(完整版)数列应用题专题训练

合集下载

(完整版)高中数学数列专题大题训练

(完整版)高中数学数列专题大题训练

高中数学数列专题大题组卷一.选择题(共9小题)1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.2602.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1 C.44D.44+14.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.237.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.68.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.9.设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0二.解答题(共14小题)10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.11.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.12.已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.13.已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.14.等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.15.已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.16.已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.17.已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.18.已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1﹣1(n∈N*)(Ⅰ)求a n与b n;(Ⅱ)记数列{a n b n}的前n项和为T n,求T n.19.已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.20.设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.21.设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;≥a n,n∈N*,求a的取值范围.(Ⅱ)若a n+122.已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.23.数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.高中数学数列专题大题组卷参考答案与试题解析一.选择题(共9小题)1.(1996•全国)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260【分析】利用等差数列的前n项和公式,结合已知条件列出关于a1,d的方程组,用m表示出a1、d,进而求出s3m;或利用等差数列的性质,s m,s2m﹣s m,s3m﹣s2m成等差数列进行求解.【解答】解:解法1:设等差数列{a n}的首项为a1,公差为d,由题意得方程组,解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{a n}为等差数列,∴s m,s2m﹣s m,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.【点评】解法1为基本量法,思路简单,但计算复杂;解法2使用了等差数列的一个重要性质,即等差数列的前n项和为s n,则s n,s2n﹣s n,s3n﹣s2n,…成等差数列.2.(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.3.(2011•四川)数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1 C.44D.44+1【分析】根据已知的a n=3S n,当n大于等于2时得到a n=3S n﹣1,两者相减,根+1据S n﹣S n﹣1=a n,得到数列的第n+1项等于第n项的4倍(n大于等于2),所以得到此数列除去第1项,从第2项开始,为首项是第2项,公比为4的等比数列,由a1=1,a n+1=3S n,令n=1,即可求出第2项的值,写出2项以后各项的通项公式,把n=6代入通项公式即可求出第6项的值.=3S n,得到a n=3S n﹣1(n≥2),【解答】解:由a n+1﹣a n=3(S n﹣S n﹣1)=3a n,两式相减得:a n+1=4a n(n≥2),又a1=1,a2=3S1=3a1=3,则a n+1得到此数列除去第一项后,为首项是3,公比为4的等比数列,所以a n=a2q n﹣2=3×4n﹣2(n≥2)则a6=3×44.故选A【点评】此题考查学生掌握等比数列的确定方法,会根据首项和公比写出等比数列的通项公式,是一道基础题.4.(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【分析】由已知可知,数列{a n}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求+a n=0【解答】解:∵3a n+1∴∴数列{a n}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选C【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题5.(2013•新课标Ⅱ)等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D.【分析】设等比数列{a n}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{a n}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键.6.(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.7.(2013•新课标Ⅰ)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m﹣a m=1,+1S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,故选C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(2014•新课标Ⅱ)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n﹣1)C.D.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.9.(2015•北京)设{a n}是等差数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0【分析】对选项分别进行判断,即可得出结论.【解答】解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a3<0,则a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B 不正确;{a n}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2≤0,即D不正确.故选:C.【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.二.解答题(共14小题)10.(2015•四川)设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)记数列{}的前n项和为T n,求使得|T n﹣1|成立的n的最小值.【分析】(Ⅰ)由已知数列递推式得到a n=2a n﹣1(n≥2),再由已知a1,a2+1,a3成等差数列求出数列首项,可得数列{a n}是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列{}的通项公式,再由等比数列的前n项和求得T n,结合求解指数不等式得n的最小值.【解答】解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1,又∵a1,a2+1,a3成等差数列,∴a1+4a1=2(2a1+1),解得:a1=2.∴数列{a n}是首项为2,公比为2的等比数列.故;(Ⅱ)由(Ⅰ)得:,∴.由,得,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使|T n﹣1|成立的n的最小值为10.【点评】本题考查等差数列与等比数列的概念、等比数列的通项公式与前n项和公式等基础知识,考查运算求解能力,是中档题.11.(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.【分析】(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知c n=,写出T n、T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)设a1=a,由题意可得,解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.12.(2014•新课标Ⅱ)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.∴对n∈N时,++…+<.+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.13.(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d (2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,(II)由(I)可得a3n﹣2﹣6为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n.﹣2【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,(II)由(I)可得a3n﹣2﹣6为公差的等差数列.∴S n=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键.14.(2013•大纲版)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.【分析】(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求a n(II)由==,利用裂项求和即可求解【解答】解:(I)设等差数列{a n}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=(II)∵==∴s n===【点评】本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易15.(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.16.(2015•天津)已知数列{a n}满足a n+2=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{a n}的通项公式;(2)设b n=,n∈N*,求数列{b n}的前n项和.【分析】(1)通过a n=qa n、a1、a2,可得a3、a5、a4,利用a2+a3,a3+a4,a4+a5+2成等差数列,计算即可;(2)通过(1)知b n=,n∈N*,写出数列{b n}的前n项和T n、2T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)∵a n=qa n(q为实数,且q≠1),n∈N*,a1=1,a2=2,+2∴a3=q,a5=q2,a4=2q,又∵a2+a3,a3+a4,a4+a5成等差数列,∴2×3q=2+3q+q2,即q2﹣3q+2=0,解得q=2或q=1(舍),∴a n=;(2)由(1)知b n===,n∈N*,记数列{b n}的前n项和为T n,则T n=1+2•+3•+4•+…+(n﹣1)•+n•,∴2T n=2+2+3•+4•+5•+…+(n﹣1)•+n•,两式相减,得T n=3++++…+﹣n•=3+﹣n•=3+1﹣﹣n•=4﹣.【点评】本题考查求数列的通项与前n项和,考查分类讨论的思想,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.17.(2015•山东)已知数列{a n}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)•2,求数列{b n}的前n项和T n.【分析】(1)通过对c n=分离分母,并项相加并利用数列{}的前n项和为即得首项和公差,进而可得结论;(2)通过b n=n•4n,写出T n、4T n的表达式,两式相减后利用等比数列的求和公式即得结论.【解答】解:(1)设等差数列{a n}的首项为a1、公差为d,则a1>0,∴a n=a1+(n﹣1)d,a n+1=a1+nd,令c n=,则c n==[﹣],∴c1+c2+…+c n﹣1+c n=[﹣+﹣+…+﹣]=[﹣]==,又∵数列{}的前n项和为,∴,∴a1=1或﹣1(舍),d=2,∴a n=1+2(n﹣1)=2n﹣1;(2)由(1)知b n=(a n+1)•2=(2n﹣1+1)•22n﹣1=n•4n,∴T n=b1+b2+…+b n=1•41+2•42+…+n•4n,∴4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,两式相减,得﹣3T n=41+42+…+4n﹣n•4n+1=•4n+1﹣,∴T n=.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.18.(2015•浙江)已知数列{a n}和{b n}满足a1=2,b1=1,a n+1=2a n(n∈N*),b1+b2+b3+…+b n=b n+1﹣1(n∈N*)(Ⅰ)求a n与b n;(Ⅱ)记数列{a n b n}的前n项和为T n,求T n.【分析】(Ⅰ)直接由a1=2,a n+1=2a n,可得数列{a n}为等比数列,由等比数列的通项公式求得数列{a n}的通项公式;再由b1=1,b1+b2+b3+…+b n=b n+1﹣1,取n=1求得b2=2,当n≥2时,得另一递推式,作差得到,整理得数列{}为常数列,由此可得{b n}的通项公式;(Ⅱ)求出,然后利用错位相减法求数列{a n b n}的前n项和为T n.【解答】解:(Ⅰ)由a1=2,a n+1=2a n,得.由题意知,当n=1时,b1=b2﹣1,故b2=2,当n≥2时,b1+b2+b3+…+=b n﹣1,和原递推式作差得,,整理得:,∴;(Ⅱ)由(Ⅰ)知,,因此,两式作差得:,(n∈N*).【点评】本题主要考查等差数列的通项公式、等差数列和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力,是中档题.19.(2015•安徽)已知数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=,求数列{b n}的前n项和T n.【分析】(1)根据等比数列的通项公式求出首项和公比即可,求数列{a n}的通项公式;(2)求出b n=,利用裂项法即可求数列{b n}的前n项和T n.【解答】解:(1)∵数列{a n}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=a2a3=8.解得a1=1,a4=8或a1=8,a4=1(舍),解得q=2,即数列{a n}的通项公式a n=2n﹣1;(2)S n==2n﹣1,∴b n===﹣,∴数列{b n}的前n项和T n=+…+﹣=﹣=1﹣.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.20.(2015•山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n ﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.21.(2008•全国卷Ⅱ)设数列{a n}的前n项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.由(Ⅰ)设b n=S n﹣3n,求数列{b n}的通项公式;≥a n,n∈N*,求a的取值范围.(Ⅱ)若a n+1【分析】(Ⅰ)依题意得S n=2S n+3n,由此可知S n+1﹣3n+1=2(S n﹣3n).所以b n=S n+1﹣3n=(a﹣3)2n﹣1,n∈N*.(Ⅱ)由题设条件知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,a n=S n﹣S n﹣1=,由此可以求得a的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,S n﹣S n=a n+1=S n+3n,即S n+1=2S n+3n,+1﹣3n+1=2S n+3n﹣3n+1=2(S n﹣3n).(4分)由此得S n+1因此,所求通项公式为b n=S n﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅱ)由①知S n=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,a n=S n﹣S n﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,a n+1﹣a n=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.22.(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{a n}的公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.23.(2014•安徽)数列{a n}满足a1=1,na n+1=(n+1)a n+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设b n=3n•,求数列{b n}的前n项和S n.【分析】(Ⅰ)将na n=(n+1)a n+n(n+1)的两边同除以n(n+1)得,+1由等差数列的定义得证.(Ⅱ)由(Ⅰ)求出b n=3n•=n•3n,利用错位相减求出数列{b n}的前n项和S n.=(n+1)a n+n(n+1),【解答】证明(Ⅰ)∵na n+1∴,∴,∴数列{}是以1为首项,以1为公差的等差数列;(Ⅱ)由(Ⅰ)知,,∴,b n=3n•=n•3n,∴•3n﹣1+n•3n①•3n+n•3n+1②①﹣②得3n﹣n•3n+1==∴【点评】本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法.。

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。

2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。

对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。

对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。

如果a、G、b成等比数列,那么G叫做a与b的等比中项。

如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。

3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。

4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。

5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。

最后,对于数列的通项公式,可以使用数学归纳法证明。

1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。

其中,第n项表示为an,公差为d,公比为q。

常用的数列有等差数列和等比数列。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。

等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。

2.数列求和公式数列求和是指将数列中的所有项加起来的操作。

(完整版)数学经典例题集锦:数列(含答案)

(完整版)数学经典例题集锦:数列(含答案)

数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质 1. 研究通项的性质例题1. 已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥. (1)求32,a a ;(2)证明:312n n a -=. 解:(1)21231,314,3413a a a =∴=+==+=Q .(2)证明:由已知113--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ1213133312n n n a ---+=++++=L , 所以证得312n n a -=.例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥,两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列∴13n n a -=(Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===,由题意可得2(51)(59)(53)d d -+++=+,解得122,10d d ==∵等差数列{}n b 的各项为正,∴0d > ∴2d =∴2(1)3222n n n T n n n -=+⨯=+例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++128n n a n -+=对任意的*N n ∈都成立,数列{}n n b b -+1是等差数列.⑴求数列{}n a 与{}n b 的通项公式;⑵是否存在N k *∈,使得(0,1)k k b a -∈,请说明理由.点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.解:(1)已知212322a a a +++…12n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2)128(1)n n a n --+=-(n ∈*N )②①-②得,128n n a -=,求得42n n a -=,在①中令1n =,可得得41182a -==,所以42nn a -=(n ∈N*). 由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-,∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n nb b +-=2)1(4⨯-+-n 26n =-,121321()()()n n n b b b b b b b b -=+-+-++-L(4)(2)(28)n =-+-++-L 2714n n =-+(n ∈*N ).(2)k k b a -=2714k k -+-42k-,当4k ≥时,277()()24f k k =-+-42k-单调递增,且(4)1f =, 所以4k ≥时,2()714f k k k =-+-421k-≥, 又(1)(2)(3)0f f f ===,所以,不存在k ∈*N ,使得(0,1)k k b a -∈.例题4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1+n b 得:212+++=n n n b b b , ∴}{n b 为等差数列∵ b 1 = 2 , a 2 = 3 ,29,22122==b b b a 则 ,∴ 2)1(),1(22)229)(1(22+=∴+=--+=n b n n b n n ,∴当n ≥2时,2)1(1+==-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=n n a n2. 研究前n 项和的性质例题5. 已知等比数列}{n a 的前n 项和为2nn S a b =⋅+,且13a =.(1)求a 、b 的值及数列}{n a 的通项公式;(2)设n n n b a =,求数列}{n b 的前n 项和n T . 解:(1)2≥n 时,a S S a n n n n ⋅=-=--112.而}{n a 为等比数列,得a a a =⋅=-1112, 又31=a ,得3=a ,从而123-⋅=n n a .又123,3a a b b =+=∴=-Q .(2)132n n n n n b a -==⋅, 21123(1)3222n n n T -=++++L231111231(2322222n n n n n T --=+++++L ) ,得2111111(1)232222n n n nT -=++++-L , 111(1)2412[](1)13232212n n n n n n n T +⋅-=-=---.例题6. 数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k =+++L*()N k ∈, (1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '.解:(1)由题意:410nn a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-L ,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==.(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n n S b b b n n n -+'=+++==-+L当7n >时,12789n n S b b b b b b '=+++----L L 27121132()2144n S b b b n n =-+++=-+L∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若12log n n nb a a =,12n n S b b b =+++L 求使1230n n S n ++⋅>成立的n 的最小值.解:(1)设等比数列的公比为q (q >1),由a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12(舍)∴a n =2·2(n -1)=2n(2) ∵12log 2nn n n b a a n ==-⋅,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2, 若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*1,1N n a ∈=. 函数3()log f x x =.(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足1(3)[()2]n n b n f a =++,记数列{}n b 的前n 项和为T n ,试比较52512312n n T +-与的大小. 解:(I )11,,n n S a +-Q 成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②. ①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,13.n na a +∴=当n =1时,由①得112221S a a ∴==-, 又11,a =2213,3,a a a ∴=∴={}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=(II )∵()x log x f 3=,133()log log 31n n n f a a n -∴===-, 11111()(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,1111111111111()224354657213n T n n n n ∴=-+-+-+-++-+-+++L11111()22323n n =+--++525,122(2)(3)n n n +=-++比较52512312n n T +-与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-∵*,N n ∈∴当*19N n n ≤≤∈且时,5252(2)(3)312,;12312nn n n T +++<<-即当10n =时,5252(2)(3)312,;12312n n n n T +++==-即当*10N n n >∈且时,5252(2)(3)312,12312n n n n T +++>>-即.3. 研究生成数列的性质例题9. (I ) 已知数列{}n c ,其中nn n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n . 为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q )2=21a p 2+21b q 2+2a 1b 1pq , c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)=21a p 2+21b q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列.例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a 24=1,163,814342==a a 求S=a 11 + a 22 + a 33 + … + a nn解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -1依题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+==+=163)2(81)(1)3(31143311421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,∴a 11 = d = q = 21 , ∴a kk = kk2nn S 212132122132⨯++⨯+⨯+=Λ,1432212132122121+⨯++⨯+⨯+=n n S Λ,两式相减得:n n n S 22121--=-例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈(1)求数列}{n a 的通项公式;(2)设n n n nn b b b T a b +++==Λ21,2,若)(Z m m T n ∈<,求m 的最小值;(3)求使不等式12)11()11)(11(21+≥+++n p a a a nΛ对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==- (2)由(1)得n n n b 212-=, nn n n n T 2122322523211321-+-++++=∴-Λ ① 1132212232252232121+--+-+-+++=n n n n n n n T Λ ② ①-②得)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++=ΛΛ1n 1n 1n 21n 2212321n 2+-+---=--.n n 2n n 23n 2321n 2213T +-=---=∴-, 设*,232)(N n n n f n ∈+=,则由 1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f n n 得*,232)(Nn n n f n ∈+=随n 的增大而减小 +∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m(3)由题意得*21)11()11)(11(121N n a a a n p n ∈++++≤对Λ恒成立记)11()11)(11(121)(21n a a a n n F ++++=Λ,则()()11n 21n 2)1n ()1n (4)1n (2)3n 2)(1n 2(2n 2)a 11()a 11)(a 11(1n 21)a 11)(a 11()a 11)(a 11(3n 21)n (F )1n (F 2n 211n n 21=++>+-++=+++=+++++++++=++ΛΛ)(),()1(,0)(n F n F n F n F 即>+∴>Θ是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p .(二)证明等差与等比数列 1. 转化为等差等比数列.例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*N n ∈. ⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;⑶设n b =1(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈L ,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2832d d =+⇒=-,82(1)102n a n n ∴=--=-. (2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤Λ时21281029,2n na a a n n n +-=+++=⨯=-L6n ≥时,n n a a a a a a S ---+++=ΛΛ765212555()2940n n S S S S S n n =--=-=-+故⎪⎩⎪⎨⎧+--=40n 9n n n 9S 22n 56n n ≤≥ (3)11111()(12)2(1)21n n b n a n n n n ===--++Q , ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+L .2(1)n n =+ 若32n m T >对任意*N n ∈成立,即116n m n >+对任意*N n ∈成立, *()1N n n n ∈+Q 的最小值是21,1,162m ∴<m ∴的最大整数值是7.即存在最大整数,7=m 使对任意*N n ∈,均有.32n m T >例题13. 已知等比数列{}n b 与数列{}n a 满足3,n an b n =∈N *.(1)判断{}n a 是何种数列,并给出证明; (2)若8131220,a a m b b b +=L 求.解:(1)设{}n b 的公比为q ,∵3n an b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=⇒=⋅-。

