高分子阻尼材料 ppt课件
合集下载
高分子化学3.9 阻聚与缓聚3.9.1 课件
高分子化学 第三章 自由基聚合
Inhibition and Retardation
阻聚和缓聚
徐州工程学院
主讲:董黎明
2015年 4月3日
导入
表3-9 链转移反应对聚合速率和聚合度的影响
速率常数相对大小 聚合反应速率
聚合度
链转移类型和结果
kp>>ktr; ka≈kp kp<<ktr; ka≈kp kp>>ktr; ka < kp kp<<ktr; ka < kp kp<<ktr; ka =0
高分子化学 第三章 自由基聚合
但是如果双键上有吸电子取代键,如甲基丙烯酸甲 酯,丙烯腈等,可以进行高聚:
CH3
Mn + CH2 C OC
OCH3
CH3 CH2 C
OC OCH3
CH3
Mn + CH2 C CN
CH3 CH2 C
CN
由于生成的链自由基有酯基和氰基的吸电子作用而稳定 化,降低了链转移活性;其次由于取代基的吸电子作用,使 单体双键上的电子云密度降低,更易接受链自由基的进攻, 即更易进行加成反应,因而这些单体容易得到高分子量的聚 合产物。
阻聚剂:能起阻聚作用的物质。
缓 聚:使聚合速度减慢,延缓反应的过程 称为缓聚作用。不出现诱导期。
缓聚剂:能起缓聚作用的物质。
高分子化学 第三章 自由基聚合
许多杂质对聚合有抑制作用,因此进行聚合的单体有 纯度的要求。 在贮运过程中,为了防止聚合发生,则又要加入一定 量的防止聚合的物质,这类物质在聚合前再进行脱除。 在有些聚合过程中,也要加入一些终止反应的物质 (终止剂)防爆聚及控制转化率。这些问题都涉及了 到阻聚和阻聚剂。
Inhibition and Retardation
阻聚和缓聚
徐州工程学院
主讲:董黎明
2015年 4月3日
导入
表3-9 链转移反应对聚合速率和聚合度的影响
速率常数相对大小 聚合反应速率
聚合度
链转移类型和结果
kp>>ktr; ka≈kp kp<<ktr; ka≈kp kp>>ktr; ka < kp kp<<ktr; ka < kp kp<<ktr; ka =0
高分子化学 第三章 自由基聚合
但是如果双键上有吸电子取代键,如甲基丙烯酸甲 酯,丙烯腈等,可以进行高聚:
CH3
Mn + CH2 C OC
OCH3
CH3 CH2 C
OC OCH3
CH3
Mn + CH2 C CN
CH3 CH2 C
CN
由于生成的链自由基有酯基和氰基的吸电子作用而稳定 化,降低了链转移活性;其次由于取代基的吸电子作用,使 单体双键上的电子云密度降低,更易接受链自由基的进攻, 即更易进行加成反应,因而这些单体容易得到高分子量的聚 合产物。
阻聚剂:能起阻聚作用的物质。
缓 聚:使聚合速度减慢,延缓反应的过程 称为缓聚作用。不出现诱导期。
缓聚剂:能起缓聚作用的物质。
高分子化学 第三章 自由基聚合
许多杂质对聚合有抑制作用,因此进行聚合的单体有 纯度的要求。 在贮运过程中,为了防止聚合发生,则又要加入一定 量的防止聚合的物质,这类物质在聚合前再进行脱除。 在有些聚合过程中,也要加入一些终止反应的物质 (终止剂)防爆聚及控制转化率。这些问题都涉及了 到阻聚和阻聚剂。
阻尼功能复合材料PPT课件
3.设计高阻尼界面层 金属基复合材料的阻尼性能与其实际界面层 的性能有关。根据界面层阻尼理论,一定厚度的强结合界面层 本身的阻尼性能对复合材料的阻尼有极大的影响;而弱结合界面 层,其内发生的微滑移对复合材料的阻尼做出更多贡献。
另外,金属基复合材料的阻尼性能也受频率和温度的影响。
8
阻尼功能复合材料
近年来,泡沫金属的阻尼性能引起了人们的注 意。泡沫金属的阻尼性能虽不如黏弹性材料, 但却明显高于阻尼合金,不过它的力学性能远 不如后者;损耗因子越高,泡沫金属的力学性 能越差,可以说,泡沫金属是以牺牲力学性能 来换取高的阻尼细嫩。
7
阻尼功能复合材料
