电路-邱关源第五版-第八章ppt课件
电路邱关源第五版课件
新版电路邱关源第五版课件。深入浅出地介绍电路邱关源第五版,并解释了 它在电路领域中的重要性。
课件结构
1 简洁明了
以清晰的章节结构组织,便于学生理解和记 忆。
2 丰富多样
包含了大量图示、示例和习题,帮助学生更 好地掌握电路理论。
3 提供练习
每个章节都配有练习题,巩固学生对电路知 识的理解。
4 配套资源
提供网上电子版教材和课后答案,方便学生 自主学习。
电路邱关源第五版主要内容
电路基础
介绍电路的基本概念,如电压、 电流、电阻和功率。
电路元件
详细讲解电阻、电容、电感等 元件的特性和应用。
分析技术
探讨各种分析电路的技术和方 法,如基尔霍夫定律和节点法 则。
使用电路邱关源第五版的好处
1 全面性
2 易于理解
涵盖了电路领域的各个方面,从基础到高级。
讲解方式清晰简明,使学生更容易理解电际应用案例,帮助学生将理论 运用到实际问题中。
4 丰富资源
配有配套网上资源和习题,提供了学习和巩 固知识的机会。
电路邱关源第五版的应用案例
1
电子产品设计
讲解了如何设计和分析电子产品中的电路部分。
了解电路在不同领域中的应用,提高综合素养。
2
能源系统
介绍了电路在太阳能、风能等能源系统中的应用。
3
通信技术
讨论了电路在通信设备和网络中的应用和分析。
总结和要点
扎实基础知识
通过理解电路基础知识,为进一步学习奠定坚 实基础。
灵活应用能力
通过掌握电路分析技术,能够解决实际电路问 题。
深入实践经验
通过应用案例学习,培养实践能力和创新思维。
全面认知电路
电路第五版邱关源ppt课件.ppt
。例如电阻、电感、电容。..
返回 上页 下页
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
2.集总参数电路
由集总元件/构成的电路
集总元件
假定发生的电磁过程都集中在元
件内部进行。
集总条件 d
注意集总参数电路中u、i 可以是时间的函数,
电压参考方向的三种表示方式: (1) 用箭头表示:
u
(2)用正、负极性表示:
+u
(3)用双下标表示:
A
uAB
B
返回 上页 下页
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
3.关联参考方向
元件或支路的u,i 采用相同的参考方向称为关联 参考方向。反之,称为非关联参考方向。
问题 在复杂电路或交变电路中,两点间电压的
实际方向往往不易判别,给实际电路问题 的分析、计算带来困难。
电压(降)的参考方向
参考方向
+
u
–
假设高电位指向低电 位的方向。
参考方向
+
u
–
+ 实际方向 – – 实际方向 +
u >0
u <0
返回 上页 下页
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
电路第五版邱关源PPT学习教案
第26页/共87页
返回 上页 下页
例1-5 图为RC选频网络,求u1和u2同相位的条件及
解 设:Z1=R+jXC, Z2=R//jXC
U 2
U1Z2 Z1 Z2
+
u1
R jXC
U1 U 2
?
U1 U 2
Z1 Z2 Z2
1
Z1 Z2
jXC
-
+
R
u2
-
Z1
R jX C
(R jX C )2
Z2 jRXC (R jX C )
Z
1 Y
1 G jB
G jB G2 B2
R
jX
R
G G2B2
,
X
B G2B2
| Y | 1 |Z|
,
φZ φ-2 RL串联电路如图,求在=106rad/s时的等效并
联电路。
50
解 RL串联电路的阻抗为
XL L 106 0.06 103Ω 60Ω
Z R jXL (50 j60)Ω 78.1 50.2 Ω
-
-
第6页/共87页
返回 上页 下页
(3)L<1/C, X<0, Z <0,电路为容性,
电压落后电流。 U
Z
U
U R U
I
U2 R
U
2 X
U2 R
(UC
U L )2
I + U R -
UX
UC
L
等效电 路
+
.