(完整版)数列应用题专题训练

(完整版)数列应用题专题训练

数列应用题专题训练高三数学备课组以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。

一、储蓄问题对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。

单利是指本金到期后的利息不再加入本金计算。

设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。

复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。

设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。

例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式:(1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数);(2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。

问用哪种存款的方式在第六年的7月1日到期的全部本利较高?分析:这两种存款的方式区别在于计复利与不计复利,但由于利率不同,因此最后的本利也不同。

解:若不计复利,5年的零存整取本利是2000(1+5×0.065)+2000(1+4×0.065)+…+2000(1+0.065)=11950;若计复利,则2000(1+5%)5+2000(1+5%)4+…+2000(1+5%)≈11860元。

所以,第一种存款方式到期的全部本利较高。

二、等差、等比数列问题等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。

例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。

购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。

若交付150元以后的第一个月开始算分期付款的第一日,问分期付款的第10个月该交付多少钱?全部货款付清后,买这件家电实际花了多少钱?解:购买时付出150元,余欠款1000元,按题意应分20次付清。

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。

)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。

因此,前项和为。

⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。

8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。

1) 求 $a_5$ 和 $a_{10}$。

2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。

考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。

答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。

解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。

2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。

根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。

(完整版)数列例题(含答案)

(完整版)数列例题(含答案)

1.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n且(λ为常数).令c n=b2n(n∈N*)求数列{c n}的前n项和R n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由a2n=2a n+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①再由S4=4S2,得,即d=2a1②联立①、②得a1=1,d=2.所以a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)把a n=2n﹣1代入,得,则.所以b1=T1=λ﹣1,当n≥2时,=.所以,.R n=c1+c2+…+c n=③④③﹣④得:=所以;所以数列{c n}的前n项和.2.等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.【解答】解:(Ⅰ)设公差为d,则,解得,所以a n=3+(n﹣1)=n+2;(Ⅱ)b n=2+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10)=(2+22+...+210)+(1+2+ (10)=+=2101.3.已知数列{log2(a n﹣1)}(n∈N*)为等差数列,且a1=3,a3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明++…+<1.【解答】(I)解:设等差数列{log2(a n﹣1)}的公差为d.由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.所以log2(a n﹣1)=1+(n﹣1)×1=n,即a n=2n+1.(II)证明:因为==,所以++…+=+++…+==1﹣<1,即得证.4.已知{a n}是正数组成的数列,a1=1,且点(,a n+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若列数{b n}满足b1=1,b n+1=b n+2an,求证:b n•b n+2<b n+12.【解答】解:解法一:(Ⅰ)由已知得a n+1=a n+1、即a n+1﹣a n=1,又a1=1,所以数列{a n}是以1为首项,公差为1的等差数列.故a n=1+(n﹣1)×1=n.(Ⅱ)由(Ⅰ)知:a n=n从而b n+1﹣b n=2n.b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=2n﹣1+2n﹣2+…+2+1=∵b n•b n+2﹣b n+12=(2n﹣1)(2n+2﹣1)﹣(2n+1﹣1)2=(22n+2﹣2n﹣2n+2+1)﹣(22n+2﹣2•2n+1+1)=﹣2n<0∴b n•b n+2<b n+12解法二:(Ⅰ)同解法一.(Ⅱ)∵b2=1b n•b n+2﹣b n+12=(b n+1﹣2n)(b n+1+2n+1)﹣b n+12=2n+1•bn+1﹣2n•bn+1﹣2n•2n+1=2n(b n+1﹣2n+1)=2n(b n+2n﹣2n+1)=2n(b n﹣2n)=…=2n(b1﹣2)=﹣2n<0∴b n•b n+2<b n+125.已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?【解答】解:(I)设等差数列{a n}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等6.设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.【解答】解:(1)设等差数列{a n}的公差为d.由已知得即解得.故a n=2n﹣1,S n=n2(2)由(1)知.要使b1,b2,b m成等差数列,必须2b2=b1+b m,即,(8分).移项得:=﹣=,整理得,因为m,t为正整数,所以t只能取2,3,5.当t=2时,m=7;当t=3时,m=5;当t=5时,m=4.故存在正整数t,使得b1,b2,b m成等差数列.7.设{a n}是等差数列,b n=()an.已知b1+b2+b3=,b1b2b3=.求等差数列的通项a n.【解答】解:设等差数列{a n}的公差为d,则a n=a1+(n﹣1)d.∴b1b3=•==b22.由b1b2b3=,得b23=,解得b2=.代入已知条件整理得解这个方程组得b1=2,b3=或b1=,b3=2∴a1=﹣1,d=2或a1=3,d=﹣2.所以,当a1=﹣1,d=2时a n=a1+(n﹣1)d=2n﹣3.当a1=3,d=﹣2时a n=a1+(n﹣1)d=5﹣2n.8.已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且S n=1﹣(1)求数列{a n},{b n}的通项公式;(2)记c n=a n b n,求证c n+1≤c n.【解答】解:(1)∵a3,a5是方程x2﹣14x+45=0的两根,且数列{a n}的公差d>0,∴a3=5,a5=9,公差∴a n=a5+(n﹣5)d=2n﹣1.又当n=1时,有b1=S1=1﹣当∴数列{b n}是等比数列,∴(2)由(Ⅰ)知,∴∴c n+1≤c n.9.已知等差数列{a n}的前n项和为S n,S5=35,a5和a7的等差中项为13.(Ⅰ)求a n及S n;(Ⅱ)令(n∈N﹡),求数列{b n}的前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,因为S5=5a3=35,a5+a7=26,所以,…(2分)解得a1=3,d=2,…(4分)所以a n=3+2(n﹣1)=2n+1;S n=3n+×2=n2+2n.…(6分)(Ⅱ)由(Ⅰ)知a n=2n+1,所以b n==…(8分)=,…(10分)所以T n=.…(12分)10.已知等差数列{a n}是递增数列,且满足a4•a7=15,a3+a8=8.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(n≥2),b1=,求数列{b n}的前n项和S n.【解答】解:(1)根据题意:a3+a8=8=a4+a7,a4•a7=15,知:a4,a7是方程x2﹣8x+15=0的两根,且a4<a7解得a4=3,a7=5,设数列{a n}的公差为d由.故等差数列{a n}的通项公式为:(2)=又∴=11.设f(x)=x3,等差数列{a n}中a3=7,a1+a2+a3=12,记S n=,令b n=a n S n,数列的前n项和为T n.(Ⅰ)求{a n}的通项公式和S n;(Ⅱ)求证:;(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.【解答】解:(Ⅰ)设数列{a n}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12.解得a1=1,d=3∴a n=3n﹣2∵f(x)=x3∴S n==a n+1=3n+1.(Ⅱ)b n=a n S n=(3n﹣2)(3n+1)∴∴(Ⅲ)由(2)知,∴,∵T1,T m,T n成等比数列.∴即当m=1时,7=,n=1,不合题意;当m=2时,=,n=16,符合题意;当m=3时,=,n无正整数解;当m=4时,=,n无正整数解;当m=5时,=,n无正整数解;当m=6时,=,n无正整数解;当m≥7时,m2﹣6m﹣1=(m﹣3)2﹣10>0,则,而,所以,此时不存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列.综上,存在正整数m=2,n=16,且1<m<n,使得T1,T m,T n成等比数列.12.已知等差数列{a n}的前n项和为S n=pn2﹣2n+q(p,q∈R),n∈N+.(Ⅰ)求的q值;(Ⅱ)若a1与a5的等差中项为18,b n满足a n=2log2b n,求数列{b n}的前n和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=p﹣2+q当n≥2时,a n=S n﹣S n﹣1=pn2﹣2n+q﹣p(n﹣1)2+2(n﹣1)﹣q=2pn﹣p﹣2∵{a n}是等差数列,a1符合n≥2时,a n的形式,∴p﹣2+q=2p﹣p﹣2,∴q=0(Ⅱ)∵,由题意得a3=18又a3=6p﹣p﹣2,∴6p﹣p﹣2=18,解得p=4∴a n=8n﹣6由a n=2log2b n,得b n=24n﹣3.∴,即{b n}是首项为2,公比为16的等比数列∴数列{b n}的前n项和.13.已知等差数列{a n}的前n项和为S n,且满足:a2+a4=14,S7=70.(Ⅰ)求数列a n的通项公式;(Ⅱ)设b n=,数列b n的最小项是第几项,并求出该项的值.【解答】解:(I)设公差为d,则有…(2分)解得以a n=3n﹣2.…(4分)(II)…(6分)所以=﹣1…(10分)当且仅当,即n=4时取等号,故数列{b n}的最小项是第4项,该项的值为23.…(12分)14.己知各项均为正数的数列{a n}满足a n+12﹣a n+1a n﹣2a n2=0(n∈N*),且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式a n;(2)若b n=a n a n,S n=b1+b2+…+b n,求S n+n•2n+1>50成立的正整数n的最小值.【解答】解:(Ⅰ)∵a n+12﹣a n+1a n﹣2a n2=0,∴(a n+1+a n)(a n+1﹣2a n)=0,∵数列{a n}的各项均为正数,∴a n+1+a n>0,∴a n+1﹣2a n=0,即a n+1=2a n,所以数列{a n}是以2为公比的等比数列.∵a3+2是a2,a4的等差中项,∴a2+a4=2a3+4,∴2a1+8a1=8a1+4,∴a1=2,∴数列{a n}的通项公式a n=2n.(Ⅱ)由(Ⅰ)及b n=得,b n=﹣n•2n,∵S n=b1+b2++b n,∴S n=﹣2﹣2•22﹣3•23﹣4•24﹣﹣n•2n①∴2S n=﹣22﹣2•23﹣3•24﹣4•25﹣﹣(n﹣1)•2n﹣n•2n+1②①﹣②得,S n=2+22+23+24+25++2n﹣n•2n+1=,要使S n+n•2n+1>50成立,只需2n+1﹣2>50成立,即2n+1>52,∴使S n+n•2n+1>50成立的正整数n的最小值为5.15.设数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1,数列{b n}满足a1=b1,点P(b n,b n+1)在直线x﹣y+2=0上,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)由a n+1=2S n+1可得a n=2S n﹣1+1(n≥2),两式相减得a n+1﹣a n=2a n,a n+1=3a n(n≥2).又a2=2S1+1=3,所以a2=3a1.故{a n}是首项为1,公比为3的等比数列.所以a n=3n﹣1.由点P(b n,b n+1)在直线x﹣y+2=0上,所以b n+1﹣b n=2.则数列{b n}是首项为1,公差为2的等差数列.则b n=1+(n﹣1)•2=2n﹣1(Ⅱ)因为,所以.则,两式相减得:.所以=.。

数列专项训练(含答案)

数列专项训练(含答案)

数列与数学归纳法专项训练1. 如图,曲线y2= x(y�0)上的点E与x轴的正半轴上的点Q及原点0构成一系列正三角形D.OP从,D.Q1P从,…D.Qn-1P从…设正三角形Q n-l�Q n的边长为a n'n EN*记Q。

为0),�(S n,O). Cl)求a l的值,(2)求数列{a n}的通项公式a n02. 设忆},{九}都是各项为正数的数列,对任意的正整数n,都有a n, 历,a n+l成等差数列,历,a n+l'b�+l成等比数列.(1)试问仇}是否成等差数列?为什么?1(2)如果a,=l,b1 =五,求数列厂}的前n项和s".3. 已知等差数列{a n }中,a2=8,S6=66. 。

yQ1 QX2C I)求数列{a n }的通项公式;2 1C II)设仇=,兀=b l + b2 + ... + b n , 求证:T n 2—.(n+l)a n 63 1 14. 酰n数列{a n}中a l=—,a n=2-(n?:2, n EN十),数列{仇},满足丸=5 a n-1 a n -1C n E N+)Cl)求证数列{b n}是等差数列;(2)求数列{a n}中的最大项与最小项,并说明理由;(3)记S n=b l +b2 +…+b求1iin(n-I)b nn➔oo sn+l5已知数列{a,,}中,a,>O,且8,c=厂汇,(I)试求a的值,使得数列{a n}是一个常数数列;(II)试求a的取值范围,使得a,i+1>a n对任何自然数n都成立;(III)若a1=2,设b n=I a叶1-a n l c严1,2, 3, …),并以$表示数列{妇的前n项的和,求证:55,<—·1 x+l 1 6. (1)已知:x E (O+oo ), 求证<l n <—;x+lx x 1 1 1 1 1(2)已知:nEN且n�2,求证:—+—十···+—<n n <l+—+···十2 3 n 2 n-l7. 已知数列忆}各项均不为0'其前n 项和为S n , 且对任意nEN*, 都有(1-p )· 旯=p -p a n(p为大于1的常数),并记f(n) =1 + C ! . a l + c �. a2 + ... + c : . a n 2n .s n(1)求a n ;p+l(2)比较f (n+l )与·f (n)的大小nE N 勹2p (3)求证:(2n -l)·f (n) :5笘/(i ):', ; : �·[勹;::厂}nE N 勹.8. 已知nEN*,各项为正的等差数列{a n }满足a 2·a 6 = 21, a 3 + a 5 = 10 , 又数列{lgb n }的前n 项和是1S n = n (n+ l ) l g 3 --n (n -l)。

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。

数列应用题训练

数列应用题训练

数列应用题训练1. 一片森林面积为a ,计划每年砍伐一批木材,每年砍伐面积的百分比相等,则砍伐到原面积的一半时, 所用时间是T 年. 为保护生态环境, 森林面积至少要保留原面积的 25%.已知到今年止,森林剩余面积为原来的22. (1) 问到今年止,该森林已砍伐了多少年?(2) 问今后最多还能砍伐多少年?2. 一个计算装置有一个入口A 和一输出运算结果的出口B ,将自然数列{}(1)n n ≥中的各数依次输入A 口,从B 口得到输出的数列{}n a ,结果表明:①从A 口输入1n =时,从B 口得113a =;②当2n ≥时,从A 口输入n ,从B 口得到的结果n a 是将前一结果1n a -先乘以自然数列{}n 中的第1n -个奇数,再除以自然数列{}n a 中的第1n +个奇数。

