之间的共同点是()a.都是从总体中逐个抽取b.将总体分成几部分,按事先确定的规则在各部分抽取c.抽样过程中每个个体被抽到的可能性相等d.没有共同点3.某初级中学存有学生270人,其中七年级108人,八、九年级各81人.现要利用样本方法提取10人出席某项调查,考量采用直观随机抽样、分层抽样和系统抽样三种方案.采用直观随机抽样和分层抽样时,将学生按七、八、九年级依次统一编号为1,2,...,270;采用系统抽样时,将学生统一随机编号1,2,...,270,并将整个编号依次分成10段.如果抽到的号码存有以下四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,146,270;关于上述样本的下列结论,正确的是()a.②③都无法为系统抽样b.②④都无法为分层抽样c.①④都可能将为系统抽样d.①③都可能将为分层抽样4.一个公司共有n个员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为n的样本,已知某部门有m个员工,那么这一部门应抽取的员工数为__________.5.某学校共计教师490人,其中没40岁的存有350人,40岁及以上的存有140人.为了介绍普通数学话在该校中的推展普及情况,用分层抽样的方法,从全校教师中提取一个容量为70人的样本展开普通话水平测试,其中在没40岁的教师中应当提取的人数为___________.6.要完成两项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.则应采用的抽样方法分别是________________________________________________________________.7.调查某班学生的平均身高,从50名学生中抽著不同(男生30人,女生20人),又如何抽样?8.某公司的职工由管理人员、后勤人员、业务人员三部分共同组成,其中管理人员20人,后勤人员与业务人员之比是3:16,为了介绍职工的文化生活状况,必须从中提取一个容量为21的样本,其中后勤人员进样3人,则该公司的职工共计多少人?9.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机关改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,1,问如何样本?如果晓得男女生的体重有显10数学请写出具体措施.10.某批零件共160个,其中一级品48个,二级品64个,三级品32个,等外品16个,从中提取一个容量为20的样本.恳请分别表明用直观随机抽样、系统抽样法和分层抽样法提取时总体中每个个体被抽到的可能性成正比.数学2.1样本方法(三)【新知编者按】1.a2.b3.分层抽样【范例点睛】例1.(1)因为身体状况主要与年龄有关,所以应按老年、中年、青年分层抽样法进行抽样,要抽取40人,可以在老年、中年、青年职工中分别抽取4,12,24人.(2)因为出席这样的座谈会的人员应该代表各个部门,所以可用按部门分层抽样的方法进行抽样.要抽取25人,可以在管理、技术开发、营销、生产各部门的职工中分别随机抽取2,4,6,13人.(3)对北京奥运会筹备情况的了解与年龄、部门关系不大,可以用系统抽样或简单随机抽样进行.【课外链接】求解:由于各年级自学情况相同,宜使用分层抽样.因为在高二提取112?【随堂演练】1.b2.c3.d4.5011?,所以在高一抽取88??18(人),2505511?22(人),在高三抽取50??10(人).55mn5.506.①采用分层抽样,②采用简单随机抽样n7.解:可以用简单随机抽样,男女生身高有显著不同时,采用分层抽样,男生中抽3人,女生中抽2人.8.求解:.该公司共计职工210人.9.解:因为机关改革关系到各种人的不同利益,故采用分层抽样方法为妥.10010?5,??2,2057020?14,?4.所以从副处级以上干部中提取2人,从通常干部中提取14人,从工人中扣55挑4人.因副处级以上干部与工人人数都较太少,故可以将他们分别按1~10和1~20编号,然后使用分组法分别提取2人和4人,对通常干部70人使用00,01,02,...,69编号,然后用随机数十进位制提取14人.10.解:(1)简单随机抽样法:可采取抽签法,将160个零件按1~160编号,相应地制作1~160号地160个签,从中随机抽取20个,显然每个个体被抽到地可能性为201?.1608(2)系统抽样法:将160个零件从1至160编号,按编号顺序分为20组与,每组8个.先在第一组用分组法扣得k(1?k?8)号,然后在其余组中分别提取第k?8n(n?1,2,3,...,19)号,此时每个。

人教版高中数学人教A版必修3练习 分层抽样

人教版高中数学人教A版必修3练习 分层抽样

2.1.3分层抽样1.某公司在甲、乙、丙、丁四个地区分别有150个,120个,180个,150个销售点,公司为了调查产品销售的情况,需要从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为(2),则完成(1),(2)这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法解析:完成(1)采用分层抽样,完成(2)采用简单随机抽样.答案:B2.某校高三(1)班有学生54人,(2)班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则(1)班和(2)班分别被抽取的人数是()A.8,8B.10,6C.9,7D.12,4解析:抽样比为,则(1)班和(2)班分别被抽取的人数是54=9,42=7.答案:C3.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为()A.30B.36C.40D.无法确定解析:设样本容量为n,则,所以n==36.答案:B4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8B.11C.16D.10解析:若设高三学生数为x,则高一学生数为,高二学生数为+300,所以有x++300=3 500,解得x=1 600.故高一学生数为800,因此应抽取的高一学生数为=8.答案:A5.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为.解析:设从高二年级的学生中应抽取x人,则,解得x=8.答案:86.防疫站对学生进行身体健康调查.红星中学共有学生1 600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10名,则该校的女生人数应是.解析:设该校的女生人数是x,则男生人数是1 600-x,抽样比是,则x=(1 600-x)-10,解得x=760.答案:7607.某校500名学生中,O血型有200人,B血型有125人,AB血型有50人,A血型有125人,为了研究血型和色弱的关系,要从中抽取一个容量为20的样本,按照分层抽样的方法抽取样本,各种血型的人要分别抽取多少?请写出抽样过程.解:第一步,确定抽样比20∶500=1∶25.第二步,从O血型中抽取200=8(人),从B血型中抽取125=5(人),从AB血型中抽取50=2(人),从A血型中抽取125=5(人).第三步,分别从4种血型的人中用简单随机抽样的方法抽取样本,这样就得到一个容量为20的样本.8.一个地区共有5个乡镇,共30万人,其人口比例为3∶2∶5∶2∶3,从这30万人中抽取一个300人的样本,分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关,则应采取什么样的抽样方法?并写出具体过程.解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:(1)将30万人分成5层,一个乡镇为一层.(2)按照各乡镇的人口比例随机抽取各乡镇的样本:300=60(人),300=40(人),300=100(人),300=40(人),300=60(人).各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60.(3)将抽取的这300人组到一起,即得到一个样本.9.已知在全厂工人中随机抽取1名,抽到第二车间男工的可能性是0.15.(1)求x的值;(2)现用分层抽样的方法在全厂抽取50名工人,问应在第三车间抽取多少名?解:(1)由=0.15得x=150.(2)∵第一车间的工人数是173+177=350,第二车间的工人数是100+150=250,∴第三车间的工人数是1 000-350-250=400.设应从第三车间抽取m名工人,则由得m=20,∴应在第三车间抽取20名工人.B组1.一批灯泡400只,其中20 W、40 W、60 W的数目之比是4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为()A.20,15,5B.4,3,1C.16,12,4D.8,6,2解析:三种灯泡依次抽取的个数为40=20,40=15,40=5.答案:A2.某校做了一次关于“感恩父母”的问卷调查,从9~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为()A.60B.80C.120D.180解析:11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,则抽样比为∵从回收的问卷中按年龄段分层抽取容量为300的样本,∴从9~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总份数为=900,则15~16岁回收问卷份数为x=900-120-180-240=360.∴在15~16岁学生中抽取的问卷份数为360=120,故选C.答案:C3.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样解析:如果按分层抽样时,在一年级抽取108=4(人),在二、三年级各抽取81=3(人),则在号码段1,2,…,108中抽取4个号码,在号码段109,110,…,189中抽取3个号码,在号码段190,191,…,270中抽取3个号码,①②③符合,所以①②③可能是分层抽样,④不符合,所以④不可能是分层抽样;如果按系统抽样时,抽取出的号码应该是“等距”的,①③符合,②④不符合,所以①③都可能为系统抽样,②④都不能为系统抽样.答案:D4.一个总体分为A,B两层,其中B层有70个个体,用分层抽样法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率是,则总体中的个体数为()A.840B.120C.700D.不确定解析:因为分层抽样是等可能抽样,所以在总体中,每个个体被抽到的概率都是设总体中的个体数为N,则,N=120.答案:B5.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多人.解析:由分层抽样方法知所求人数为15 000=60.答案:606.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)(1)求x,y;(2)在高校B的相关人员中,应用何种方法进行抽样,并写出抽样过程.解:(1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有x=18,y=2.故x=18,y=2.(2)总体容量和样本容量较小,所以应采用抽签法,过程如下:第一步,将36人随机的编号,号码为1,2,3, (36)第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次抽取一个号码,共抽取2次,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.7.某文艺晚会由乐队18人,歌舞队12人,曲艺队6人组成,需要从这些人中抽取一个容量为n的样本.如果采用系统抽样法和分层抽样法来抽取,都不用剔除个体;如果样本容量为(n+1),则在采用系统抽样时,需要剔除一个个体,求样本容量n.解:总体中,个体总数是36,由于当样本容量增加1时,若采用系统抽样,需要在总体中剔除1个个体,故35应是n+1的倍数,则n=4或n=6,又用分层抽样时不用剔除个体,所以n=6.8.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%,登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a,b,c,则游泳组人数为3x,可得=47.5%,=10%,解得b=50%,c=10%.故a=1-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人人数为20040%=60;抽取的中年人人数为20050%=75;抽取的老年人人数为20010%=15.。

