方案设计题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方案设计题

方案设计型题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案。有时也给出几个不同的解决方案,要求判断哪个方案较优。它包括测量方案设计、作图方案设计和经济类方案设计。

(一)测量方案设计题,一般限定条件、限定测量工具,让同学们设计一个可行的方案,对某一物体的长度进行测量并计算,要注意的是设计出来的方案要有可操作性。

(二)作图、拼图方案设计题,它摆脱了传统的简单作图,它把作图的技能考查放在一个实际生活的大背景下,考查学生的综合创新能力,它给同学们的创造性思维提供广阔的空间与平台。此类题常以某些规则的图形,如等腰三角形、菱形、矩形、圆等,通过某些辅助线,将面积分割或分割后拼出符合某些条件的图形。

(三)经济类方案设计题,一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,但解决的方法较多。

方案设计题贴近生活,具有较强的操作性和实践性,解决此类问题时要慎于思考,并能在实践中对所有可能的方案进行罗列与分析,得出符合要求的一种或几种方案。

类型之一设计图形型问题

图形设计问题通常是先给出一个图形(这个图形可能是规则的,也有可能不规则),然后让你用直线、线段等把该图形分割成面积相同、形状相同的几部分或者分割成形状相同的图形。解决这类问题的时候可以借助对称的性质、角度大小、面积公式等进行分割。

1.(莆田市)某市要在一块平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是

ABCD面积的一半,并且四边形花园的四个顶点作为出人口,要求分别在ABCD的四条边上,请你设计两种方案:

方案(1):如图(1)所示,两个出入口E、F已确定,请在图(1)上画出符合要求的四边形花园,并简要说明画法;

方案(2):如图(2)所示,一个出入口M已确定,请在图(2)上画出符合要求的梯形花园,并简

要说明画法.

2.(•荆门市)某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.

(1)判断图(2)中四边形EFGH是何形状,并说明理由;

(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?

类型之二经济类方案设计题

在日常生产和生活中每时每刻都要用到决策,方案决策题已成为中考热点题型之一, 这些问题可以结合方程和不等式(组)来解决.关键是要抓住题中问题的实际意义,将其转化为数学问题.

3.(咸宁市)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D 两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.

(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;

(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;

(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.

类型之三 测量方案问题

《新课程标准》要求同学们学会运用数学知识解决日常生活和其他学科中的问题.测量方案问题正是这样的问题,在解决这样的问题时要注意方案的可行性.

4.(河北省)在一平直河岸l 同侧有A 、B 两个村庄,A 、B 到l 的距离分别是3km 和2km ,AB=a km (1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.

方案设计

某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为1d ,且

1(km)d PB BA =+(其中BP l ⊥于点P );图2是方案

二的示意图,设该方案中管道长度为

2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).

观察计算(1)在方案一中,1d = km (用含a 的式子表示); (2)在方案二中,组长小宇为了计算2d 的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示).

探索归纳

(1)①当a=4时,比较大小:12_______d d (填“>”、“=”或“<”); ②当a=6时,比较大小:12_______d d (填“>”、“=”或“<”);

(2)请你参考边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?

参考答案

1.【答案】解:方案(1)

画法1:(1)过F作FH∥AD交AD于点H;(2)在DC上任取一点G连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形;

画法2:(1)过F作FH∥AB交AD于点H;(2)过E作EG∥AD交DC于点G连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形

画法3:(1)在AD上取一点H,使DH=CF;(2)在CD上任取一点G连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形

方案(2)画法:(1)过M点作MP∥AB交AD于点P,

(2)在AB上取一点Q,连接PQ,

(3)过M作MN∥PQ交DC于点N,连接QM、PN、MN则四边形QMNP就是所要画的四边形(本题答案不唯一,符合要求即可)

2.【答案】解:(1)四边形EFGH是正方形.

相关文档
最新文档