材料成型概论
工程材料及其成型基础大纲
工程材料及其成型基础大纲一、概述1.工程材料及其成型的定义和概念2.工程材料的分类及应用领域3.工程材料的性能要求和测试方法二、金属材料1.金属材料的分类和特点2.金属的晶体结构和缺陷3.金属的力学性能及其测试方法4.金属材料的热处理和强化机制5.常见金属材料的应用和加工工艺三、非金属材料1.非金属材料的分类和特点2.非金属材料的结构和性能3.非金属材料的应用领域和特殊性能4.非金属材料的加工和成型工艺四、高分子材料1.高分子材料的分类和特点2.高分子材料的结构和性能3.高分子材料的加工和改性方法4.常见高分子材料的应用领域和加工工艺五、复合材料1.复合材料的概念和分类2.复合材料的结构和性能3.复合材料的增强机制和界面特性4.复合材料的制备和成型工艺5.常见复合材料的应用领域和加工方法六、成型工艺1.金属材料的成型方法和工艺流程2.非金属材料的成型方法和工艺流程3.高分子材料的成型方法和工艺流程4.复合材料的成型方法和工艺流程七、表面处理与涂装1.表面处理的目的和方法2.金属材料的表面处理工艺3.非金属材料的表面处理工艺4.涂装技术及其应用八、工程材料的环境损伤与防护1.工程材料在使用过程中的损伤类型和机理2.工程材料的防护措施和方法3.工程材料的可持续发展和环境保护九、新材料与材料设计1.新型工程材料的研究和应用现状2.材料设计的原则和方法3.材料设计与工程实践以上为工程材料及其成型基础大纲的主要内容,通过对材料基本概念、分类、性能和加工工艺的介绍,使学生能够掌握工程材料的选择、设计和加工方法,进而提高工程实践能力。
《材料概论》知识点总结
《材料概论》知识点总结
一、材料的分类
材料可以分为金属材料、非金属材料和功能材料三大类。
金属材料包括钢铁、铝、铜、镁等金属,非金属材料包括塑料、陶瓷、橡胶等,功能材料包括复合材料、超导体材料等。
二、材料的特性
材料的特性包括机械性能、物理性能、化学性能和热性能。
机械性能包括抗拉强度、屈服强度、断裂韧性、疲劳性能等;物理性能包括密度、热导率、电导率等;化学性能包括耐腐蚀性、氧化性等;热性能包括热膨胀系数、导热系数等。
三、材料的生产
材料生产包括原料提炼、合金化、熔炼、成型等工艺。
原料提炼可以通过矿石提炼、化学合成等方法进行;合金化是将不同的金属或者非金属元素进行混合;熔炼是将原料加热至熔点后进行铸造和成型。
四、材料的应用
材料的应用广泛,可以应用于机械制造、建筑材料、电子产品、航空航天等多个领域。
不同的材料具有不同的特性,可以用于不同的产品制造。
五、材料的发展趋势
随着科学技术的不断发展,材料科学也在不断创新和发展。
材料的发展趋势包括轻量化、高强度、高温抗性、耐磨性、节能环保等方面。
六、材料检测
材料检测是指对于材料进行质量检测和性能测试。
常见的材料检测方法包括化学分析、金相检测、硬度测试、拉伸测试等。
综上所述,材料概论是制造业中的重要组成部分,对于材料的分类、特性、生产、应用和发展趋势等方面进行了深入的研究。
希望本文的介绍可以为读者对于材料概论有一个较为全面的了解。
材料成型专业概论笔记
材料成型专业概论笔记第一章材料成型及控制工程专业是一个具有机械学科典型特征和浓厚材料学科色彩的宽口径专业,主要研究各种材料成形的工艺方法、质量控制以及材料成形的机械化和自动化,是集材料制备与成形及其过程自动化为一体的综合性学科。
1、材料成形的主要技术内容包括哪些方面?(1)金属材料的塑性成形;(2)金属材料的液态成形;(3)金属材料的连接成形;(4)金属粉末成形;(5)非金属材料成形; 2、举例说明材料成形在工业生产中的作用作为制造业的一项基础和主要的生产技术,材料成形技术在国民经济中占有十分重要的地位,并且在一定程度上代表着一个国家的工业技术发展水平。
采用铸造方法可以生产铸钢件、铸铁件及其各种铝、铜、镁、钛及锌等有色合金铸件;采用塑性成形方法,可生产各种金属(黑色金属和有色金属)及其合金的锻件和板料冲压件;采用连接方法生产独立的制件或产品虽然不如铸造和塑性成形方法的多,但据国外权威机构统计,在各类工业制品中半数以上都需要采用一种或多种连接技术才能制成。
3、简述材料成形工艺的主要特点(1)材料利用率高;(2)产品性能好;(3)产品尺寸规格一致;(4)生产率高;(5)一般制件产品尺寸精度比切削加工低、表面粗糙度值比切削加工高。