2019高中数学新课标必修3习题:课时作业11《分层抽样》含答案

2019高中数学新课标必修3习题:课时作业11《分层抽样》含答案

起课时作业(十一 )分层抽样A 组基础稳固1.某学校有男、女学生各在明显差别,拟从全体学生中抽取500 名.为认识男女学生在学习兴趣与业余喜好方面能否存100 名学生进行检查,则宜采纳的抽样方法是()A .抽签法C.系统抽样法B.随机数法D.分层抽样法答案: D2.某地域有300 家商铺,此中大型商铺有30 家,中型商铺有75 家,小型商铺有195家,为了掌握各商铺的营业状况,要从中抽取一个容量为20 的样本,若采纳分层抽样的方法,抽取的中型商铺数是()A.2 B.3C.5D. 13答案: C3. (2015 ·京北 )某校老年、中年和青年教师的人数见下表,采纳分层抽样的方法检查教师的身体状况,在抽取的样本中,青年教师有320 人,则该样本的老年教师人数为()A.90 C.180B. 100 D. 300分析:由题意,老年和青年教师的人数比为人,因此老年教师有180 人,应选 C.答案: C900∶ 1600= 9∶ 16.由于青年教师有3204.某企业在甲、乙、丙、丁四个地域分别有150 个、120 个、180 个、150 个销售点.公司为了检查产品销售的状况,需从这 600 个销售点中抽取一个容量为100 的样本,记这项调查为①;在丙地域中有20 个特大型销售点,要从中抽取7 个检查其销售收入和售后服务情况,记这项检查为②.则达成①,②这两项检查宜采纳的抽样方法挨次是() A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法分析:依照题意,第①项检查中,整体中的个体差别较大,应采纳分层抽样法;第②项检查中,整体中个体较少且无显然差别,应采纳简单随机抽样法.答案: B5.某学校进行数学比赛,将考生的成绩分红90 分以下、 90~ 120 分、120~ 150 分三种状况进行统计,发现三个成绩段的人数之比挨次为5∶ 3∶ 1,现用分层抽样的方法抽取一个容量为 m 的样本,此中分数在90~120 分的人数是45,则此样本的容量m 的值为 ()A .75B .100C .125D . 135分析:由三个成绩段的人数之比挨次为5∶ 3∶ 1 及分数在 90~ 120 分的人数为 45 可知,45= 3,解得 m = 135. m5+3+1 答案: D6.某学校高一、高二、高三年级的学生人数之比为 3∶ 3∶ 4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50 的样本,则应从高二年级抽取________名学生.答案: 157.某校现有高一学生 210 人,高二学生 270 人,高三学生300 人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取数名学生进行问卷检查. 假如已知从高一学生中抽取的人数为 7,那么从高三学生中抽取的人数应为________.分析:7× 300= 10.210答案: 10 人8.奶粉增添三聚氰胺问题惹起全社会关注, 某市质量监察局为了保障人民的饮食安全,要对商场中奶粉的质量进行专项抽查. 已知该市商场中各样种类奶粉的散布状况以下:老年 人专用奶粉 300 种,一般奶粉 240 种,婴少儿奶粉 360 种.现采纳分层抽样的方法抽取150种进行查验,则这三种型号的奶粉挨次应抽取______________.分析: 抽样比为 150=1,∴ 300× 1= 50,240× 1= 40,360× 1=60.300+ 240+360 6 6 6 6答案: 50 种, 40 种, 60 种9.某班有 40 名男生, 20 名女生,已知男女身高有显然不一样,现欲检查均匀身高,准备抽取 301,采纳分层抽样方法,抽取男生 1 名,女生 1 名,你以为这类做法稳当否?假如让你来检查,你准备如何做?解:这类做法不稳当.原由:取样比率数 301过小,很难正确反应整体状况,何况男、女身高差别较大,抽取人数同样,也不合理.考虑到此题的状况,能够采纳分层抽样,可抽取1.男生抽取 40× 1= 8(名 ) ,女生抽取5520× 1= 4(名 ),各自用抽签法或随机数法抽取构成样本.5B 组 能力提高10.目前,国家正分批修筑经济合用房以解决低收入家庭住宅紧张的问题. 已知甲、乙、丙三个社区现分别有低收入家庭 360 户,270 户, 180 户,若第一批经济合用房中有90 套住房用于解决这三个社区中90 户低收入家庭的住宅问题,先采纳分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为()A .40B .30C .20D . 36分析:抽样比为90= 1,则应从甲社区中抽取低收入家庭的户数为 360×1=360 + 270+ 180 9940,应选 A.答案: A11.交通管理部门为认识灵活车驾驶员(简称驾驶员 )对某新法例的了解状况,对甲、乙、丙、丁四个社区做分层抽样检查.假定四个社区驾驶员的总人数为N,此中甲社区有驾驶员96 人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43 ,则这四个社区驾驶员的总人数N为()A.101B. 808C.1 212D.2 01212+ 21+ 25+ 43= 101,由分层抽样可知,96 N分析:四个社区抽取的总人数为12=101,解得 N=808.答案: B12.某市化工厂三个车间共有工人 1 000 名,各车间男、女工人数以下表:第一车间第二车间第三车间女工173100y男工177x z 已知在全厂工人中随机抽取 1 名,抽到第二车间男工的可能性是0.15.(1)求 x 的值;(2)现用分层抽样的方法在全厂抽取50 名工人,问应在第三车间抽取多少名?分析: (1)由1 000x= 0.15,得 x=150.(2)∵第一车间的工人数是 173+ 177= 350,第二车间的工人数是100+ 150= 250,∴第三车间的工人数是 1 000- 350- 250=400.设应从第三车间抽取m 名工人,则由m =50 ,400 1 000得 m= 20.∴应在第三车间抽取20 名工人.13.某市两所高级中学结合在暑期组织全体教师出门旅行,活动分为两条线路:华东五市游和长白山之旅,且每位教师至多参加了此中的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占 47.5%,高三老师占 10%.参加华东五市游的教师占参加活动总人数的1,且该组中,高一教师占 50%,高二教师占 40%,高三教师占 10%.为了认识各条线路不4同年级的教师对本次活动的满意程度,现用分层抽样的方法从参加活动的全体教师中抽取一个容量为 200 的样本.试确立:(1)参加长白山之旅的高一教师、高二教师、高三教师分别所占的比率;(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取的人数.分析: (1)设参加华东五市游的人数为x,参加长白山之旅的高一教师、高二教师、高三教师所占的比率分别为a,b,c,则有x·40%+ 3xb x·10%+ 3xc= 10%,解得 b= 50%,4x= 47.5%,4xc=10%.故 a= 100% - 50%- 10%= 40%,即参加长白山之旅的高一教师、高二教师、高三教师所占的比率分别为 40%,50%,10%.3(2)参加长白山之旅的高一教师应抽取人数为200×4×40%=60;抽取的高二教师人数为200×34× 50%=75;抽取的高三教师人数为200×34× 10%=15.When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you,And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fledAnd paced upon the mountains overheadAnd hid his face amid a crowd of stars.The furthest distance in the worldIs not between life and deathBut when I stand in front of youYet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。

新高中数学(北师大版,必修3)练习:1.2.2_分层抽样与系统抽样(含答案解析)

新高中数学(北师大版,必修3)练习:1.2.2_分层抽样与系统抽样(含答案解析)