2.用高阻尼增强物 因为纤维的弹性模量通常远大于基体和复合材 料的弹性模量应变能主要集中在纤维上,所以纤维对复合材料 阻尼性能的贡献是主要的,采用石墨颗粒作为高阻尼增强物的 作用,是与铸铁中石墨片变形洗手振动能量的作用一样,把片 状石墨加到Al或其他金属基体形成的金属基复合材料中可大大 提高阻尼性能。例如用SiC颗粒和石墨颗粒混杂的方法可以制 备刚度和阻尼俱佳的复合材料。此类混杂复合材料的阻尼由石 墨颗粒贡献,刚度主要由SiC颗粒贡献。
性能优于单一材料结构的阻尼性能,在VIRALL 叠层板中,环氧树脂有很高的振动衰减损耗因子 ,对维尼纶纤维/环氧树脂层(VFRE)的阻尼贡 献较大。同时因维尼纶本身的黏弹性,使VFRE 层具有较高的阻尼性能。另外,铝合金板与 VFRE层复合,使VIRALL层板的振动能向热能 的转换途径增多,如VFRE层的黏弹性行为,纤 维与树脂的界面内摩擦,VFRE层与Al层的界面 作用,材料的非均匀性引起的应力变化等等。
9
阻尼功能复合材料
8.2.2聚合物基阻尼功能复合材料的阻尼性能
10
阻尼功能复合材料
另外,金属基复合材料的阻尼性能也受频率和温度的影响。
8
阻尼功能复合材料
近年来,泡沫金属的阻尼性能引起了人们的注 意。泡沫金属的阻尼性能虽不如黏弹性材料, 但却明显高于阻尼合金,不过它的力学性能远 不如后者;损耗因子越高,泡沫金属的力学性 能越差,可以说,泡沫金属是以牺牲力学性能 来换取高的阻尼细嫩。
7
阻尼功能复合材料
2.用高阻尼增强物 因为纤维的弹性模量通常远大于基体和复合材 料的弹性模量应变能主要集中在纤维上,所以纤维对复合材料 阻尼性能的贡献是主要的,采用石墨颗粒作为高阻尼增强物的 作用,是与铸铁中石墨片变形洗手振动能量的作用一样,把片 状石墨加到Al或其他金属基体形成的金属基复合材料中可大大 提高阻尼性能。例如用SiC颗粒和石墨颗粒混杂的方法可以制 备刚度和阻尼俱佳的复合材料。此类混杂复合材料的阻尼由石 墨颗粒贡献,刚度主要由SiC颗粒贡献。
性能优于单一材料结构的阻尼性能,在VIRALL 叠层板中,环氧树脂有很高的振动衰减损耗因子 ,对维尼纶纤维/环氧树脂层(VFRE)的阻尼贡 献较大。同时因维尼纶本身的黏弹性,使VFRE 层具有较高的阻尼性能。另外,铝合金板与 VFRE层复合,使VIRALL层板的振动能向热能 的转换途径增多,如VFRE层的黏弹性行为,纤 维与树脂的界面内摩擦,VFRE层与Al层的界面 作用,材料的非均匀性引起的应力变化等等。
9
阻尼功能复合材料
8.2.2聚合物基阻尼功能复合材料的阻尼性能
10
阻尼功能复合材料
高分子材料的结构、物理状态及性能PPT(30张)
高分子化合物由低分子化合物通过聚合反应获 得。组成高分子化合物的低分子化合物称作单体。
二、高分子化合物的组成
简单的低分子化合物叫单体。由一种或几种简单的低分子 化合物通过共价键重复连接而成的链称为分子链。大分子链 中的重复结构单元叫链节。链节的重复次数即链节数叫聚合 度。例如:聚氯乙烯分子是由n个氯乙烯分子打开双键,彼此 连接起来形成的大分子链。可用下式表示:
(1) 热塑性塑料:加热时软化并熔融,可塑造成形,冷却 后即成型并保持既得形状,而且该过程可反复进行。这类塑料 有聚乙烯、聚丙烯、聚苯乙烯、聚酰胺(尼龙)、聚甲醛、聚碳 酸脂、聚苯醚、聚砜等。这类塑料加工成形简便,具有较高的 机械性能,但耐热性和刚性比较差。
(2) 热固性塑料: 初加热时软化,可塑造成形,但固化后 再加热将不再软化,也不溶于溶剂。这类塑料有酚醛、环氧、氨 基、不饱和聚酯、呋喃和聚硅醚树脂等。它们具有耐热性高, 受压不易变形等优点,但机械性能不好。
不同键接方式对性能 影响很大,头尾键接 强度最高。
三、大分子链的形态
⑴伸直链(又称线型链) 由许多链节组成的长链,通常 是卷曲成线团状。这类结构高聚物的特点是弹性、塑性好, 硬度低,是热塑性材料的典型结构。
⑵带支链 支化型分子链,在主链上带有支链。这类结构 高聚物的性能和加工都接近线型分子链高聚物。
一、高聚物的三态
线型非晶态高聚物在不同温度下表现出三种物理状态: 玻璃态、高弹态和粘流态。在恒定应力下的变形-温度பைடு நூலகம் 线如图所示。Tb为脆化温度,Tg为玻璃化温度,Tf 为粘流 温度,Td为化学分解温度。