U
-
R 1
+U X
jCeq -
(UU4CL)电L压=U1与/R电C流,同XI=相0等路。,效电Z=0,电+-路U 为电IR阻性-U+, R
电路分析基础第五版邱关源通用课件
一阶动态电路的微分方程及其响应
总结词
求解微分方程
详细描述
根据微分方程的特性和初始条件,求 解微分方程以获得电路元件的状态变 量随时间变化的规律。常用的求解方 法包括分离变量法、常数变易法、线 性化法等。
一阶动态电路的微分方程及其响应
总结词:分析响应
详细描述:根据求解出的状态变量,分析电路元件的响应特性。响应特性包括稳 态响应和暂态响应,其中暂态响应指的是电路从初始状态达到稳态的过程。
电路分析基础第五版邱关源 通用课件
目录
• 绪论 • 电路的基本定律和定理 • 电阻电路的分析 • 一阶动态电路的分析 • 二阶动态电路的分析 • 正弦稳态电路的分析 • 三相电路的分析 • 非正弦周期电流电路的分析
01
绪论
电路分析的目的和任务
目的
电路分析是电子工程和电气工程学科中的基础课程,其目的是理解和掌握电路的基本原理、基本概念 和基本分析方法,为后续专业课程的学习打下基础。
)
三相电源或三相负载的端点相互 连接,每相负载承受的电压为电 源线电压。
混合连接
在某些情况下,电路中可能同时 存在星形和三角形连接的负载, 这称为混合连接。
三相电路的电压和电流分析
1 2
相电压与线电压
在星形连接中,相电压等于电源电压;在三角形 连接中,线电压等于电源电压。
对称三相电路
当三相电源和三相负载对称时,各相的电压和电 流大小相等,相位互差120°。
一阶电路的阶跃响应和冲激响应
总结词:阶跃响应
详细描述:阶跃响应是指当输入信号为一个阶跃函数时,电路的输出响应。阶跃响应的特点是初始时刻电路输出突然跳变到 某一值,然后逐渐趋近于稳态值。
一阶电路的阶跃响应和冲激响应
石群邱关源电路课件(第8至16单元)白底
解
原式180.2 j126.2
19.24 27.9 7.211 56.3 20.62 14.04
180.2 j126.2 6.728 70.16
180.2 j126.2 2.238 j6.329
182.5 j132.5 225.5 36
(2) ij1(t) 3π104co(s(1π002)πt 5π3040) π i2 (t) 1j0si5nπ(1400π2πt 1530π) 4
(3)i2 (ut1i)(2t()t)1100c3cocosos(s(11(1000000πππttt131005050)00))
t 0 50 100cos
π 3
π 50
t
3
由于最大值发生在计时起点右侧
O t1
i(t) 100cos(103t π) 3
当 103t1 π 3 有最大值
t1=1π033 s=1.047ms
返回 上页 下页
3. 同频率正弦量的相位差
设 u(t)=Umcos(w t+ u), i(t)=Imcos(w t+ i) 相位差 :j = (w t+ u)- (w t+ i)= u- i
返回 上页 下页
③旋转因子
复数 ej =cos +jsin =1∠
F• ej
Im
F• ej
旋转因子
F
0
Re
返回 上页 下页
特殊旋转因子
Im
jF
F
π,
2
jπ
e2
cos
π
jsin
π
j
0
邱关源《电路》第八章相量法2
17
例1: 已知: R1 1000 , R2 10 , L 500mH , C 10F , BUCT
U 100V , 314rad / s , 求:各支路电流。
i2 R1 i1
i3 C
+
R2
_u
L
I1
I2 R1
I3
j 1 C
+
R2
_ U
Z1
Z2
jL
解:画出电路的相量模型
0.5770
A
瞬时值表达式为:
i1 0.6 2 sin(314 t 52.3 ) A i2 0.181 2 sin(314t 20 ) A i3 0.57 2 sin(314 t 70 ) A
解毕!
20
9. 2 阻抗(导纳)的串联和并联
一. RLC串联电路
用相量法分析R、L、C串联电路的阻抗。
2I R
.
.