试问: (1)从A 口输入2和3时,从B 口分别得到什么数?(2)从A 口输入100时,从B 口得到什么数?并说明理由。

3. 某地区位于沙漠边缘地带,到2004年底该地区的绿化率只有30%,计划从2005年开始加大沙漠化改造的力度,每年原来沙漠面积的16% ,将被植树改造为绿洲,但同时原有绿洲面积的4%还会被沙漠化。

(1)设该地区的面积为1,2002年绿洲面积为1031=a ,经过一年绿洲面积为2a ……经过n 年绿洲面积为,1+n a 求证:;254541+=+n n a a (2)求证:}54{1-+n a 是等比数列;(3)问至少需要经过多少年努力,才能使该地区的绿洲面积超过60%?(取)3.02lg =4. 用分期付款方式购买家用电器一件,价格为1150.购买当天先付150元,以后每月这一天都交付50元,并加付欠款利息,月利率为1%,若交付150元以后的第一个月开始算分期付款的第一个月,问分期付款的第十个月该交付多少钱?全部贷款付清后,买这件家电实际花了多少钱?5. 某公司1992年初投资500万元做农副产品生意,当年获利100万元,此后每年投资比上年增加100万元,每年毛收入比上一年的1.1倍多10万元.(Ⅰ)该公司2005年获利多少万元?(Ⅱ)若建设一所希望小学需50万元,则该公司1992年到2004这13年的利润总和可以建设多少所希望小学?(纯利润 = 毛收入-投资额;1345.3log 1.1=)6. 用分期付款的方式购买一批总价为2300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%。

高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)

高中数学《数列》专题练习1.n S 与n a 的关系:11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩ ,已知n S 求n a ,应分1=n 时1a = ;2≥n 时,n a = 两步,最后考虑1a 是否满足后面的n a .2.等差等比数列数列通项公式求法。

()定义法(利用等差、等比数列的定义);()累加法(3)累乘法(n n n c a a =+1型);(4)利用公式11(1)(1)n n n S n a S S n -=⎧⎪=⎨->⎪⎩;(5)构造法(b ka a n n +=+1型)(6) 倒数法 等4.数列求和(1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。

5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解:(1)当0,01<>d a 时,满足⎩⎨⎧≤≥+001m m a a的项数m 使得m S 取最大值. (2)当 0,01><d a 时,满足⎩⎨⎧≥≤+001m m a a的项数m 使得m S 取最小值。

也可以直接表示n S ,利用二次函数配方求最值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

6.数列的实际应用现实生活中涉及到银行利率、企业股金、产品利润、人口增长、工作效率、图形面积、等实际问题,常考虑用数列的知识来解决.训练题一、选择题1.已知等差数列{}n a 的前三项依次为1a -、1a +、23a +,则2011是这个数列的 (B )A.第1006项B.第1007项C. 第1008项D. 第1009项2.在等比数列}{n a 中,485756=-=+a a a a ,则10S 等于 (A ) A .1023 B .1024 C .511 D .5123.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =( )A .-2B .-12 C.12 D .2答案 B解析 由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-12.故选B.4.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( A )A.180B.-180C.90D.-905.已知{}n a 为等差数列,若π=++951a a a ,则28cos()a a +的值为( A ) A .21-B .23-C .21D .236.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3答案 D解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又a 29a 11=a 7a 11a 11=a 7,故选D.7.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=12S 5,且a 9=20,则S 11=( )A .260B .220C .130D .110答案 D解析 ∵S 5=a 1+a 52×5,又∵12S 5=a 1+a 5,∴a 1+a 5=0.∴a 3=0,∴S 11=a 1+a 112×11=a 3+a 92×11=0+202×11=110,故选D. 8.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于A .0B .2C .2 009D .4 018答案 D解析 各项均不为零的等差数列{a n },由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则a 2n -2a n =0,a n =2,S 2 009=4 018,故选D.9.数列{a n }是等比数列且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于A .5B .10C .15D .20答案 A解析 由于a 2a 4=a 23,a 4a 6=a 25,所以a 2·a 4+2a 3·a 5+a 4·a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25.所以a 3+a 5=±5.又a n >0,所以a 3+a 5=5.所以选A. 10.首项为1,公差不为0的等差数列{a n }中,a 3,a 4,a 6是一个等比数列的前三项,则这个等比数列的第四项是( )A .8B .-8C .-6D .不确定答案 B解析 a 24=a 3·a 6⇒(1+3d )2=(1+2d )·(1+5d ) ⇒d (d +1)=0⇒d =-1,∴a 3=-1,a 4=-2,∴q =2. ∴a 6=a 4·q =-4,第四项为a 6·q =-8.11.在△ABC 中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以31为第三项,9为第六项的等比数列的公比,则这个三角形是(B )A.钝角三角形B.锐角三角形C.等腰三角形D.非等腰的直角三角形12.记等差数列{}n a 的前项和为n s ,若103s s =,且公差不为0,则当n s 取最大值时,=n ( )CA .4或5B .5或6C .6或7D .7或813.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为A .1 006B .-2 012C .2 012D .-1 006答案 C解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得, ⎩⎪⎨⎪⎧S 2 011=2 011a 1+2 011× 2 011-12d =-2 011,a 1 007=a 1+1 006d =3,即⎩⎨⎧ a 1+1 005d =-1,a 1+1 006d =3,解得⎩⎨⎧a 1=-4 021,d =4.所以,S 2 012=2 012a 1+2 012× 2 012-12d =2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012. 方法二 由S 2 011=2 011a 1+a 2 0112 =2 011a 1 006=-2 011, 解得a 1 006=-1,则S 2 012=2 012a 1+a 2 0122=2 012a 1 006+a 1 0072=2 012×-1+32=2 012. 14.设函数f (x )满足f (n +1)=2f n +n2(n ∈N *),且f (1)=2,则f (20)=( ) A .95 B .97 C .105 D .192答案 B解析 f (n +1)=f (n )+n 2,∴⎩⎪⎨⎪⎧f20=f 19+192,f 19=f 18+182,……f 2=f 1+12.累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×204=97.15.已知数列{}n a 的前n 项和n S 满足1)1log 2+=+n S n (,则通项公式为(B )A.)(2*N n a n n ∈= B. ⎩⎨⎧≥==)2(2)1(3n n a nn C. )(2*1N n a n n ∈=+ D. 以上都不正确16.一种细胞每3分钟分裂一次,一个分裂成两个,如果把一个这种细胞放入某个容器内,恰好一小时充满该容器,如果开始把2个这种细胞放入该容器内,则细胞充满该容器的时间为 ( D )A .15分钟B .30分钟C .45分钟D .57分钟 二、填空题17.等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4= 8. 18.记等差数列{a n }的前n 项和为S n ,若a 1=21,S 4=20,则S 6= . 4819.在等比数列{}n a 中,11a =,公比2q =,若64n a =,则n 的值为 .7 20.设等比数列{a n }的公比q=2,前n 项和为S n ,则24a S = .21512.数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n 3n +1,则a 100b 100=________. 答案 199299解析 a 100b 100=a 1+a 1992b 1+b 1992=S 199T 199=199299.21.数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥则{}n a 的通项公式 解:(Ⅰ)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列∴13n n a -=22.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.答案 4解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n +2=29-3n.由于2-3=18>19,因此要使29-3n>19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n +2>19的最大正整数n 的值为4. 23.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若S 10S 5=3132,则公比q 等于________.答案 -12解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-12.三、解答题24.(本小题满分12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T . 1【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1)3n+22⨯=2n +2n 。

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

(完整版)数列求通项专题(总复习专题-方法全面-有答案)全

求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。

解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。

)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。

高中数学数列专题训练6套含答案

高中数学数列专题训练6套含答案

目录第一套:等比数列例题精讲第二套:等差等比数列基础试题一第三套:等差等比数列基础试题二第四套:等差等比数列提升试题一第五套:等差等比数列提升试题二第六套:数列的极限拓展等比数列·例题解析【例1】 已知S n 是数列{a n }的前n 项和,S n =p n (p ∈R ,n ∈N*),那么数列{a n }.[ ]A .是等比数列B .当p ≠0时是等比数列C .当p ≠0,p ≠1时是等比数列D .不是等比数列分析 由S n =p n (n ∈N*),有a 1=S 1=p ,并且当n ≥2时, a n =S n -S n-1=p n -p n-1=(p -1)p n-1但满足此条件的实数p 是不存在的,故本题应选D .说明 数列{a n }成等比数列的必要条件是a n ≠0(n ∈N*),还要注【例2】 已知等比数列1,x 1,x 2,…,x 2n ,2,求x 1·x 2·x 3·…·x 2n . 解 ∵1,x 1,x 2,…,x 2n ,2成等比数列,公比q ∴2=1·q 2n+1x 1x 2x 3...x 2n =q .q 2.q 3...q 2n =q 1+2+3+ (2)式;(2)已知a 3·a 4·a 5=8,求a 2a 3a 4a 5a 6的值.故-,因此数列成等比数列≠-≠a =(p 1)p {a }p 0p 10(p 1)p 2n n 1⇔--=-⎧⎨⎪⎪⎪⎩⎪⎪⎪--()()p pp p p n 212意对任∈,≥,都为同一常数是其定义规定的准确含义.n *n 2N a a nn -1=q2n(1+2n)2==+q n n n ()212【例3】 {a }(1)a =4a n 25等比数列中,已知,=-,求通项公12解 (1)a =a q q =5252-∴-12∴a 4=2【例4】 已知a >0,b >0且a ≠b ,在a ,b 之间插入n 个正数x 1,x 2,…,x n ,使得a ,x 1,x 2,…,x n ,b 成等比数列,求证明 设这n +2个数所成数列的公比为q ,则b=aq n+1【例5】 设a 、b 、c 、d 成等比数列,求证:(b -c)2+(c -a)2+(d -b)2=(a -d)2.证法一 ∵a 、b 、c 、d 成等比数列∴b 2=ac ,c 2=bd ,ad =bc∴左边=b 2-2bc +c 2+c 2-2ac +a 2+d 2-2bd +b 2 =2(b 2-ac)+2(c 2-bd)+(a 2-2bc +d 2) =a 2-2ad +d 2 =(a -d)2=右边证毕.证法二 ∵a 、b 、c 、d 成等比数列,设其公比为q ,则: b =aq ,c =aq 2,d=aq 3∴==-=∵·=··=a a q 4()()(2)a a a a a a a =8n 2n 2n 2n 4354234543----1212又==∴a a a a a a a a a a =a =322635423456452证…<.x x x a bn n 122+∴∴……<q b ax x x aqaq aq aqab a bn n n nn n ++====+1122122∴a b b c c d==∴左边=(aq -aq 2)2+(aq 2-a)2+(aq 3-aq)2 =a 2-2a 2q 3+a 2q 6 =(a -aq 3)2 =(a -d)2=右边证毕.说明 这是一个等比数列与代数式的恒等变形相综合的题目.证法一是抓住了求证式中右边没有b 、c 的特点,走的是利用等比的条件消去左边式中的b 、c 的路子.证法二则是把a 、b 、c 、d 统一化成等比数列的基本元素a 、q 去解决的.证法二稍微麻烦些,但它所用的统一成基本元素的方法,却较证法一的方法具有普遍性.【例6】 求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----证 ∵a 1、a 2、a 3、a 4均为不为零的实数∴上述方程的判别式Δ≥0,即又∵a 1、a 2、a 3为实数因而a 1、a 2、a 3成等比数列∴a 4即为等比数列a 1、a 2、a 3的公比.【例8】 若a 、b 、c 成等差数列,且a +1、b 、c 与a 、b 、c +2都成等比数列,求b 的值.解 设a 、b 、c 分别为b -d 、b 、b +d ,由已知b -d +1、b 、b +d 与b -d 、b 、b +d +2都成等比数列,有整理,得∴b +d=2b -2d 即b=3d 代入①,得9d 2=(3d -d +1)(3d +d) 9d 2=(2d +1)·4d 解之,得d=4或d=0(舍) ∴b=12【例7】 a a a a (a a )a 2a (a a )a a a =0a a a a 1234122242213422321234若实数、、、都不为零,且满足+-+++求证:、、成等比数列,且公比为.∴+-+++为实系数一元二次方程等式+-+++说明上述方程有实数根.(a a )x 2a (a a )x a a =0(a a )a 2a (a a )a a a =0a 122222132232122242213422324[2a (a a )]4(a a )(a a )=4(a a a )0(a a a )02132122222322213222132-+-++--≥∴-≤∴-≥必有-即(a a a )0a a a =0a =a a 2213222132213又∵a =2a 42()()()a a a a a a a a a a a a 1312222131213212++=++=b =(b d 1)(b d)b =(b d)(b d 2)22-++①-++②⎧⎨⎪⎩⎪b =b d b db =b d 2b 2d 222222-++-+-⎧⎨⎪⎩⎪【例9】 已知等差数列{a n }的公差和等比数列{b n }的公比都是d ,又知d ≠1,且a 4=b 4,a 10=b 10:(1)求a 1与d 的值; (2)b 16是不是{a n }中的项? 思路:运用通项公式列方程(2)∵b 16=b 1·d 15=-32b 1∴b 16=-32b 1=-32a 1,如果b 16是{a n }中的第k 项,则 -32a 1=a 1+(k -1)d ∴(k -1)d=-33a 1=33d∴k=34即b 16是{a n }中的第34项.解 设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d解 (1)a =b a =b 3d =a d a 9d =a da (1d )=3d a (1d )=9d4410101131191319由++----⎧⎨⎩⇒⎧⎨⎪⎩⎪⇒⎧⎨⎪⎩⎪a ⇒⇒==-=-==-d d 2=063+-舍或∴d d a d d 1231331222()且+·--∴a =a 3d =22=b b =b d =2b =22b =a =2413441313113-【例10】 {a }b =(12)b b b =218b b b =18n n a n 123123设是等差数列,,已知++,,求等差数列的通项.∴·b =(12)b b =(12)(12)=(12)b n a 13a a +2d 2(a +d)221111+-()n d1解这个方程组,得∴a 1=-1,d=2或a 1=3,d=-2∴当a 1=-1,d=2时,a n =a 1+(n -1)d=2n -3 当a 1=3,d=2时,a n =a 1+(n -1)d=5-2n【例11】 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列由,解得,解得,代入已知条件整理得+b b b =18b =18b =12b b b =18b b =14b b =1781232321231313b b b 123218++=⎧⎨⎪⎪⎩⎪⎪⎧⎨⎪⎪⎩⎪⎪b =2b =18b =18b =21313,或,⇒aq 2=4a +②①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.【例12】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.分析 本题有三种设未知数的方法方法一 设前三个数为a -d ,a ,a +d ,则第四个数由已知条⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq方法二 设后三个数为b ,bq ,bq 2,则第一个数由已知条件推得为2b -bq . 方法三 设第一个数与第二个数分别为x ,y ,则第三、第四个数依次为12-y ,16-x .由这三种设法可利用余下的条件列方程组解出相关的未知数,从而解出所求的四个数,所求四个数为:0,4,8,16或15,9,3,1.解法二 设后三个数为:b ,bq ,bq 2,则第一个数为:2b -bq所求四个数为:0,4,8,16或15,9,3,1.解法三 设四个数依次为x ,y ,12-y ,16-x .这四个数为0,4,8,16或15,9,3,1.【例13】 已知三个数成等差数列,其和为126;另外三个数成等比数列,把两个数列的对应项依次相加,分别得到85,76,84.求这两个数列.解 设成等差数列的三个数为b -d ,b ,b +d ,由已知,b -d +b +b +d=126 ∴b=42这三个数可写成42-d ,42,42+d .再设另三个数为a ,aq ,aq 2.由题设,得件可推得:()a d a+2解法一 a d a a d 设前三个数为-,,+,则第四个数为.()a d a+2依题意,有-+++a d =16a (a d)=12()a d a+⎧⎨⎪⎩⎪2解方程组得:或-a =4d =4a =9d =61122⎧⎨⎩⎧⎨⎩依题意有:-++2b bq bq =16b bq =122⎧⎨⎩解方程组得:或b =4q =2 b =9q =131122⎧⎨⎩⎧⎨⎪⎩⎪依题意有+-·--x (12y)=2yy (16x)=(12y)2⎧⎨⎩解方程组得:或x =0y =4x =15y =91122⎧⎨⎩⎧⎨⎩解这个方程组,得 a 1=17或a 2=68当a=17时,q=2,d=-26从而得到:成等比数列的三个数为17,34,68,此时成等差的三个数为68,42,16;或者成等比的三个数为68,34,17,此时成等差的三个数为17,42,67.【例14】 已知在数列{a n }中,a 1、a 2、a 3成等差数列,a 2、a 3、a 4成等比数列,a 3、a 4、a 5的倒数成等差数列,证明:a 1、a 3、a 5成等比数列.证明 由已知,有 2a 2=a 1+a 3①即 a 3(a 3+a 5)=a 5(a 1+a 3)所以a 1、a 3、a 5成等比数列.a 42d =85ap 42=76aq 42d =842+-+++⎧⎨⎪⎩⎪整理,得-①②+③a d =43aq =34aq d =422⎧⎨⎪⎩⎪当时,,a =68q =12d =25a =a a 3224·②③211435a a a =+由③,得·由①,得代入②,得··a =2a a a +a a =a +a 2a =a +a 243535213321323535a a a a +整理,得a =a (a +a )a +a 351235a a a =a a a a a =a a 323515353215++∴·【例15】已知(b-c)log m x+(c-a)log m y+(a-b)log m z=0.(1)设a,b,c依次成等差数列,且公差不为零,求证:x,y,z成等比数列.(2)设正数x,y,z依次成等比数列,且公比不为1,求证:a,b,c成等差数列.证明(1)∵a,b,c成等差数列,且公差d≠0∴b-c=a-b=-d,c-a=2d代入已知条件,得:-d(log m x-2log m y+log m z)=0∴log m x+log m z=2log m y∴y2=xz∵x,y,z均为正数∴x,y,z成等比数列(2)∵x,y,z成等比数列且公比q≠1∴y=xq,z=xq2代入已知条件得:(b-c)log m x+(c-a)log m xq+(a-b)log m xq2=0变形、整理得:(c+a-2b)log m q=0∵q≠1 ∴log m q≠0∴c+a-2b=0 即2b=a+c即a,b,c成等差数列高一数学数列练习【同步达纲练习】 一、选择题1.已知数列1,21,31,…,n1…,则其通项的表示为( ) A.{a n }B.{n 1}C. n1D.n2.已知数列{a n }中,a n =4n-13·2n+2,则50是其( )A.第3项B.第4项C.第5项D.不是这个数列的项3.已知数列的通项公式a n =2n-1,则2047是这个数列的( ) A.第10项 B.第11项 C.第12项 D.第13项 4.数列-1,58,-715,924,…的通项公式是( ) A.a n =(-1)n 122++n nnB.a n =(-1)n12)3(++n n nC.a n =(-1)n1222-+n nnD.a n =(-1)n12)2(++n n n5.在数列a 1,a 2,a 3,…,a n ,…的每相邻两项中插入3个数,使它们与原数列构成一个新数列,则新数列的第29项( )A.不是原数列的项B.是原数列的第7项C.是原数列的第8项D.是原数列的第9项6.已知数列的通项公式为a n =1213+-n n ,则a n 与a n+1的大小关系是( ) A.a n <a n+1 B.a n >a n+1C.a n =a n+1D.大小不能确定7.数列{a n }中,a n =-2n 2+29n+3,则此数列的最大项的值是( ) A.107B.108C.10881 D.1098.数列1,3,6,10,15,…的通项公式a n ,等于( ) A.n 2-(n-1) B.2)1(-n n C.2)1(+n n D.n 2-2n+2二、填空题1.数列-31,91,-271,…的一个通项公式是 .2.数列1,1,2,2,3,3,…的一个通项公式是 .3.数列1×3,2×4,3×5,…,n(n+2),…,问120是否是这个数列的项 .若是,120是第 项.4.已知数列{a n }满足a 1=1,a n+1=pa n +q ,且a 2=3,a 4=15,则p= ,q= .5.一个数列的前n 项之和是n n,则此数列的第4项为 .6.-1103,4203,-7403,10803,-131603,…的一个通项公式为 . 三、解答题1.已知数列{a n }的通项a n =)1(1+-n n n ,207、1207是不是这个数列的项?如果是,则是第几项?2.写出以下数列的一个通项公式.①-31,256,-499,274,-12115…; ②9,99,999,9999,99999,….3.已知下列数列{a n }的前n 项和S n ,求数列{a n }的通项公式.①S n =3+2n ; ②S n =2n 2+n+3【素质优化训练】1.已知数列的前4项如下,试写出下列各数列的一个通项公式:(1) 21,61,121,201; (2)-1,23,-45,87;(3)0.9,0.99,0.999,0.9999; (4)35,810,1517,2426.2.已知数列的通项公式为a n =-0.3n 2+2n+732,求它的数值最大的项.3.若数列{a n }由a 1=2,a n+1=a n +2n(n ≥1)确定,求通项公式a n .【生活实际运用】参加一次国际商贸洽谈会的国际友人居住在西安某大楼的不同楼层内,该大楼共有n 层,每层均住有参会人员.现要求每层指派一人,共n 人集中到第k 层开会,试问k 如何确定,能使n 位参加会议人员上、下楼梯所走路程总和最少?(假定相邻两层楼楼长都相等)【知识探究学习】某人从A 地到B 地乘坐出租车,有两种方案:第一种方案:利用起步价10元,每千米价为1.2元的汽车.第二种方案:租用起步价是8元,每千米价为4元的汽车.按出租车管理条例,在起步价内,不同型号车行驶的里程是相等的.则此人从A 地到B 地选择哪一种方案比较合适.解:设起步价内行驶里程为a 千米,A 地到B 地的距离是m 千米. 当m ≤a 时,选起步价8元的出租车比较合适. 当m >a 时,设m=a+x(x >0)乘坐起步价10元的出租车费用为P(x)元,乘坐起步价为8元的费用为Q(x)元, 则:P(x)=10+1.2x Q(x)=8+1.4x令P(x)=Q(x)得10+1.28+1.4x 解得x=10(千米) 此时两种出租车任选.当x >10时,P(x)-Q(x)=2-0.2x <0,故P(x)<Q(x) 此时选起步价为10元合适.当x <10时,P(x)-Q(x)=2-0.2x >0,故P(x)>Q(x) 此时选起步价为8元的出租车合适.参考答案:【同步达纲练习】一、1.C 2.B 3.B 4.D 5.C 6.A 7.B 8.C二、1.a n =nn3)1(- 2.a n =⎪⎪⎩⎪⎪⎨⎧+为偶数为奇数n n n n ,2,213.是,104.2或-3,1或65.2296.a n =(-1)n[(3n-2)+12103-∙n ] 三、1.207不是{a n }中的项,1207是{a n }中的第15项. 2.①a n =(-1)n2)12(3+n n ;②a n =10n-1.3.①a n =⎪⎩⎪⎨⎧≥=2)(n 21)(n 51-n ②a n =⎩⎨⎧≥-=2)(n 1n 41)(n 6。