玻璃化温度Tg是高聚 物保持玻璃态的最高温度, 可认为是大分子链段开始 运动的最低温度。
一、高聚物的三态
(6)氯纶 难燃、保暖、耐晒、耐磨、弹性好,但是染色性 差,热收缩大,限制了它的应用。
二、高分子化合物的组成
简单的低分子化合物叫单体。由一种或几种简单的低分子 化合物通过共价键重复连接而成的链称为分子链。大分子链 中的重复结构单元叫链节。链节的重复次数即链节数叫聚合 度。例如:聚氯乙烯分子是由n个氯乙烯分子打开双键,彼此 连接起来形成的大分子链。可用下式表示:
(1) 热塑性塑料:加热时软化并熔融,可塑造成形,冷却 后即成型并保持既得形状,而且该过程可反复进行。这类塑料 有聚乙烯、聚丙烯、聚苯乙烯、聚酰胺(尼龙)、聚甲醛、聚碳 酸脂、聚苯醚、聚砜等。这类塑料加工成形简便,具有较高的 机械性能,但耐热性和刚性比较差。
(2) 热固性塑料: 初加热时软化,可塑造成形,但固化后 再加热将不再软化,也不溶于溶剂。这类塑料有酚醛、环氧、氨 基、不饱和聚酯、呋喃和聚硅醚树脂等。它们具有耐热性高, 受压不易变形等优点,但机械性能不好。
不同键接方式对性能 影响很大,头尾键接 强度最高。
三、大分子链的形态
⑴伸直链(又称线型链) 由许多链节组成的长链,通常 是卷曲成线团状。这类结构高聚物的特点是弹性、塑性好, 硬度低,是热塑性材料的典型结构。
⑵带支链 支化型分子链,在主链上带有支链。这类结构 高聚物的性能和加工都接近线型分子链高聚物。
一、高聚物的三态
线型非晶态高聚物在不同温度下表现出三种物理状态: 玻璃态、高弹态和粘流态。在恒定应力下的变形-温度பைடு நூலகம் 线如图所示。Tb为脆化温度,Tg为玻璃化温度,Tf 为粘流 温度,Td为化学分解温度。
玻璃化温度Tg是高聚 物保持玻璃态的最高温度, 可认为是大分子链段开始 运动的最低温度。
一、高聚物的三态
(6)氯纶 难燃、保暖、耐晒、耐磨、弹性好,但是染色性 差,热收缩大,限制了它的应用。
(2024年)高分子智能材料全解PPT课件
2024/3/26
高分子智能材料的制备成本较高
目前高分子智能材料的制备成本较高,限制了其在一些领域的应用,因此需要开发更加 经济、高效的制备方法。
28
未来发展趋势预测
• 高分子智能材料的多功能化和集成化:未来高分子智能材料将更加注重多功能 化和集成化的发展,实现材料的多重响应和智能化控制。
• 高分子智能材料的仿生设计和生物启发:借鉴自然界中的生物结构和功能,设 计具有类似性能的高分子智能材料,将是未来发展的重要方向。
高分子材料作为气敏元件,能够检测气体种类和浓度,应用于环境 监测、工业生产、医疗诊断等领域。
其他传感器应用
高分子智能材料还可应用于压力、温度、光照等多种传感器中,实现 不同物理量的测量和转换。
2024/3/26
18
05
高分子智能材料在生物医学领域 应用
2024/3/26
19
生物相容性与安全性问题探讨
07
总结与展望
2024/3/26
27
当前存在问题和挑战剖析
高分子智能材料的稳定性与耐久性有待提高
目前高分子智能材料在长期使用或特定环境下,其性能和稳定性可能会受到影响,需要
进一步加强材料的耐久性研究。
高分子智能材料的生物相容性和安全性问题
对于生物医学应用的高分子智能材料,其生物相容性和安全性是至关重要的,需要更加 深入地进行生物实验和临床研究。
2024/3/26
结构特点
高分子智能材料通常由高分子链 、功能基团和交联结构等组成, 具有复杂的分子结构和多级次结 构。
性能特点
高分子智能材料具有刺激响应性 、自适应性、自修复性、形状记 忆性等多种智能特性,能够实现 对外部环境的感知和响应。
高分子材料教学课件PPT
• 氢键是与电负性较强的原子相结合的氢原子(如X—H)同时与另 一个电负性较强的原子(如Y)之间的相互作用,即(X—H…Y).这 些电负性铰强的原子一般是氮、氧或卤素原子.一般认为在氢键 中,X—H基本上是共价键,而H…Y则是一种强而有方向性的范 德华力.这里把氢键归入范德华力是因为氢键本质上是带有部分 负电荷的Y与电偶极矩很大的极性键X—H间的静电吸引相互作用.