第一章§2 2.2一、选择题1.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2 B.3C.4 D.5[答案] A[解析]因为1 252=50×25+2,所以应随机剔除2个个体.2.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法()A.抽签法B.随机数表法C.系统抽样D.分层抽样[答案] D[解析]因为个体之间有明显差异,所以应用分层抽样.3.系统抽样适用的总体应是()A.容量较小B.容量较大C.个体数较多但均衡D.任何总体[答案] B[解析]系统抽样适用于容量较大,且个体之间无明显差异的个体.4.(2014·重庆文,3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150C.200 D.250[答案] A[解析]由题意,得抽样比为703 500=150,总体容量为 3 500+1 500=5 000,故n=5000×150=100.5.下列抽样中,不是系统抽样的是()A.从标有1~15的15个小球中任选3个作为样本,按从小号到大号顺序确定起点i,以后为i+5,i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验员从传送带上每隔5分钟抽一件产品检验C .搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D .电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈[答案] C[解析] C 项因为事先不知道总体,抽样方法不能保证每个个体按事先的规定入样. 6.一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是( )A .12,24,15,9B .9,12,12,7C .8,15,12,5D .8,16,10,6[答案] D[解析] 本题考查分层抽样的概念和应用,利用分层抽样抽取人数时,首先应计算抽样比.从各层中依次抽取的人数分别是40×160800=8,40×320800=16,40×200800=10,40×120800=6.二、填空题7.某高校甲、 乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.[答案] 16[解析] 考查分层抽样.解答此题必须明确“每个个体被抽到的概率相同”及“每层以相同比例抽取”.所有学生数为150+150+400+300=1000人,则抽取比例为401000=125, 所以应在丙专业抽取400×125=16人.8.总体中含有1 645个个体,若采用系统抽样的方法从中抽取容量为35的样本,则编号后确定编号分为________段,分段间隔k =________,每段有________个个体.[答案] 35 47 47[解析] ∵N =1 645,n =35,则编号后确定编号分为35段,且k =N n =1 64535=47,则分段间隔k =47,每段有47个个体.三、解答题9.某家电视台在因特网上征集某电视节目现场参与观众,报名的总人数为12 000人,分别来自4个城区,其中东城区2 400人,西城区4 600人,南城区3 800人,北城区1 200人,用分层抽样的方式从中抽取60人参加现场的节目,应当如何抽取?写出抽取过程.[解析]第一步:分层:按城区分为四层:东城区、西城区、南城区、北城区.第二步:按比例确定每层抽取个体的个数.抽样比为6012 000=1200,所以在东城区抽取2400×1200=12(人),在西城区抽取4 600×1200=23(人),在南城区抽取3 800×1200=19(人),在北城区抽取1 200×1200=6(人).第三步在各层分别用简单随机抽样法抽取样本.第四步确定样本.将各城区抽取的观众合在一起组成样本.一、选择题1.某林场有树苗30 000棵,其中松树苗4 000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为() A.30 B.25C.20 D.15[答案] C[解析]由分层抽样知,样本中松树苗数为15030 000×4 000=20,故选C.2.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机的从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是()A.5 B.6C.7 D.8[答案] B[解析]设第1组的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.故选B.二、填空题3.(2014·天津文,9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.[答案]60[解析]根据题意,应从一年级本科生中抽取的学生人数为44+5+5+6×300=60.4.一个总体中共有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.[答案] 63[解析] 由题设知,若m =6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中数字编号顺次为60,61,62,63,…,69.故在第7组抽取的号码是63.三、解答题5.一个地区共有5个乡镇,人口共3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.[解析] 因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分成5层,其中每一个乡镇为一层.(2)按照样本容量的比例随机抽取各乡镇应抽取的样本300×315=60(人),300×215=40(人),300×515=100(人),300×215=40(人),300×315=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60人.(3)将这300人组到一起,即得到所要抽取的样本.6.某电视机厂每天大约生产1 000台电视机,要求质检员每天抽取30台,检查其质量状况.假设一天的生产时间中生产电视机的台数是均匀的,请你设计一个调查方案.[解析] 可采用系统抽样,按下面的步骤设计方案:第一步:把一天生产的电视机分成30个组,由于1 00030的商是33,余数是10,所以每个组有33台电视机,还剩10台,这时,抽样距为33;第二步:先用简单随机抽样的方法从总体中抽取10台电视机,不进行检验; 第三步:将剩下的电视机进行编号,编号分别为0,1,2, (989)第四步:从第一组(编号为0,1,2,3,…,32)的电视机中按照简单随机抽样的方法,抽取1台电视机,比如说其编号为k ;第五步:顺序地抽取编号分别为下面数字的电视机:k +33,k +66,k +99,…,k +29×33,这样总共抽取了容量为30的一个样本,对此样本进行检验即可.7.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题: 本村人口:1200人,户数300,每户平均人口数4人; 应抽户数:30户;抽样间隔:120030=40;确定随机数字,取一张人民币,编码的后两位数为12; 确定第一样本户:编码的后两位数为12的户为第一样本户; 确定第二样本户:12+40=52,52号为第二样本户; ……(1)该村委采用了何种抽样方法? (2)抽样过程中存在哪些问题,并修改; (3)何处是用简单随机抽样. [解析] (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10,其他步骤相应改为确定随机数字;取一张人民币,编码的后两位数为12,确定第一样本户:编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为12.。

高中数学人教A版必修3课后练习12 分层抽样

高中数学人教A版必修3课后练习12 分层抽样

高中数学人教A版必修3课后练习12分层抽样1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3解析:不管是简单随机抽样、系统抽样还是分层抽样,它们都是等可能抽样,每个个体被抽中的概率均.为nn答案:D2.某学校高一、高二、高三共有学生3 500人,其中高三学生人数是高一学生人数的两倍,高二学生人的抽样比用分层抽样的方法抽取样本,则抽取高一学生的人数为数比高一学生人数多300,现在按1100()A.8 B.11 C.16 D.10解析:设高一有x人,则高三有2x人,高二有(x+300)人,∵高一、高二、高三共有学生3 500人,∴x+2x+x+300=3 500,∴x=800.∵按1的抽样比用分层抽样的方法抽取样本,100∴抽取高一学生的人数为1×800=8.100答案:A3.某校共有2 000名学生,各年级男、女生人数如表所示.现用分层抽样的方法在全校抽取64名学生,则A.24 B.18 C.16 D.12解析:依题意可知,高三年级学生人数为500,占总体学生人数比例为500∶2 000=1∶4,故用分层抽=16,故选C.样抽取高三年级学生人数为64×14答案:C4.某商场有四类食品,其中粮食类、植物油类、肉食品类、果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5 C.6 D.7=2,抽取的果蔬类的种数为解析:四类食品的比例为4∶1∶3∶2,则抽取的植物油类的种数为20×110=4,二者之和为6,故选C.20×210答案:C5.分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱,欲以钱数多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带多少的比例进行交税,问三人各应付多少税?则下列说法错误的是()A.甲应付5141109钱B.乙应付3224109钱C.丙应付1656109钱D.三者中甲付的钱最多,丙付的钱最少解析:由分层抽样可知,抽样比为100560+350+180=10109,则甲应付10109×560=5141109(钱);乙应付10109×350=3212109(钱);丙应付10109×180=1656109(钱),故选B.答案:B6.古代科举制度始于隋而成于唐,完善于宋、元.明代则处于其发展的鼎盛阶段.其中表现之一为会试分南卷、北卷、中卷,按比例录取,其录取比例为11∶7∶2.若明宣德五年会试录取人数为100.则中卷录取人数为__________.解析:由题意知,明宣德五年会试录取人数为100,则中卷录取人数为100×211+7+2=10(人).答案:107.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取__________名学生.解析:根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60人.答案:608.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是________.(填序号)①简单随机抽样②系统抽样③分层抽样④先从老年人中剔除1人,再用分层抽样解析:总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.答案:④9.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?解用分层抽样抽取样本.∵20500=125,即抽样比为125,∴200×125=8,125×125=5,50×125=2.故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人. 抽样步骤:①确定抽样比为125;②按比例分配各层所要抽取的个体数,O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人;③用简单随机抽样分别在各种血型中抽取样本,直至取出容量为20的样本.。