1 UR UC
24
BUCT
练习:P188 8—11 12
25
作业
BUCT
习题:8-16 9-1 (b)、(f) 9-5 预习:第9章
26
j
G 导纳三角形
(二) R、L、C 元件的阻抗和导纳
(1)R:ZR R , YR 1 R G
(2)L:Z L jL jX L ,
1
1
YL
j
jL
L
jBL
(3)C:ZC
j 1
C
jX C ,
YC jC jBC
15
(三)阻抗和导纳的等效互换
º R
Z
18
I1
I2 R1
电路 第五版高等教育出版社 原著邱关源ppt电路复习提纲
电路复习提纲第一章、电路的模型和电路的定律1、参考方向的定义;2、关联参考方向的定义;3、电路元件吸收功率和发出功率的判断;4、理想电压源和理想电流源的电路符号及特性;5、受控源的分类、符号及特性;6、基尔霍夫定律(KCL、KVL)。
第二章、电阻电路的等效变换1、理解等效电路的概念;2、会求电阻的串并联电路的等效电阻;3、电阻的Y形连接和△连接的等效变换(R△=3R Y);4、电压源和电流源的等效变换。
第三章、电阻电路的一般分析1、支路电流法;2、回路电流法;3、结点电压法;4、电路中KCL和KVL的独立方程数的判断。
第四章、电路定理1、叠加定理;2、戴维宁定理及诺顿定理。
第五章、含有运算放大器的电阻电路1、理想放大器的处理方法(理解“虚短”和“虚断”的概念,并会利用“虚短”和“虚断”分析和解决问题);2、含有理想运算放大器的电路分析。
第六章、储能元件1、熟记电容、电感元件的VCR微积分关系式;2、会求电容(电感)元件的串联、并联等效电容(电感)。
第七章、一阶电路和二阶电路的时域分析1、会列写动态电路的微分方程;2、掌握换路定理及初始条件的确定;3、会用三要素法求解一阶电路的零输入响应、零状态响应及全响应。
第八章、相量法1、正弦量的表示方法及相位差;2、正弦量的相量表示法;3、掌握电路定理的相量表达式,并会用相量法求解正弦稳态电路的稳态响应。
第九章、正弦稳态电路的分析1、知道阻抗和导纳的概念及相互之间的等效变换;2、会从阻抗或导纳的表达式中判断电路的性质(阻性、容性、感性);3、正弦稳态电路的分析。
第十章、含有耦合电感的电路1、耦合电感的T型去耦等效;2、理想变压器的条件及含有理想变压器电路的计算。
第十一章、电路的频率响应1、网络函数的定义并会计算电路系统的网络函数;2、串、并联电路谐振的概念及发生谐振的条件。
电路第五版ppt(邱关源
i
R
u 则欧姆定律写为 u = –R i
-
+
i = –G u
公式和参考方向必须配套使用! 公式和参考方向必须配套使用!
3. 功率和能量 功率: 功率: R
说明电阻元件 在任何时刻总 是消耗功率的。 是消耗功率的。
i
+
i
u
R
-
p = u i = i2R =u2 / R
关联: 关联:吸收能量
假定发生的电磁过程 都集中在元件内部进行
电路元件按照一定的规则进行连接 电路元件按照一定的规则进行连接
线性 ━非线性 时变 ━ 时不变 分布参数 ━ 集总参数
d << λ
6000km
求开关闭合后的电流i 求开关闭合后的电流 i
R 1
C
∽
R2 R4
Us1 RL
Us2
L
R3
研究的手段
基本定律、定理、 基本定律、定理、原理必须掌握 时域分析法 基本方法 频域分析法
用箭头表示:箭头的指向为电流的参考方向 电流的参考方向。 • 用箭头表示:箭头的指向为电流的参考方向。
i A B
• 用双下标表示:如 iAB , 电流的参考方向由 指向 。 用双下标表示: 电流的参考方向由A指向 指向B。
A
iAB
B
2. 电压的参考方向 (voltage reference direction)
10BASE-T wall plate
电 池
功能
a b
柎的 的 枱 枞。 枞。
惊电路枞案
2. 电路模型 (circuit model)
10BASE-T wall plate
电 池 导线 电路模型
邱关源《电路》第五版 第八章 相量法
电力系统简介
HVDC Rectifier(整流器)
相量法
Inverter(逆变器)
Power Line(输电线) Power Plant Generator 电厂(发电机) Transformer 变电站(变压器)
第八章 复数(自学) 正弦量 相量法的基础 电路定律的相量形式
相量法
§8-1 复数(自学)
Charles Proteus Steinmetz
(1865~1923)
§8-3 相量法的基础
一、正弦量的相量
i 2I cos(t i )
设有一个复指数函数
2 Ie j( t i )