5
聚合物分子内与分子间相互作用力
• 物质的结构是指物质的组成单元(原于或分子)之间在相互吸引和排斥作用
达到平衡时的空间诽布.因此为了认识高聚物的结构,首先应了解存在于高聚 物分子内和分子间的相互作用.
• 化学键
构成分子的原子间的作用力有吸引力和斥力,吸引力是原子形成分于的结合力, 叫作主价力,或称键合力.斥力是各原子的电子之间的相互排斥力.当吸引力 和斥力达到平衡时,便形成稳定的化学键.
• 金属键 是由金属原子的价电子和金属离子晶格之间的相互 作用而形成的,无方向性和饱和性,赋予高导电性.在所谓的 “金属螯合高聚”(metallocene po1ymer)中可以说存在金属 键.
2024/6/20
7
• 范德华力
作用能: 2~8kJ/mol
是存在于分子间或分子内非键合原于间的相互作用力.两分子间的 范德华力F(r)及相互作用能E(r)是分子之间距离r的函数如图所示.
2024/6/20
19
重要高分子材料
合成树脂和塑料: 填充增强增韧,降低成本. 教 材P332表7.4
➢ 通用塑料: 应用广, 产量大, 价格廉的塑料. 如聚烯烃: PE, PP, PS等; PVC; 酚醛, 环氧, 聚酯, 尿醛等.
➢ 工程塑料: 综合性能好, 可代替金属作工程材料, 制 造机器零部件的塑料. 最重要的有:
高分子化学PPT全套课件(2024)
反应过程中存在链引发、链增长、链终止 等步骤;反应速率与引发剂浓度和单体浓 度有关;聚合度与转化率不成正比。
连锁聚合反应类型
连锁聚合反应实施方法
包括自由基聚合、阳离子聚合、阴离子聚 合等。
本体聚合、溶液聚合、悬浮聚合、乳液聚合 等。
开环聚合反应原理及方法
开环聚合反应定义
开环聚合反应是一种特殊的高分子合成方法,通过环状单体的开环加 成反应,生成高分子化合物。
通过测量高分子化合物对 红外光的吸收,可以确定 其化学结构和官能团。
利用核磁共振现象研究高 分子化合物的结构和动力 学行为,包括1H NMR、 13C NMR等。
通过测量高分子化合物的 质荷比,可以推断其分子 量和结构信息。
利用不同分子量高分子在 色谱柱中的保留时间差异 ,可以测定其分子量分布 和平均分子量。
分子量分布
分子量分布宽度也会影响高分子材料的性能。较窄的分子量分布通常意味着材 料具有更好的力学性能和加工稳定性,而较宽的分子量分布可能会提高材料的 韧性和冲击强度。
05 高分子材料加工与改性技 术
高分子材料加工成型技术
挤出成型
通过挤出机将高分子材料加热熔 融,经模头挤出得到所需截面形
状的连续型材。
注射成型
将高分子材料加热熔融后注入模具 型腔,经冷却固化得到制品。
压延成型
将高分子材料通过压延机的两个或 多个旋转辊筒间隙,使其受到挤压 和延展,成为一定厚度和宽度的薄 片状制品。
高分子材料共混改性技术
机械共混
通过机械搅拌或高速剪切作用,使两种或多种高分子材料均匀混 合,改善材料的性能。
溶液共混
将不同高分子材料溶解于共同溶剂中,形成均相溶液,再除去溶 剂得到共混物。
国内外高分子材料发展概况与趋势ppt课件
38
3.7 知识化
聚合物/无机物纳米复合材料的性能(包括力学 性能、阻隔性能、阻燃性能、热性能、电性能、生 物性能等)比相应的宏观或微米级复合材料有非常 显著的提高,甚至表现出全新的性能。
20
聚合物/无机物纳米复合材料可分为3类:
(1) 聚合物/粒状无机物纳米复合材料: 由各种聚合物与纳米二氧化硅、纳米超细碳酸钙、
2
世界高分子材料工业的历史,从1839年建立天 然橡胶硫化胶生产厂算起,不过是短短的170年;合 成高分子材料工业的历史也不过是100年。
二十世纪后期以来,随着世界新技术革命和经 济的飞速发展,世界高分子材料产业进入了高速发 展时期,世界合成高分子材料的总产量已接近3亿吨, 其体积产量早在九十年代中期已超过金属材料。
• 中国近年发展迅速,将以年增长率50%以上的速度 发展。
32
