(好)线段、射线、直线知识点总结及习题

合集下载

七年级数学上册第四章知识点及练习题

七年级数学上册第四章知识点及练习题

七年级数学上册第四章知识点及练习题第四章:平面图形及其位置关系知识梳理一、线段、射线、直线1、线段、射线、直线的定义线段是有两个端点的崩直线,可以量出长度。

将线段向一个方向无限延伸就形成了射线,射线有一个端点,无法量出长度。

将线段向两个方向无限延伸就形成了直线,直线没有端点,也无法量出长度。

结论:射线是直线的一部分,线段是射线和直线的一部分。

2、线段、射线、直线的表示方法线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。

射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

3、直线公理过两点有且只有一条直线,简称两点确定一条直线。

4、线段的比较线段的比较有叠合比较法和度量比较法。

5、线段公理连接两点的线段是最短的,叫做这两点的距离。

6、线段的中点如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。

若C是线段AB的中点,则AC=BC=1/2 AB或AB=2AC=2BC。

例题:1、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是()解:无法确定A、B、C三点位置是否共线,无法确定答案,选D。

2、已知线段AB=20㎝,C为AB中点,D为CB上一点,E为DB的中点,且EB=3㎝,则CD= ________cm.解:BC=0.5AB=10cm,DB=2EB=6cm,CD=BC-DB=10-6=4cm。

3、平面上有三个点,可以确定直线的条数是()解:由直线公理,过两点有且只有一条直线,所以三个点可以确定三条直线,选C。

二、角1、角的概念角是由两条有共同端点的射线组成的图形,两条射线叫角的边,共同的端点叫角的顶点。

角还可以看成是一条射线绕着他的端点旋转所成的图形。

2、角的表示方法角用“∠”符号表示,分别用两条边上的两个点和顶点来表示(顶点必须在中间),或在角的内部写上阿拉伯数字或小写的希腊字母来表示。

《线段、射线、直线》典型例题及答案

《线段、射线、直线》典型例题及答案

《线段、射线、直线》典型例题及答案例1 如图,图中有几条射线?能用字母表示出来的有几条?将它们分别表示出来.例2 如图所示,你知道图中共有几条直线、几条射线?(不添加字母,直接可以读出)几条线段?它们分别是什么?例3如图,以点A、B、C、D、E、F为端点的线段共有几条?分别把它们写出来.例4如图,比较线段AB与AC、AD与AE,AE与AC的大小.例5如图,已知点C、D在线段AB上,线段AC=10 cm,BC=4 cm,取线段AC、BC的中点D、E.(1)请你计算线段DE的长是多少?(2)观察DE的大小与线段AB的关系,你能用一句简洁的话将这种关系表述出来吗?(3)若点C为直线AB上的一点,其他条件不变,线段DE的长会改变吗?如果改变,请你求出新的结果.例6 已知AB=16cm,C是AB上一点,且AC=10cm,D为AC的中点,E是BC的中点,求线段DE的长.例7 (1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过平面上三点A、B、C中的任意两点可以画多少条直线?(4)试猜想过平面上四点A、B、C、D中的任意两点可以画多少条直线?例8 如图,A、B是两个车站,若要在公路l上修建一个加油站,如何使它到车站A、B的离和最小,请在公路l上标出点P的位置,并说明理由.AlB参考答案例1 分析:直线上的一点将直线分成两条射线,因此以A为端点的射线有两条,同样道理以B、C为端点的射线也分别有两条.因此共有6条射线,能用图中字母表示出来的有4条.解:图中共有6条射线,能用图中字母表示出来的有4条,分别为:射线AB、射线BC、射线BA、射线、CA.说明:要抓住直线上一点将直线分成两条射线,数射线时不能重复或遗漏,抓住端点和方向,表示射线时,要将端点的字母写在前面.例2 解:图中有2条直线,分别是直线BC、直线DC.图中有6条可以直接读出的射线,分别是射线CD、DC、CB、BC、AB、DB.图中有6条线段,分别是线段AD、BD、AB、CA、CD、CB.说明:(1)直线是最基本、简单、抽象的几何图形.直线到底是什么形状呢?可以借助“孙悟空的金箍棒”想象一下,直线没有端点,可以向两方无限延伸;“手电筒发出的光”给我们以射线的形象,射线有一个端点,它可以向一方无限延伸;“一枝铅笔”可以抽象成一条线段,线段有两个端点,它不可延伸,直线和射线都没有长度,线段有长度;(2)直线有两种表示方法(如图1),可以先在直线上任取两个点A、B,这条直线可记作直线AB(或直线BA),也可以用一个小写字母表示,如直线l;射线的两种表示方法分别为射线AB、射线l(如图2),要注意射线AB与射线BA表示不同的射线;线段的两种表示方法分别为线段AB(或线段BA)、线段a(如图3);(3)数直线时应注意直线BC与直线CB是同一条直线;数射线时要注意射线的两个特征:端点与方向,所以射线AD与射线AB是相同的射线,射线AB与射线DB是不同的射线,因为它们的端点不同,射线DA与射线DB也是不同的射线,因为它们的方向不同;数线段时注意寻求规律,做到不重不漏.如线段CA、CD、CB属不同直线上的三条线段,而线段AD、BD、AB属同一条直线上的三条线段,同一条直线上的线段的数法有两种:①以始点计:AD、AB、DB;②以组成计:单个线段:AB、BC;两条线段组成的:AC.图1 图2 图3另外在同一条直线上的线段总条数s 与直线上点的个数n 之间有如下关系:2)1()1()2(321-=-+-++++=n n n n S . 例3 分析:在一个三角形中,由于交点众多,为做到不遗漏,不重复,可以按字母的先后顺序找出图中的线段.解:图中共有14条线段,分别为线段AB 、AC 、AD 、AE 、BC 、BD 、BE 、BF 、CD 、CE 、CF 、DE 、DF 、EF .说明:当点众多时,可以以字母的顺序寻找线段,可以避免出错.例4 分析:比较线段的长度可用度量法和重合法.解法1:用度量法,用直尺测量各线段的长度.比较得:AB >AC ,AD <AE ,AE =AC .解法2:用叠合法,可用圆规截取比较得:AB >AC 、AD <AE ,AE =AC .说明:比较线段的大小,就是用度量法和叠合法,但是可以根据题目的的特点选择合适的方法.例5 解:(1)∵AC =10,BC =4,∴AB =AC +BC =14又∵点D 是AC 中点,点E 是BC 中点, ∴BC EC AC DC 21,21==, ∴721)(212121==+=+=+=AB BC AC BC AC CE DC DE (cm ). (2)由(1)知AB DE 21=,即:线段上任一点把线段分成两部分,这两部分中点间的距离等于原线段长度的一半.(3)DE 的长会改变.可分两种情形考虑:当点C 在线段AB 上时721==AB DE (cm ). 当点C 在线段AB 外时(如图),3)410(21)(212121=-=-=-=-=BC AC BC AC CE DC DE (cm ). ∴DE 的长为7 cm 或3 cm .说明:(1)本题先通过特殊的数值求出线段DE 的长,在求解过程中通过观察、猜测,发现了一般性的结论,我们称之为规律.在学知识或是解题时,不要局限于问题表面,而是要多思考、多总结,从而在更深层次上认识所学内容.(2)此题通过C 点的位置由特殊到一般,由在线段上运动到在直线上运动的变化过程,只要抓住不变量,即CE DC DE ±=,就可以以不变应万变.另外随着条件的逐步开放,结论也发生了变化,有时由于C 点的位置考虑不全面,导致丢解.如果遇到没给出图形的问题,解答时一定要先画图,并全面考虑到所有可能情形.(3)利用中点的性质进行线段长度的计算是解题的关键,若C 是AB 的中点,则它的表达式为AC AB 2=或AB AC BC AB 21,2==或BC AC AB BC ==,21,不同情况下选择不同的表达式,可使书写简洁.例6 分析:根据线段中点的特点,BD CE AC DC 21,21==,而CE DC DE +=,故可根据题设解出DE 的长.解:因为D 是AC 的中点,而E 是BC 的中点,因此有:.21,21BC CE AC DC ==而AB BC AC CE DC DE =++=,. 即).cm (8162121)(212121=⨯==+=+=+=AB BC AC BC AC CE DC DE 说明:充分利用线段中点的特点,将所求线段转移到线段长度上去.例7 解:(1)过一点可以画无数条直线;(2)过两点可以画一条直线;(3)当 A 、B 、C 三点不共线时可以画三条直线,当 A 、B 、C 三点共线时只能画一条直线;(4)当 A 、B 、C 、D 四个点在同一条直线上时,只能画一条直线(如图1);当 A 、B 、C 、D 四个点中有三个点在同一条直线上时,可以画四条直线(如图2);当 A 、B 、C 、D 四个点中任意三点都不在同一条直线上时,可以画六条直线(如图3).图1 图2 图3 说明:题(1)(3)和(4)中没有明确平面上三点、四点是否在一条直线上,解答时要分各种情况,即分类讨论;(2)由此题可知,过平面上三个点中的任意两点最多可以画三条直线,过平面上四个点中的任意两点最多可以画六条直线,如果过平面上n 个点中的任意两点,最多可以画多少条直线呢?分析:根据连接两点的线中,线段最短,只需在A 、B 间作一条线段、与l 的交点,便是它到A 、B 两点距离和最小的点.例8 解:连接A 、B 作线段,与l 的交点P 为所求建加油站的点.因为两点之间,线段最短.说明:利用线段公理,两点之间,线段最短.AB lC。