4、成形工艺一般可分为哪些类型?图5、材料成形技术的发展趋势是什么?三个综合,即过程综合、技术综合、学科综合。
第二章金属液态成形又称为铸造,是将固态金属加热到液态,熔炼合格后注入预先制备好铸模中,经冷却、凝固成形,获得具有一定形状和性能的毛坯、半成品乃至成品零件的一种材料热加工方法。
所铸造出的产品叫铸件。
1、何谓合金的铸造性能?铸造性能有哪些?合金在铸造生产过程中表现出来的工艺性能;铸造性能如流动性、收缩性、吸气性、偏析性等2、合金的流动性决定于合金的哪些固有性质?提高金属液态流动性的主要工艺措施有哪些?液态金属的流动性是金属的固有性质,主要取决于金属的结晶特性和物理性质。
制定工艺时要考虑流动性对铸模复杂程度的影响。
《材料成型及控制工程专业概论》课程论文
《材料成型及控制工程专业概论》课程论文材成孙倩倩摘要:材料成型及控制工程是研究热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。
是国民经济发展的支柱产业。
本专业培养具备材料科学与工程的理论基础、材料成型加工及其控制工程、模具设计制造等专业知识,能在机械、模具、材料成型加工等领域从事科学研究、应用开发、工艺与设备的设计、生产及经营管理等方面工作的高级工程技术人才和管理人才。
关键词:专业综合介绍主要课程知识当前教育状况个人专业理想学习计划专业综合介绍(1)历史起源80年代初,建立材料科学与工程学科。
1998年教育部进行高等院校本科专业目录调整时,设立了材料成形与控制工程这样一个新的本科专业,其范围涵盖原来的部分机械类专业和部分材料类专业。
2002年材料成形及控制工程教学指导在西宁召开会议,对中国各高校中材料成形及控制工程专业的现状进行了分析与提高。
(2)专业简介材料成型及控制工程专业研究通过热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。
本学科是国民经济发展的支柱产业。
材料成型及控制工程专业作为机械系的一个方向,主要侧重于机械加工方面。
可以说该专业是一个接口,一头联系着材料科学,一头联系着实际工业应用。
(3)培养模块:焊接成型及控制:培养能适应社会需求,掌握焊接成型的基础理论、金属材料的焊接、焊接检验、焊接方法及设备、焊接生产管理等全面知识的高级技术人才。
铸造成型及控制:这是目前社会最需要人才的专业之一。
主要有砂型铸造、压力铸造、精密铸造、金属型铸造、低压铸造、挤压铸造等专业技术及专业内新技术发展方向。
材料成型概论课程教学改革探索
造、 冲压等加工方法 , 以及与之配套的轧机 、 挤压机、
首先 , 先认识实 习后开课 。目前在二年级下学期
材料成型概论》 学生还没有到工厂 、 , 车间实地 拉拔机 、 水压机 、 冲床 、 四柱液压机 等设备 , 若采用传 开设《 统教学方法 , 生难 以凭空想象和理解 , 以吸收消 进行参观和认识 实习 ,因此对真正 的材料成型加工 学 难 生产没有具体 和直观 的感受 。如果 以后能先认识实 化, 只能是 囫囵吞 枣 , 学效 果差 。 教
Eq i me t u p n Ma u a ti gT c n lg .1, 0 n fe r e h oo y No 1 2 1 n 1
材料成型概论 课程教 学改革探 索
曹 燕, 章小峰 , 玲玲 谢
( 安徽工业大学 材料科学与工程学院 Байду номын сангаас 安徽 马鞍山 23 0 ) 40 2
现在采用 多媒体辅助教学方法 ,通 过相关 的图
习后开课 , 则会提高学习效果 。
片、 视频及动画等 , 可以使课 堂授课形 象生动 , 直观 其次 , 用网络教学 , 采 扩大教与学的途径 。网络 且形象 , 让学生在逼真的动画或视频 中, 清楚地 了解 资源丰富 ,学生可 以从 中国期刊 网,超 星图书数 据 各 种塑性加工方法及其设 备的工作原理[ 提高教学 库 , 国期刊 网等校园网内进行查阅相关资料 , 3 】 , 外 教师 品质 , 增加教学的信息量。 可 以将《 材料成型概论》 课件 、 习题 和测试题传 到网
中图分类号 : 4 . G6 20 文献标识码 : B 文章编 号 :6 2 5 5 ( 0 ) 1 0 0 - 2 1 7— 4 X 2 1 1 - 2 0 0 1