高分子材料生产和使用过程的环保问题:
粉尘污染; 溶剂污染; 某些橡胶促进剂(TMTD,NOBS)和防老剂 (胺类)具有致癌作用,必须用其它品种代替。 取缔或限制使用有毒重金属助剂和部分含 溴阻燃剂(欧盟ROHS指令)。 开发非卤阻燃剂(无机阻燃剂、含磷氮阻 燃剂、含硅阻燃剂等)。
35
3.5 信息化
计算机在高分子材料设计中的应用: 配方设计与优化 计算机辅助产品结构设计 计算机辅助工程设计 计算机模拟仿真
计算机用于高分子材料制品生产工艺的控制: 从微机控制混炼、压延、挤出、成型、硫
化到整个生产线的自动控制。 信息化管理和电子商务:
网上采购、销售、访问客户等 36
3.6 全球化与规模化 ——市场全球化、生产国际化
3.2.8 其他: 分离功能材料; 形状记忆材料; 水处理材料 高分子催化剂等。
3.2.9 高分子制品的功能化: 如智能轮胎、零压轮胎、智能鞋等。
3.7 知识化
聚合物/无机物纳米复合材料的性能(包括力学 性能、阻隔性能、阻燃性能、热性能、电性能、生 物性能等)比相应的宏观或微米级复合材料有非常 显著的提高,甚至表现出全新的性能。
20
聚合物/无机物纳米复合材料可分为3类:
(1) 聚合物/粒状无机物纳米复合材料: 由各种聚合物与纳米二氧化硅、纳米超细碳酸钙、
2
世界高分子材料工业的历史,从1839年建立天 然橡胶硫化胶生产厂算起,不过是短短的170年;合 成高分子材料工业的历史也不过是100年。
二十世纪后期以来,随着世界新技术革命和经 济的飞速发展,世界高分子材料产业进入了高速发 展时期,世界合成高分子材料的总产量已接近3亿吨, 其体积产量早在九十年代中期已超过金属材料。
• 中国近年发展迅速,将以年增长率50%以上的速度 发展。
32
高分子材料生产和使用过程的环保问题:
粉尘污染; 溶剂污染; 某些橡胶促进剂(TMTD,NOBS)和防老剂 (胺类)具有致癌作用,必须用其它品种代替。 取缔或限制使用有毒重金属助剂和部分含 溴阻燃剂(欧盟ROHS指令)。 开发非卤阻燃剂(无机阻燃剂、含磷氮阻 燃剂、含硅阻燃剂等)。
35
3.5 信息化
计算机在高分子材料设计中的应用: 配方设计与优化 计算机辅助产品结构设计 计算机辅助工程设计 计算机模拟仿真
计算机用于高分子材料制品生产工艺的控制: 从微机控制混炼、压延、挤出、成型、硫
化到整个生产线的自动控制。 信息化管理和电子商务:
网上采购、销售、访问客户等 36
3.6 全球化与规模化 ——市场全球化、生产国际化
3.2.8 其他: 分离功能材料; 形状记忆材料; 水处理材料 高分子催化剂等。
3.2.9 高分子制品的功能化: 如智能轮胎、零压轮胎、智能鞋等。
《高阻尼橡胶》课件
《高阻尼橡胶》PPT课件
欢迎来到今天的演讲,我们将介绍高阻尼橡胶,它的原理和应用,以及制备 方法和可持续性。
什么是高阻尼橡胶?
高阻尼橡胶是一种具有很高阻尼特性的橡胶材料。它能够吸收和消散机械能, 减少振动和冲击的传递。
高阻尼橡胶的原理
高阻尼橡胶利用内部分子结构的粘滞耗能和弹性变形特性,来实现对振动和高阻尼橡胶材料的可持续性包括资源利用率高、废物回收和再利用、低碳排放等。其可持续属性使其成为环保 和可替代材料的选择。
总结和展望
高阻尼橡胶是一种功能强大的材料,广泛应用于各个领域。未来,我们可以 期待更多创新和进一步提升高阻尼橡胶的性能和可持续性。
高阻尼橡胶的应用
高阻尼橡胶广泛应用于建筑、桥梁、机械、交通工具等领域,用于减震、降 噪、防护和改善人机环境。
高阻尼橡胶的性能
高阻尼橡胶具有良好的耐磨性、耐油性、耐高温性和耐候性。它的阻尼性能 能够有效减少结构的振动响应和应力集中。
高阻尼橡胶的制备方法
高阻尼橡胶的制备方法包括传统的加热硫化法、化学交联法和物理交联法。 不同的制备方法可以获得不同性能的高阻尼橡胶。
欢迎来到今天的演讲,我们将介绍高阻尼橡胶,它的原理和应用,以及制备 方法和可持续性。
什么是高阻尼橡胶?