高中数学人教A版必修三课后测评 第二章《统计》11 分层抽样 含解析

高中数学人教A版必修三课后测评 第二章《统计》11 分层抽样 含解析

学业分层测评(十一)分层抽样(建议用时:45分钟)[学业达标]一、选择题1.某地区为了了解居民家庭生活状况,先把居民按所在行业分为几类,然后每个行业抽1100的居民家庭进行调查,这种抽样是() A.简单随机抽样B.系统抽样C.分层抽样D.分类抽样【解析】由于居民按行业可分为不同的几类,符合分层抽样的特点.【答案】 C2.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6【解析】抽样比例为40800=120,故各层中依次抽取的人数为160×120=8(人),320×120=16(人),200×120=10(人),120×120=6(人).故选D.【答案】 D3.在1 000个球中有红球50个,从中抽取100个进行分析,如果用分层抽样的方法对球进行抽样,则应抽红球()A.33个B.20个C.5个D.10个【解析】设应抽红球x个,则1001 000=x50,则x=5.【答案】 C4.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()图2-1-1A.200,20 B.100,20C.200,10 D.100,10【解析】该地区中小学生总人数为3 500+2 000+4 500=10 000,则样本容量为10 000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20.【答案】 A5.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到的抽样方法有()①简单随机抽样;②系统抽样;③分层抽样.A.②③B.①③C.③D.①②③【解析】由三种抽样方法的特点.可知,选D.【答案】 D二、填空题6.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.【解析】应在丙专业抽取的学生人数是400×40=16.150+150+400+300【答案】167.某校共有2 000名学生,各年级男、女生人数如表所示.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为_____________.【解析】依题意可知三年级学生人数为500,即总体中各年级的人数比例为3∶3∶2,故用分层抽样抽取三年级学生人数为64×28=16.【答案】168.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.【解析】高二年级学生人数占总数的310,样本容量为50,则50×310=15.【答案】15三、解答题9.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? 【导学号:28750034】【解】 (1)按老年、中年、青年分层抽样,抽取比例为402 000=150.故老年人,中年人,青年人各抽取4人,12人,24人,(2)按管理、技术开发、营销、生产进行分层,用分层抽样,抽取比例为252 000=180,故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.10.某市两所高级中学联合在暑假组织全体教师外出旅游,活动分为两条线路:华东五市游和长白山之旅,且每位教师至多参加了其中的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占47.5%,高三教师占10%.参加华东五市游的教师占参加活动总人数的14,且该组中,高一教师占50%,高二教师占40%,高三教师占10%.为了了解各条线路不同年级的教师对本次活动的满意程度,现用分层抽样的方法从参加活动的全体教师中抽取一个容量为200的样本.试确定:(1)参加长白山之旅的高一教师、高二教师、高三教师分别所占的比例;(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取的人数.【解】 (1)设参加华东五市游的人数为x ,参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%,解得b =50%,c =10%.故a =100%-50%-10%=40%,即参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为40%,50%,10%.(2)参加长白山之旅的高一教师应抽取人数为200×34×40%=60;抽取的高二教师人数为200×34×50%=75;抽取的高三教师人数为200×34×10%=15.[能力提升]1.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10【解析】 若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为 800100=8.【答案】 A2.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为( )A .60B .80C .120D .180【解析】 11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,则抽样比为13.∵从回收的问卷中按年龄段分层抽取容量为300的样本,∴从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷总数为30013=900(份),则15~16岁回收问卷份数为:x =900-120-180-240=360(份).∴在15~16岁学生中抽取的问卷份数为360×13=120(份),故选C.【答案】 C3.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求得样本容量为________.【解析】 总体容量N =36.当样本容量为n 时,系统抽样间隔为36n ∈N *,所以n 是36的约数;分层抽样的抽样比为n 36,求得工程师、技术员、技工的抽样人数分别为n 6、n 3、n 2,所以n 应是6的倍数,所以n =6或12或18或36.当样本容量为n +1时,总体中先剔除1人时还有35人,系统抽样间隔为35n +1∈N *,所以n 只能是6. 【答案】 64.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?【解】 (1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量=120,总体个数=500+3 000+4 000=7 500,则抽样比:1207 500=2125,所以有500×2125=8,3 000×2125=48,4 000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8、48、64.分层抽样的步骤是:①分层:分为教职员工、初中生、高中生,共三层.②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8、48,64.③各层分别按简单随机抽样或系统抽样的方法抽取样本.④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是:①编号:将3 000份答卷都编上号码:0001,0002,0003, (3000)②在随机数表上随机选取一个起始位置.③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,217,333,395,457,…,3 929.。

内蒙古准格尔旗世纪中学人教版高中数学必修三习题:2.1《分层抽样》 Word版含答案

内蒙古准格尔旗世纪中学人教版高中数学必修三习题:2.1《分层抽样》 Word版含答案

《分层抽样》习题1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A.抽签法 B.随机数法C.系统抽样法D.分层抽样法2.下列问题中,最适合用分层抽样抽取样本的是( ) A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100户的样本C.从1 000名工人中,抽取100人调查上班途中所用时间D.从生产流水线上,抽取样本检查产品质量3.具有A、B、C三种性质的总体,其容量为63,将A、B、C三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A、B、C三种元素分别抽取( )A.12、6、3 B.12、3、6C.3、6、12 D.3、12、64.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A.8,8 B.10,6C.9,7 D.12,45.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( )①简单随机抽样;②系统抽样;③分层抽样.A.②③ B.①③ C.③ D.①②③6.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.7.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?8.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A.8 B.11 C.16 D.109.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽样本的方法是( )A.简单随机抽样B.系统抽样C.先从中年人中剔除1人,再用分层抽样D.先从老年人中剔除1人,再用分层抽样10.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.11.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.13.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)采用哪种抽样方法才能得到比较客观的评价结论?教职员工、初中生、高中生中抽取的个体数各是什么?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?1.答案 D解析总体(100名学生)中的个体(男、女学生)有明显差异,应采用分层抽样.2.答案 B解析A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,适合用系统抽样;B中总体所含个体差异明显,适合用分层抽样.3.答案 C解析因为A、B、C三种性质的个体按1∶2∶4的比例进行分层抽样,∴A 种元素抽取的个数为21×17=3, B 种元素抽取的个数为21×27=6, C 种元素抽取的个数为21×47=12. 4.答案 C解析 抽样比为1654+42=16,则一班和二班分别被抽取的人数是54×16=9,42×16=7.5.答案 D解析 由于各家庭有明显的差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法.6.答案 15解析 抽取比例与学生比例一致.设应从高二年级抽取x 名学生,则x∶50=3∶10.解得x =15.7.解 总体中的个体数N =3 000+4 000+8 000=15 000,样本容量n =150,抽样比例为n N=15015 000=1100,所以应该在第1条流水线生产的产品中随机抽取3 000×1100=30(件)产品,在第2条流水线生产的产品中随机抽取4 000×1100=40(件)产品,在第3条流水线生产的产品中随机抽取8000×1100=80(件)产品.这里因为每条流水线所生产的产品数都较多,所以,在每条流水线的产品中抽取样品时,宜采用系统抽样方法.8.答案 A解析 若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取高一学生数为800100=8. 9.答案 D解析 总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.10.答案 88解析 在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n =2+3+5+12×16=88. 11.解 (1)系统抽样方法:将200个产品编号1,2,…,200,再将编号分为20段,每段10个编号,第一段为1~10号,…,第20段为191~200号.在第1段用抽签法从中抽取1个,如抽取了6号,再按预先给定规则,通常可用加间隔数10,第二段取16号,第三段取26号…,第20段取196号,这样可得到一个容量为20的样本.(2)分层抽样方法:因为样本容量与总体的个体数的比为20∶200=1∶10,所以一、二、三级品中分别抽取的个体数目依次是100×110,60×110,40×110,即10,6,4.将一级品的100个产品按00,01,02,…,99编号,将二级品的60个产品按00,01,02,…,59编号,将三级品的40个产品按00,01,02,…,39编号,采用随机数表法,分别抽取10个,6个,4个.这样可得容量为20的一个样本.12.解 因为采用系统抽样和分层抽样时不用剔除个体,所以n 是36的约数,且36n是6的约数,即n 又是6的倍数,n =6,12,18或36,又n +1是35的约数,故n 只能是4,6,34,综合得n =6,即样本容量为6.13.解 (1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量=120,总体个数=500+3 000+4 000=7 500,则抽样比:1207 500=2125, 所以有500×2125=8,3 000×2125=48, 4 000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64. (2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数表法抽取样本,步骤:①编号:将3 000份答卷都编上号码:0 001,0 002,0 003,…,3 000.②在随机数表上随机选取一个起始位置.③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,如若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本;23,85,147,209,271,333,395,457,…,3 929.。