革制品压延成型概述—压延法生产人造革的工艺流程
压延设备
压延机 分类
辊筒数目 排列形式
辊筒数目
即开炼机 通常应用于塑炼和压片
二辊
一般用于橡胶的压延成 型
三辊
辊筒 数目
五辊 一般用于硬质PVC片材
四辊
一般用于塑料的压延成 型
辊筒数目的增加
受压延的次数增加,制品质量提高。
可以提高转速,提高生产率。
三辊压延机
辊筒排列形式
I型 三角型
四辊压延机
I型
出料卷重量/kg 20~30
成条状连续运输
塑料压延成型
(3)、压延成型
600×1200三辊压延机压延(0.5~0.7)mm×910mm×1850mm片材时工艺参数
辊筒号
上辊
中辊
下辊
温度/℃
180
185
190~195
650×1800三辊压延机压延(0.5~0.7)mm×930mm×1810mm片材时工艺参数
压延制品
薄膜、薄片和人造革,复合薄膜(如 AI+PE+PET+纸等复合包装薄膜) 的贴合,PVC包装膜,PVC板材、地 板等。
人造革:以布、纸或玻璃布为增强材 料,用辊筒法把粘流态塑料的薄层粘 附在增强材料上。PVC、PU人造革。
压延成型特点
连续成型,生产能力大,操作方便,易自动化; 产品质量均匀,致密、精确; 成型不用模具,辊筒为成型面,表面可压花纹; 制品为薄层连续型材,断面形状固定,制品尺寸大; 成型适应性不是很宽;
T2
① 辊筒加热 ② 摩擦与剪切生热
T3
T4
塑料压延成型
工艺参数
辊速
压延物的情况
1辊
硬质PVC
压延软PVC薄膜时的辊速/(m/min) 42
材料成型技术1-概论
外部钢结构的钢材用量为4.2万吨,整个工程包括混凝土中 的钢材、螺纹钢等,总用钢量达到了11万吨,全部为国产钢。 500名焊工(A证200名、B证300名)消耗了6万吨焊材,解决了 大量的焊接技术难题,世界领先水平。
制造业是我国国民经济的支柱产业,材 料成形则是制造业的一项基础的和主要 的生产技术,在一定程度上代表一个国 家工业和科技发展水平。
没有先进的材料成形技术就没有现代制 造业。
具体数据统计
世界上一半以上的钢材通过焊接制成构件或产 品后才投入使用;
机床和通用机械中铸件质量占70~80%; 农业机械中铸件质量占40~70%; 汽车中铸件质量占20%,锻压件质量占80%; 飞机上的锻压件质量占85%; 家用电器和通信产品中60~80%的零部件为冲
压件和塑料成形件。
三、课程性质
学位课程。
四、课程任务与要求
较为全面系统地了解材料先进成形技术 及基本原理;
了解与材料成形工艺有关 固态成形技术 液态成形技术 焊接成形技术
和复合材料制品的成形
青铜器时代
司母戊大方鼎
铜奔马
(河南安阳殷墟出土) (甘肃武威雷台出土)
青铜器时代
越王勾践宝剑 (湖北江陵楚墓出土)
铁器时代
战国凹形铁锄
古代铁器中带有球状石墨
(湖南长沙砂子塘出土)
铁器时代
河北沧州铁狮 (中国古代最大的铸铁文物)
近、现代
橡胶制品
塑料制品 陶瓷制品
二、材料成形技术在国民经济中的地位
材料成形技术简介
传统的定义:指铸造、锻造、焊接 等金属材料成形的技术。
现代的定义:所有利用物理、化学、 冶金原理使材料成形的方法。
第一章 引言
材料成形的发展历史 材料成形技术在国民经济中的地位 课程性质 课程任务与要求 课程教学内容
材料成型概论 第三章 轧制成型2
轧机按轧辊装配形式分类
按轧辊的数目、放置、大小来区分轧机的基本型式 为:表3-2
3.4.1 轧钢生产系统
轧钢生产工艺过程: 由钢锭或钢坯轧成具有一定规格和性能的钢材的一 系列加工工序的组合。
❖ 在提高质量和产量的同时,力求降低成本是制定轧 钢生产工艺过程的总任务和总依据。
❖ 碳素钢和合金钢的基本典型生产工艺过程如下图所 示。
3.4.1 轧钢生产系统
轧钢生产工艺过程总包括六大工序: 热轧工艺系统—— 坯料准备→加热→轧制→冷却→精整→验收入库 冷轧工艺系统—— 坯料准备→酸洗→轧制→退火→精整→验收入库
材料也比较稀贵,产量不大而产品种类繁多。 ❖ 常属中型或小型的型钢生产系统或混合生产系统。
❖ 各种轧钢生产系统组成见下表。
3.4.1 轧钢生产系统
轧材生产系统的发展: ❖ 向大型化、连续化、自动化方向发展。 ❖ 工艺流程经历了“长流程”到“短流程”的发展过