高阻尼橡胶是一种具有很高阻尼特性的橡胶材料。它能够吸收和消散机械能, 减少振动和冲击的传递。
高阻尼橡胶的原理
高阻尼橡胶利用内部分子结构的粘滞耗能和弹性变形特性,来实现对振动和高阻尼橡胶材料的可持续性包括资源利用率高、废物回收和再利用、低碳排放等。其可持续属性使其成为环保 和可替代材料的选择。
总结和展望
高阻尼橡胶是一种功能强大的材料,广泛应用于各个领域。未来,我们可以 期待更多创新和进一步提升高阻尼橡胶的性能和可持续性。
高阻尼橡胶的应用
高阻尼橡胶广泛应用于建筑、桥梁、机械、交通工具等领域,用于减震、降 噪、防护和改善人机环境。
高阻尼橡胶的性能
高阻尼橡胶具有良好的耐磨性、耐油性、耐高温性和耐候性。它的阻尼性能 能够有效减少结构的振动响应和应力集中。
高阻尼橡胶的制备方法
高阻尼橡胶的制备方法包括传统的加热硫化法、化学交联法和物理交联法。 不同的制备方法可以获得不同性能的高阻尼橡胶。
高分子阻尼材料ppt课件
压电效应:如果在某些晶体的特定方向上施加压力或 拉力,其对应表面上将分别出现正负束缚电荷,其电 荷密度与应力大小成比例
阻尼原理:当声波或振动能等传递到压电材料时,产 生的电能未消失,会再次转化为振动能,反复这种过 程,振动衰减会持续一段时间,选择适当的导电填料 ,在陶瓷周围形成电路,使振动迅速衰减,达到减振 目的
高分子阻尼材料
高材1101
1
应用背景
机械振动的危害
机械的疲劳断裂 机械设备稳定性和可靠
性被严重破坏,加速了机械结构的疲劳损坏, 缩短了器械的使用寿命。
噪音污染 各种机械设备的创造和使用,产
生噪声对人及周围环境造成不良影响,形成 了噪音污染。
背景
问题的提出
解决的方法
阻尼减震降噪方法
1 减震弹簧,冲击阻尼器...
填料的影响传统阻尼高分子复合材料传统阻尼高分子复合材料基体具有较高的损耗因子基体具有较高的损耗因子足够宽的玻璃化温度范围足够宽的玻璃化温度范围共混共聚ipn方法共混共聚ipn方法阻尼赋予剂阻尼赋予剂压电陶瓷压电陶瓷稀土永磁稀土永磁常见高分子阻尼材料dz对于peao80复合材料阻尼因子达到了4对于peao80复合材料阻尼因子达到了4可逆氢键作用
共混,共聚,IPN方法
阻尼赋予剂 压电陶瓷 稀土永磁
3
常见高分子 阻尼材料
阻尼赋予剂 阻尼复合材料
DZ
对于PE/AO80复合材料,阻尼因子达到了4
可逆氢键作用:受到外 界振动时,小分子与聚 合物间某些氢键断裂或 减弱,同时生成新的氢 键,这个过程将动能转 变为热能,从而产生阻 尼效应。
压电陶瓷/高分子阻尼复合材料
氯化丁基橡胶基压电阻尼复合材料
将振动机械能转化为电能,然后在一定的导电 网络下通过焦耳热的形式将电能耗散掉以达到 减振效果
阻尼原理:当声波或振动能等传递到压电材料时,产 生的电能未消失,会再次转化为振动能,反复这种过 程,振动衰减会持续一段时间,选择适当的导电填料 ,在陶瓷周围形成电路,使振动迅速衰减,达到减振 目的
高分子阻尼材料
高材1101
1
应用背景
机械振动的危害
机械的疲劳断裂 机械设备稳定性和可靠
性被严重破坏,加速了机械结构的疲劳损坏, 缩短了器械的使用寿命。
噪音污染 各种机械设备的创造和使用,产
生噪声对人及周围环境造成不良影响,形成 了噪音污染。
背景
问题的提出
解决的方法
阻尼减震降噪方法
1 减震弹簧,冲击阻尼器...