2 Ie j( t i ) 2 I cos( t i ) j 2 I sin( t i ) Re[ 2 Ie j( t i ) ] 2 I cos( t i ) i
1 I T
T
0
1 i dt T
2
T
0
2 I m cos2 ( t i )dt
Im 0.707 I m 2
I m 2I
i I m cos( t i ) 2I cos(t i )
§8-2 正弦量
四、同频正弦量的相位差 同频正弦量相角之差称为相位差。用 表示。
i
u
反 相
t
u
正 交 0
i t 0
1 2
i
t
电 压 超 前 电 流
§8-3 相量法的基础
The notion of solving ac circuits using phasors
was first introduced by Charles Proteus Steinmetz
电路(第五版).-邱关源原著-电路教案--第8章相量法
电路(第五版).-邱关源原著-电路教案--第8章相量法第8章 相量法● 本章重点1、正弦量的两种表示形式;2、相量的概念;3、KVL 、KCL 及元件VCR 的相量形式。
● 本章难点1、 正确理解正弦量的两种表示形式的对应关系;2、 三种元件伏安关系的相量形式的正确理解。
● 教学方法本章是相量法的基础,对复数和正弦量两部分内容主要以自学为主,本章主要讲授相量法的概念、电路定律的相量形式以及元件V AR 的相量形式。
讲述中对重点内容不仅要讲把基本概念讲解透彻,而且要讲明正弦量的相量与正弦时间函数之间的对应关系;元件V AR 的相量形式与时域形式之间的对应关系,使学生加深对内容的理解并牢固掌握。
本章对元件的功率和能量这部分内容作了简单讲解,以便为下一章的学习打下基础。
本章共用4课时。
● 授课内容8.1复数1. 复数的三种表示bj a A += 直角坐标=θ∠r 极坐标 =θj re 指数形式θθθsin cos 22r b r a ab arctgb a r ==⇒=+=⇒直极极直θθsin cos jr r A += 三角表示形式欧拉公式:θθθsin cos j e j +=2. 复数的运算已知:11111θ∠=+=r jb a A ,22222θ∠=+=r jb a A求:212121,,A AA A A A ⋅±i()()212121b b j a a A A ±+±=±212121212121θθθθ+∠=+∠=⋅r r A A r r A A 8.2正弦量一、正弦量:随时间t 按照正弦规律变化的物理量,都称为正弦量,它们在某时刻的值称为该时刻的瞬时值,则正弦电压和电流分别用小写字母i 、u 表示。
周期量:时变电压和电流的波形周期性的重复出现。
周期T :每一个瞬时值重复出现的最小时间间隔,单位:秒(S ); 频率f : 是每秒中周期量变化的周期数,单位:赫兹(Hz )。
第8章电路邱关源课件PPT
i = i1 + i2= Re 2 I&1e jωt + Re 2 I&2 e jωt
jω t 1 2
] [ ] & +I & + L)e ] = Re [ 2 I &e ] = Re [ 2 ( I
jω t
[
&=I & +I & +L I 1 2
相 量 法
电 路 例8-2 设两个同频率正弦电压分别为
F2 = −7.07 + j 7.07 F1 + F2 = (3 − j 4) + (−7.07 + j 7.07) = −4.07 + j 3.07 3.07 = 143o arg( F1 + F2 ) = arctan − 4.07
F1 + F2 = (−4.07) 2 + 3.07 2 = 5.1
相 量 法
电 路 正弦量的有效值 在相同时间内, 在相同时间内,正弦电流 正弦电流 i 对电阻R所做的功 == 直流电流I 在R 所做的功, 所做的功, I 就称为正弦 就称为正弦电流 正弦电流i 的有效值。 的有效值。
1 T
∫
T
0
i Rdt = I R
2 2
1 T
∫
T
0
i 2 dt = I 2
或
& =U & +U & = 200∠10o + 300∠ − 30o U s1 s2
= 197 + j17.4 + 259.8 − j150 = 456.8 − j132.6 = 475.8∠ − 16.2o
u = 475.8 sin( ωt − 16.2o )
电路 邱关源第五版通用课件
时域分析法
时域分析法是一种基于微分方 程或差分方程的方法,直接在 时间域内对非正弦周期电压和 电流进行分析,可以更直观地 了解电路的工作过程。
复数分析法
复数分析法是一种基于复数运 算的方法,通过将实数域中的 非正弦周期电压和电流转换为 复数域进行分析,可以简化计 算过程。
非正弦周期电流电路的功率