初一直线、射线、线段知识点

初一直线、射线、线段知识点

直线、射线、线段1.直线:直,向两边无限延伸,无宽窄。

2.直线的性质(公理):经过两点能够做一条直线,且只有一条直线。

两点确定一条直线。

.........3.关系【同一平面内】1)相交(垂直) 2)平行相交:如果两条直线有一个..公共点,则两条直线相交。

平行:两条直线没有公共点。

关系【不在同一平面内】1)相交(垂直) 2)平行 3)异面直线1.射线:直线上一点和它一旁的部分。

2.射线直线关系:射线是直线的一部分。

3.规律若直线上有N个点,则有2N条射线。

射线只能..反向延伸。

1.线段:直线上两点和它们之间的的部分。

2.线段的性质(公理):连接两点的所有线中,线段最短。

两点之间线段最短........。

3.两点间的距离叫连结两点间的线段的长度..。

距离不是线段,线段是一个几何图形,而距离是一个数值,它反映的是线段长短。

重要规律当一条直线有N个点时射线 2N条线段 N(N-1)÷2(射线和线段都是直线上的一部分:将射线反向延伸就可得到直线;将线段一方延伸就得到射线,两方延伸就得到直线。

)线段的比较一、线段的比较大小【长度】1.度量法2.叠合法:a.两条线段一个端点重合。

b.共线c.看另一端位置二.线段和、差、倍、分倍、分1.线段的中点线段上一点把这条线段分成两条相等的线段。

若三条线段中满足两条线段之和等于第三线段,则三点共线。

角1.角的定义:(1)有公共端点的两条射线所组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边.(2)角也可看成是由一条射线绕着它的端点旋转而成的图形.(3)角定义包含两层含义:①有公共端点;②两条射线.2. 1周角=2平角=4直角 【度、分、秒的转换计算】160160''''︒==(1)平角是指射线旋转到与起始位置成一直线时所成的角.(2)周角是指射线旋转回到起始位置所成的角.注意:平角的特点是两边成一条直线,但直线与平角的意义是不同的,不要误认为直线就是平角.同样,周角的特点是两边重合成一条射线,不要误说射线就是周角,射线和周角的意义也是不一样的.3.角的平分线一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线4.余角:如果两个角的和等于90︒(直角),就说这两个角互为余角.5.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.90,αβαβ+=︒⇔互余180,αβαβ+=︒⇔互补6.方向表示(应用题)(1)东北方向(即北偏东45︒或东偏北45︒)————射线OA(2)北偏西60︒方向(或西偏北30︒方向) ————射线OB7.时钟上的时针与分针的角度注意半点的时候时针的位置5:30时,时针与分针的夹角的度数为:8.角的个数数角的个数必须不重不漏,从一点引出n (n ≥2)条射线组成的角有n (n-1)÷2个。

直线、射线、线段知识点总结(含例题)

直线、射线、线段知识点总结(含例题)