程。 ❖ 目前“长流程”和“短流程”共存。 ❖ 长流程主要吃铁水,短流程主要吃废钢。
❖ 采用连铸板坯作为轧制板带钢的原料是今后发展的 必然趋势。
3.4.1 轧钢生产系统
型钢生产系统 热轧线材、热轧棒材、热轧H型钢、热轧型钢
❖ 型钢生产系统的规模往往不很大,就规模而言可分 为大型、中型和小型三种生产系统。
❖ 年产100万t以上的称大型生产系统;年产30~ 100万t称中型生产系统;年产30万t以下的称小型 生产系统。
材料成型过程控制概论
2020/7/10
2
自动控制
自动控制是采用自动检测、信号调节(包括 数字调节器、计算机)、电动执行等自动化装置, 组成的闭环控制系统,它使各种被控变量(如流 量、温度、张力、轧机辊缝和轧机转速等)保持 在所要求的给定值上。过程自动化是指在生产过 程中,由多个自动控制系统组合的复杂过程控制 系统。
2020/7/10
材料成形过程控制
1. 概论
余万华 北京科技大学材料学院
2020/7/10
1
材料成形过程控制
这门课是在学习完《自动控制原理》的基础 上开设的,目的是:
(1)学习现代控制理论的一些基本知识; (2)从系统角度讲解自动控制原理的应用; (3)工业过程控制系统; (4)了解材料加工生产过程中的一些实际
控制系统的组成和工作原理。
3
自动控制目的
生产过程实现自动化的目的是:提高工序质量, 用有限资源,制造持久耐用的精美产品;在人 力不能胜任的复杂快速工作场合中实现自动操 作;把人从繁重枯燥的体力劳动中解放出来; 不轻易受人的情绪和技术水平的影响,稳定工 序质量。实现自动化大批量生产,提供质量好、 性能稳定、价格具有竞争力的产品,为企业生 存发展提供更大的空间。
2020/7/10钢生产日益连续化。
轧制速度的不断提高。
生产过程计算机控制。
产品质量和精度高标准交货。
操作者具有高度水平。
由于连轧机生产效率高,质量易于控制,轧制过程连续,易于实现自动化和机械化, 而且这种轧机产量大,生产效率高,质量易于控制,经济效益非常显著。所以各种先进 的科学成果都竞相应用于连轧过程,大大促进了连轧过程自动化的发展,其中以热带连 轧自动化的发展最为迅速和成熟。
2020/7/10
材料成型原理与工艺(01)-液态金属成形概论
夹杂物的排除: 夹杂物的排除:
金属液静止处理、真空浇注,加熔剂, 金属液静止处理、真空浇注,加熔剂,过滤法
2012-1-8
凝固区域
固相区、凝固区、液相区
凝固方式
逐层凝固方式 体积凝固(糊状凝固方式) 体积凝固(糊状凝固方式) 中间凝固方式
2012-1-8 22
如果合金的结晶温度范围很宽,且铸件的温度分布较 为平坦,则在凝固的某段时间内,铸件表面并不存在 固体层,而液、固并存的凝固区贯穿整个断面。由于 这种凝固方式与水泥类似,即先呈糊状而后固化,故 称为糊状凝固。球墨铸铁、高碳钢、锡青铜和某些黄 铜等都是糊状凝固的合金。 中间凝固方式 大多数合金的凝固介于逐层凝固和糊状 凝固之间,称为中间凝固方式。中碳钢、高锰钢、白口 铸铁等具有中间凝固方式
气压保温浇包
15
采用德国KW公司技术的新二线主机,发动机缸体造型生产线。
罗兰门第制芯中心
2012-1-8 16
二、液态金属在铸型中的流动
1、 液态金属充型能力的基本概念 、
液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力, 叫做液态金属充填铸型的能力,简称液态金属的充型能力。 液态金属充填铸型一般是在纯液态下充满型腔的,也有边充型边结晶的 情况,在充型过程中当液态金属中形成晶粒堵塞充型通道时,流动则停 止,造成铸件“浇不足”缺陷。 液态金属的充型能力(实验-螺旋形试样):
2012-1-8
18
思考题 1 1. 液态金属成形的概念是什么?液态金属 液态金属成形的概念是什么? 成形具有哪些优点? 成形具有哪些优点? 2. 液态金属成形生产过程。 液态金属成形生产过程。
材料成型概论-第四讲-钢坯型钢生产工艺
轧制缺陷
形状特征 产生原因
轧辊调整不当、孔型不当等 初轧机辊面粗糙或轧制方法不当 辊面粗糙、磨损或氧化皮剥落 导卫装置不适、磨损、粘结等 孔型过充满、辅助设施安装不当
沿轧制方向出现的重叠缺陷 沿轧制方向出现的皱纹缺陷 制品表面粗糙呈凸凹不平状 表面划有沟状痕迹 沿轧制方向出现的连续凸筋
辊 印