专题训练:数列综合运用大题(解析版)

专题训练:数列综合运用大题(解析版)

专题训练:数列综合运用大题1.(2022·江苏·盐城市第一中学高二阶段练习)有下列3个条件:①382a a +=-;②728S =-;③2a ,4a ,5a 成等比数列.从中任选1个,补充到下面的问题中并解答问题:设数列{}n a 的前n 项和为n S ,已知()*12N n n n S S a n +=++∈,.(1)求数列{}n a 的通项公式;(2)n S 的最小值并指明相应的n 的值.【答案】(1)212n a n =-;(2)n =5或者6时,n S 取到最小值30-.【解析】(1)因为12n n n S S a +=++,所以12n n a a +-=,即{}n a 是公差为2的等差数列,选择条件①:因为382a a +=-,所以1292a d +=-,则12922a +⨯=-,解得110a =-,所以212n a n =-;选择条件②:因为728S =-,所以1767282a d ⨯+=-,解得110a =-,所以212n a n =-;选择条件③:因为2a ,4a ,5a 成等比数列,所以()2425a a a =,即2111(3)()(4)a d a d a d +=++,解得110a =-,所以212n a n =-;(2)由(1)可知110a =-,2d =,所以22(1)1112110211224n n n S n n n n -⎛⎫=-+⨯=-=-- ⎪⎝⎭,因为*N n ∈,所以当5n =或者6时,n S 取到最小值,即min )0(3n S =-2.(2022·江苏·星海实验中学高二阶段练习)已知数列{}n a 的前n 项和为n S ,___________,*n ∈N .在下面三个条件中任选一个,补充在上面问题中并作答.①22n n S a =-;②122222n n a a a n ++⋯⋯+=;③221232n n n a a a a +⋯⋯=注:如果选择多个条件分别解答,按第一个解答计分.(1)求数列{}n a 的通项公式;(2)记1(1)(1)n n n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,1n kT n>-,求实数k 的取值范围.【答案】(1)2n n a =;(2)1,3⎛⎫+∞ ⎪⎝⎭【解析】(1)选择①,由22n n S a =-①知,当2n ≥时,1122n n S a --=-②,由①-②,得122n n n a a a -=-,即()122n n a a n -=≥,当1n =时,11122a S a ==-,解得12a =,所以数列{}n a 是首项为2,公比为2的等比数列,故1222n n n a -=⨯=.选择②,由122222n na a a n ++⋯⋯+=①知,当2n ≥时,112211222n n a a an --++⋯⋯+=-②由①-②,得()()1122n nan n n =--=≥,在122222n na a a n ++⋯⋯+=中,令1n =,则112a=,满足上式,所以12n n a=,即2n n a =.选择③,由221232n nna a a a +⋯⋯=①知,当2n ≥时,()()22113122122n nn n n a a a a -+---⋯⋯==2②由①②,得()2222222n n n n n n a n +--==≥,在221232n n n a a a a +⋯⋯=中,令1n =,则12a =,满足上式,所以2n n a =.(2)由(1)知,2n n a =,所以()()111211(1)(1)22111122n n n n n n n n n a b a a +++===-------,所以数列{}n b 的前n 项和为111111113371711151122112n n n n T ++⎛⎫⎛⎫⎛⎫=-+-⎛⎫-=- ⎪⎝+-++ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎭,对于任意的*n ∈N ,1n k T n>-,所以111121n k n+->--,即121n n k +>-.设1(),21n nf n +=-所以()()()()22111111211(1)0222121n n n n n n n nf n f n +++++-⋅-++-=----=<-恒成立,即()(1)f n f n +<,所以()f n 单调递减,所以()()11max 111213f n f +===-,于是有13k >,故实数k 的取值范围为1,3⎛⎫+∞ ⎪⎝⎭.3.(2022·福建·莆田第二十五中学高二阶段练习)从条件①()21n n S n a =+,②22,0n n n n a a S a +=>()2n a n =≥,中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为1,1n S a =,___________.(1)求{}n a 的通项公式;(2)设1112n n n a b +++=,记数列{}n b 的前n 项和为n T ,是否存在正整数n 使得83nT >.【答案】(1)答案见解析;(2)答案见解析【解析】(1)若选择①,因为()*21,N n n S n a n =+∈,所以112,2n n S na n --=≥,两式相减得()121n n n a n a na -=+-,整理得()11,2n n n a na n --=≥,即1,21n n a a n n n -=≥-,所以n a n ⎧⎫⎨⎬⎩⎭为常数列,而111n a a n ==,所以n a n =;若选择②,因为()2*2N n n n a a S n +=∈,所以()211122n n n a a S n ---+=≥,两式相减()221112222n n n n n n n a a a a S S a n ----+-=-=≥,得()()()1112n n n n n n a a a a a a n ----+=+≥,因为()1100,1,2n n n n n a a a a a n -->∴>∴+-=≥,所以{}n a 是等差数列,所以()111n a n n =+-⨯=;()2n a n =≥1n n S S --,=,由题意知0n S >1=,所以为等差数列,11a ==()21,,212n n n n n S n a S S n n -==∴=-=-≥,又1n =时,11a =也满足上式,所以21n a n =-;(2)若选择①或②,1111222n n n n n b +++++==,所以()234111113452,2222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以()345211111345222222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得()2341211111132222222n n n T n ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯++++-+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()2121113148221142212n n n n n +-+⎛⎫- ⎪+⎛⎫⎝⎭=+-+⨯=- ⎪⎝⎭-,则1422n n n T ++=-,故要使得83n T >,即148223n n ++->,整理得,14223n n ++<-,当N*n ∈时,1402n n ++>,所以不存在*N n ∈,使得83n T >.若选择③,依题意,111122n n nn a n b ++++==,所以()23111123412222nn T n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故()234111111234122222n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得:()()23111111111111421111122222212n n n n n T n n ++-⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-+⨯=+-+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-13322n n ++=-,则332n n n T +=-,令38323n n n T +=->,则3123n n +<,即2390n n -->,令239n n c n =--,则1100c =-<,当2n ≥时,()()112319239230n n nn n c c n n ++-=-+----=->,又450,0c c <>,故234560c c c c c <<<<<,综上,使得83n T >成立的最小正整数n 的值为5.4.(2022·河北·邢台市第二中学高二阶段练习)①{}2nn a 为等差数列,且358a =;②21n a n ⎧⎫⎨⎬-⎩⎭为等比数列,且234a =.从①②两个条件中任选一个,补充在下面的问题中,并解答.在数列{}n a 中,112a =,________.(1)求{}n a 的通项公式;(2)已知{}n a 的前n 项和为n S ,试问是否存在正整数p ,q ,r ,使得n n r S p qa +=-?若存在,求p ,q ,r 的值;若不存在,说明理由.【答案】(1)212n nn a -=;(2)存在,3p =,4q =,2r =﹒【解析】(1)若选①:设等差数列{}2nn a 的公差为d ,则33122512312a a d --===-,∴()1222121nn a a n n =+-=-,即212n n n a -=.若选②:设等比数列21n a n ⎧⎫⎨⎬-⎩⎭的公比为q ,则2112212211a q a ⨯-==⨯-,∴11112121122n nn a a n -⎛⎫⎛⎫=⨯= ⎪ ⎪-⨯-⎝⎭⎝⎭,即212n n n a -=;(2)21321222n n n S -=+++,231113212222n n n S +-=+++,则两式相减得,23111111212222222n n n n S +-⎛⎫=+⨯+++- ⎪⎝⎭12n S =111121214212212n n n ++⎛⎫- ⎪-⎝⎭=+--12n S =132322n n ++=-,∴2332n n n S +=-.∵()22221233343422n n n n n n S a +++-+=-=-⨯=-,∴存在正整数p ,q ,r ,使得n n r S p qa +=-,且3p =,4q =,2r =.5.(2022·吉林·长春市第二中学高二阶段练习)已知数列{}n a ,其中前n 项和为n S ,且满足15a =,*123(N )n n a a n +=+∈.(1)证明:数列{3}n a +为等比数列;(2)求数列{}n a 的通项公式及其前n 项和n S .【答案】(1)证明见解析;(2)223n n a +=-,*n ∈N ,n S 3238n n +=--.【解析】(1)证明:由题意,123n n a a +=+两边同时加3,可得132332(3)n n n a a a ++=++=+,13538a +=+=,∴数列{3}n a +是以8为首项,2为公比的等比数列.(2)由(1)可得123822n n n a -++=⋅=,则223n n a +=-,*n ∈N ,故12n n S a a a =++⋅⋅⋅+342(23)(23)(23)n +=-+-+⋅⋅⋅+-342(222)3n n+=++⋅⋅⋅+-⋅3322312n n +-=--3238n n +=--.6.(2021·广西·钟山中学高二阶段练习)已知数列{}n a 为等比数列,22a =,516a =,2log n n b a =,n n n c a b =+.(1)求数列{}n a 、{}n b 的通项公式;(2)求数列{}n c 的前n 项和n S .【答案】(1)12n n a -=,1n b n =-;(2)121(1)2nn S n n =-+-【解析】(1)设数列{}n a 的公比为q ,则3521682a q a ===,所以2q =,所以2212222n n n n a a q ---=⋅=⋅=,所以22log log 2n n b a ==11n n -=-;(2)121n n n n c a b n -=+=+-,所以0121012120212221(2222)(0121)n n n S n n --=++++++⋯++-=+++⋯+++++⋯+-(12)(01)121(1)1222-+-=+=-+--n n n n n n .7.(2022·福建三明·高二阶段练习)已知数列{}n a 的前n 项和为n S ,满足()321n n S a =-,{}n b 是以1a 为首项且公差不为0的等差数列,237,,b b b 成等比数列.(1)求数列{}{},n n a b 的通项公式;(2)令n n n c a b =,求数列{}n c 的前n 项和n T .【答案】(1)()2nn a =-,35n b n =-;(2)()1834(2)3n n n T +---=.【解析】(1)由()321n n S a =-,取1n =可得()11321S a =-,又11S a =,所以()11321a a =-,则12a =-.当2n ≥时,由条件可得()()11321321n n n n S a S a --⎧=-⎪⎨=-⎪⎩,两式相减可得,12n n a a -=-,又12a =-,所以12nn a a -=-,所以数列{}n a 是首项为2-,公比为2-的等比数列,故()2nn a =-,因为112b a ==-,设等差数列{}n b 的公差为d ,则2372,22,26b d b d b d =-+=-+=-+,由237,,b b b 成等比数列,所以()()2(22)226d d d -+=-+-+,又0d ≠,所以解得3d =,故35n b n =-,(2)()35(2)nn n n c a b n ==--,()()1232(2)1(2)4(2)35(2)n n T n =-⨯-+⨯-+⨯-++-⨯-,()()()234122(2)1(2)4(2)38(2)35(2)n n n T n n +-=-⨯-+⨯-+⨯-++-⨯-+-⨯-相减得()2341343(2)(2)(2)(2)35(2)n n n T n +⎡⎤=+-+-+-++---⨯-⎣⎦,所以()()()114234335(2)12n n n T n ++--=+--⨯---,所以()13834(2)n n T n +=---所以()1834(2)3n n n T +---=.8.(2022·陕西·府谷县府谷中学高二阶段练习(文))已知数列{}n a 是公差不为零的等差数列,11a =且2514,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)求数列{}21nan a ++的前n 项和n S .【答案】(1)21n a n =-;(2)222433n n S n n =⋅++-【解析】(1)设等差数列的公差为d ,因为2514,,a a a 成等比数列,所以()()()2111413a d a d a d +=++,解得2d =或0d=(舍去).故()=1+2121n a n n -=-.(2)由(1)可得212122nn n aa n -++=+,故()22214222414233n n n S n n n n +⨯-=⨯+=⋅++--9.(2022·陕西·长安一中高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,10a ≠,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立.(1)求数列{}n a 的通项公式;(2)设10a >,100λ=,当n 为何值时,数列1lg n a ⎧⎫⎨⎬⎩⎭的前项n 和最大?【答案】(1)2nn a λ=;(2)6.【解析】(1)取1n =,得211122a S a λ==,()1120a a λ-=,10a ≠,则12a λ=,当2n ≥时,22n n a S λ=+,1122n n a S λ--=+,上述两个式子相减得:12n n a a -=,所以数列{}n a 是等比数列,当10a ≠,则1122n n n a a λ-=⋅=.(2)当10a >,且100λ=时,令1lgn n b a =,所以,1002lg 2lg 2n n b n =-=所以,{}n b 单调递减的等差数列(公差为lg 2-)则12366100100lglg lg10264b b b b ⋅>>>⋅⋅⋅>==>=当7n ≥时,77100100lg lglg102128n b b ≤==<=故数列1lg n a ⎧⎫⎨⎬⎩⎭的前6项的和最大.10.(2022·广东·饶平县第二中学高二阶段练习)已知n S 为等差数列{}n a 的前n 项和,若355a a +=,47S =.(1)求n a ;(2)记2221n n n b a a +=⋅,求数列{}n b 的前n 项和n T .