直线、射线、线段知识点1.直线(1)定义:一点在空间沿着一个方向及它的相反方向运动,所形成的图形就是直线.(2)直线公理:经过两点___________直线,并且___________直线.简单说成:___________.(3)表示方法:直线AB或直线a.(4)当两条不同的直线有一个公共点时,我们就称这两条直线___________,这个公共点叫做它们的___________.2.射线(1)定义:直线上的一点和它一旁的部分叫做射线.(2)特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.(3)表示方法:射线AB或射线a.3.线段(1)定义:直线上两个点和它们之间的部分叫做线段.(2)特征:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(3)表示方法:线段AB或线段a.(4)两点的所有连线中,___________最短.简单说成:两点之间,___________.(5)连接两点间的___________,叫做这两点的距离.4.方法归纳:(1)过一点的直线有___________;直线是是向___________方向无限延伸的,无端点,不可度量,不能比较大小;(2)要注意区别直线公理与线段的性质:直线公理是指___________,线段的性质是指两点之间线段最短;在线段的计算过程中,经常涉及线段的性质、线段的中点以及方程思想.(3)延伸与延长是不同的,线段不能___________,但可以___________,直线和射线能___________,但是不能___________;(4)直线和线段用两个大写字母表示时,与字母的前后顺序___________,但射线必须是表示端点的字母写在前面,不能互换;(5)直线中“有且只有”中的“有”的含义是___________,“只有”的含义是,“有且只有”与“确定”的意义相同;(6)射线:一要确定___________,二要确定___________,二者缺一不可.K知识参考答案:1.(2)有一条,只有一条,两点确定一条直线;(4)相交,交点3.(4)线段,线段最短;(5)线段的长度4.(1)无数条,两个(2)两点确定一条直线(3)延伸,延长,延伸,延长(4)无关(5)存在性,唯一性(6)端点,延伸方向K—重点(1)直线公理;(2)线段的性质K—难点直线、射线、线段的概念K—易错直线、射线、线段的联系和区别一、直线、射线、线段【例1】下列说法中正确的个数为①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个B.2个C.3个D.4个【答案】A【解析】①射线OP端点是O,从O向P无限延伸,射线PO端点是P,从P向O无限延伸,所以不是同一条射线,故①错误;【名师点睛】(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外.二、直线的性质(1)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(2)经过一点的直线有无数条,过两点就唯一确定,过三点就不一定了.【例2】平面上有四点,过其中每两点画出一条直线,可以画直线的条数为A.1或4 B.1或6C.4或6 D.1或4或6【答案】D【解析】如图所示:分别根据四点在同一直线上、三点在同一条直线上、任意三点均不在同一条直线上描出各点,再根据两点确定一条直线画出各直线可知:平面上有四点,过其中每两点画出一条直线,可以画直线的条数为1或4或6.故选D.三、线段的性质线段公理:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.简单说成:两点之间,线段最短.【例3】把一条弯曲的公路改为直路,可以缩短路程,其理由是A.两点之间,线段最短B.两点确定一条直线C.线段有两个端点D.线段可以比较大小【答案】A【解析】把一条弯曲的公路改为直路,其理由是:两点之间,线段最短.故选A.四、两点之间的距离(1)两点间的距离连接两点间的线段的长度叫两点间的距离.(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离.【例4】已知线段AB=8cm,在线段AB的延长线上取一点C,使线段AC=12cm,那么线段AB和AC中点的距离为A.2cm B.3cm C.4cm D.5cm【答案】A五、比较线段的长短(1)比较两条线段长短的方法有两种:度量比较法、重合比较法.就结果而言有三种结果:AB>CD、AB=CD、AB<CD.(2)线段的中点:把一条线段分成两条相等的线段的点.(3)线段的和、差、倍、分及计算做一条线段等于已知线段,可以通过度量的方法,先量出已知线段的长度,再利用刻度尺画条等于这个长度的线段,也可以利用圆规在射线上截取一条线段等于已知线段.【例5】如图,四条线段中,最短和最长的一条分别是A.ac B.bdC.ad D.bc【答案】B【解析】通过观察测量比较可得:d线段长度最长,b线段最短.故选B.。

线段 射线 直线例题总结(全)

线段 射线 直线例题总结(全)

比较线段的大小:AC
BD(填“>”、“=”或“<”);②若 BC 3 AC ,且 AC= 4
12cm,则 AD 的长为
cm;
(2)若线段 AD 被点 B、C 分成了 3:4:5 三部分,且 AB 的中点 M 和 CD 的中点 N 之间的距
离是 16cm,求 AD 的长.
13.(2019·全国初一课时练习)如图所示的是某风景区的旅游路线示意图,其中 B,C,D 为风景点,E 为两条路的交叉点,图中数据为两相应点间的距离(单位:千米).一位游客从
5.(2020·吉林省初一期末)往返于临江、靖宇两地的客车中途停靠 3 个站,最多有______
种不同的票价.
6.(2020·河北省初一期末)已知点 A,B,C 在同一条直线上,若线段 AB=3,BC=2,AC=1,
则下列判断正确的是( )
A.点 A 在线段 BC 上 B.点 B 在线段 AC 上 C.点 C 在线段 AB 上 D.点 A 在线段 CB
B.
直线 a,b 相交于点 A
C.
点 C 在线段 AB 上 D.
射线 CD 与线段 AB 有公共

5.(2020·江西省初一期末)如图,已知直线 l 和直线外三点 A 、 B 和 C ,请按下列要求画
图:
(1)画射线 AB ;(2)连接线段 BC ;(3)反向延长线段 BC 至 D ,使得 BC BD ; (4)在直线 l 上确定点 E ,使得 AE CE 最小.
知识点 1-2 线段相关概念
1.概念:直线上两点和它们之间的部分叫做线段. 2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作: 线段 AB 或线段 BA.(2)线段也可用一个小写 英文字母来表示,如图 5 所示,记作:线段 a.

第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直

第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直

初一数学期末复习讲义复习内容:第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直 一、知识点复习及例题选讲 1、知识点1 :(1)线段、射线、直线的异同点:(2)线段的统计方法:看线上端点的个数为n 个,则有n(n-1)/2条线段。

射线的统计方法:直线上端点的个数为n 个,则有2n 条射线;其中有2条不好用图中字母表示。

射线上端点的个数为n 个,则有n 条射线;其中有1条不好用图中字母表示。

例 1、已知点A 、点B 、点C 是直线上的三个点,则下图中有_____条线段,它们是 ,有____射线,能用图中字母表示的有 ,有_________条直线,它们是 ,。

ABC例 2、判断题:射线AB 与射线BA 表示同一条直线. ( )例 3、根据图形,下列说法:①直线AC 和直线BD 是不同的直线;②直线AD=AB+BC+CD ;③射线DC 和射线DB 不是同一条射线;④射线AB 和射线BD 不是同一条射线;⑤线段AB 和线段BA 是同一条线段。

其中正确..的是 ( ) A 、1个 B 、2个 C 、3个 D 、4个2、知识点2 :(1)两点之间的所有连线中,线段最短。

(2)两点之间线段的长度叫做这两点之间的距离。

(3)直线外一点与直线上各点连接的所有线段中,垂线段最短。

直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离。

例 1、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设④把弯曲的道路改直,就能缩短路程。

其中可用“两点之间,线段最短.........”的道理来解释的现象有__________.例 2、判断题:连结两点的线段叫做两点之间的距离.( )例 3、 如图,从A 地到B 地有①、②、③三条路可以走,每条路长分别为n m l 、、(图中、表示直角),则第_________条路最短,另两条路的长短关系为__________________。