……
表面缺陷呈周期性出现
其横截面主要是圆形,也可以是方形、矩形 或多边形。
4.1.2 钢坯的表面和内部缺陷
4.1.2 钢坯的表面和内部缺陷
表面缺陷: 钢锭带来的缺陷
种 类 形状特征 产生原因
钢锭纵裂纹或热应力
钢锭横裂纹、加热不均等 钢锭表面或表层有气泡 钢锭凝固时的收缩孔等 钢锭内部或表面有杂质混入 钢锭的二次结疤或低温轧制
4.1 钢坯生产
4.1.1 钢坯的种类、形状和用途
按断面形状和特性不同可分为五类:
方坯、矩形坯、板坯、异型坯、管坯
方坯(blooms and billets)
其断面为方形,横截面沿长度方向不变。 边长大于 150mm 方坯称为大方坯 (Square blooms)。 边长40~150 mm方坯称为小方坯(billets)或方 坯(Square billets)。
钢材品种规格:轧制钢材的断面形状和尺寸总称。
4.2.1 型钢定义
全长具有一定断面形状和尺寸的实心钢材称为型 钢。(Hot/Cold-Rolled bars/sections)
简单断面型钢:圆钢、方钢、扁钢、角钢、六角 钢、多边形钢等; 复杂断面型钢:槽钢、工字钢、H型钢、钢轨等。
4.2 型钢生产的一般概念
断面各分支部分接触轧辊和变形的非同时性;
断面各处温度不均匀,而产生轧后冷却收缩不均匀,造成 轧件弯曲和扭转; 工具磨损也不均匀,轧件尺寸难以精确计算; 轧机调整、导卫装置设计、安装复杂。
第一章 滤棒成型概论
第一章滤棒成型概论第一节滤棒的生产和发展一、滤棒的作用和发展滤棒是指以过滤材料(如烟用纤维丝束及芯纸等)为原料,加工卷制而成的具有过滤性能并有一定长度(如120mm)的圆形棒。
滤嘴是指滤棒分切后接装在卷烟烟支的抽吸端,对卷烟烟气中某些物质(如焦油、烟碱等)起过滤作用的圆柱体,是滤嘴卷烟的一个组成部分。
卷烟滤嘴对烟气粒相物有一定的过滤作用,可部分地滤去烟气中的某些成分,如焦油、烟碱等,减少烟气中的有害物质,从而缓解吸烟与健康的矛盾。
消费者接受滤嘴卷烟的另一个原因是滤嘴避免了烟末粘在嘴唇上所引起的不适感。
对于卷烟企业,则可以借接装滤嘴减少单箱烟叶消耗,提高产品质量档次和价值,从而获得较大的经济效益。
世界上最早出现的滤嘴卷烟是1931年本森·海格公司生产的以纸为滤嘴的“议会”(Parliament)牌卷烟。
醋酸纤维滤嘴出现于十九世纪50年代,1951年美国Brown &Williamson 生产的“总督”(Viceroy)牌卷烟最先使用了以醋酸纤维为滤材的滤嘴。
1954年英国皇家医学会发表了“吸烟与健康”报告以后,世界性吸烟与健康的争论不断升级,加速了滤嘴卷烟的发展。
至1976年滤嘴卷烟已达世界总产量的40%左右,十九世纪80年代末,主要生产卷烟国的滤嘴卷烟平均已达85%左右。
其中日本、英国为98%,美国、原联邦德国95%,韩国、埃及、阿根廷等国家已达100%。
我国滤嘴卷烟生产起步较晚,1973年青岛卷烟厂生产的“大前门”牌卷烟最早接装了纸质滤嘴,到十九世纪80年代初期滤嘴卷烟只占我国总产量的3%。
随着我国烟草行业的崛起,1985年以后滤嘴卷烟急速发展,1990年上升到50%,1996年末卷烟接嘴率达到了93%,1998年已达97.3%,至今无嘴卷烟的生产已寥寥无几。
随着滤棒生产技术的发展和卷烟新产品的开发,滤嘴不仅在数量上满足了卷烟厂的需要,而且在品种上也开始按卷烟的功能和香味,采用多种材料、多种形态。
材料概论(周达飞)(二版)第3-2章
图 真空沉积 法机理图
机理:将需制成膜的金属元素or化合物在真空中蒸发 or升华,使之在基片表面上析出并附着的过程。
第三章 材料的制备方法
(2)真空溅射法:荷能粒子(高能的离子、中性原
子等)冲击靶材,使靶材表面原子or原子团逸出。
控溅射是在溅射仪中附加了磁场,∵洛仑兹力的作用, 能使V溅射,∴使溅射技术→新的高度。
• 反应溅射:通过将活性气体混合在放电气体中,可控制
膜的组成和性质,主要用于制绝缘化合物薄膜。可采用 直流、高频和磁控等溅射方法。
第三章 材料的制备方法
(3)离子镀法
是蒸发工艺与溅射技术的结合,1种较新的方法。
共聚单体从循环气体压缩机出 口、冷却器进口之间引入反应 器;引发剂加入循环管路的位 置是在冷却器出口与反应器入 口之间。为调节组成,循环气 部分放空前需要经过单体冷凝 及粉粒分离器。 产品出料包括系统流化床料位 测定、出料罐、吹送罐等。 流化床是整个聚合过程的核心 设备,包括:筒体、分布板和 扩大段3部分。