高中数学苏教版必修3分层测评习题9简单随机抽样含解析

高中数学苏教版必修3分层测评习题9简单随机抽样含解析

学业分层测评 (九 )(建议用时: 45 分钟 )[ 学业达标 ]一、填空题1.对于简单随机抽样的特色,有以下几种说法,此中正确的选项是________.(填序号 )①要求整体的个数有限;②从整体中逐一抽取;③它是一种不放回抽样;④每个个体被抽到的时机不同样,与先后相关.【分析】由简单随机抽样的特色可知④不对,①②③对.【答案】①②③2.从个体数为 N 的整体中抽取一个容量为k 的样本,采纳简单随机抽样,当整体的个数不多时,一般用________进行抽样 .【分析】由抽签法特色知宜采纳抽签法.【答案】抽签法3.下边的抽样方法是简单随机抽样的是________.①从某城市的流感人口中随机抽取100 人作检查;②在某年明信片销售活动中,规定每 100 万张为一个开奖组,经过随机抽取的方法确立号码的后四位为 2 709 的为三等奖;③在待查验的 30 件部件中随机逐一取出 5 件进行查验 .【分析】①中整体容量较大,不宜用简单随机抽样;②中抽取的个体的间隔是固定的,不是简单随机抽样.【答案】③4.(2015 苏·州高一检测 )采纳抽签法从含有3 个个体的整体 { a, b, c} 中抽取一个容量为 2 的样本,则全部可能的样本是________.【分析】从三个整体中任取两个即可构成样本,全部可能的本 { a,b} , {a,c} , { b,c}.【答案】{a,b} , {a,c} , { b,c}5.用随机抽方法从含有10 个个体的体中,抽取一个容量 3 的本,此中某一个体a“第一次被抽到”的可能性、“第二次被抽到”的可能性分是 ________. 【学号: 90200035】1【分析】随机抽中,每个个体被抽到的时机均等,都10.1 1【答案】10,106.某工厂的人生的100 件品采纳随机数表法抽取10 件,100 件品采纳下边的号方法:① 01,02,03,⋯, 100;② 001,002,003,⋯,100;③ 00,01,02,⋯, 99.此中正确的序号是 ________.【分析】依据随机数表法的要求,只有号数字位数同样,才能达到随机等可能抽 .故②③正确 .【答案】②③7.从数 N 的一批部件中抽取一个容量30 的本,若每个部件被抽到的可能性 25%, N= ________.30【分析】由意得,N= 25%,∴N=120.【答案】1208.一个体的 60个个体号00,01,⋯, 59,需从中抽取一个容量6的本,从随机数表的倒数第 5 行(以下表,且表中下一行接在上一行右)第10 列开始,向右取,直到取足本,抽取本的号是________.95339522001874720018387958693281768026928280842539【分析】取的数字两个一01,87,47,20,01,83,87,95,86,93,28,17,68,02,⋯,抽取的本号是01,47,20,28,17,02.【答案】01,47,20,28,17,02二、解答9.有一批号10,11,⋯, 99,100,⋯, 600 的元件,打算从中抽取一个容量 6 的本行量 .怎样用随机数表法抽方案?【解】(1)将元件的号整010,011,012,⋯,099,100,⋯,600;(2)在随机数表中任一数作开始,任一方向作数方向.比方,第6 行第7 列数“9”,向右 (本随机数表 );(3)从数“9”开始,向右,每次取三位,凡不在 010~600 中的数跳去不,前方已的也跳去不,挨次可获得544,354,378,520,384,263;(4)以上号的 6 个元件就是要抽取的本.10.某合企有 150 名工,要从中随机地抽出 20 人去参学 .用抽法和随机数表法行抽取本,并写出程 .【解】(抽法 )先把 150 名工号: 1,2,3,⋯,150,把号写在小片上,揉成小球,放入一个不透明的袋子中,充足拌平均后,从中逐一不放回地抽取 20 个小球,就抽出了去参学的20 名工 .(随机数表法 )第一步,先把150 名工号: 001,002,003,⋯,150.第二步,从随机数表中任一个数,如第10行第4列数 0.第三步,从数字 0 开始向右数,每 3 个数字一,在取的程中,把大于 150 的数和与前方重复的数去掉,就获得20 个本的号以下:086,027,079,050,074,146,148,093,077,119,022,025,042,045,128,121,038,130,12 5,033.[ 能力提高 ]1.认识参加运会的 2 000 名运的年状况,从中抽取 20 名运的年行剖析 .就个,以下法中正确的有 ________.(填序号 )①2 000 名运是体;②每个运是个体;③所抽取的 20 名运是一个本;④ 本容量20;⑤ 个抽方法可采纳随机数表法抽;⑥每个运被抽到的时机相等.【分析】① 2 000 名运不是体, 2 000 名运的年才是体;②每个运的年是个体;③20 名运的年是一个本.【答案】④⑤⑥2.从一群正在游的儿童中随机抽出k 人,一人分一个苹果,他返回做游 .了一会儿,再从中任取m 人,此中有n 个儿童曾分苹果,估参加游的儿童的人数________.k n km【分析】参加游的儿童有x 人,x=m, x=n .【答案】km n3.一个体的个体数60,号 00,01,02,⋯, 59,需从中抽取一个容量 7 的本,从随机数表的倒数第 5 行 (下表随机数表的最后 5 行)第 11列的 1 开始,挨次向下,到最后一行后向右,直到取足本,抽取本的号是 ________.95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 9538 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 8082 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 5024 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 4996 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60【分析】先取 18,向下 98 不切合要求,下边取05,向右数, 07、35、59、 26、39,所以抽取的本的号18、05、 07、35、59、 26、39.【答案】18、05、 07、35、59、 26、394.某台行文晚会,邀20 名港台、内陆人演出,此中从30 名内地人中随机出10 人,从 18 名香港人中随机挑 6 人,从 10 名台湾人中随机挑 4 人 .用抽法确立中的人,并确立他的表演序.【解】第一步先确立人:(1)将30名内陆人从01到30号,而后用同样的条做成30 个号,在每个号上写上些号,而后放入一个不透明小筒中匀,从中抽出10 个号,相号的人参加演出;(2)运用同样的方法分别从 10 名台湾艺人中抽取 4 人,从 18 名香港艺人中抽取 6 人.第二步确立演出次序:确立了演出人员后,再用同样的纸条做成20 个号签,上边写上 1 到 20 这 20 个数字,代表演出的次序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出次序,再汇总即可.。

人教A版高中数学必修3课后练习第二章分层抽样

人教A版高中数学必修3课后练习第二章分层抽样

A级:基础巩固练一、选择题1.将A,B,C三种性质的个体按1∶2∶4的比例进行分层抽样调查,若抽取的样本容量为21,则A,B,C三种性质的个体分别抽取()A.12,6,3 B.12,3,6 C.3,6,12 D.3,12,6答案 C解析由分层抽样的概念,知A,B,C三种性质的个体应分别抽取21×1 7=3,21×27=6,21×47=12.2.共享单车为人们提供了一种新的出行方式,有关部门对使用共享单车人群的年龄分布进行了统计,得到的数据如下表所示:年龄12~20岁20~30岁30~40岁40岁及以上比例14% 45.5% 34.5% 6%200的样本进行调查,那么应抽取20~30岁的人数为()A.12 B.28 C.69 D.91答案 D解析由分层抽样的定义得应抽取20~30岁的人数为200×45.5%=91.3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5 C.6 D.7答案 C解析分层抽样中,分层抽取时都按相同的抽样比nN来抽取,本题中抽样比为2040+10+30+20=15,因此植物油类应抽取10×15=2(种),果蔬类食品应抽20×15=4(种),因此从植物油类和果蔬类食品中抽取的种数之和为2+4=6.4.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是()A.124 B.136 C.160 D.16答案 D解析在分层抽样中,每个个体被抽取的可能性都相等,且为样本容量总体容量,所以每个个体被抽取的可能性是20120=16.5.分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带多少的比例进行交税,问三人各应付多少税?则下列说法错误的是()A.甲应付5141109钱B.乙应付3224 109钱C.丙应付1656 109钱D.三者中甲付的钱最多,丙付的钱最少答案 B解析由分层抽样可知,抽样比为100560+350+180=10109,则甲应付10109×560=5141109(钱);乙应付10109×350=3212109(钱);丙应付10109×180=1656109(钱).故选B.二、填空题6.甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.答案1800解析设乙设备生产的产品总数为x件,则甲设备生产的产品总数为(4800-x)件.由题意,得5080=4800-x4800,解得x=1800.7.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取的辆数为________.答案6,30,10解析 设三种型号的轿车依次抽取x 辆,y 辆,z 辆,则有⎩⎪⎨⎪⎧ x 1200=y 6000=z 2000,x +y +z =46,解得⎩⎨⎧ x =6,y =30,z =10.故填6,30,10.8.某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取________人.答案 6解析 解法一:因为“泥塑”社团的人数占两个社团总人数的35,故“剪纸”社团的人数占两个社团总人数的25,所以“剪纸”社团的人数为800×25=320. 因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310, 所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.解法二:因为“泥塑”社团的人数占两个社团总人数的35,故“剪纸”社团的人数占两个社团总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310,所以从高二年级“剪纸”社团中抽取的人数为20×310=6.三、解答题9.某单位有技师18人、技术员12人、工程师6人.需要从这些人中抽取一个容量为n(n∈N*)的样本,如果采用系统抽样的方法抽取,不用剔除个体;如果采用分层抽样的方法抽取,各层抽取结果都是整数;如果样本容量增加1,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量.解依题意,知总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为36n,分层抽样的抽样比是n36,抽取工程师的人数为n36×6=n6,技术员的人数为n36×12=n3,技工的人数为n36×18=n2,∴n应是36的约数且是6的倍数,即n的可能取值是6,12,18.当样本容量为n+1时,系统抽样的间隔为35n+1.∵35n+1必须为正整数,∴n只能取6,即样本容量n=6.B级:能力提升练10.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3000名初中生、4000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?解(1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量为120,总体个数为500+3000+4000=7500,则抽样比120 7500=2 125,所以有500×2125=8,3000×2125=48,4000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.分层抽样的步骤是①分层:分为教职员工、初中生、高中生,共三层;②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64;③各层分别按简单随机抽样或系统抽样的方法抽取样本;④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3000个号签,费时费力,因此采用随机数法抽取样本,步骤是①编号:将3000份答卷都编上号码:0001,0002,0003, (3000)②在随机数表上随机选取一个起始位置;③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4000÷64=62.5不是整数,则应先使用简单随机抽样从4000名学生中随机剔除32个个体,再将剩余的3968个个体进行编号:1,2,...,3968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,...,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457, (3929)。

高中数学 第二章 统计 2.1.3 分层抽样练习(含解析)新人教A版必修3(2021年最新整理)

高中数学 第二章 统计 2.1.3 分层抽样练习(含解析)新人教A版必修3(2021年最新整理)

高中数学第二章统计2.1.3 分层抽样练习(含解析)新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章统计2.1.3 分层抽样练习(含解析)新人教A版必修3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章统计2.1.3 分层抽样练习(含解析)新人教A版必修3的全部内容。

2.1。

3 分层抽样一、选择题1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取数名学生进行问卷调查.如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( )A.10 B.9C.8 D.7【答案】A【解析】选A。