线段、射线、直线知识点总结及习题

线段、射线、直线知识点总结及习题

线段、射线、直线知识点总结及习题线段、射线、直线是几何学中的基本概念,它们在解决几何问题中起到了核心的作用。

本文将对线段、射线、直线的定义、特性以及常见习题进行总结,帮助读者更好地理解和掌握相关知识。

一、线段的定义与特性线段是由两个端点所确定的一段直线,具有以下特性:1. 线段的长度是有限的,可以通过两个端点的距离来计算。

2. 线段是有方向的,从一个端点指向另一个端点。

3. 线段可以任意延长,但是延长后的部分不再属于原来的线段。

二、射线的定义与特性射线是由一个起点和一个方向确定的一段直线,具有以下特性:1. 射线只有一个起点,但是没有终点。

2. 射线是无限延伸的,可以一直延伸出去。

3. 射线只有一个确定的方向,无法逆转。

三、直线的定义与特性直线是由无数个点连成的轨迹,具有以下特性:1. 直线是无限延伸的,没有起点和终点。

2. 直线上的任意两点可以确定一条直线,直线上的所有点都在同一直线上。

3. 直线没有宽度,是一维的。

四、习题示例1. 以下图形中,哪些是线段、哪些是射线、哪些是直线?(插入图示:线段AB、射线CD、直线EF)解答:线段AB是一段有限长度的直线,射线CD是由一个起点C 和一个方向确定的直线,直线EF是一条无数个点连成的轨迹,没有起点和终点。

2. 两个线段的长度分别是5cm和8cm,它们的和是多少?(插入图示:线段AB=5cm,线段CD=8cm)解答:线段AB和CD的长度分别是5cm和8cm,它们的和是5cm+8cm=13cm。

3. 从一个点出发,向两个不同的方向延伸的直线叫做什么?(插入图示:起点O,向左延伸的直线AB,向右延伸的直线CD)解答:从一个点出发,向两个不同的方向延伸的直线称为射线。

在图中,直线AB是一条由起点O向左延伸的射线,直线CD是一条由起点O向右延伸的射线。

通过以上习题,我们可以加深对线段、射线、直线的理解,并能够熟练运用相关知识解决几何问题。

总结:线段、射线、直线是几何学中的重要概念,它们的定义和特性对于解决几何问题至关重要。

线段、射线、直线知识点总结及习题(精编文档).doc

线段、射线、直线知识点总结及习题(精编文档).doc

MO a 【最新整理,下载后即可编辑】线段、射线、直线【知识要点】知识点1、线段、直线、射线的概念:线段:一段拉直的棉线可近似地看作线段,线段有两个端点。

线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段.射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。

如手电筒、探照灯射出的光线等。

射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况.直线:将线段向两个方向无限延长就形成了直线,直线没有端点。

如笔直的铁轨等。

直线的画法:用直尺画直线,但只能画出一部分,不能画端点。

知识点2、线段、直线、射线的表示方法: (1) 点的记法:用一个大写英文字母 (2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面如图: B A记作射线OM,但不能记作射线MO(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。

此时要在图中标出此小写字母知识点3、线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。

区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:BAl知识点4、直线的基本性质(重点)(1)经过一点可以画无数条直线(2)经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线)注:“确定”体现了“有”,又体现了“只有”。

经过点K可以画无数条直线经过点A、B只可以画一条直线【典型例题】【例1】如图,下列几何语句不正确的是()A、直线AB与直线BA是同一条直线B、射线OA与射线OB是同一条射线C、射线OA与射线AB是同一条射线D、线段AB与线段BA是同一条线段【例2】指出右图中的射线(以O为端点)和线段。

射线 直线线段知识点总结

射线 直线线段知识点总结

射线直线线段知识点总结一、射线的概念与性质1.1 射线的定义射线是一条由一个端点开始,另一端无限延伸的直线。

用一个点标记射线的起始位置,用另一个点或箭头标记射线的延伸方向。

一般来说,射线的起点叫做端点,另一端叫做射线的延伸方向。

1.2 射线的表示方法射线通常用字母表示,如AB→表示从点A出发的射线,方向为→。

1.3 射线的性质(1)射线的长度是无限的,无法用具体的数字表示。

(2)任意两条射线相交于端点,且它们有且只有一个公共端点。

(3)射线可以延伸到无限远,也可以在某一点截断。

二、直线的概念与性质2.1 直线的定义直线是由无数个点连在一起形成的,没有起点和终点,也没有弯曲的部分,一直延伸到无穷远。

直线是最基本的几何图形之一。

2.2 直线的特征(1)直线上的任意两点可以连成一条射线。

(2)直线是无限长的,没有终点。

(3)直线是唯一的,两点确定一条直线。

2.3 直线的表示方法直线符号是两个一样的大写字母,比如AB表示直线上的点A和点B。

三、线段的概念与性质3.1 线段的定义线段是由两个端点和连接这两个端点的线段组成。

线段有一个确定的长度,可以通过测量得到。

3.2 线段的特征(1)线段的长度是有限的。

(2)线段的两个端点是确定的。

(3)连接两个端点的线段是唯一的。

3.3 线段的表示方法线段一般用字母表示,如AB表示连接点A和点B的线段。

四、射线、直线、线段间的关系4.1 射线与直线的关系射线与直线都是无限延伸的,但直线没有端点,射线有一个端点。

4.2 射线与线段的关系射线和线段的不同之处在于,射线是无限长的延伸出去的,而线段是有限长的。

4.3 直线与线段的关系直线与线段的不同之处在于,直线没有始点和终点,而线段有始点和终点。

五、射线、直线、线段的应用5.1 射线、直线、线段在图形和证明中的应用在证明几何问题时,射线、直线、线段可以帮助我们建立几何图形,从而解决问题。

5.2 射线、直线、线段在生活中的应用在日常生活中,射线、直线、线段广泛应用于建筑、设计、数学等领域,如建筑设计中的平行线、垂直线的应用等。

人教版四年级线和角知识点归纳、练习题

人教版四年级线和角知识点归纳、练习题

一、线段、直线和射线1、线段(1)线段的特征:线段是直的,有两个端点,不能向两端延伸,可以量出长度画线段时,两端必须画出端点(2)线段的表示方法用两个大写字母表示线段的两个端点,在用这两个大写字母来表示线段如:2、直线(1)直线的特征:直线没有端点,可以向两端无限延伸,不能量出长度(2)直线的表示方法:直线可以用两个大写字母表示,也可以用一个小写字母表示如:3.射线(1)射线的特征:射线只有一个端点,只能向一端无限延伸,不能量出长度(2)射线的表示方法:射线可以用表示端点的大写字母和表示射线上另一个点的大写字母表示如:4.线段、直线、射线之间的联系和区别5.经过指定点画射线和直线(1)从一点出发画射线(2)经过一点画直线(3)经过两点画直线二、角1.角的定义从一点引出两条射线所组成的图形叫做角。