溅射设备主要有以下几种:
• 二极直流溅射:最简单,很早就工业生产,但无法获
得绝缘膜。
• 高频溅射:可在较低电压下进行,能制介质膜,∴高频
溅射仪自1965年问世以来很快得到普及,数量在溅射仪 中占绝对优势。
• 磁控溅射:与真空蒸镀相比,二极直流or高频溅射的V
成膜都非常小(只有~50nm/min,约为蒸镀的1/51/10)。磁
1.熔融法
通过加热使原料反应并熔融 (在加热过程和熔融状态下产生
各种化学反应)从而形成一定的组成和结构。按T高低分为:
A.高温熔融法:将矿物原料投入各种高温熔炉内,使其 在高温下发生反应并熔融。如:
聚合物成型加工基础概论(PDF)
高分子材料加工工程过去、现在、未来四川大学高分子科学与工程学院1838年,A.Parker制备出了第一种人造塑料——硝酸纤维素,并在1862年伦敦的国际展览会上展出。
当时,人们希望该材料能替代象牙一类的天然材料,被称为Parkesine。
1840年,Goodyear和Hancock针对天然橡胶开发了“硫化”工序,达到消除粘性增加弹性的目的。
通过加入硫磺粉末在橡胶本体中产生了额外的化学键,从而使得天然橡胶性能发生改变。
1851年,硬质橡胶实现商品化。
1870年,纽约的J.Hyatt在高温高压下制备了低硝酸含量的硝酸纤维素,俗称赛璐珞,并申请了专利。
它是第一种具有商业价值的聚合物,也是在1907年Bakeland开发出酚醛塑料前唯一的商品塑料。
而由苯酚和甲醛反应制得酚醛塑料则是最古老的真正意义上的合成聚合物。
高分子的过去、现在和未来在Staudinger的理论出现之前,科学界对橡胶和其他分子量很高的材料的本质认识一直是不清楚的。
对19世纪的大多数研究学者来说,分子量超过10,000g/mol的物质似乎是难以置信的,他们把这类物质同由小分子稳定悬浮液构成的胶体系统混为一谈。
Staudinger否定了这些物质是有机胶体的观点。
他假定那些高分子量的物质,即聚合物,是由共价键形成的真实大分子,并在其大分子理论中阐明了聚合物由长链构成,链中单体(或结构单元)通过共价键彼此连接。
较高的分子量和大分子长链特征决定了聚合物独特的性能。
尽管一开始他的假设并不为大多数科学家所认可,但最终这种解释得到了合理的实验证实,为工业化学家们的工作提供了有力的指导,从而使得聚合物的种类迅猛地增长。
1953年,Staudinger被授予诺贝尔奖。
现在人们都已非常清楚:塑料以及橡胶、纤维素、DNA等很多物质都是大分子。
是钢的体积产量的2~3倍法国西德乐公司的DLC高效成型机正在成型的塑料瓶日精ASB公司的DLC高效成型机塑料管材的智能铺设精确厚度控制多层复合膜吹塑成型高分子材料工程未来发展热点高效化高速化精密化WP 公司的远程控制WP 公司的远程控制36吨/小时产量的设备36吨/小时产量的设备可注射万分之一克的精密注射机可注射万分之一克的精密注射机聚合物加工的概念聚合物加工(Polymer Processing)是将聚合物物料转变为实用制品的各种工艺和工程。
发泡成型原理概论
发泡塑料注塑成型原理概论发泡塑料是以热塑性或热固性树脂为基体,其内部具有无数微小气孔的塑料。
发泡是塑料加工的重要方法之一,塑料发泡得到的泡沫塑料含有气固两项- 气体和固体。
气体以泡孔的形式存在于泡沫体中,泡孔与泡孔互相隔绝的称为闭孔,连通的称为开孔,从而有闭孔泡沫塑料和开孔泡沫塑料之分。
泡沫结构的开孔或闭孔是由原材料性能及其加工工艺所决定的。
塑料发泡的技术渊源久远。
最早是20年代初期的泡沫胶木,用类似制造泡沫橡胶的方法制取;30年代出现硬质聚氨酯泡沫和聚苯乙烯泡沫;40年代有聚乙烯、聚氯乙烯、环氧树脂、酚醛泡沫;50年代则有可发性聚苯乙烯泡沫和软质聚氨酯泡沫。
现在,基本上所有的塑料,包括热塑性和热固性的都可以发泡为泡沫塑料。
工业上的制备方法有:挤出发泡、注塑发泡、模塑发泡、压延发泡、粉末发泡和喷涂发泡等等。
其中,注塑发泡是最重要的成型方法之一,在这里重点讲述注塑成型发泡。
发泡成型原理塑料的发泡方法根据所用发泡剂的不同可以分为物理发泡法和化学发泡法两大类。
在这里首先简单介绍一下发泡剂。