【答案】(1)n a =12n +;(2)469nn +【解析】(1)设等差数列{}n a 的公差为d ,则1126543472a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11,1,2a d =⎧⎪⎨=⎪⎩,故111(1)22n n a n +=+-=;(2)因为12n n a +=,所以22214112(21)(23)2123n n n b a a n n n n +⎛⎫===- ⎪⋅++++⎝⎭,故12111111112+++235572+12+4693323n n T b b b n n n n n ⎛⎫⎛⎫=+++=---=-= ⎪ ⎪+⎝⎭⎝⎭+.11.(2022·广东·南海中学高二阶段练习)已知数列{}n a 中,12325a =,112n n a a-=-(2n ≥,*n ∈N ),数列{}n b 满足()*11n nb n N a =∈-.(1)求数列{}n b 的通项公式;(2)求12320b b b b +++⋅⋅⋅+;(3)求数列{}n a 中的最大项和最小项,并说明理由.【答案】(1)272=-n b n ;(2)109;(3)()max 3=n a ,()min 1=-n a ,理由见解析【解析】(1)证明:111111111111121n n n n n n b b a a a a -----=-=-=-----,又1112512b a ==--,∴数列{}n b 是252-为首项,1为公差的等差数列.∴()127112n b b n n =+-⨯=-.(2)由2702n b n =-≥,得272n ≥,即13n ≤时,0n b <;14n ≥时,0n b >,∴()123201213141520b b b b b b b b b b +++⋅⋅⋅+=-++⋅⋅⋅++++⋅⋅⋅+251312277613171411092222⎡⎤⨯⨯⎛⎫⎛⎫=-⨯-+⨯+⨯-+⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(3)由12712n nb n a ==--,得()*21N 227n a n n =+∈-又函数()21227f x x =+-在27,2⎛⎫-∞ ⎪⎝⎭和27,2⎛⎫+∞ ⎪⎝⎭上均是单调递减.由函数()21227f x x =+-的图象,可得:()14max 3n a a ==,()13min 1n a a ==-.12.(2022·山西省浑源中学高二阶段练习)表示n S 等差数列{}n a 的前n 项的和,且49S S =,112a =-.(1)求数列{}n a 的通项n a 及n S ;(2)求和12n nT a a a =+++【答案】(1)214n a n =-,213n S n n =-;(2)2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩【解析】(1)设等差数列{}n a 的公差为d ,由49S S =可得1143984922a d a d ⨯⨯+=+,因为112a =-,解得2d =,所以,()()111221214n a a n d n n =+-=-+-=-,()()12122141322n n n a a n n S n n +-+-===-.(2)142,17214214,8n n n a n n n -≤≤⎧=-=⎨-≥⎩,当17n ≤≤且N n *∈时,()212142132n n n T n n +-==-;当8n ≥且N n *∈时,()()()()2722147426713842n n n T T n n n n +--=+=+--=-+.综上所述,2213,171384,8n n n n T n n n ⎧-≤≤=⎨-+≥⎩.13.(2021·江苏省灌南高级中学高二阶段练习)已知等差数列{}n a 的前n 项和为n S ,()*4224, 21,N n n S S a a n ==+∈.(1)求{}n a 的通项公式;(2)设数列{}n b 满足()()*123 21 N n b b n b n n +++-=∈,记数列14(1)n n n n b a +⎧⎫⋅-⎨⎬⎩⎭的前n 项和为n T ,求n T .【答案】(1)21n a n =-;(2)**2,2,N 2122,21,N 21n n n k k n T n n k k n ⎧-=∈⎪⎪+=⎨+⎪-=-∈⎪+⎩.【解析】(1)设等差数列{}n a 的公差为d ,由424S S =,可得()114642a d a d +=+,即12a d =;又因为221n n a a =+,取1n =,所以2121a a =+,即11a d +=;故可得11,2a d ==.故{}n a 的通项公式为21n a n =-.(2)由()12321n b b n b n +++-=,当2n ≥时,()1213231n b b n b n -+++-=-,上述两式作差可得()1221n b n n =≥-,又11b =满足上式,综上()*1N 21n b n n =∈-;所以14411(1)(1)(1)()(21)(21)2121n n nn n n b n a n n n n +⋅-=-=-+-+-+.当n 为偶数时11111(1)()(33557n T =-+++-++…1111((23212121n n n n -+++---+.∴1212121n nT n n =-+=-++.当n 为奇数时,1111111(1)(()()335572121n T n n =-+++-++-+-+∴12212121n n T n n +=--=-++.故**2,2,N 2122,21,N 21n n n k k n T n n k k n ⎧-=∈⎪⎪+=⎨+⎪-=-∈⎪+⎩.14.(2022·江苏省苏州实验中学高二阶段练习)已知数列{}n a 是首项为4的单调递增数列,满足()221111682n n n n n na a a a a a +++++=++(1)求证:14n n a a ++-=(2)设数列{}n b 满足πsin2n n n b a =,数列{}n b 前n 㑔和n S ,求20242024S 的值.【答案】(1)证明见解析;(2)4048-【解析】(1)证明:由题意得,()22111121684n n n n n n n n a a a a a a a a +++++++++=,即()()21118164n n n n n n a a a a a a ++++-++=,即()21144n n n n a a a a +++=-,∵数列{}n a 是首项为4的单调递增数列,4n a ≥,∴14n n a a ++-=(2)由(1)得14n n a a +-=,即24=,2-=,所以数列是首项为2,公差为22n =,则2ππsinsin 224n n n n b a n ==,()22222220244135720212023S =⨯-+-++-()()()()()()4131357572021202320212023⎡⎤=⨯-++-+++-+⎣⎦()84124044=-⨯+++()4404450682+⨯=-⨯44048506=-⨯⨯∴202444048506404820242024S =-=-⨯⨯15.(2022·陕西·白水县白水中学高二阶段练习)在数列{}n a 中,11a =,当2n ≥时,其前n 项和n S 满足212n n n S a S ⎛⎫=- ⎪⎝⎭.(1)求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)设21nn S b n =+,求{}n b 的前n 项和n T .【答案】(1)证明见解析;(2)21nn +【解析】(1)证明:∵当2n ≥时,1n n n a S S -=-,212n n n S a S ⎛⎫=- ⎪⎝⎭()22111111222n n n n n n n n n S S S S S S S S S ---⎛⎫∴=--=--+ ⎪⎝⎭,即:112n n n nS S S S ---=111112112n n n n n n n n n n S S S S S S S S S S ------∴-===,又11111S a ==∴数列1n S ⎧⎫⎨⎬⎩⎭是以1为首项,2为公差的等差数列(2)由(1)知:()112121nn n S =+-=-121n S n ∴=-∴()()1111212122121n b n n n n ⎛⎫==⨯- ⎪-+-+⎝⎭11111111112335212122121n n T n n n n ⎛⎫⎛⎫∴=⨯-++⋅⋅⋅+-=⨯-= ⎪ ⎪-+++⎝⎭⎝⎭16.(2022·山东潍坊·高二阶段练习)设数列{}n a 的前n 项和为n S ,且满足323n n a S -=.(1)求n a ;(2)设32log 1,21,,2,,n n n a n k k N b a n k k N **⎧+=-∈=⎨=∈⎩求数列{}n b 的前n 项和n T .【答案】(1)3n n a =;(2)()()()()()19311,,2,2893121,21,28n n n n n n k k N T n n n k k N *-*⎧-+⎪+=∈⎪=⎨-++⎪+=-∈⎪⎩【解析】(1)当1n =时,13a =,当2n ≥时,因为323n n a S -=,所以11323n n a S ---=,得13n n a a -=,所以数列{}n a 为首项为3,公比为3的等比数列,得3n n a =;(2)21,21,3,2,n n n n k k N b n k k N**⎧+=-∈=⎨=∈⎩,当n 为偶数时,2463373113(21)3nn T n =+++++++-+()246[3711(21)]3333n n =++++-+++++()2919(321)9312(1)21928nn n n n n ⎛⎫- ⎪+--⎝⎭=+=++-,当n 为奇数时,24613373113(21)3(21)n n T n n -=+++++++-+++()2461[3711(21)]3333n n -=++++++++++()1211919(321)931(2)(1)221928n n n n n n --⎛⎫+- ⎪++-++⎝⎭=+=+-,所以()()()()()19311,,2,2893121,21,28n n n n n n k k N T n n n k k N *-*⎧-+⎪+=∈⎪=⎨-++⎪+=-∈⎪⎩17.(2022·湖北·石首市第一中学高二阶段练习)已知数列{}n a 满足312123211111n n n a a a a a a a a a +++⋅⋅⋅+=-----.(1)证明:数列1n n a a ⎧-⎫⎨⎬⎩⎭为等比数列.(2)已知()11n n n b a a +=-,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析;(2)11121n n S +=--【解析】(1)证明:当1n =时,111211a a a =--,则12a =.因为312123211111n n n a a a a a a a a a +++⋅⋅⋅+=-----,①所以311212311211111n n n a a a a a a a a a ++++++⋅⋅⋅+-----,②由②-①得11122111n n n n a a a a +++=----,化简可得112n n n n a a a a ++-=,()()11111111121122n n n n n n n n n n n n n n n na a a a a a a aa a a a a a a a ++++++++----===----,所以数列1n n a a ⎧-⎫⎨⎬⎩⎭是一个公比为12的等比数列.(2)由(1)可知11111222n n n na a --=-⨯=-,化简可得221n n n a =-.()()()111211121212121n n n n n n n n b a a +++=-==-----.所以22334111111111111212121212121212121n n n n S ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪---------⎝⎭⎝⎭⎝⎭⎝⎭.18.(2022·湖北省罗田县第一中学高二阶段练习)设等差数列{}n a 的前n 项和为n S ,且634S S =,221n n a a =+,(1)求数列{}n a 的通项公式:(2)若数列{}n b 满足121221n nnb b ba aa +++=-,N n +∈,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =-;(2)()3232nn T n =+-⨯【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,由634S S =,221n n a a =+,则()()()111161543321211a d a d a n d a n d ⎧+=+⎪⎨⎡⎤+-=+-+⎪⎣⎦⎩,解得112a d =⎧⎨=⎩,所以21n a n =-;(2)因为121221n nnb b b a a a +++=-,当1n =时111211ba =-=,即11b =,当2n ≥时111212121n n n b b ba a a ---+++=-,所以()1121212n n n n nb a --=---=,即()1212n n b n -=-⋅,当1n =时()1212n n b n -=-⋅也成立,所以()1212n n b n -=-⋅,所以()0121123252212n n T n -=⨯+⨯+⨯++-⨯,()1232135222122n n T n =⨯+⨯+⨯++-⨯,所以()121022*********n nn T n --=⨯+⨯+⨯++⨯--⨯()()()1121121332222122n n n n T n n -⨯--=+--⨯=-+-⨯-,所以()3232nn T n =+-⨯.19.(2021·河北·邢台一中高二阶段练习)等差数列{}()*n a n N ∈中,123a a a ,,分别是如表所示第一、二、三行中的某一个数,且其中的任意两个数不在表格的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的123{}a a a ,,组合,并求数列{}n a 的通项公式.(2)记(1)中您选择的{}n a 的前n 项和为Sn ,判断是否存在正整数k ,使得12k k a a S +,,成等比数列?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)答案见解析;(2)答案见解析.【解析】(1)由题意可知,有两种组合满足条件.①12381216a a a ===,,,此时等差数列{}n a 中,18a =,公差d =4,所以数列{}n a 的通项公式为44n a n =+②123246a a a ===,,,此时等差数列{}n a 中,12a =,公差d =2,所以数列{}n a 的通项公式为2n a n =.(2)若选择①,226n S n n =+,则()()222226221420k S k k k k +=+++=++.若12k k a a S +,,成等比数列,则212·k k a a S +=,即()()2244821420k k k +=++,整理得2221710k k k k ++=++,即59.k =-此方程无正整数解,故不存在正整数k ,使12k k a a S +,,成等比数列.若选择②,2n S n n =+,则()2222256k S k k k k +=+++=++.若12k k a a S +,,成等比数列,则212·k k a a S +=,即()()222256k k k =++,整理得2560k k --=,因为k 为正整数,所以6k =.故存在正整数6k k =(),使得12k k a a S +,,成等比数列.20.(2022·广东·佛山一中高二阶段练习)已知数列{}n a 是公差d 不为0的等差数列,且数列{}nk a 是等比数列,其中13k =,25k =,39k =.(1)求12n k k k +++;(2)记1n n b k n =-+,求数列1122n n n b b ++⎧⎫-⎨⎬⎩⎭的前n 项和n T .【答案】(1)11222n n n k k k +++=-++;(2)122321n n T n +=--+【解析】(1)由已知可得2539a a a =,则()()()2111428a d a d a d +=++,0d ≠,所以,10a =,则()()111n a a n d n d =+-=-,所以,32a d =,54a d =,则数列{}n k a 的公比为532a a =,所以,()13221nn nk n a a d k d -=⋅==-,所以,21n n k =+,所以,()()21122122222212n nn n k k k n n n +-+++=++++=+=+--.