这个点叫做角的顶点,这两条射线叫做角的边。

如:2.角的表示方法角通常用符号“∠”表示练习:1.填空(1)从一点引出两条________所组成的图形叫做角(2)直线有_______个端点,线段有________个端点,直线有________个端点(3)下面图形中,______是直线,______是射线,________是线段2.判断(1)射线长35米()(2)线段是直线的一部分()(3)角的两边是直线()(4)射线比直线短()(5)经过两点可以画无数条直线()3.当一条直线上有5个点时,共能组成多少条线段?有10个点呢?有30个点呢?4.从甲市到乙市的铁路沿线上共有8个站点(包括起点和终点),铁路局要准备多少种不同的车票才能满足甲市到乙市途中所有乘客的需求?三、角的度量1.用量角器度量角度用量角器度量角的度数四、平角和周角1.平角(1)定义:一条射线绕它的端点旋转半周,形成的角叫做平角(2)度数:1平角=_____°2.周角(1)定义:一条射线绕它的端点旋转一周,形成的角叫做周角(2)度数:1周角=______°3.平角和周角的画法五、各类角之间的关系1.列表比较名称锐角直角钝角平角周角图形度数定义小于____°的角叫做锐角等于___°的角叫做直角大于___°而小于___°的角叫做锐角一条射线绕它的端点旋转半周,形成的角一条射线绕它的端点旋转一周,形成的角2.明确各种角的关系锐角直角钝角平角周角1周角=2平角=4直角练习:1.判断(1)一条射线就是一个周角()(2)平角的度数是直角的2倍,是周角的一半()(3)所有的锐角都比直角小()(4)两个锐角和一定抑郁直角()(5)一条直角就是一个平角()2. 3:15时,时针和分针的夹角是______°3.比平角小91°的角是______角4.钝角度数的一半是_______角5.求下面各图中未知角的度数6.下面三幅图都是有一副三角尺拼成的,∠1,∠2,∠3的度数分别是多少?7.如下图所示,∠1=∠2=∠3,如果途中所有角的度数和是180°,那么∠AOB是多少度?。

线段、直线和射线与角知识点总结

线段、直线和射线与角知识点总结

一、线段、直线和射线1.定义射线:线段的一段无限延长得到的线叫射线。

直线:线段的两段无限延伸得到的线叫直线。

2.线段、直线和射线的特点线段:两个端点、有限长、可以测量直直的线射线:一个端点、另一个端可以无限延伸、无限长、不可测量直直的线直线:两个端点、两端可以无限延伸、无限长、不可测量直直的线过一点可以画无数条射线,过一点可以画无数条直线,过两点只能画一条直线。

二、角1.由一点引出的两条射线所组成的图形叫角,用符号“”表示。

相交的点是角的顶点,两条射线是角的边。

2. 角通常用符号“”表示,上图的角可以记作:三、角的度量1.测量角的工具叫量角器。

角的计量单位是“度”,用符号“°”表示。

把半圆平分成180 等份,每一份所对的大小记作1°角的大小与角的两边画出的长短没关系。

角的大小与两边张开的大小有关。

2. 量角的步骤:(1)点与点重合,中心点和角的顶点重合;线与边重合,0°刻度线和角一条边重合。

(2)读准数,从0°刻度线重合的边看,看有0°刻度线的那一圈刻度,另一条边所对的刻度就是角的度数。

三、角的分类锐角:小于90°锐角< 90°直角:等于90°一直角= 90°钝角:大于90°且小于180°90°< 钝角< 180°平角:等于180°一平角=180°=2直角周角:等于360°一周角=360°=2平角=4直角锐角<直角<钝角<平角<周角3. 画角步骤:①画一条射线,使量角器的中心和封线的端点重合,0 刻度线和射线重合。

②在量角器65°刻度线的地方点一个点。

③以画出的射线的端点为端点,通过刚画的点,再画一条射线。

(完整版)北师版七年级上数学第四章基本平面图形知识点及练习题

(完整版)北师版七年级上数学第四章基本平面图形知识点及练习题

4.1 线段、射线、直线1、线段、射线、直线 线段:绷紧的琴弦,人行横道线都可以近似的看做线段。

线段有两个端点。

射线:将线段向一个方向无限延长就形成了射线。

射线有一个端点。

直线:将线段向两个方向无限延长就形成了直线。

直线没有端点。

2、名称 图形 表示方法 端点 长度直线 直线AB (或BA )直线l 无端点 无法度量 射线射线OM 1个 无法度量 线段线段AB (或BA ) 线段l2个可度量长度3、直线的性质(1)直线公理:经过两个点有且只有一条直线。