◆发泡剂发泡剂可简单粗分为物理发泡剂与化学发泡剂两类。
对物理发泡剂的要求是:无毒、无臭、无腐蚀作用、不燃烧、热稳定性好、气态下不发生化学反应、气态时在塑料熔体中的扩散速度低于在空气中的扩散速度。
常用的物理发泡剂有空气、氮气、二氧化碳、碳氢化合物、氟利昂等;化学发泡剂是一种受热能释放出气体诸如氮气、二氧化碳等的物质,对化学发泡剂的要求是:其分解释放出的气体应为无毒、无腐蚀性、不燃烧、对制品的成型及物理、化学性能无影响,释放气体的速度应能控制,发泡剂在塑料中应具有良好的分散性。
应用比较广泛的有无机发泡剂如碳酸氢钠和碳酸铵,有机发泡剂如偶氮甲酰胺和偶氮二异丁腈。
◆物理发泡法简单地讲,就是利用物理的方法来使塑料发泡,一般有三种方法:(1)先将惰性气体在压力下溶于塑料熔体或糊状物中,再经过减压释放出气体,从而在塑料中形成气孔而发泡;(2)通过对溶入聚合物熔体中的低沸点液体进行蒸发使之汽化而发泡;(3)在塑料中添加空心球而形成发泡体而发泡等。
材料成型原理-4.1 4.2 晶体形核
4、凝固的结晶学基础5、凝固的传热基础6、凝固过程的流体流动7、凝固金属的组织结构8、凝固过程的缺陷和对策第四章(1)由液体向晶态固体(2)由液体向非晶态固体常用工业合金或金属的凝固过程一般只涉及前者,本章主要讨论液态金属、合金的凝固过程。
第四章第五节液-第六节共晶合金的凝固第七节包晶合金的凝固第四章毕。
第四章6第四章()V G L T S T Δ=−−⋅Δ=−过冷:液体金属开始结晶的温度必须低于平衡熔点Tm ,此现象称之为过冷。
过冷度ΔT=Tm-T 。
过冷度ΔT 越大,凝固相变驱动力ΔG V 越大。
过冷度ΔT 越大,凝固相变驱动力ΔG V越大。
第五节液-固界面形貌的稳定性第六节共晶合金的凝固第七节包晶合金的凝固第四章发生形核的过程,也称z非自发形核(heterogeneous nucleation外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”或“非均质形核工业金属凝固大都是异质生核。
第四章第四章系统自由能变化= 体积自由能的变化SLV A G V G σ+Δ⋅=ΔΔG -系统自由能变化V,A -分别为晶胚的体积和表面积σSL -晶胚的界面能ΔG V -单位体积液态金属凝固时自由能的变化10第四章凝固的结晶学基础SL V r G r G σππ23434+Δ−=ΔLS m r r T T L G σππ23434+⋅Δ−=ΔLS m r T T L r σππ23434+Δ⋅−=对于半径为r 的球形晶胚(均质生核),0=∂Δ∂r G T L T G r m LS V LS Δ=Δ−=σσ22*令,则有求得临界晶核半径:V LS G r Δ=σ2*mV T TL G Δ−=Δ因1、临界形核半径第四章TL T G r mLS V LS Δ=Δ−=σσ22*r <r*时,r ↑→ΔG ↑r = r*处时,ΔG 达到最大值r >r*时,r ↑→ΔG ↓实际上金属结晶的过冷度一般为几分之一到几十摄氏度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11 铁碳合金中含碳量对焊接性的影响,如何提高材料的焊接性,避免焊接开裂?答:焊接性---是指被焊金属在一定的焊接工艺条件下(焊接方法、焊接材料、工艺参数、结构型式),获得优质焊接接头的难易程度。
即对焊接加工的适应性。
包括接合性能和使用性能。
1. 工艺条件相同时,材料经焊接后产生缺陷、裂纹等的倾向性大小。
2 . 材料对某种焊接工艺所表现出的可焊性,主要是指焊接接头在使用中的可靠性。
在低温环境下焊接厚度大,刚性大的结构时,应该进行预热,否则容易产生裂纹。
14 各种焊接材料的焊接特点及可焊性差异。
●低碳钢的碳含量≤0.25% ,塑性好,一般没有淬硬倾向,对焊接过程不敏感,
可焊性良好。
可用各种焊接方法进行焊接而不需采取特殊的工艺措施。
●中,高碳钢(1)热影响区易产生淬硬组织和冷裂缝。
(2)焊缝金属热裂缝倾向较大。
●低合金结构钢其特点为:
1.热影响区的淬硬倾向:钢材的强度级别越高,焊后热影响区的淬硬倾向也越大。
2.焊接接头的裂纹倾向:随着钢材强度级别的提高,产生裂纹的倾向也增加。
●不锈钢的焊接特性
(1)焊接接头的晶界腐蚀
(2)热裂纹