填料的影响传统阻尼高分子复合材料传统阻尼高分子复合材料基体具有较高的损耗因子基体具有较高的损耗因子足够宽的玻璃化温度范围足够宽的玻璃化温度范围共混共聚ipn方法共混共聚ipn方法阻尼赋予剂阻尼赋予剂压电陶瓷压电陶瓷稀土永磁稀土永磁常见高分子阻尼材料dz对于peao80复合材料阻尼因子达到了4对于peao80复合材料阻尼因子达到了4可逆氢键作用
共混,共聚,IPN方法
阻尼赋予剂 压电陶瓷 稀土永磁
3
常见高分子 阻尼材料
阻尼赋予剂 阻尼复合材料
DZ
对于PE/AO80复合材料,阻尼因子达到了4
可逆氢键作用:受到外 界振动时,小分子与聚 合物间某些氢键断裂或 减弱,同时生成新的氢 键,这个过程将动能转 变为热能,从而产生阻 尼效应。
压电陶瓷/高分子阻尼复合材料
氯化丁基橡胶基压电阻尼复合材料
将振动机械能转化为电能,然后在一定的导电 网络下通过焦耳热的形式将电能耗散掉以达到 减振效果
《高分子阻尼材料》课件
高分子阻尼材料的性能评价
机械性能
高分子阻尼材料的机械性能是 指在受到力的作用下,材料的 变形和断裂等机械行为。
阻尼性能
通过测试材料的阻尼性能,可 以了解阻尼材料吸收振动的能 力和阻尼效率。
常用测试方法
目前,常用的测试方法有共振 法、冲击法、频率响应函数法 等。
高分子阻尼材料的应用案例
1
汽车制造
在汽车制造中,高分子阻尼材料可以用于车身结构的支撑和保护,达到降噪和减震的 效果。
高分子阻尼材料的制备方法
反应加工法
通过在高分子材料基础上添 加一些化学品来实现材料的 阻尼效果,弹性高分子材料 就是应用这种方合物掺杂到另 一种聚合物基础上,然后将 其加热至熔融状态并形成一 个均匀的复合材料。
其他常用方法
还有一些其他方法也可以制 备高分子阻尼材料,如层间 剪切法、浸渍法等,但它们 通常需要更复杂的工艺。
高分子阻尼材料的前景展望
1 研究现状和发展动态
在阻尼材料方面,目前的研究重点不仅在于如何提高材料的吸振性能,还在于研发更高 效、更智能的制备工艺。
2 新型高分子阻尼材料的研究方向
研究人员还在探索一些新型高分子阻尼材料,如纳米复合材料、智能响应材料、多功能 阻尼材料等。
3 高分子阻尼材料的未来应用前景
高分子阻尼材料
高分子阻尼材料在现代制造业中发挥着越来越重要的作用。从汽车到建筑, 这种材料可以帮助我们更好地应对振动和噪音。
什么是高分子阻尼材料?
概述
高分子阻尼材料是一种能够吸收振动的材料,常用于降低机械和建筑结构的振动和噪音。
分类
基本上可以分为弹性高分子材料、聚合物复合材料和夹层结构。
特点
具有良好的稳定性、耐久性和吸振性,可以抵抗高负载和高能量的冲击力。
高阻尼橡胶ppt
等效粘滞阻尼系数按下式计算:
5、钢筋应变发展特性
图16 箍筋的应变-荷载关系
本文作者同时对隔震橡胶层厚度进行了数值模拟分析,给出了在不同 轴压比、不同层间位移角条件下RC柱中埋入的橡胶层的最小厚度,可 为RC桥墩、排架柱中埋入橡胶层厚度及刚度的确定提供参考和依据。
水平力Q、轴 力N0、弯矩M 作用下的变形
三、试验结果
0.153 0.109 0.153 0.109
2、荷载-变形滞回曲线
0.153
0.109
0.153
0.109
3、荷载-变形骨架曲线比较
4、耗能性能比较
耗能能力是指试件在地震作用下吸收能量的大小,以荷载-位移 曲线所包含的面积来衡量,耗能性能也是一个衡量构件抗震性能的 重要指标。研究中常用等效粘滞阻尼系数 he 来表示。
二、试验概况
1、 R触面 作喷砂处理保证 钢板与橡胶层牢
固的粘结
预留一定数量的内 螺纹孔(不贯穿) 加工完成后,贯穿
2、 RC柱试件
柱试件采用矩形截面,柱截面取为400mm×400mm,柱纵向主筋为对称配筋
3、加载及测试
采用低周反复加载的试验方法,试验应用MTS拟动力设备进行。
高阻尼橡胶ppt
一、研究背景
根据结构的延性抗震设计思想,RC构件必须能承受罕遇地震的大变形,塑性铰具有良好的动力承 载力和转动变形能力;而且,混凝土的损伤应尽可能小,防止承载力降低过早。
延性和损伤是 一对矛盾体
提高变形能力(耗 能、限值)
降低损伤(实质控 制结构的变形)
延性设计
基于性能的抗 震设计
(2) 塑性铰区埋入的橡胶层越厚,水平承载力上升越慢,即初 始刚度基本相同,二次刚度较普通RC柱有较大降低;