(两点确定一条直线。

) (2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

4、点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

※课时达标 1.填写下表:2.如图,共有 条线段.3.用两个钉子就可以把木条钉在墙上,其依据是_________ .4.平面上有五条直线,则这五条直线最多有_____交点,最少有_____个交点.5.平面上两条直线的位置关系只有两种,即__________和_________________.6.平面上有四个点,无三点共线,以其中一点为端点,并且经过另一点的射线共有_______条.※课后作业 ★基础巩固1.下列各直线的表示法中,正确的是( ).l BAMOlBA 名称 图例 端点数 延伸方向 有无长度 线段射线直线 A B C DA.直线AB.直线AB C直线ab D.直线Ab2.下列说法不正确的是( ) .A.直线AB与直线BA是同一条直线B.射线AB与射线BA是同一条射线C.线段AB与线段BA是同一条线段D.线段有两个端点,射线有一个端点,直线没有端点3.下列说法正确的是().A.射线比直线短B.两点确定一条直线C.经过三点只能作一条直线D.两条射线的长度的和等于直线的长度4.下列说法正确的是( ).A.过一点P只能作一条直线B.射线AB和射线BA表示同一条射线C.直线AB和直线BA表示同一条直线D.射线a比直线b短5.下列说法正确的是().A.延长射线OAB.延长直线lC.延长线段CDD.反向延长直线l6.平面内的三点可确定直线的条数是().A.3B.1或3C.0或1D.07.已知C,D在直线AB上,那么直线AB上的射线共有().A.6条B.7条C.8条D.9条8.下列说法中,错误的有().①射线是直线的一部分;②画一条射线,使它的长度为5厘米;③线段AB和线段BA是同一条线段;④射线AB和射线BA是同一条射线;⑤直线AB和直线BA是同一条直线.A.1个B.2个C.3个D.4个9.在一条笔直的校园大道两旁种树时,先定下两棵树的位置,然后其它树的位置也就确定下来了,这说明了直线的基本性质:________________________. 10.已知平面内的四个点A,B,C,D,过其中的两个点画直线:(1)若A,B,C,D四个点在同一条直线上,可以画出______条直线;(2)若A,B,C,D四个点有三个在同一条直线上,可以画出______条直线;(3)若A,B,C,D四个点中的任意三个都不在同一条直线上,可以画出_______条直线.11.读下列语句,并画出相应图形.(1)经过点M,N画一条直线;(2)直线ba,相交于点P,点A在直线a上,但不在直线b上;(3)三条直线cb,两两相交于点A,B,C.a,☆能力提高12.读句画图:如图所示,已知平面上四个点(1)画直线AB;(2)画线段AC;(3)画射线AD、DC、CB;(4)如图,指出图中有_____条线段,有___ 条射线并写出其中能用图中字母表示的线段和射线 .13.已知直线l上有n个点,试问:(1)此图形上有多少条射线?(2)此图形上有多少条线段?14.如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有三个点时,线段总共有3条,如果线段AB上有4个点时,线段总数有6条,如果线段AB上有5个点时,线段总数共有10条,……A C B3=2+1A C D B6=3+2+1A C D E B10=4+3+2+1(1)当线段AB上有6个点时,线段总数共有__________条.(2)当线段AB上有100个点时,线段总数共有多少条?●中考在线15.平面上不重合的两点确定一条直线,不同三点最多可确定3条,若平面上不同的n个点最多可确定21条直线,则n的值为().A.5B.6C.7D.816.同一平面内互不重合的三条直线的公共点的个数是( ).A.可能是0个,1个,2个B.可能是0个,2个,3个C.可能是0个,1个,2个或3个D.可能是1个或3个4.2 比较线段的长短1、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

人教版直线射线线段知识点

人教版直线射线线段知识点

人教版直线射线线段知识点
人教版直线、射线、线段知识点如下:
1.直线的性质:经过两点有一条直线,并且只有一条直线。

2.线段的性质:两点之间,线段最短。

3.画一条线段等于已知线段的方法:度量法和尺规作图法。

4.线段的中点、三等分点、四等分点等定义:把一条线段平均
分成两条相等线段的点。

5.两点间的距离定义:连接两点的线段的长度叫做两点的距离
(距离是线段的长度,而不是线段本身)。

6.点与直线的位置关系有:点在直线上(或者直线经过点)和
点在直线外(或者直线不经过点)。

7.角的定义:有公共端点的两条射线所组成的图形叫做角。

8.角的比较方法:度量法和叠合法。

9.角的四则运算:角的和、差、倍、分及其近似值。

10.画一个角等于已知角的方法:借助三角尺能画出15°的倍数的
角,在0~180°之间共能画出11个角;借助量角器能画出给定度数的角;用尺规作图法。

此外,还有一些关于线段和角的计算法则和统计知识,如计算法则中的相同数位对齐,按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐;竖式计算以及验算;整数的四则运算顺序和运算定律在小数中同样适用等。

在统计知识
中,条形统计图和折线统计图的特点和作用,以及折线统计图中变化趋势的含义等也需要掌握。

如需更多关于人教版直线、射线、线段的知识点总结,建议查询教辅练习资料或咨询数学老师获取更全面的信息。

直线射线线段知识点讲解以及例题解析

直线射线线段知识点讲解以及例题解析
点的个数
直线条数
2
1=S2=
3
3=S3=
4
6=S4=
5
10=S5=
……
……
n
Sn=
从表中我们可以推断出,平面上有n个点(n≥2),且任意三个点不在同一直线上,这些点一共可作出条直线。
解:平面上有n个点(n≥2),且任意三个点不在同一直线上,这些点一共可作出条直线。
评析:归纳猜想是这类题型的解决思路,多看几种情况,要善于发现规律并正确地进行归纳猜想。
分析:我们可以从简单的入手,当有两个点时,可作出1条直线;当有3个点时,可以作出3条直线;当有4个点时(如图所示)过其中任何一点都有3条直线,共有4×3=12条,但是因为直线AB与BA、AC与CA、AD与DA……分别是同一条直线,说明每一条直线重复一次,所以实际只能画出直线共×4×3=6条;考查点的个数n和可作的直线条数Sn,它们之间的关系如下表:
(1)延长直线AB()
(2)直线AB与直线BA不是同一条直线()
(3)直线AB上有A点()
(4)直线AB与直线l不可能是同一条直线()
分析:(1)直线本身是向两方无限延伸的,因此不用延长。
(2)用两个大写字母表示直线时与字母的顺序无关。
(3)直线AB上一定有点A,即点A在直线AB上。
(4)直线既可用大写字母AB表示又可用小写字母l表示。
例3.如图所示,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画出确定蓄水池H点的位置,使它与四个村庄的距离之和最小。
分析:根据两点之间线段最短,所求点必在线段AD上,也必在线段BC上,即为AD、BC的交点。
解:根据两点之间线段最短,可连结AD、BC且交于一点H,则点H即为所求。

七年级数学上册直线、线段、射线 考点总结

七年级数学上册直线、线段、射线 考点总结

直线、线段、射线考点总结分类训练本讲要点1.直线射线线段的概念和性质2.直线线段射线数量统计问题3.线段长度的计算4.线段中的动点问题考点1.直线射线线段的概念和性质(1)经过一点的直线有无数条,(2)直线公理:经过两点有且只有一条直线.简称:两点确定一条直线.(3)两点的所有连线中,线段最短.简单说成:两点之间,线段最短(4)连接两点间的线段的长度,叫做这两点的距离.[例题精讲]例1.下列说法正确的是( )A.线段可以比较长短B.射线可以比较长短C.直线可以比较长短D.直线比射线长例2.下列叙述中正确的是( )①线段AB可表示为线段BA;②射线AB可表示为射线BA③直线AB可表示为直线BA;④直线比射线长①②③④ B.②③ C.①③ D.①②③例3.如图,从A到B有①、②、③三条路线,最短的路线是①,其理由是( )A.因为它最直B.两点确定一条直线C.两点间的距离的概念D.两点之间,线段最短[强化训练]1-1.在下列现象中,可以用基本事实“两点确定一条直线”来解释的是( )①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上。