错误!×300=10。

2.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A.30 B.36C.40 D.没法确定【答案】B【解析】抽取比例为错误!=错误!,故样本容量为:错误!×120=36.3.某城区有农民、工人、知识分子家庭共计2000家,其中农民家庭1800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,用到的抽样方法有( )①简单随机抽样②系统抽样③分层抽样A.②③B.①③C.③D.①②③【答案】D【解析】由于各类家庭有明显差异,所以首先应用分层抽样的方法分别从三类家庭中抽出若干户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样.故整个抽样过程要用到①②③三种抽样方法.4.下列抽样方式中,是系统抽样的有()①某单位从老年、中年、青年职工中按2∶5∶3的比例选取职工代表;②搞市场调查,规定在商店门口随机地抽一些人进行询问,直到调查到规定的人数为止;③3D福利彩票的中将号码用摇奖机摇奖;④规定凡购买到的明信片的最后的四位号码是“6637”的人获三等奖;⑤从参加模拟考试的1200名高中生按优、中、差抽取100人分析试题的作答情况.A.1个B.2个C.3个D.4个【答案】A【解析】①⑤有明显的层次,不宜采用系统抽样;对于②,由于事先不知道总体,抽样方法不能保证每个个体等可能地入样,故②不是系统抽样;③是简单随机抽样;④是系统抽样.5.某初级中学有学生270人,其中一年级108人,二、三年级各81人.现要从中抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用简单随机抽样和系统抽样时,将学生统一随机编号为1,2,…,270.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270。

高中数学苏教版必修3 分层测评习题11 分层抽样含解析

高中数学苏教版必修3 分层测评习题11 分层抽样含解析

学业分层测评(十一)(建议用时:45分钟)[学业达标]一、填空题1.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________法.【解析】总体(1 000名学生)中的个体(男、女学生)有明显差异,应采用分层抽样.【答案】分层抽样2.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法________.①简单随机抽样;②系统抽样;③分层抽样.【解析】由于各家庭有明显的差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中抽出若干户,即36户、2户、2户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样法.故整个抽样过程要用到①②③三种抽样法.【答案】①②③3.(2015·扬州高一月考)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.【解析】设共抽取n个人,则n56+42×56=8,∴n=14.∴抽取的女运动员有14-8=6(人).【答案】 64.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.【解析】420×300=60(名).【答案】605.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则p1,p2,p3的大小关系是________.【解析】不管是简单随机抽样、系统抽样还是分层抽样,他们都是等概率抽样,每个个体被抽中的可能性相同概率均为nN.则p1=p2=p3.【答案】p1=p2=p36.(2015·淮安高二质检)某校高级职称教师26人,中级职称教师104人,其他教师若干人,为了了解该校教师的工资情况,按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师________人.【解析】设其他教师为x人,则5626+104+x=16x,解得x=52,∴x+26+104=182(人).【答案】1827.某单位共有老年、中年、青年职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.【解析】由题意,设老年职工人数为x,则中年职工人数为2x,所以x+2x+160=430,则x=90.故该样本中老年职工人数为90×32160=18.【答案】188.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.【解析】在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.【答案】88二、解答题9.某单位组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组,在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%,登山组的职工占参加活动的总人数的14,且该组中,青年人占5%,中年人占40%,老年人占10%,为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本,试确定:(1)游泳组中,青年人、中年人、老年人所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.【解】(1)设登山组人数为x;游泳组中,青年人、中年人、老年人各占比例分别为a,b,c;则有x·40%+3xb4x=47.5%,x·10%+3xc4x=10%,解得b=50%,c=10%,故a=100%-50%-10%=40%,即游泳组中、青年人、中年人、老年人各占比例分别为40%、50%、10%.(2)游泳组中,抽取的青年人数为200×34×40%=60(人);抽取的中年人数为200×34×50%=75(人);抽取的老年人数为200×34×10%=15(人).10.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.【解】①系统抽样方法:将200个产品编号1,2,…,200,再将编号分为20段,每段10个编号,第一段为1~10号,…,第20段为191~200号.在第1段用抽签法从中抽取1个,如抽取了6号,再按预先给定规则,通常可用加间隔数10,第二段取16号,第三段取26号,…,第20段取196号,这样可得到一个容量为20的样本.②分层抽样方法:因为样本容量与总体的个体数的比为20∶200=1∶10,所以一、二、三级品中分别抽取产品的个数依次是100×110,60×110,40×110,即10,6,4.将一级品的100个产品按00,01,02,…,99编号,将二级品的60个产品按00,01,02,…,59编号,将三级品的40个产品按00,01,02,…,39编号,采用随机数表法,分别抽取10个,6个,4个.这样可得容量为20的一个样本.[能力提升]1.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽样的方法是________.(填序号)①简单随机抽样;②系统抽样;③先从中年人中剔除1人,再用分层抽样;④先从老年人中剔除1人,再用分层抽样.【解析】总人数为28+54+81=163.样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36∶163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36∶162=2∶9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本.【答案】④2.某校对全校男女学生共1 200名进行健康调查,选用分层抽样抽取一个容量为200的样本,已知男生比女生多抽了10人,则该校男生人数为________人.【解析】 由男生比女生多抽10人可知样本中有男生105人,女生95人,因此该校男生人数为1 200×105200=630.【答案】 6303.从某地区15 000位老人中用分层抽样法抽取500人,其生活能否自理的情况如下表所示:则在该地区生活的老人中男性比女性少________人.【解析】 从表中可知,500人中男性有200人,女性有300人.故该地区生活的老年人中男性比女性少15 000×⎝ ⎛⎭⎪⎫35-25=3 000(人). 【答案】 3 0004.(2015·无锡高二检测)某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n . 【导学号:90200042】【解】 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。

数学苏教必修3备课资料 2分层抽样 含答案

数学苏教必修3备课资料 2分层抽样 含答案

备课资料备选例题例 1 某网站欲调查网民对当前网页的满意程度,在登录的所有网民中,收回有效帖子共50 000份,其中持各种态度的份数如下表所示:很满意 满意 一般 不满意10 800 12 400 15 600 11 200为了了解网民的具体想法和意见,以便决定如何更改才能使网页更完美,打算从中抽选500份,为使样本更具有代表性,应该怎样抽取样本?解:采用分层抽样.具体抽样步骤如下:①把总体分成四层:“很满意”“满意”“一般”“不满意”;②因为总体为50000份,所以从各层中的份数占总体份数的比分别为:“很满意”占5000010800;“满意”占5000012400;“一般”占5000015600;“不满意”占5000011200; ③因此,各层中抽出的份数为:“很满意”有5000010800×500=108份;“满意”有5000012400×500=124份;“一般”有5000015600×500=156份;“不满意”有5000011200×500=112份; ④在每层中用系统抽样的方法抽取样本,把各层抽得的个体合在一起就得到了所需的样本.例2 某学校有教师160人,后勤服务人员40人,行政管理人员20人,要从中抽选20人参加学校召开的职工代表大会,为了使所抽的人员更具有代表性,应该怎样抽取样本?解:采用分层抽样.具体抽样步骤如下:①总体分成三层:“教师”“后勤服务人员”“行政管理人员”;②因为总人数为160+40+20=220人,抽选出20人,所以从每层中抽出的人数占该层人数的比为20∶220=1∶11;③因此,各层中抽出的人数为:“教师”有111×160≈14人;“后勤服务人员” 有111×40≈4人;“行政管理人员”有111×20≈2人; ④在每层中用简单随机抽样的方法抽取样本,把各层抽得的个体合在一起就得到了所需的样本.备用习题1.一单位有职工80人,其中业务人员56人,管理人员8人,服务人员16人,为了解职工的某种情况,决定采用分层抽样的方法抽取一个容量为10的样本,每个管理人员被抽到的概率为( )81.101.241.801.D C B A2.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用了抽样方法是()A.简单随机抽样法B.系统抽样法C.分层抽样法D.抽签法3.对于简单随机抽样,下列说法中正确的命题为()①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作③它是一种不放回抽样④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性A.①②③B.①②④C.①③④D.①②③④4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2).则完成(1)、(2)这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法5.中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样方法抽取,其组容量为()A.10B.100C.1 000D.10 0006.某小礼堂有25排座位,每排有20个座位.一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下了座位号是15的所有的25名学生测试.这里运用的抽样方法是()A.抽签法B.随机数表法C.系统抽样法D.分层抽样法7.某中学有高级教师27人,中级教师54人,初级教师81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从高级教师中随机剔除1人,再用分层抽样8.某地区中小学生人数的分布情况如下表所示(单位:人):学段 城市 县镇 农村小学 357 000 221 600 258 100初中 226 200 134 200 11 290高中 112 000 43 300 6 300请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之一的抽样方案. 参考答案:1.D 分析:因为管理人员占单位全部职工的101808 ,所以应从管理人员中抽取1人,因此每个管理人员被抽到的概率为101. 2.B3.D4.B5.C6.C7.C8.解:采用分层抽样,具体步骤如下:(1)将所有中小学生分为九个层:“城市小学生”“城市初中生”“城市高中生”“县镇小学生”“县镇初中生”“县镇高中生”“农村小学生”“农村初中生”“农村高中生”;(2)应抽取“城市小学生”357 000×10001=357人,应抽取“城市初中生”226 200×10001=226.2≈226人,应抽取“城市高中生”112 000×10001=112人,应抽取“县镇小学生” 221 600×10001=221.6≈222人,应抽取“县镇初中生”134 200×10001=134.2≈134人,应抽取“县镇高中生”43 300×10001=43.3≈43人,应抽取“农村小学生”258 100×10001=258.1≈258人,应抽取“农村初中生”11 290×10001=11.29≈11人,应抽取“农村高中生”6 300×10001=6.3≈6人; (3)将各层抽出的学生合在一起就组成了所需的样本.(设计者:王慧)。