非正弦周期功率的概念
总结词
网孔电流法是一种求解电路中电压和电流的方法,通过设置网孔电流并利用基尔 霍夫定律建立方程式求解。
详细描述
网孔电流法的基本思想是将电路中的网孔电流作为未知数,根据基尔霍夫电压定 律建立网孔电压方程,然后求解网孔电流。通过网孔电流法,我们可以得到电路 中各支路的电流和电压。
叠加定理
总结词
叠加定理是一种求解线性电路中电压和电流的方法,它基于 线性电路的性质,即多个激励源共同作用时,各激励源分别 产生的响应可以叠加起来得到总响应。
在正弦稳态电路中,有功功率是指电 路中消耗的功率,其计算公式为 $P=UIcostheta$,其中$U$和$I$分 别为电压和电流的有效值,$theta$ 为电压与电流之间的相位差。无功功 率是指电路中交换的功率,其计算公 式为$Q=UIsintheta$。有功功率和 无功功率都是标量,但无功功率带有 符号。
非正弦周期功率是指非正弦周期电压和电流在一定时间内 所做的功或所消耗的能量,其计算需要考虑电压和电流的 有效值和相位差等因素。
非正弦周期功率的计算方法
非正弦周期功率可以通过计算电压和电流的有效值之积, 再乘以时间得到。也可以通过傅里叶级数展开的方法,分 别计算各次谐波的功率再求和得到。
非正弦周期功率的测量方法
电场力对电荷所做的功,通常用符号U表示。电压的 大小等于电场力把单位正电荷从一点移动到另一点 所做的功。
邱关源《电路》第八章相量法1
+j
U
U 2
60
30
U 1
41.9
+1
+j
U
U 2
首
U 1
60
尾 相
41.9 接
30
+1
16
(2) . 正弦量的微分,积分运算
i = 2 I cos(ωt + ψi ) ↔ I = I∠ψi
BUCT
微分运算:
积分运算:
di d
dt dt
2 I cos(t i )
i(t) = Im cos(ωt + ψi ) = 2I cos(ωt + ψi )
4
同理,可得正弦电压有效值与最大值的关系:
1 U 2 Um
或
Um 2U
BUCT
若一交流电压有效值为U=220V,则其最大值为Um≈311V;
U=380V,
Um ≈537V。
工程上说的正弦电压、电流一般指有效值,如设备铭牌额
解:
I
100∠30o
A
u = 311.1cos(314t - 60o )V
U 220∠ - 60o V
试用相量表示i, u .
13
例2. 已知I 5015 A, f 50Hz .
试写出电流的瞬时值表达式。
BUCT
解:i = 50 2cos(314t + 15 ) A
相量图(相量和复数一样可以在平面上用向量表示):
U U1 U 2 630 460 5.19 j3 2 j3.46
7.19 j6.46 9.6441.9o V
∴u(t) = u1(t) + u2(t) = 9.64 2cos(314t + 41.9o ) V
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
jsin
π
j
0
Re
2
2
jF
F
π , e j π 2 co π ) s j( si π n ) (j
2
2
2
π , e j π c o π ) s js( iπ ) n 1 (
注意 +j, –j, -1 都可以看成旋转因子。
返回 上页 下页
8.2 正弦量
1. 正弦量
i
T
波形
瞬时值表达式 0
o
a Re
三角函数式
F |F |e j |F |(c j o si ) s n a j b
F|F|ej|F| 极坐标式
返回 上页 下页
几种表示法的关系:
Fajb
Im
b
F
|F|
F|F|ej|F|
|F
|
a2 b2
θ arctan b a
或
o
a
a | F | cos
b| F |sin
t0 5 0 1c 0y o 0s
100 i
yπ 3
y π 50
t
3
由于最大值发生在计时起点右侧
o t1
i(t)10c0o1s0 3(tπ) 3
当103t1π3 有最大值t1=1π033=1.04m 7 s
返回 上页 下页
3. 同频率正弦量的相位差
设 u(t)=Umcos(w t+y u), i(t)=Imcos(w t+y i) 相位差 :j = (w t+y u)- (w t+y i)= y u-y i
则:
F1F2F1ej1F2ej2
FFej(12) 12
F1F2 12
模相乘 角相加
F1 |F1 |θ1 | F1 | ejθ1 | F| e 1 j(θ1θ2) F2 |F2 |θ2 | F2 |ejθ2 | F2 |
|F1| |F2|
θ1 θ2
模相除 角相减
返回 上页 下页
例1 5 4 7 1 0 2 5 ?