(2)122n n n b k n n =-+=-+,则()()()()()()11111122122222222122221222n n n n n n n nn n n n b b n n n n ++++++⎡⎤-++--+--⎣⎦==⎡⎤⎡⎤-++⋅-+-++⋅-+⎣⎦⎣⎦()12222212n n n n +=--+-++,因此,()1223122222221222222223222212n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪ ⎪-+-+-+-+-+-++⎝⎭⎝⎭⎝⎭122321n n +=--+.21.(2022·湖北·十堰东风高级中学高二阶段练习)数列{}n a 满足:31232n a n a a a +++=+12(1)2n n ++-⋅,*n ∈N .(1)求数列{}n a 的通项公式;(2)设()()111nn n n a b a a +=--,n T 为数列{}n b 的前n 项和,若23n T m <-恒成立,求实数m 的取值范围.【答案】(1)2n n a =,*n ∈N ;(2)2m ≤-或2m ≥【解析】(1)当2n ≥,12323n a a a na ++++L 12(1)2n n +=+-⋅,①1212(1)n a a n a -+++-2(2)2n n =+-⋅,2n ≥,②①-②得22(2)n n n n na n a n =⋅⇒=≥(*)在①中令1n =,得12a =,也满足(*),所以2n n a =,*n ∈N ,(2)由(1)知,()()1121121212121n n n n n n b ++==-----,故12112121n T ⎛⎫=- ⎪--⎝⎭23112121⎛⎫+-+ ⎪--⎝⎭1112121n n +⎛⎫+- ⎪--⎝⎭11121n +=--,于是,23n T m <-⇔2111321n m +-<--因为11121n +--随n 的增大而增大,所以231m -≥,解得2m ≤-或2m ≥所以实数m 的取值范围是2m ≤-或2m ≥.22.(2021·河北保定·高二阶段练习)已知数列{}n a 的前n 项和为n S ,且231n n S a =-.(1)求{}n a 的通项公式.(2)令34log 1n n b a =+,()111n n n n t b b ++=-,n T 为数列{}n t 的前n 项和,求2n T .(3)记()()14130n n n n c a l l +=+-⋅≠.是否存在实数λ,使得对任意的*n ∈N ,恒有1n n c c +>若存在,求出λ的取值范围;若不存在,说明理由.【答案】(1)13n n a -=;(2)22328n T n n =--;(3)存在,()4,00,13l ⎛⎫∈-⋃ ⎪⎝⎭.【解析】(1)当1n =时,有11231a a =-,解得11a =当2n ≥时,由231n n S a =-,得11231n n S a --=-,两式相减得1233n n n a a a -=-,整理得13n n a a -=,所以{}n a 是首项为1,公比为3的等比数列,故13n n a -=;(2)因为13n n a -=,所以43n b n =-,()()()114341n n t n n +=--+,所以()()()()21559913131787838381n T n n n n =⨯-⨯+⨯-⨯++----+()()()()58138883n =⨯-+⨯-++-⨯-()258383282n n n n +-=-⨯=--;(3)因为()1413n n n n c l +=+-⋅⋅,所以()1111413n n n n c l ++++=--⋅⋅,由10n n c c +->,得()1341430n n n l +⨯--⋅⋅>,即()1114130n n n l +----⋅⋅>,进一步化简得()11413n n l -+⎛⎫-⋅< ⎪⎝⎭.当n 为奇数时,143n λ-⎛⎫< ⎪⎝⎭恒成立,因为()143n f n -⎛⎫= ⎪⎝⎭是增函数,所以0413l ⎛⎫<= ⎪⎝⎭;当n 为偶数时,143n l -⎛⎫-< ⎪⎝⎭恒成立,同理214433l -⎛⎫-<=⎪⎝⎭,所以43λ>-故413λ-<<且0λ≠,即存在实数()4,00,13l ⎛⎫∈-⋃ ⎪⎝⎭,使得对任意的*n ∈N ,恒有1n n c c +>.23.(2021·湖南·周南中学高二阶段练习)已知数列{}n a 中,11a =,121n n a S +=+(n *∈N ),n S 为数列{}n a 的前n 项和.(1)求{}n a 的通项公式;(2)设3log n n b a =,求数列{}n n a b 的前n 项和n T ;(3)在n a ,1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,在数列{}n d 中是否存在3项m d ,k d ,p d ,(其中m ,k ,p 成等差数列)成等比数列?若存在,求出这3项;若不存在,请说明理由.【答案】(1)13n n a -=;(2)333244n n nT ⎛⎫=-⨯+ ⎪⎝⎭;(3)不存在,理由见解析.【解析】(1)当2n ≥时,()()1122222n n n n n a a S S a +--=+-+=,所以13n n a a +=2112133a S a =+==;又2112133a S a =+==,所以对*N n ∈,有13n n a a +=,故数列{}n a 是1为首项3为公比的等比数列,通项公式为13n n a -=.(2)由(1)知1n b n =-,112233n n n T a b a b a b a b =++++()012103132313n n -=⨯+⨯+⨯++-⨯…①()23303132313n n T n =⨯+⨯+⨯++-⨯…②①−②得:()212033313n nn T n --=++++--⨯()331313nn n -=--⨯-33322n n ⎛⎫=-+⨯- ⎪⎝⎭,∴333244nn n T ⎛⎫=-⨯+ ⎪⎝⎭.(3)在数列{}n d 不存在3项,m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列.理由如下:由已知得1113323111n n n n n n a a d n n n --+--⨯===+++假设在数列{}n d 中存在m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列,则2km p d d d =,即2111232323111k m p k m p ---⎛⎫⨯⨯⨯=⨯ ⎪+++⎝⎭,化简得()()()22224343111k m p m p k -+-⨯⨯=+++,又因为m ,k ,p 成等差数列,所以2m p k +=,故上式可以化简为()()()2111k m p +=++,则k m p ==,与已知矛盾.故在数列{}n d 中不存在3项,m d ,k d ,p d (其中m ,k ,p 成等差数列)成等比数列.24.(2022·广东·饶平县第二中学高二阶段练习)已知数列{}n a 的前n 项和为n S ,且3122n n S a =-,*N n ∈(1)求数列{}n a 的通项公式;(2)若不等式12(2703+⋅⋅-+≥n n k a n 对任意*N n ∈恒成立,求实数k 的取值范围.【答案】(1)13n n a -=;(2)3[,)32+∞【解析】(1)数列{}n a 的前n 项和为n S ,*N n ∀∈,3122n n S a =-,当2n ≥时,113322n n n n n a S S a a --=-=-,则13n n a a -=,而当1n =时,1113122a S a ==-,即得11a =,因此,数列{}n a 是以1为首项,3为公比的等比数列,则13n n a -=,所以数列{}n a 的通项公式是:13n n a -=(2)由(1)知,1227(270227032+-⋅⋅-+≥⇔⋅-+≥⇔≥n n n nn k a n k n k ,对任意*N n ∈恒成立设272n n n c -=,则()1112172792222n nn n n n n n c c ++++----=-=,当5n ≥,1n n c c +≤,{}n c 单调递减,当15n ≤<,1n n c c +>,{}n c 单调递增,显然有45131632c c =<=,则当5n =时,n c 取得最大值332,即272nn -最大值是332,因此,332k ≥,所以实数k 的取值范围是3[,)32+∞25.(2022·山东·兰陵四中高二阶段练习)已知数列{}n a 满足1=2a ,123n n a a n +=++.(1)证明:数列{}2n a n -为等差数列.(2)设数列(){}22nn a n -⨯的前n 项和为n S ,求n S ,并求满足610023n S n -≤-的n 的最大值.【答案】(1)证明见解析;(2)5【解析】(1)证明:因为数列{}n a 满足1=2a ,123n n a a n +=++,所以()()22221112123212n n n n a n a n a n n a n n n ++⎡⎤-+--=----+=+--=⎣⎦,因为1=2a ,所以2111a -=所以,数列{}2n a n -为等差数列,公差为2,首项为1.(2)由(1)知221n a n n -=-,所以()()22212n nn a n n -⨯=-⋅,所以,()()231123252232212n n n S n n -=⨯+⨯+⨯++-⨯+-⨯,()()23411232522232212n n n S n n +=⨯+⨯+⨯++-⨯+-⨯,所以,()23112222222212n n n S n +-=⨯+⨯+⨯++⨯--⨯L ()()()211121222212632212n n n n n -++-=+⨯-⨯=-+-⨯-,所以,()12326n n S n +=-⨯+,所以16210023n n S n +-=≤-,解得5n ≤,*N n ∈.所以,满足610023nS n -≤-的n 的最大值为526.(2022·湖南·安仁县第一中学高二阶段练习)已知数列{}n a 中,121,2a a ==,当2n ≥时,()112n n n a a a n +-+=+,记1n n n b a a +=-.(1)求数列{}n b 的通项公式;(2)设数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明:2918n S <.【答案】(1)21n b n n =+-;(2)证明见解析【解析】(1)由题意得112n n n n a a a a n +--=-+,所以12n n b b n -=+,即12n n b b n --=.当2n ≥时,()()()11221122(1)221n n n n n b b b b b b b b n n ---=-+-++-+=+-++⨯+=2(24)(1)112n n n n +-+=+-.当1n =时,1211b a a =-=也符合.综上,21n b n n =+-.(2)证明:由(1)得2111nb n n =+-,当1n =时11129118S b ==<;当2n ≥时,2111112312n b n n n n ⎛⎫<=- ⎪+--+⎝⎭,故当2n ≥时,121111111111111113425364712n n S b b b n n ⎛⎫=+++<+-+-+-+-++-= ⎪-+⎝⎭291111291831218n n n ⎛⎫-++< ⎪++⎝⎭.综上,2918n S <.27.(2022·广东·佛山市第四中学高二阶段练习)已知等比数列{}n a 的各项均为正数,24a =,3424a a +=.(1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,求证:12311113nd d d d ++++<L .【答案】(1)2,n n a n N *=∈;(2)证明见解析【解析】(1)设等比数列{}n a 的公比为(0)q q >,因为24a =,3424a a +=,可得2344424a a q q +=+=,即260q q +-=,解得2q =或3q =-(舍去),所以数列{}n a 的通项公式为222422n n n n a a q --==⋅=.(2)由2n n a =,可得112n n a ++=因为n a 与1n a +之间插入n 个数,使这2n +个数组成一个公差为n d 的等差数列,可得1(1)n n n a a n d +=++,所以1211nn n n a a d n n +-==++,所以111(1)()22nn nn n d +==+⋅,设数列{}n d 的前n 项和为n S ,可得2311111123()4(((1)()22222n n n S n n -=⋅+⋅+⋅++⋅++⋅,则23411111112()3()4()()(1)()222222n n n S n n +=⋅+⋅+⋅++⋅++⋅,两式相减231111111(()()(1)(22222n nn S n -=++++-+⋅211111()[1()]131221(1)()(3)()122212n n n n n -++-=++⋅=-+⋅-,所以13(3)(2n n S n =-+⋅,因为n N *∈,所以1(3)(02n n +⋅>,所以13(3)()32nn S n =-+⋅<,即12311113nd d d d ++++<L .28.(2022·广东·普宁市华侨中学高二阶段练习)在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,公比为q ,且222212,+==S b S q b .(1)求n a 与n b ;(2)证明:121111233n S S S +++< .【答案】(1)3n a n =,13n n b -=;(2)证明见解析【解析】(1)设数列{}n a 的公差为d ,因为222212b S S q b +=⎧⎪⎨=⎪⎩,所以6126q d d q q ++=⎧⎪+⎨=⎪⎩,解得33q d =⎧⎨=⎩或410q d =-⎧⎨=⎩(舍),故()3313n a n n =+-=,13n n b -=.(2)因为()332n n n S +=,所以()122113331nS n n n n ⎛⎫==- ⎪++⎝⎭.故1211121111121113223131n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,因为1n ,所以11012n <+ ,所以111121n -<+ ,所以121213313n ⎛⎫-< ⎪+⎝⎭ ,即121111233n S S S +++< .29.(2022·福建省宁德第一中学高二阶段练习)设等比数列{}n a 的公比为q ,前n 项和为n S ,24a =,314S =.(1)求n a ;(2)若1q >,证明:12122nna a a ++⋅⋅⋅+<.【答案】(1)2n n a =或42n n a -=;(2)证明见解析.【解析】(1)据题意知:144410a q q q =⎧⎪⎨+=⎪⎩,解得122a q =⎧⎨=⎩或1812a q =⎧⎪⎨=⎪⎩,所以2n n a =或42n n a -=.(2)由(1)有:因为1q>,所以2n n a =,记1212n n n T a a a =++⋅⋅⋅+,则2311111232222n nT n =⨯+⨯+⨯+⋅⋅⋅+⋅①()2311111112122222n n n T n n +=⨯+⨯+⋅⋅⋅+-⋅+⋅②所以-①②得231111*********n n n T n +⎛⎫=+++⋅⋅⋅+-⋅ ⎪⎝⎭11111111221122212n n n n n n ++⎛⎫- ⎪⎝⎭=-⋅=--⋅-,∴2222222n n n n n n T +=--=-,因为n *∈N ,所以202n n +>,所以12122nn a a a ++⋅⋅⋅+<.30.(2022·福建省福安市第一中学高二阶段练习)已知数列{}n a 满足a 1=3,a 2=5,且2123n n n a a a ++=-,n ∈N *.(1)设bn =an +1-an ,求证:数列{}n b 是等比数列;(2)若数列{an }满足n a m ≤(n ∈N *),求实数m 的取值范围.【答案】(1)证明见解析;(2)7m ≥【解析】(1)因为2123n n n a a a ++=-,所以()2112n n n n a a a a +++-=-.即12n n b b +=,又因为12120b a a =-=≠,所以0n b ≠,则112n n b b +=,所以,数列{}n b 是等比数列(2)由(1)数列{}n b 是首项为2公比为12的等比数列,则22n n b -=.所以121321n n n a a a a a a a a --=-+-++-L 11211122(2)112n n b b b n --⎛⎫- ⎪⎝⎭=+++=⨯≥-L ,则131123272(2)112n n n a n --⎛⎫- ⎪⎝⎭=+⨯=-≥-.经检验1n =时也符合,则372n n a -=-.又因为3727n n a -=-<,所以7m ≥.。