【人教版】数学必修三《分层抽样》课后练习(含答案)

【人教版】数学必修三《分层抽样》课后练习(含答案)

分层抽样课后练习主讲教师:熊丹北京五中数学教师题一:某学院有A,B,C三个专业共 1 200名学生.现采用分层抽样的方法抽取一个容量为120的样本,已知A专业有420名学生,B专业有380名学生,则在C专业应抽取________名学生.题二:某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了检查普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是________.题三:某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4 B.5C.6 D.7题四:某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n=________.题五:将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.题六:将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的编号为003.这600名学生分住在3个营区,从001到300住在第1营区,从301到495住在第2营区,从496到600住在第3营区,则3个营区被抽中的人数依次为()A.26,16,8 B.25,16,9C.25,17,8 D.24,17,9题七:一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.题八:交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A.101B.808 C.1 212 D.2 012题九:调查某高中 1 000名学生的身高情况,得下表.已知从这批学生中随机抽取1名学生,抽到偏低男生的概率为0.15.偏低正常偏高女生100173y男生x 177z(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在偏高学生中抽多少名;(3)已知y≥193,z≥193,求偏高学生中男生不少于女生的概率.题十:某单位有 2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产共计老年40404080200中年80120160240600青年40160280720 1 200共计160320480 1 040 2 000(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对某运动会筹备情况的了解,则应怎样抽样?题十一:2012年6月16日“神舟”九号载人飞船顺利发射升空,某校开展了“观,神九?飞天燃爱国激情”系列主题教育活动.该学校高一年级有学生300人,高二年级有学生300人,高三年级有学生400人,通过分层抽样从中抽取40人调查“神舟”九号载人飞船的发射对自己学习态度的影响,则高三年级抽取的人数比高一年级抽取的人数多()A.5人B.4人C.3人D.2人题十二:一支田径队有男女运动员98人,其中男运动员有56人,按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_____.题十三:甲校有 3 600名学生,乙校有 5 400名学生,丙校有 1 800名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90的样本,丙校中A同学被抽取到的概率()题十四:某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.题十五:某市有A、B、C三所学校,共有高三文科学生 1 500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为n的样本,进行成绩分析,若从B校学生中抽取40人,则n=________.题十六:网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此,先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.分层抽样课后练习参考答案题一:40.详解:由已知条件可得每一名学生被抽取的概率为P =1201 200=110,则应在C 专业中抽取(1200-420-380)×110=40名学生.题二:50.详解:由题意得70490×350=50(人).题三:C .详解:四类食品的每一种被抽到的概率为2040+10+30+20=15,∴植物油类和果蔬类食品被抽到的种数之和为(10+20)×15=6.题四:80.详解:设分别抽取B 、C 型号产品m 1,m 2件,则由分层抽样的特点可知216=3m 1=5m 2,∴m 1=24,m 2=40,∴n =16+m 1+m 2=80.题五:16, 28, 40, 52.详解:依据系统抽样方法的定义知,将这60名学生依次按编号每12人作为一组,即01~12、13~24、…、49~60,当第一组抽得的号码是04时,剩下的四个号码依次是16,28,40,52(即其余每一小组所抽出来的号码都是相应的组中的第四个号码).题六:C .详解:由题意知,被抽中的学生的编号构成以3为首项,12为公差的等差数列{a n },其通项a n =12n -9(1≤n ≤50,n ∈N *).令1≤12n -9≤300,得1≤n ≤25,故第1营区被抽中的人数为25;令301≤12n -9≤495,得26≤n ≤42,故第2营区被抽中的人数为17;令496≤12n -9≤600,得43≤n ≤50,故第3营区被抽中的人数为8.题七:6.详解:分层抽样的特点是按照各层占总体的比相等抽取样本,设抽取的女运动员有x 人,则x 8=4256,解得x =6.题八:B .详解:由题意知抽样比为1296,而四个社区一共抽取的驾驶员人数为12+21+25+43=101,故有1296=101N,解得N =808.题九:(1)x =150;(2) 20名;(3)815.详解:(1)由题意可知,x1 000=0.15,故x =150.(2)由题意可知,偏高学生人数为y +z =1 000-(100+173+150+177)=400.设应在偏高学生中抽m 名,则m400=501 000,故m =20.应在偏高学生中抽20名.(3)由(2)知y +z =400,且y ≥193,z ≥193,满足条件的(y ,z)有(193,207),(194,206),…,(207,193),共有15组.设事件A :“偏高学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z)有(193,207),(194, 206),…,(200,200),共有8组,所以P(A)=815.偏高学生中男生不少于女生的概率为815. 题十:(1)按老年4人,中年12人,青年24人抽取;(2)按管理2人,技术开发4人,营销6人,生产13人抽取;(3)用系统抽样,对2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,得到容量为20的样本.详解:(1)用分层抽样,并按老年4人,中年12人,青年24人抽取.(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.(3)用系统抽样,对 2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,得到容量为20的样本.题十一:B .详解:由已知可得该校学生一共有1000人,则高一抽取的人数为300×401 000=12,高三抽取的人数为400×401 000=16,所以高三年级抽取的人数比高一年级抽取的人数多4人.题十二:12.详解:依题意,女运动员有98-56=42(人).设应抽取女运动员x 人,根据分层抽样特点,得x 42=2898,解得x =12.题十三:1120.详解:每一个个体被抽到的概率相等, 是903 600+5 400+1 800=1120.题十四:160.详解:由分层抽样得,此样本中男生人数为560×280560+420=160.题十五:120.详解:设A 、B 、C 三所学校学生人数分别为x ,y ,z ,由题知x ,y ,z 成等差数列,所以x +z =2y ,又x +y+z =1 500,所以y =500,用分层抽样方法抽取B 校学生人数为n1 500×500=40,得n =120.题十六:57.详解:由最小的两个编号为03,09可知,抽取人数的比例为16,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.。

高中数学人教A版必修3课时作业:102.1.3 分层抽样含解析

高中数学人教A版必修3课时作业:102.1.3 分层抽样含解析

④综合每层抽样,组成样本.
这样便完成了整个抽样过程,就能得到比较客观的评价结论.
(2)由于简单随机抽样有两种方法:抽签法和随机数表法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数表抽取样本,步骤是:
①编号:将3 000份答卷都编上号码:0 001,0 002,0 003,…,3 000.
②在随机数表上随机选取一个起始位置.
③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.
(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,如抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。

(人教b版)数学必修三练习:2.1.3分层抽样(含答案)

(人教b版)数学必修三练习:2.1.3分层抽样(含答案)