5、钢筋应变发展特性
图16 箍筋的应变-荷载关系
本文作者同时对隔震橡胶层厚度进行了数值模拟分析,给出了在不同 轴压比、不同层间位移角条件下RC柱中埋入的橡胶层的最小厚度,可 为RC桥墩、排架柱中埋入橡胶层厚度及刚度的确定提供参考和依据。
水平力Q、轴 力N0、弯矩M 作用下的变形
三、试验结果
0.153 0.109 0.153 0.109
2、荷载-变形滞回曲线
0.153
0.109
0.153
0.109
3、荷载-变形骨架曲线比较
4、耗能性能比较
耗能能力是指试件在地震作用下吸收能量的大小,以荷载-位移 曲线所包含的面积来衡量,耗能性能也是一个衡量构件抗震性能的 重要指标。研究中常用等效粘滞阻尼系数 he 来表示。
二、试验概况
1、 R触面 作喷砂处理保证 钢板与橡胶层牢
固的粘结
预留一定数量的内 螺纹孔(不贯穿) 加工完成后,贯穿
2、 RC柱试件
柱试件采用矩形截面,柱截面取为400mm×400mm,柱纵向主筋为对称配筋
3、加载及测试
采用低周反复加载的试验方法,试验应用MTS拟动力设备进行。
高阻尼橡胶ppt
一、研究背景
根据结构的延性抗震设计思想,RC构件必须能承受罕遇地震的大变形,塑性铰具有良好的动力承 载力和转动变形能力;而且,混凝土的损伤应尽可能小,防止承载力降低过早。
延性和损伤是 一对矛盾体
提高变形能力(耗 能、限值)
降低损伤(实质控 制结构的变形)
延性设计
基于性能的抗 震设计
(2) 塑性铰区埋入的橡胶层越厚,水平承载力上升越慢,即初 始刚度基本相同,二次刚度较普通RC柱有较大降低;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
压电效应:如果在某些晶体的特定方向上施加压力或 拉力,其对应表面上将分别出现正负束缚电荷,其电 荷密度与应力大小成比例
阻尼原理:当声波或振动能等传递到压电材料时,产 生的电能未消失,会再次转化为振动能,反复这种过 程,振动衰减会持续一段时间,选择适当的导电填料 ,在陶瓷周围形成电路,使振动迅速衰减,达到减振 目的
高分子材料阻尼性能的影响因素
高分子材料的阻尼性能最终是由其玻璃化温度及其损 耗因子决定的,因此凡是影响高分子材料的玻璃化温度 和损耗因子,必然影响其阻尼性能。
1. 聚合物结构 2. 聚合物组分 3. 交联的影响 4. 填料的影响
高分子阻尼材料改性方法
传统阻尼高分子复合材料 基体具有较高的损耗因子 足够宽的玻璃化温害
机械的疲劳断裂 机械设备稳定性和可靠
性被严重破坏,加速了机械结构的疲劳损坏, 缩短了器械的使用寿命。
噪音污染 各种机械设备的创造和使用,产
生噪声对人及周围环境造成不良影响,形成 了噪音污染。
背景
问题的提出
解决的方法
阻尼减震降噪方法
1 减震弹簧,冲击阻尼器...
共混,共聚,IPN方法
阻尼赋予剂 压电陶瓷 稀土永磁
3
常见高分子 阻尼材料
阻尼赋予剂 阻尼复合材料
DZ
对于PE/AO80复合材料,阻尼因子达到了4
可逆氢键作用:受到外 界振动时,小分子与聚 合物间某些氢键断裂或 减弱,同时生成新的氢 键,这个过程将动能转 变为热能,从而产生阻 尼效应。
压电陶瓷/高分子阻尼复合材料
氯化丁基橡胶基压电阻尼复合材料
将振动机械能转化为电能,然后在一定的导电 网络下通过焦耳热的形式将电能耗散掉以达到 减振效果
宁波LG甬兴化工有限公司
立邦涂料
华润涂料
智能型阻尼材料 有机杂化阻尼材料
高分子材料阻尼机理
当金属板壳被涂上高阻尼材料后,受激产 生振动时,阻尼层也随之振动,一弯一折 使阻尼层时而被压缩,时而被拉伸,从而 使金属板和阻尼层之间、阻尼层内部分子 之间不断发生相对位移,由于其摩擦阻力 很大,便使振动能量不断转化为热能而被 消耗;同时阻尼层的刚度总是力图阻止板 面的弯曲振动,从而降低了金属板的噪声 辐射,这就是阻尼减振的原理。
2
在某一材料上附加新的材料形成新的 结构,增大体系的阻尼性能
依靠材料自身的阻尼性能,如高分子材 3 料...
背景
问题的提出
解决的方法
2
阻尼材料
阻尼材料的分类
阻尼材料是一种能吸收振动机械能并将其转 化为热能,电能,磁能或其他形式的能量而损耗 掉的一种功能材料。
粘弹性阻尼材料 高阻尼合金 复合阻尼材料