数列专项练习(附答案)

数列专项练习(附答案)

数列专项练习(附答案)1.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +2S n S n-1=0(n ≥2). (1)求证:数列{1Sn}是等差数列;(2)求{a n }的通项公式.2.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .3.在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.4.已知数列{a n }和{b n }中,数列{a n }的前n 项和为S n .若点(n ,S n )在函数y =-x 2+4x 的图象上,点(n ,b n )在函数y =2x 的图象上. (1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n .5.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式.6.已知等差数列{a n }的公差d ≠0,它的前n 项和为S n ,若S 5=70,且a 2,a 7,a 22成等比数列. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:16≤T n <38.7.已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =. (1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和. 8.在数列{a n }中,a 1=1,a n +1·a n =a n -a n +1.(1)求数列{a n }的通项公式;(2)若b n =lg a n +2a n,求数列{b n }的前n 项和S n .9.在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和.10.数列{}n b 满足:1b =2 b +2n n +,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .1(1)证明:∵n≥2时,a n=S n-S n-1,又a n+2S n S n-1=0,∴S n-S n-1+2S n S n-1=0.∵S n≠0,两边同除以S n S n-1,得1 S n-1−1S n+2=0,即1S n−1S n-1=2(n≥2),∴数列{1S n}是等差数列.(2)解:∵a1=1,1S1=1a1=1,∴1S n =1+(n-1)×2=2n-1,∴S n=12n-1.当n≥2时,a n=S n-S n-1=12n-1−12(n-1)-1=-2(2n-1)(2n-3).而-2(2×1-1)(2×1-3)=2≠1,故{a n}的通项公式a n={1,n=1,-2(2n-1)(2n-3),n≥2.2[解析](1)设等差数列{a n}的首项为a,公差为d,由于a3=7,a5+a7=26,∴a1+2d=7,2a1+10d=26,解得a1=3,d=2.∴a n=2n+1,S n=n(n+2).(2)∵a n=2n+1,∴a2n-1=4n(n+1),∴b n=14n n+1=14(1n-1n+1).故T n=b1+b2+…+b n=14(1-12+12-13+…+1n-1n+1)=14(1-1n+1)=n4(n+1),∴数列{b n }的前n 项和T n =n4(n+1)3[解析] (1)由题意得a 1·5a 3=(2a 2+2)2,a 1=10, 即d 2-3d -4=0. 故d =1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *.(2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n .当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎪⎨⎪⎧-12n 2+212n , n ≤11,12n 2-212n +110, n ≥12.4[解析] (1)由已知得S n =-n 2+4n , ∵当n ≥2时,a n =S n -S n -1=-2n +5, 又当n =1时,a 1=S 1=3,符合上式. ∴a n =-2n +5.(2)由已知得b n =2n ,a n b n =(-2n +5)·2n . T n =3×21+1×22+(-1)×23+…+(-2n +5)×2n , 2T n =3×22+1×23+…+(-2n +7)×2n +(-2n +5)×2n +1. 两式相减得T n =-6+(23+24+…+2n +1)+(-2n +5)×2n +1 =231-2n -11-2+(-2n +5)×2n +1-6=(7-2n )·2n +1-14.5解 (1)证明:1a n +1-1-1a n -1=a n -a n +1a n +1-1a n -1=13,∴b n +1-b n =13,∴{b n }是等差数列. (2)由(1)及b 1=1a 1-1=12-1=1,知b n =13n +23,∴a n -1=3n +2,∴a n =n +5n +2.6解 解 (1)由题意得⎩⎪⎨⎪⎧5a 1+10d =70,a 1+6d2=a 1+d a 1+21d ,解得a 1=6,d =4, ∴a n =6+(n -1)×4=4n +2. (2)证明:∵a 1=6,d =4, ∴S n =6n +n n -12×4=2n 2+4n , 即1S n =12n n +2=14⎝ ⎛⎭⎪⎫1n -1n +2,∴T n =14⎝ ⎛⎭⎪⎫1-13+12-14+…+1n -1n +2=14⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =38-2n +34n +1n +2<38,∵T n +1-T n =14⎝ ⎛⎭⎪⎫1n +1-1n +3>0,∴数列{T n }是递增数列,即(T n )min =T 1=38-2n +34n +1n +2=16.故16≤T n <38.7答案:(1)21n a n =-;(2)2132-+=n n n T .【解析】(1)等比数列{}n b 的公比32933b q b ===,所以211bb q==,4327b b q ==,设等差数列{}n a 的公差为d ,因为111a b ==,14427a b ==,所以11327d +=,即2d =, 所以21n a n =- ……………………………(6分) (2)由(1)知,21n a n =-,13n n b -=,因此1213n n n c a b n -=+=-+,从而数列{}n c 的前n 项和()()1221133113211332132n n n n n n S n n ----=+++-++++=+=+-8解 (1)由题意得1a n +1-1a n =1,又因为a 1=1,所以1a 1=1.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为1的等差数列,所以1a n=n ,即a n =1n .所以数列{a n }的通项公式为a n =1n . (2)由(1)得b n =lg n -lg (n +2),所以S n =lg 1-lg 3+lg 2-lg 4+lg 3-lg 5+…+lg (n -2)-lg n +lg (n -1)-lg (n +1)+lg n -lg (n +2)=lg 1+lg 2-lg (n +1)-lg (n +2) =lg2(n +1)(n +2).9【解】 设该数列的公差为d ,前n 项和为S n .由已知可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ), 所以a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和S n =4n 或S n =3n 2-n2.10【答案】(1)122n n b +=-;(2)222(4)n n S n n +=-++.【解析】(1)112222(2)n n n n b b b b ++=+⇒+=+,∵1222n n b b ++=+, 又121224b a a +=-+=,∴数列{}2n b +是首项为4,公比为2的等比数列, ∴112422n n n b -++=⋅=,∴122n n b +=-.(2)由(1)知,1-122(2)n n n n a a b n --==-≥,∴122(2)nn n a a n --=-≥.令2,,(1)n n =-,赋值累加得:232(222)2(1)n n a n -=+++--,∴2312(21)(2222)22222221n nn n a n n n +-=++++-+=-+=--.∴224(12)(22)2(4)122n n n n n S n n +-+=-=-++-.。

八年级数学下册数列的计算与应用练习题

八年级数学下册数列的计算与应用练习题

八年级数学下册数列的计算与应用练习题数列是数学中常见且重要的概念,它在许多数学问题中都有广泛的应用。

在八年级数学下册中,我们学习了数列的计算和应用。

为了巩固这些知识,下面我们来进行一些练习题。

练习一:计算数列的通项公式
1. 数列的前三项分别为3,7,11,求该数列的通项公式。

2. 数列的前四项分别为1,3,5,7,求该数列的通项公式。

3. 数列的前五项分别为2,6,18,54,求该数列的通项公式。

练习二:求数列的前n项和
1. 数列的通项公式为an = 2n + 1,求前10项的和Sn。

2. 数列的通项公式为an = n^2,求前8项的和Sn。

3. 数列的通项公式为an = (-1)^n * n,求前12项的和Sn。

练习三:应用题
1. 有一只蚂蚁每次爬行的距离是原来的一半,第一次爬行距离为30cm,求第八次爬行距离。

2. 一个小球从高度为10米的位置自由下落,每次弹起的高度是上一次弹起高度的一半。

求小球第五次弹起的高度。

3. 一个数列的前四项为1,3,6,10,该数列的通项公式为an = n(n+1)/2,求该数列的第十项。

以上就是本次关于八年级数学下册数列的计算与应用练习题。

通过这些题目的练习,相信大家对数列的计算和应用有了更深入的理解。

希望大家继续努力学习,掌握更多数学知识!。

专题40数列的综合应用(原卷版)

专题40数列的综合应用(原卷版)

【考纲要求】1.了解数列是一种特殊的函数,会解决等差、等比数列的综合问题.2.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.【方法技巧】1.数列应用问题常见模型(1)等差模型:后一个量比前一个量增加(或减少)的是同一个固定值.(2)等比模型:后一个量与前一个量的比是同一个固定的非零常数.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,那么应考虑a n与a n(或者相邻三项)之间的递推关系,或者S n与S n+1(或者相邻三项)之间的递推关系.+12.对等差、等比数列的综合问题,应重点分析等差、等比数列项之间的关系.数列的求和主要是等差、等比数列的求和及裂项相消法求和与错位相减法求和,本题中利用裂项相消法求数列的和,然后利用b1=1,d>0证明不等式成立.另外本题在探求{a n}与{c n}的通项公式时,考查累加、累乘两种基本方法.3.数列与函数、不等式的综合问题关键在于通过函数关系寻找数列的递推关系,求出数列的通项或前n项和,再利用数列或数列对应的函数解决最值、范围问题,通过放缩进行不等式的证明.二、【题型归类】【题型一】数学文化与数列的实际应用【典例1】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A .3 699块B .3 474块C .3 402块D .3 339块【典例2】某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm ,10 dm ×6 dm ,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么 k =1nS k =_______ dm 2.【典例3】《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,前三个节气日影长之和为尺,最后三个节气日影长之和为尺,今年3月20日为春分时节,其日影长为( ) A .尺 B .尺 C .尺D .尺【题型二】等差、等比数列的综合【典例1】设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2.(1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e a n .【典例2】设S n 为数列{a n }的前n 项和,已知a 2=3,a n +1=2a n +1.(1)证明:{a n +1}为等比数列;(2)求{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列?说明理由.【典例3】已知等差数列{a n }和等比数列{b n }满足a 1=2,b 2=4,a n =2log 2b n ,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)设数列{a n }中不在数列{b n }中的项按从小到大的顺序构成数列{c n },记数列{c n }的前n 项和为S n ,求S 100.【题型三】数列与其他知识的交汇【典例1】已知数列{a n }是公比不等于1的正项等比数列,且lg a 1+lg a 2 021=0,若函数f (x )=21+x 2,则f (a 1)+f (a 2)+…+f (a 2 021)=( ) A .2 020 B .4 040 C .2 021D .4 042【典例2】已知S n 是数列{a n }的前n 项和,a 1=1,且∀n ∈N *,2S n =(n +1)a n ,b n =S n ⎝⎛⎭⎪⎫cosa n π2+sin a n π2,则数列{b n }的前2 020项之和T 2 020=________. 【典例3】设数列{a n }的通项公式为a n =2n -1,记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为T n ,若对任意的n ∈N *,不等式4T n <a 2-a 恒成立,则实数a 的取值范围为________.三、【培优训练】【训练一】已知数列{a n }满足a n +a m =a m +n (m ,n ∈N *)且a 1=1,若[x ]表示不超过x 的最大整数,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎣⎢⎡⎦⎥⎤a 2n +35的前10项和为( )A .12 B.1135 C .24D .40【训练二】(多选)已知在△ABC 中,A 1,B 1分别是边BA ,CB 的中点,A 2,B 2分别是线段A 1A ,B 1B 的中点,…,A n ,B n 分别是线段A n -1A ,B n -1B (n ∈N *,n >1)的中点,设数列{a n },{b n }满足B n A n →=a n CA →+b n CB →(n ∈N *),给出下列四个结论,其中正确的是( ) A .数列{a n }是递增数列,数列{b n }是递减数列 B .数列{a n +b n }是等比数列C .数列{a nb n}(n ∈N *,n >1)既有最小值,又有最大值D .若在△ABC 中,C =90°,CA =CB ,则|B n A n →|最小时,a n +b n=12【训练三】某地区2018年人口总数为45万.实施“二孩”政策后,专家估计人口总数将发生如下变化:从2019年开始到2028年,每年人口总数比上一年增加万人,从2029年开始到2038年,每年人口总数为上一年的99%.(1)求实施“二孩”政策后第n 年的人口总数a n (单位:万人)的表达式(注:2019年为第一年);(2)若“二孩”政策实施后的2019年到2038年人口平均值超过49万,则需调整政策,否则继续实施,问到2038年结束后是否需要调整政策?(参考数据:10≈)【训练四】已知在等差数列{a n }中,a 2=5,a 4+a 6=22,在数列{b n }中,b 1=3,b n =2b n -1+1(n ≥2).(1)分别求数列{a n },{b n }的通项公式;(2)定义x =[x ]+(x ),[x ]是x 的整数部分,(x )是x 的小数部分,且0≤(x )<1.记数列{c n }满足c n =⎝⎛⎭⎫a nb n +1,求数列{c n }的前n 项和.【训练五】由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n },b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前(4n +3)项和T 4n +3.【训练六】已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n-14na n a n +1,求数列{b n }的前n 项和T n . 四、【强化测试】 【单选题】1. 等比数列{a n }中,a 5,a 7是函数f (x )=x 2-4x +3的两个零点,则a 3·a 9等于( )A .-3B .3C .-4D .42. 已知等差数列{a n }的前n 项和为S n ,公差为-2,且a 7是a 3与a 9的等比中项,则S 10的值为( )A .-110B .-90C .90D .1103. 若等差数列{a n }的公差d ≠0且a 1,a 3,a 7成等比数列,则a 2a 1等于( )A.32B.23C.12D .2 4. 某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高42万元,第七实验室比第四实验室的改建费用高168万元,并要求每个实验室改建费用不能超过1 700万元.则该研究所改建这十个实验室投入的总费用最多需要()A.3 233万元B.4 706万元C.4 709万元D.4 808万元5.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品,计划从2020年开始每年比上一年获利增加20%,则从()年开始这家加工厂年获利超过60万元,已知lg 2≈ 0,lg 3≈ 1()A.2024年B.2025年C.2026年D.2027年6.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即F(1)=F(2)=1,F(n)=F(n-1)+F(n-2)(n≥3,n∈N*).此数列在现代物理、化学等方面都有着广泛的应用.若此数列被2除后的余数构成一个新数列{a n},则数列{a n}的前2 019项的和为() A.672 B.673C.1 346 D.2 0197.已知等差数列{a n}的公差为-2,前n项和为S n.若a2,a3,a4为某三角形的三边长,且该三角形有一个内角为120°,则S n的最大值为()A.5 B.11C.20 D.258.定义:若数列{a n}对任意的正整数n,都有|a n+1|+|a n|=d(d为常数),则称|a n|为“绝对和数列”,d叫做“绝对公和”.已知“绝对和数列”{a n}中,a1=2,绝对公和为3,则其前2 019项的和S2 019的最小值为() A.-2 019 B.-3 010C.-3 025 D.-3 027【多选题】9.南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,…,设各层球数构成一个数列{a n},则()A.a4=12B.a n+1=a n+n+1C.a100=5 050D.2a n+1=a n·a n+210.已知数列{a n}是公差不为0的等差数列,前n项和为S n,满足a1+5a3=S8,下列选项正确的有() A.a10=0 B.S10最小C.S7=S12D.S20=011. 若数列{a n }满足:对任意的n ∈N *且n ≥3,总存在i ,j ∈N *,使得a n =a i +a j (i ≠j ,i <n ,j <n ),则称数列{a n }是“T 数列”.则下列数列是“T 数列”的为( )A .{2n }B .{n 2}C .{3n}D .⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫1-52n -112. 一个弹性小球从100 m 高处自由落下,每次着地后又跳回原来的高度的23再落下.设它第n 次着地时,经过的总路程记为S n ,则当n ≥2时,下面说法正确的是( )A .S n <500B .S n ≤500C .S n 的最小值为7003D .S n 的最大值为400【填空题】13. 若数列{a n }满足1a n +1-2a n =0,则称{a n }为“梦想数列”.已知正项数列{1b n }为“梦想数列”,且b 1+b 2+b 3=1,则b 6+b 7+b 8=________.14. 已知在数列{a n }中,a n +1=2a n -1,a 1=2,设其前n 项和为S n ,若对任意的n ∈N *,(S n +1-n )k ≥2n -3恒成立,则k 的最小值为________15. 若数列{a n }满足a 2-12a 1<a 3-12a 2<…<a n -12a n -1<…,则称数列{a n }为“差半递增”数列.若数列{a n }为“差半递增”数列,且其通项a n 与前n 项和S n 满足S n =2a n +2t -1(n ∈N *),则实数t 的取值范围是________.16. 已知等差数列{a n }的首项a 1及公差d 都是实数,且满足S 2S 42+S 239+2=0,则d 的取值范围是________.【解答题】17. 已知S n 为等差数列{a n }的前n 项和,且a 3=3,S 7=14.(1)求a n 和S n ;(2)若b n =2n a,求{b n }的前n 项和T n .18. 已知u n =a n +a n -1b +a n -2b 2+…+ab n -1+b n (a >0,b >0,n ∈N *).(1)当a =2,b =3时,求u n ; (2)若a =b ,求数列{u n }的前n 项和S n .19. 已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ;(2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n 成立的n 的最小值.20. 定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和.求数列{b n }的通项公式.21. 从“①S n =n ⎝⎛⎭⎫n +a 12;②S 2=a 3,a 4=a 1a 2;③a 1=2,a 4是a 2,a 8的等比中项.”三个条件中任选一个,补充到下面的横线处,并解答.已知等差数列{a n }的前n 项和为S n ,公差d ≠0,________,n ∈N *. (1)求数列{a n }的通项公式;(2)若b n =122n n S S +-,数列{b n }的前n 项和为W n ,求W n . 注:如果选择多个条件分别解答,按第一个解答计分.22. 已知正项数列{a n }的前n 项和为S n ,且a 2n +1=2S n +n +1,a 2=2.(1)求数列{a n }的通项公式a n ;(2)若b n =a n ·2n ,数列{b n }的前n 项和为T n ,求使T n >2 022的最小的正整数n 的值.。