研究正弦电路的意义 1.正弦稳态电路在电力系统和电子技术领域 占有十分重要的地位。
优 ①正弦函数是周期函数,其加、减、求导、 点 积分运算后仍是同频率的正弦函数;
②正弦信号容易产生、传送和使用。
返回 上页 下页
2.正弦信号是一种基本信号,任何非正弦周期信 号可以分解为按正弦规律变化的分量。
n
f(t)Akcokswt(k) k1
j = 0, 同相
j = (180o ) ,反相
u
u
i
o
wt
j= /2:u 领先 i /2
o
u i
o
i wt wt
同样可比较两个电压或两个电流的相位差。
返回 上页 下页
例 计算下列两正弦量的相位差。
解 (1) i1(t)1c0o1s0π (t03π4)
结论
i2(t)1c0o1s0π (t0π2) 两个正弦量
第8章 相量法
本章重点
8.1 复数 8.2 正弦量 8.3 相量法的基础 8.4 电路定律的相量形式
首页
重点: 1. 正弦量的表示、相位差 2. 正弦量的相量表示 3. 电路定理的相量形式
返回
8.1 复数
Im
1. 复数的表示形式
b
F
Fajb 代数式
|F|
(j 1 为虚数单位 )
F| F|ej
指数式
Re
2. 复数运算
①加减运算 —— 采用代数式
返回 上页 下页
若 F1=a1+jb1, F2=a2+jb2 则 F1±F2=(a1±a2)+j(b1±b2)
Im F2
F1+F2
Im
F1+F2
F2
o 图解法
F1 Re o
F1
Re
F1-F2 -F2
返回 上页 下页
②乘除运算 —— 采用极坐标式
若 F1=|F1| 1 ,F2=|F2| 2
反映正弦量的计时起点,常用角度表示。
返回 上页 下页
注意 同一个正弦量,计时起点不同,初相
位不同。
i
y =0 一般规定:|y | 。
oy y =-/2
wt
y =/2
返回 上页 下页
例 已知正弦电流波形如图,w=103rad/s,
1.写出 i(t) 表达式;2.求最大值发生的时间t1
解 i(t)10 co 0 1s3t0 (y)
j (2) ii21((tt )) 3 π 1 j 14 s0 c0 5 i( π o 1 n14 π s 0 (2 0(π2 π )0 π t 0 t 5 1 π 33 4 050 π )0 )4 0进 较 同行 时 频相 应 率位 满 、比 足 同
((4 3))i2( uu it1 1i2 ) ((2 (tt( tj ))j t) )1 1 51 3 cc 3 3 c0 0 c c0 0o 00 o o 0 1 o 1 (o 1 s 1 2 (s0 s 1 (s 0 π1 (s 0 0 π π (0 t0 π 0 π t0 t0 (t5 )0 ( t 0 3 )5 0 1 0 3 1 1 0 400 1 )003 )05 0 0 0)5 0 2 )0 ) 不5能0 函 号 值5 0 w比范数 ,1 较围、 且相比同 在w位较符 主2差。
规定: |j | (180°) 等于初相位之差
返回 上页 下页
j >0, u超前i j 角,或i 滞后 u j 角, (u 比 i 先
到达最大值);
j <0, i 超前 u j 角,或u 滞后 i j 角, i 比 u 先
到达最大值)。
u, i u i
o
wt
yu yi j
返回 上页 下页
特殊相位关系
解 原 (3 .式 4 1 j3 .6)5 (9 .0 7 6 j4 .2 3)26 1.247j0.56 91.2 4 82.61
例2 22 3 05 (17 j9()4 j6)?
2 0j5 解 原 式 18.20j12.261.2 9 42.9 77.21 51.3 6
2.6 0 21.0 44 1.8 2 j1 0.2 6 6 .7 2 7.8 1 0 6
i(t)=Imcos(w t+y) 正弦量为周期函数 f(t)=f ( t+kT )
周期T 和频率f
t
f1 T
周期T :重复变化一次所需的时间。单位:秒s 频率f :每秒重复变化的次数。单位:赫(兹)Hz
返回 上页 下页
正弦电流电路 激励和响应均为同频率的正弦量的线性电路
(正弦稳态电路)称为正弦电路或交流电路。
结论
对正弦电路的分析研究具有重要的理论 价值和实际意义。
返回 上页 下页
2. 正弦量的三要素 i(t)=Imcos(w t+y)
(1) 幅值 (振幅、最大值)Im 反映正弦量变化幅度的大小。
(2) 角频率ω
相位变化的速度,反映正弦量变化快慢。
w2πf 2πT 单位: rad/s ,弧度/秒
(3) 初相位y
1.2 8 j1 0.2 2 2 .6 2 3 j6 .3 829 1.8 5 2 j1.3 5 2.2 5 3 56
返回 上页 下页
③旋转因子
复数 ej =cos +jsin =1∠
F• ej
Im
F• ej
旋转因子
F
0
Re
返回 上页 下页
特殊旋转因子
Im
jF
F
π,
2
jπ
e2
cos π