第二章 2.1 2.1.3一、选择题1.某社区有500户家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,要从中抽取1个容量为100户的样本,记作①;某学校高一年级有12名女排运动员,要从中选出3名调查学习负担情况,记作②.那么完成上述两项调查应采用的抽样方法是( )A .①用简单随机抽样法;②用系统抽样法B .①用分层抽样法;②用简单随机抽样法C .①用系统抽样法;②用分层抽样法D .①用分层抽样法;②用系统抽样法 [答案] B[解析] 对于①,总体由高收入家庭、中等收入家庭和低收入家庭差异明显的3部分组成,而所调查的指标与收入情况密切相关,所以应采用分层抽样法.对于②,总体中的个体数较少,而且所调查的内容对12名调查对象是“平等”的,所以适宜采用简单随机抽样法.2.某中学三个年级共240人,其中七年级100人,八年级80人,九年级60人,为了了解初中生的视力状况,抽查12人参加体检,应采用( )A .简单随机抽样法B .系统抽样法C .分层抽样法D .以上方法都行[答案] C[解析] 符合分层抽样的特点.3.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12、21、25、43,则这四个社区驾驶员的总人数N 为( )A .101B .808C .1 212D .2 012[答案] B[解析] 本题考查了分层抽样知识. 由题意得,96N =1212+21+25+43,解得N =808.解决本题的关键是分清各层次的比例,属基础题,难度较小.4.某校共有学生2 000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24C.16D.12[答案] C[解析]由题意可知x=380,∴一、二年级里、女生共有1500人,∴三年级共有500人,∴在三年级抽取的学生为5002 000×64=16.二、填空题5.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的员工人数是________.[答案]10[解析]从该部门抽取的员工人数是501 000×200=10.6.调查某单位职工健康状况,已知青年人数为300,中年人数为K,老年人数为100.现考虑用分层抽样抽取容量为22的样本,已知抽取的青年和老年的人数分别为12和4,那么中年人数K为________.[答案]150[解析]由分层抽样特点知:22300+K+100=4 100,∴K=150.三、解答题7.某电台在因特网上就观众对某一节目的喜爱程序进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:应当怎样进行抽样?[解析]可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000=4872 400,应抽取60×487÷2 400≈12(人);“喜爱”占4 56712 000,应抽取60×4 567÷12 000≈23(人);“一般”占3 92612 000,应抽取60×3 926÷12 000≈20(人);“不喜爱”占1 07212 000,应抽取60×1 072÷12 000≈5(人).因此采用分层抽样法在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.一、选择题1.某市场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7[答案] C[解析]若采用分层抽样的方法,则植物油类与果蔬类食品分别抽取20100×10=2,20100×20=4,故抽取的两种食品种数之和为6.2.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18C.7 D.36[答案] B[解析]由题意知青、中、老职工的人数分别为160、180、90,∴三者比为,∵样本中青年职工32人,∴老年职工人数为18,故选B.二、填空题3.某学校高一、高二、高三年级的学生人数之比是,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.[答案]15[解析]本题考查抽样方法中的分层抽样知识.∵高一、二、三年级的学生数之比是,∴高二年级学生数在三个年级学生总数中所占比例为33+3+4=310,∴高二年级学生应抽取310×50=15人.对于分层抽样知识关键是求出抽样比,即某层元素在整体中所占比例.4.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为________.[答案] 2[解析] 本题考查抽样方法中的分层抽样.由于总共24个城市,抽取6个,则丙组中抽取624×8=2个.三、解答题5.某校按分层抽样的方法从高中三个年级抽取部分学生调查,从三个年级抽取人数的比例为如图所示的扇形面积比,已知高二年级共有学生1 200人,并从中抽取了40人.(1)该校的总人数为多少? (2)其他两个年级分别抽取多少人? (3)在各层抽样中可采取哪种抽样方法? [解析] 高二年级所占的角度为120° .(1)设总人数为n ,则120360=1 200n ,可知n =3 600,故该校的总人数为3 600.(2)高一、高二、高三人数所占的比为=,可知高一、高三所抽取人数分别为50,30.(3)在各层抽样中可采取简单随机抽样与系统抽样的方法.6.某政府机关有在职人员101人,其中副处级以上干部有10人,一般干部70人,职员21人,上级机关为了了解政府机关机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施操作.[解析] 用分层抽样方法. 先从职员中随机剔除1人.从副处级以上干部中抽取2人,从一般干部中抽取14人,从职员中抽取4人,因为副处级以上干部和职员人数较少,将它们分别按1~10与1~20编号,然后用抽签法分别抽取2人和4人,对一般干部的70人按00,01,02,…,69编号,然后用随机数表法抽取14人.7.某企业共有800人,其中管理人员40人,技术人员120人,一线工人640人.现要调查了解全厂人员的①身高与血型情况;②家庭人均生活费用情况.试用恰当的抽样方法分别抽取一个容量为40的样本,并简单要说明操作过程.[解析]①身高与血型情况采用系统抽样法. 将全厂人员按1到800编号,再按编号顺序分成40组,每组20人.先在第1组中用抽签法抽出k号(1≤k≤20),其余组中的(k+20n)(n =1,2,…,39)号也都抽出.这样就得到一个容量为40的样本.②家庭人均生活费用情况采用分层抽样的方法. 三类人员的人数比为=16,所以分别抽取40×120=2(人),40×320=6(人),40×1620=32(人). 又由于管理人员、技术人员人数较少,可采用抽签法(技术人员也可用随机数表法)抽取相应的人数,而一线工人人数较多,应采用系统抽样法把一线工人统一编号并分成32组,从每一组的20人中抽取1人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分层抽样课后练习
题一:某学院有A,B,C三个专业共1 200名学生.现采用分层抽样的方法抽取一个容量为120的样本,已知A专业有420名学生,B专业有380名学生,则在C专业应抽取________名学生.
题二:某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了检查普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数是________.
题三:某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()
A.4 B.5
C.6 D.7
题四:某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n=________.
题五:将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.
题六:将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的编号为003.这600名学生分住在3个营区,从001到300住在第1营区,从301到495住在第2营区,从496到600住在第3营区,则3个营区被抽中的人数依次为()
A.26,16,8 B.25,16,9
C.25,17,8 D.24,17,9
题七:一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.
题八:交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()
A.101B.808 C.1 212 D.2 012
题九:调查某高中1 000名学生的身高情况,得下表.已知从这批学生中随机抽取1名学生,抽到偏低男生的概率为0.15
(1)求x的值;
(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在偏高学生中抽多少名;
(3)已知y≥193,z≥193,求偏高学生中男生不少于女生的概率.
题十:某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:
(1)若要抽取40
(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?
(3)若要抽20人调查对某运动会筹备情况的了解,则应怎样抽样?
题十一:2012年6月16日“神舟”九号载人飞船顺利发射升空,某校开展了“观‘神九’飞天燃爱国激情”系列主题教育活动.该学校高一年级有学生300人,高二年级有学生300人,高三年级有学生400人,通过分层抽样从中抽取40人调查“神舟”九号载人飞船的发射对自己学习态度的影响,则高三年级抽取的人数比高一年级抽取的人数多()
A.5人B.4人C.3人D.2人
题十二:一支田径队有男女运动员98人,其中男运动员有56人,按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_____.
题十三:甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90的样本,丙校中A同学被抽取到的概率()
题十四:某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.
题十五:某市有A、B、C三所学校,共有高三文科学生1 500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为n的样本,进行成绩分析,若从B校学生中抽取40人,则n=________.
题十六:网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此,先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.
分层抽样
课后练习参考答案
题一: 40.
详解:由已知条件可得每一名学生被抽取的概率为P =
1201 200=110,则应在C 专业中抽取(1200-420-380)×110
=40名学生.
题二: 50.
详解:由题意得70490
×350=50(人).
题三: C .
详解:四类食品的每一种被抽到的概率为
2040+10+30+20=15
, ∴植物油类和果蔬类食品被抽到的种数之和为(10+20)×15=6.
题四: 80.
详解:设分别抽取B 、C 型号产品m 1,m 2件,则由分层抽样的特点可知
216=3m 1=5m 2,∴m 1=24,m 2=40,∴n =16+m 1+m 2=80.
题五: 16, 28, 40, 52.
详解:依据系统抽样方法的定义知,将这60名学生依次按编号每12人作为一组,即01~12、13~24、…、49~60,当第一组抽得的号码是04时,剩下的四个号码依次是16,28,40,52(即其余每一小组所抽出来的号码都是相应的组中的第四个号码).
题六: C .
详解:由题意知,被抽中的学生的编号构成以3为首项,12为公差的等差数列{a n },其通项a n =12n -9(1≤n ≤50,
n ∈N *).令1≤12n -9≤300,得1≤n ≤25,故第1营区被抽中的人数为25;令301≤12n -9≤495,得26≤n ≤42,故第2营区被抽中的人数为17;令496≤12n -9≤600,得43≤n ≤50,故第3营区被抽中的人数为8.
题七: 6.
详解:分层抽样的特点是按照各层占总体的比相等抽取样本,设抽取的女运动员有x 人,则x 8=4256
,解得x =6.
题八: B .
详解:由题意知抽样比为1296,而四个社区一共抽取的驾驶员人数为12+21+25+43=101,故有1296=101N
,解得N =808.
题九: (1)x =150;(2) 20名;(3)815
. 详解:(1)由题意可知,x 1 000
=0.15,故x =150. (2)由题意可知,偏高学生人数为y +z =1 000-(100+173+150+177)=400.设应在偏高学生中抽m 名,则m 400
=501 000
,故m =20.应在偏高学生中抽20名. (3)由(2)知y +z =400,且y ≥193,z ≥193,满足条件的(y ,z )有(193,207),(194,206),…,(207,193),共有15组.
设事件A :“偏高学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )有(193,207),(194, 206),…,(200,200),
共有8组,所以P (A )=815
. 偏高学生中男生不少于女生的概率为815
.
题十: (1)按老年4人,中年12人,青年24人抽取;
(2)按管理2人,技术开发4人,营销6人,生产13人抽取;
(3)用系统抽样,对2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,得到容量为20的样本.
详解:(1)用分层抽样,并按老年4人,中年12人,青年24人抽取.
(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.
(3)用系统抽样,对2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,得到容量为20的样本.
题十一: B .
详解:由已知可得该校学生一共有1000人,则高一抽取的人数为300×401 000=12,高三抽取的人数为400×401 000
=16,所以高三年级抽取的人数比高一年级抽取的人数多4人.
题十二: 12.
详解:依题意,女运动员有98-56=42(人).设应抽取女运动员x 人,根据分层抽样特点,得x 42=2898
,解得x =12.
题十三: 1120
. 详解:每一个个体被抽到的概率相等, 是903 600+5 400+1 800=1120

题十四: 160.
详解:由分层抽样得,此样本中男生人数为560×280560+420
=160.
题十五: 120.
详解:设A 、B 、C 三所学校学生人数分别为x ,y ,z ,由题知x ,y ,z 成等差数列,所以x +z =2y ,又x +y
+z =1 500,所以y =500,用分层抽样方法抽取B 校学生人数为n 1 500
×500=40,得n =120.
题十六: 57.
详解:由最小的两个编号为03,09可知,抽取人数的比例为16
,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.。

相关文档
最新文档