A.①③B.②④C.①④D.②③1-2.下列语句表述正确的是( )A.延长射线OC B.射线BA与射线AB是同一条射线C.作直线AB=BC D.已知线段AB,作线段CD=AB1-3.如图,直线l、线段a及射线DA,能相交的图形是()①②③④⑤⑥lDAA DllA.①③④B.①④⑥C.①④⑤D.②③⑥1-4.下列语句中:正确的个数有( )①画直线AB=3cm;②延长直线OA;③直线AB与直线BA是同一条直线,所以射线AB与射线BA也是同一条射线;④在同一个图形中,线段AB与线段BA是同一条线段A.1B.2C.3D.01-5.下列说法中正确的个数为( )①射线OP和射线PO是同一条射线;②连接两点的线段叫两点间的距离;③两点确定一条直线;④若AC=BC,则C是线段AB的中点.A.1个 B .2 C.3个 D.4个考点2.直线线段射线数量统计问题 [例题精讲]例4.图中共有线段 条。

直线、射线、线段复习以及易错的题目讲解

直线、射线、线段复习以及易错的题目讲解

直线、射线、线段复习以及易错题讲解知识要点: 1. 直线1)直线公理:经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线。

2)特征:一是“直”的;二是向两方无限延伸的;三是没有粗细。

3)表示方法:①如图1;②如图2。

4)点和直线的位置关系:一个点在直线上,也可以说这条直线经过这个点。

如图所示,可以说:点O在直线l上或直线l经过点O;点P在直线l外或直线l不经过点P。

5)两条直线相交的意义:当两条不同的直线有一个公共点时,我们称这两条直线相交,这个公共点叫做它们的交点。

如图所示,可以说:直线a、b相交于点O。

此时直线a、b只有一个公共点。

两条直线相交有没有可能出现两个、三个或更多的交点呢?2. 射线1)射线的概念:直线上的一点和它一旁的部分叫做射线,这个点叫做射线的端点。

2)射线的表示方法:用射线的端点和射线上任一点来表示,如图1中的射线记做射线 OA 或射线l。

注意:①表示端点的字母一定要写在前面,使字母的顺序与射线延伸的方向一致,如图1射线OA不能表示成射线AO;②同一条射线是指射线的端点相同,而延伸方向也相同的射线。

如图2,射线OA与射线OB表示同一条射线;③两条不同射线是指端点不同的射线,或者是指端点相同但延伸方向不同的射线,如图2中,射线OB与射线AB不是同一射线。

3. 线段(1)线段的概念:直线上的两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。

(2)两点间的距离:连结两点的线段的长度叫做这两点的距离。

(3)线段公理:所有连接两点的线中,线段最短,即两点之间线段最短。

(4)线段的表示方法:如图1,用两个大写字母表示,记做线段AB或线段BA;如图 2,用一个小写字母表示,记做线段a。

注意:①线段AB和线段BA是同一条线段;②连结AB就是画以A、B为端点的线段;③延长线段AB是指按从A到B的方向延长,如图所示,也可以说成反向延长BA。

线段的延长线常常画成虚线。

(5)线段大小的比较:①度量法。

人教版数学七上线段知识点总结和练习

人教版数学七上线段知识点总结和练习

直线、射线、线段一、基础概念题知识点:直线公理: 经过两点有一条直线, 一条直线。

简述为: .2.直线、射线、线段之间的联系与区别联系: 线段和射线都是直线的一部分。

区别:1.下列说法中, 错误的是()A. 经过一点可以作无数条直线B. 一条直线只能用一个字母表示C. 经过两点只能作一条直线2、D. 线段CD和线段DC是同一条线段3、关于直线、射线、线段的有关说法正确的有()(1)直线AB和直线BA是同一条直线(2)射线AB和射线BA是同一条射线(3)线段AB和线段BA是同一条线段(4)线段一定比直线短(5)射线一定比直线短(6)线段的长度能够度量, 而直线、射线的长度不可能度量.A. 2B. 3C. 4D. 52.我们在用玩具枪瞄准时, 总是用一只眼对准准星和目标, 用数学知识解释为__________________.3.如果你想将一根细木条固定在墙上, 至少需要几个钉子()A. 一个B. 两个C. 三个D. 无数个4.下列说法正确的是()A. 延长直线AB到C;B. 延长射线OA到C;C. 平角是一条直线;D. 延长线段AB到C5.观察图①, 由点A和点B可确定条直线;观察图②, 由不在同一直线上的三点A、B和C最多能确定条直线;(1)动手画一画图③中经过A、B、C、D四点的所有直线, 最多共可作条直线;(2)在同一平面内任三点不在同一直线的五个点最多能确定条直线、n个点(n≥2)最多能确定条直线。

问题应用: 平面上的三条直线最多可将平面分成()部分6、在一条直线上取两上点A、B, 共得几条线段?在一条直线上取三个点A、B、 C,共得几条线段?在一条直线上取A、B、C、D四个点时,共得多少条线段? 在一条直线上取n个点时,共可得多少条线段?二、问题应用: 乘火车从A站出发, 沿途经过3个车站可到达B站, 那么在A.B两站之间需要安排()种不同的车票?三、点与点的距离知识点:1.连接两点之间的 , 叫做两点的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M O a线段、射线、直线【知识要点】知识点1、线段、直线、射线的概念:线段:一段拉直的棉线可近似地看作线段,线段有两个端点。

线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。

如手电筒、探照灯射出的光线等。

射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况.直线:将线段向两个方向无限延长就形成了直线,直线没有端点。

如笔直的铁轨等。

直线的画法:用直尺画直线,但只能画出一部分,不能画端点。

知识点2、线段、直线、射线的表示方法:(1) 点的记法:用一个大写英文字母(2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图:记作线段AB 或线段BA , 记作线段a ,与字母顺序无关 此时要在图中标出此小写字母(3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面如图:记作射线OM,但不能记作射线MO(4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示如图:记作直线AB 或直线BA , 记作直线l与字母顺序无关。

此时要在图中标出此小写字母知识点3、线段、射线、直线的区别与联系:联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。

区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:BA BAl知识点4、直线的基本性质(重点)(1) 经过一点可以画无数条直线 (2) 经过两点只可以画一条直线直线的基本性质:经过两点有且只有一条直线(也就是说:两点确定一条直线) 注:“确定”体现了“有”,又体现了“只有”。

如图:经过点K 可以画无数条直线 经过点A 、B 只可以画一条直线知识点五、线段的性质(1)线段公理:两点之间的所有连线中,线段最短。

(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

(5)线段的比较:1.目测法 2.叠合法 3.度量法知识点六、点与直线的位置关系 点在直线上,或者说直线经过这个点 点在直线外,或者说直线不经过这个点 知识点七、线段的中点:点M 把线段AB 分成相等的两条相等的线段AM 与BM ,点M 叫做线段AB 的中点。