数列的综合应用练习题(基础、经典、好用)

数列的综合应用练习题(基础、经典、好用)

数列的综合应用一、选择题1.已知各项不为0的等差数列{a n},满足2a3-a27+2a11=0,数列{b n}是等比数列,且b7=a7,则b6b8=()A.2 B.4 C.8 D.162.(2012·北京高考)已知{a n}为等比数列,下面结论中正确的是()A.a1+a3≥2a2B.a21+a23≥2a22C.若a1=a3,则a1=a2D.若a3>a1,则a4>a23.已知数列{a n}的前n项和为S n,且a1=1,a n+1=3S n(n≥1,n∈N*),第k项满足750<a k<900,则k等于()A.8 B.7 C.6 D.54.在如图5-5-1所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么x+y+z的值为()图5-5-1A.1 B.2 C.3 D.45.(2013·茂名质检)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为()A.①和⑳B.⑨和○10C.⑨和⑪ D.○10和⑪二、填空题6.数列{a n}是公差不为0的等差数列,且a1,a3,a7为等比数列{b n}的连续三项,则数列{b n}的公比为________.7.(2012·湖南高考)对于n∈N*,将n表示为n=a k×2k+a k-1×2k-1+…+a1×21+a0×20,当i=k时,a i=1;当0≤i≤k-1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.b2+b4+b6+b8=________.8.对正整数n,若曲线y=x n(1-x)在x=2处的切线与y轴交点的纵坐标为a n,则数列{a nn+1}的前n项和为________.三、解答题9.(2012·重庆高考)已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,若a1,a k,S k+2成等比数列,求正整数k的值.10.已知等比数列是递增数列,且满足a1+a2+a3=39,a2+6是a1和a3的等差中项.(1)求数列{a n}的通项公式;(2)若b n=⎩⎨⎧1(n=1),a n-1log3a n(n≥2),记数列{b n}的前n项和为S n,求使S n>120成立的最小n值.11.(2013·清远模拟)一企业的某产品每件利润100元,在未做电视广告时,日销售量为b件.当对产品做电视广告后,记每日播n次时的日销售量为a n(n∈N*)件,调查发现:每日播一次则日销售量a1件在b件的基础上增加b2件,每日播二次则日销售量a2件在每日播一次时日销售量a1件的基础上增加b4件…,每日播n次,该产品的日销售a n件在每日播n-1次时的日销售量a n-1件的基础上增加b2n件.合同约定:每播一次企业需支付广告费2b元.(1)试求出a n与n的关系式;(2)该企业为了获得扣除广告费后的日利润最大,求每日电视广告需播多少次.解析及答案一、选择题 1.【解析】 ∵数列{a n }是等差数列,∴a 3+a 11=2a 7,由2a 3-a 27+2a 11=0得4a 7-a 27=0,又a n ≠0,∴a 7=4,∴b 6b 8=b 27=42=16.【答案】 D2.【解析】 设{a n }的公比为q (q ≠0),则a 2=a 1q ,a 3=a 1q 2,∴a 21+a 23=a 21(1+q 4)≥a 21·2q 2=2a 22.【答案】 B3.【解析】 由a n +1=3S n 及a n =3S n -1(n ≥2), 得a n +1-a n =3a n ,即a n +1=4a n (n ≥2), 又a 2=3S 1=3,∴a n =⎩⎨⎧1, (n =1),3×4n -2, (n ≥2), 又750<a k <900,验证k =6. 【答案】 C4.【解析】 由题知表格中第三列中的数成首项为4,公比为12的等比数列,故有x =1. 根据每行成等差数列得第四列前两个数字依次为5,52,故第四列的公比为12.∴y =5×(12)3=58,同理z =6×(12)4=38. 因此x +y +z =2. 【答案】 B5.【解析】 设树苗放在第i 个树坑旁边(如图所示)则各个树坑到第i 个树坑距离的和是S =10(i -1)+10(i -2)+…+10(i -i )+10[(i +1)-i ]+…+10(20-i ) =10[(i -1+1)(i -1)2+(1+20-i )(20-i )2]=10(i 2-21i +210).∴当i =10或11时,S 有最小值. 【答案】 D二、填空题6.【解析】 由题意知a 23=a 1·a 7, ∴(a 1+2d )2=a 1·(a 1+6d ),∴a 1=2d , ∴等比数列{b n }的公比q =a 3a 1=a 1+2da 1=2.【答案】 27.【解析】 依据所给定义:2=1×21+0×20,b 2=1; 4=1×22+0×21+0×20,b 4=1; 6=1×22+1×21+0×20,b 6=0; 8=1×23+0×22+0×21+0×20,b 8=1. 故b 2+b 4+b 6+b 8=3. 【答案】 38.【解析】 由题意,得y ′=nx n -1-(n +1)x n ,故曲线y =x n (1-x )在x =2处的切线的斜率为k =n 2n -1-(n +1)2n ,切点为(2,-2n ), 所以切线方程为y +2n =k (x -2). 令x =0得a n =(n +1)2n ,即a nn +1=2n , 则数列{a nn +1}的前n 项和为2+22+23+…+2n =2n +1-2. 【答案】 2n +1-2 三、解答题9.【解】 (1)设数列{a n }的公差为d , 由题意知⎩⎨⎧2a 1+2d =8,2a 1+4d =12,解得⎩⎨⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n ,即a n =2n . (2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6. 10.【解】 (1)由题知2(a 2+6)=a 1+a 3, 从而a 2+2(a 2+6)=39,所以a 2=9, 30=9q +9q ⇒q =3或13(舍去),所以a n =3n .(2)b n =a n -1log 3a n =3n -1·n ,(n ≥2), 所以S n =1+2·31+3·32+…+n ·3n -1, ① 3S n =31+2·32+3·33+…+n ·3n ,②②-①得:2S n =-1-31-32-…-3n -1+n ·3n =-1-3n 1-3+n ·3n .所以:2S n =n ·3n-3n 2+12=(n -12)·3n +12,由S n >120,则(n -12)3n +12>240,所以n ≥4,最小n 值为4.11.【解】 (1)由题意,电视广告日播k 次时,该产品的日销售量a k 满足a k =a k -1+b2k (k ∈N *,a 0=b ),∴a n =b +b 2+b 22+…+b 2n=b [1-(12)n +1]1-12=b (2-12n )(n ∈N *). 即该产品每日销售量a n (件)与电视广告播放量n (次/日)的关系式为a n =b (2-12n ),(n ∈N *). (2)该企业每日播放电视广告n 次时获利为C n =100b (2-12n )-2bn =100b (2-0.02n -12n )(n ∈N *).∵C n -C n -1=100b (12n -0.02)≥0, 即2n ≤50,n ∈N *, ∴n ≤5(n ∈N *),∵C n +1-C n =100b (12n +1-0.02)≤0⇒2n ≥25⇒n ≥5,∴n =5.∴要使该产品每日获得的利润最大,则每日电视广告需播5次.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列应用题专题训练高三数学备课组以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。

一、储蓄问题对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。

单利是指本金到期后的利息不再加入本金计算。

设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。

复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。

设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。

例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式:(1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数);(2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。

问用哪种存款的方式在第六年的7月1日到期的全部本利较高?分析:这两种存款的方式区别在于计复利与不计复利,但由于利率不同,因此最后的本利也不同。

解:若不计复利,5年的零存整取本利是2000(1+5×0.065)+2000(1+4×0.065)+…+2000(1+0.065)=11950;若计复利,则2000(1+5%)5+2000(1+5%)4+…+2000(1+5%)≈11860元。

所以,第一种存款方式到期的全部本利较高。

二、等差、等比数列问题等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。

例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。

购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。

若交付150元以后的第一个月开始算分期付款的第一日,问分期付款的第10个月该交付多少钱?全部货款付清后,买这件家电实际花了多少钱?解:购买时付出150元,余欠款1000元,按题意应分20次付清。

设每次所付欠款顺次构成数列{a n},则a1=50+1000×0.01=60元,a2=50+(1000-50)×0.01=59.5元,a3=50+(1000-50×2)×0.01=59,……a n=60-(n-1)·0.5所以{a n}是以60为首项,-0.5为公差的等差数列,故a10=60-9×0.5=55.5元20次分期付款总和S20=25.5060×20=1105元,实际付款1105+150=1255(元)答:第10个月该付55.5元,全部付清后实际共付额1255元。

例3、(疾病控制问题)流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病。

某市去年11月份曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人。

由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数。

分析:设11月n日这一天新感染者最多,则由题意可知从11月1日到n日,每天新感染者人数构成一等差数列;从n+1日到30日,每天新感染者构成另一个等差数列。

这两个等差数列的和即为这个月总的感染人数。

略解:由题意,11月1日到n日,每天新感染者人数构成一等差数列a n,a1=20,d1=50,11月n 日新感染者人数a n=50n—30;从n+1日到30日,每天新感染者人数构成等差数列b n,b1=50n-60,d2=—30,b n=(50n-60)+(n-1)(-30)=20n-30,11月30日新感染者人数为b30-n=20(30-n)-30=-20n+570.故共感染者人数为:2)30)](57020(6050[2)305020(n n n n n -+-+-+-+=8670,化简得:n 2-61n+588=0,解得n=12或n=49(舍),即11月12日这一天感染者人数最多,为570人。

例4(住房问题)某城市1991年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,每年平均新增住房面积为30万m 2,求2000年底该城市人均住房面积为多少m 2?(精确到0.01)解:1991年、1992年、……2000年住房面积总数成AP a 1 = 6×500 = 3000万m 2,d = 30万m 2,a 10 = 3000 + 9×30 = 32701990年、1991年、……2000年人口数成GPb 1 = 500 , q = 1% , 8.5460937.150001.1500910≈⨯≈⨯=b∴2000年底该城市人均住房面积为:298.58.5463270m ≈ 点评:实际问题中提炼出等差、等比数列。

例5 (浓度问题) 从盛有盐的质量分数为20%的盐水2 kg 的容器中倒出1 kg 盐水,然后加入1 kg水,以后每次都倒出1 kg 盐水,然后再加入1 kg 水, 问:1.第5次倒出的的1 kg 盐水中含盐多少g ?2.经6次倒出后,一共倒出多少kg 盐?此时加1 kg 水后容器内盐水的盐的质量分数为多少?解:1.每次倒出的盐的质量所成的数列为{a n },则:a 1= 0.2 kg , a 2=21×0.2 kg , a 3= (21)2×0.2 kg 由此可见:a n = (21)n -1×0.2 kg , a 5= (21)5-1×0.2= (21)4×0.2=0.0125 kg2.由1.得{a n }是等比数列 a 1=0.2 , q =21kg qq a S 39375.0211)211(2.01)1(6616=--=--=∴ 00625.039375.04.0=- 003125.0200625.0=÷点评:掌握浓度问题中的数列知识。

例6.(减员增效问题)某工厂在1999年的“减员增效”中对部分人员实行分流,规定分流人员第一年可以到原单位领取工资的100%,从第二年起,以后每年只能在原单位按上一年的23领取工资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶段,第二年每人可获得b 元收入,从第三年起每人每年的收入可在上一年的基础上递增50%,如果某人分流前工资的收入每年a 元,分流后进入新经济实体,第n 年的收入为n a 元, (1)求{}n a 的通项公式;(2)当827ab =时,这个人哪一年的收入最少?最少为多少? (3)当38ab ≥时,是否一定可以保证这个人分流一年后的收入永远超过分流前的年收入?解:(1)由题意得,当1n =时,1a a =,当2n ≥时,1223()()32n n n a a b --=+,∴12(1)23()()(2)32n n n an a a b n --=⎧⎪=⎨+≥⎪⎩. (2)由已知827ab =, 当2n ≥时,1121222832838()()2[()()]327232729n n n n n a a aa a a ----=+≥⨯=要使得上式等号成立,当且仅当12283()()3272n n a a --=,即22422()()33n -=,解得3n =,因此这个人第三年收入最少为89a元.(3)当2n ≥时,121223233()()()()32382n n n n n a a a b a a ----=+≥+≥=,上述等号成立,须38ab =且2233121log 1log 223n =+>+=因此等号不能取到,当38a b ≥时,这个人分流一年后的收入永远超过分流前的年收入.例7.(等差等比综合问题)银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案: 甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润; 乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元. 两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:10101.1 2.594,1.313.796==)解:甲方案10年获利润是每年利润数组成的数列的前10项的和:10291.311(130%)(130%)(130%)42.621.31-+++++++==-(万元)到期时银行的本息和为1010(110%)10 2.59425.94⨯+=⨯=(万元) ∴甲方案扣除本息后的净获利为:42.6225.9416.7-≈(万元)乙方案:逐年获利成等差数列,前10年共获利:10(1 5.5)1(10.5)(120.5)(190.5)32.502+++++⨯+++⨯==(万元) 贷款的本利和为:1091.111.1[1(110%)(110%)] 1.117.531.11-+++++=⨯=-(万元) ∴乙方案扣除本息后的净获利为:32.5017.5315.0-=(万元) 所以,甲方案的获利较多.三、a n - a n-1=f(n),f(n)为等差或等比数列有的应用题中的数列递推关系,a n 与a n-1的差(或商)不是一个常数,但是所得的差f(n)本身构成一个等差或等比数列,这在一定程度上增加了递推的难度。

例8、(广告问题)某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a 元的前提下,可卖出b 件。

若作广告宣传,广告费为n 千元时比广告费为(n-1)千元时多卖出n b2件,(n ∈N *)。

(1)试写出销售量s 与n 的函数关系式;(2)当a=10,b=4000时厂家应生产多少件这种产品,做几千元广告,才能获利最大? 分析:对于(1)中的函数关系,设广告费为n 千元时的销量为s n ,则s n-1表示广告费为(n-1)元时的销量,由题意,s n ——s n-1=n b 2,可知数列{s n }不成等差也不成等比数列,但是两者的差nb2构成等比数列,对于这类问题一般有以下两种方法求解:解法一、直接列式:由题,s=b+2b +22b +32b +…+n b 2=b(2-n 21) (广告费为1千元时,s=b+2b ;2千元时,s=b+2b +22b ;…n 千元时s=b+2b +22b +32b +…+n b2)解法二、(累差叠加法)设s 0表示广告费为0千元时的销售量,由题:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=--n n n b s s b s s b s s 222121201,相加得S n -S 0=2b +22b +32b +…+n b 2,即s=b+2b +22b +32b +…+n b 2=b(2-n 21)。

相关文档
最新文档