ΘM 是线段AB 的中点∴AM=BM=21AB (或者AB=2AM=2BM ) 【典型例题】【例1】如图,下列几何语句不正确的是( ) A 、直线AB 与直线BA 是同一条直线B 、 射线OA 与射线OB 是同一条射线C 、 射线OA 与射线AB 是同一条射线D 、线段AB 与线段BA 是同一条线段【例2】指出右图中的射线(以O 为端点)和线段。

M【例3】读出下列语句,并画出图形。

(1)直线AB经过点M .(2)点A在直线l外.(3)经过M点的三条直线a、b、c.(4)直线AB与CD相交于点O.(5)直线l经过A、B、C三点,点C在点A与点B之间.【例4】读句画图(在右图中画)D(1)连结BC、AD(2)画射线AD(3)画直线AB、CD相交于E(4)延长线段BC,反向延长线段DA相交与F(5)连结AC、BD相交于O引申:一条直线上有n个点,则有条线段【例6】已知平面内有A、B、C、D四点,过其中的两点画一条直线,一共能画几条直线?解:分三种情况:(分类讨论)(1)当A、B、C、D四点在同一直线上时,只能画条;(2)当A、B、C、D有三点在同一直线上时,能画条;(3)当A、B、C、D四点中任意三点都不在同一直线上时,能画条;综上所述,一共能画。

引申:经过任意三点都不在同一直线上的n个点中的任两点画直线,一共可以画条【例7】一条直线把平面分成2部分,2条直线最多可以把平面分成4部分,3条直线最多可以把平面分成7部分,那么4条直线最多可以把平面分成几部分?6条直线呢?10条直线呢?n条直线呢?A组:1.下列说法错误的是( )A 线段AB与线段BA是同一条线段B 射线AB与射线BA是同一条射线C 直线AB与直线BA是同一条直线D 线段AB在直线BA上2.下列语句正确的是( )A 延长射线OAB 反向延长线段AB至C,使AC=ABC 延长射线ABD 延长线段AB至C,使AC=BCB组:1.经过平面上一点可以画条直线,经过平面上两点能画条直线并且.2.农民兴修水利,开挖水渠,先在两端立桩拉线,然后沿线开挖,其中的道理是.3.下列说法正确的是( )A 一条直线上有无数多个点B 一条线段上只有两个点,就是它的两个端点C 一条射线上只有一个点,就是它的端点D 线段上的点很多,但肯定没有直线上的多4.图中直线AB,线段CD,射线EF能相交的是( )5.如图,已知A.B.C三点,请你画出直线AB,射线CA,并连结BC.C组一.填空题:1.在线段.射线.直线中,是可以度量的,是不可以度量的.2.点有种表示方法,可以用来表示;线段有种表示方法,既可以用来表示,也可以用来表示;射线有种表示方法,它是用来表示,但表示的字母必须放在前面;直线有种表示方法,既可以用来表示,也可以用来表示.3.经过两点有条,并且只有.4.用一个钉子把一根细木条钉在墙上,木条能绕着钉子转动,这表明;用两个钉子把细木条钉在墙上,就能固定细木条,这表明。

二.选择题:1.下列几何语言描述正确的是( )A、直线mn与直线ab相交于点DB、点A在直线M上C、点A在直线AB上D、延长直线AB2.平面上有5个点,经过每两个点的直线最多有( )条.A 7B 8C 9D 103.下列说法错误的是( )A 两点确定一条直线B 直线上任意两点都可以表示直线C 过平面上三点可以画一条直线D 过一点可以作无数条直线题型一直线、射线、线段基础知识一、选择题1.如图所示,下列说法正确的是 ( )A.直线OM与直线MN是同一条直线B.射线MO与射线MN是同一条射线C.射线OM与射线MN是同一条射线D.射线NO与射线MO是同一条射线2.如图所示的直线、射线、线段能相交的是 ( )3.已知线段AB =6cm ,在直线AB 上画线段AC =2cm ,则BC 的长为 ( ) A .4cm B .8cm C .4cm 或8cm D .不能确定 4.平面内三点可确定的直线的条数是 ( ) A .1 B .2 C .1或2 D .1或3 5.下列说法中,正确的是 ( )A .延长直线AB B .延长射线OAC .反向延长直线ABD .反向延长射线AB 6.以下正确的命题共有 ( )①经过平面上A 、B 、C 三点可作3条直线 ②三条直线两两相交,必有3个交点 ③过一点可画无数条直线 ④射线OA 与射线AO 为同一射线 A .1个 B .2个 C .3个 D .4个7.下列说法中,错误的是 ( ) A .直线AB 和直线BA 是一条直线B .A 、B 、C 三点顺次在同一条直线上,那么射线CA 和射线AB 是相同的射线 C .若C 为线段AB 延长线上的一点,则AC >BC 二、解答题8.按下列语句画出图形.(1)直线AB 经过点Q 。

(2)射线OA 的端点D 是直线m 与n 的交点,且点A 既不在m 上也不在n 上. (3)P 、Q 是直线l 同侧两点,直线PQ 交直线l 于K(4)三条直线a 、b 、c 两两相交于三点C 、B 、A题型二:有关线段的计算问题练习题1. 如图,4AB cm =,3BC cm =,如果O 是线段AC 的中点,求线段OA 、OB 的长度.2. 如图,已知C 、D 是线段AB 上的两点,36AB cm =,且D 为AB 的中点,14CD cm =,求线段BC 和AD 的长3. 如图所示,已知线段80AB cm =,M 为AB 的中点,P 在MB 上,N 为PB 的中点,且14NB cm =,求PA 的长.4. (1)如图所示,点C 在线段A B 上,线段6AC cm =,4BC cm =,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度.(2)根据(1)的计算过程和结果,设AB a =,C 是线段AB 上一点,点M 和N 分别是AC 和B C 的中点,你能猜出MN 的长度吗?请用一句简洁的话表述你发现的规律. 6. 如图,C 、D 是线段AB 上的两点,已知14BC AB =,13AD AB =,12AB cm =,求CD 、BD 的长.7. 在一条直线上顺次取A、B、C三点,已知5AB cm=,点O是线段AC的中点,且 1.5OB cm=,求线段BC的长.(两种情况)8. 已知A、B、C三点共线,且10AB cm=,4BC cm=,M是A C的中点,求AM的长.9.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度。

10.如图9,AD=12BD,E是BC的中点,BE=2cm,AC=10cm,求线段DE的长.11.如图,点C在线段AB上,AC = 8厘米,CB = 6厘米,点M、N分别是AC、BC的中点。

A BCM N求线段MN的长;图9ADCB E。

相关文档
最新文档