●铸铁的焊接特点:
(1)熔合区易产生白口组织,硬度高,很难加工
(2)易产生裂缝;
(3)易产生气孔。
●铝及铝合金焊接特点
(1)易氧化。
(2)易在焊缝中形成气孔。
(3)焊接接头易开裂。
(4)铝及铝合金高温时强度和塑性极低,易产生变形。
(5)操作困难。
高温液态时,铝及铝合金无显著的颜色变化,操作时难以掌控加热温度,容易出现烧穿、焊瘤等缺陷。
铜及铜合金的焊接特点:
1. 铜的导热性高,焊接时热量极易散失,易出现未焊透和未熔化等缺陷。
2. 铜在液态时易氧化,生成的CUO与铜组成低熔点共晶,分布在晶界上形成薄弱环节;铜的收缩系数大,易产生焊接应力和裂缝。
3.铜在液态时吸气性强,焊接时易产生气孔和氢脆现象。
4 .铜的电阻极小,不适宜电阻焊接。
5.铜合金中的元素更易氧化,使可焊性更差。
15 减少焊接应力和变形的主要措施。
焊接应力与变形产生的原因是焊接过程中对焊件的不均匀加热和冷却
①合理设计焊接构件。
②采取必要的技术措施。
A.反变形法 B 加裕量法 C. 刚性固定法 D. 选用合理的焊接顺序
E.采用合理的焊接方法
(a)逐步退焊法;(b)跳焊法;(c)分中逐步退焊法;(d)分中对称焊法
16 金属塑性成形对金属的要求。
(1)变形冲压件的材料应有足够塑性与较低变形抗力;
17 板料拉深成型的缺陷及预防措施。
拉深主要缺陷:拉裂和起皱
使凹模圆角半径足够大,拉深系数m尽量大,翻边系数k f尽量小,压边力大小合适,模具间隙。
18 冲裁件的断面特征及冲裁间隙对断面质量影响。
冲裁件断面由圆角带、光亮带、断裂带和毛刺四部分组成。
圆角带是刃口附近板料弯曲和伸长变形的结果,是变形区对这部分坯料作用而产生的。
光亮带是在侧压力作用下板料相对滑移的结果。
断裂带是由刃口处的微裂纹在拉应力作用下不断扩展而形成的撕裂面,断面粗糙且有斜度。
由于裂纹的产生一般在刃口侧面,故在普通冲裁加工中总有毛刺产生。
间隙合理上下裂纹重合,断裂带毛刺小。
间隙大上下裂纹向内错开,断裂带毛刺大。
间隙小上下裂纹向外错开,形成两节光面间夹裂纹。
19 连续模与复合模的特征与区别。
连续模:冲压设备在一次行程内在模具不同的工位可以完成两个或两个以上工序的冲模。
特点:
①生产效率高,便于实现机械化和自动化,适用于大批量生产,操作方便安全。
②结构复杂,制造精度高,周期长,成本高。
③由于定位积累误差,所以内外形同心度高的零件不适合这种模具。
复合模:在冲压设备的一次行程中,在模具的同一工位同时完成数道冲压工序的冲模。
特点:
结构紧凑,冲出的制件精度高,生产率也高,适合大批量生产,尤其是孔与制件外形的同心度容易保证,但模具结构复杂,制造较困难。
适用于产量大、精度高的冲
压件。
20 板料弯曲半径对成型的影响。
弯曲半径不能小于材料允许的最小弯曲半径。
种塑性变形程度的大小与弯曲半径r的大小有关,r越小,变形程度越大,金属的加工硬化作用越强。
r太小就有可能在工件弯曲的部分外侧开裂。
21 板料冲压的基本工序有哪些,如何确定零件的冲压工序。
落料冲孔弯曲拉深翻边修边
何为自由锻造,有哪些工序?模锻能锻出通孔吗,为什么?
自由锻造是利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件成形过程。
分为基本工序、辅助工序、精整工序三类
基本工序:镦粗、拔长、冲孔等
辅助工序:压肩、倒棱、压钳口等。
精整工序:整形、清除表面氧化皮等。
不能锻出通孔,有连皮。
热挤压,冷挤压,温挤压的概念。
挤压成形:金属坯料受三向压应力作用,产生塑性变形,从模具空口挤出或充满型腔成形,获得制品。
在室温下进行的挤压
坯料温度高于室温,低于再结晶温度的挤压。
再结晶温度以上,与锻造温度相同
何谓锻件拔模斜度和结构斜度,有何区别。
脱模斜度也就是拔模斜度,是为了方便出模而在模膛两侧设计的斜度。
脱模斜度的取向要根据塑件的内外型尺寸而定
铸件的起模斜度是为方便起模而设定,其垂直于分型面,而加工后不一定存在;而结构斜度是为铸件的美观度和结构需要而做出的,没有方向性。
结构斜度是零件原始设计的结构,是依据零件工作使用状态确定的,毛坯制造者无权修改;拔模斜度是编制毛坯生产工艺时,为了造型拔模(起模)方便,而不至于把型砂带出,是由毛坯制造者根据客户或技术条件、使用状态来确定的,这是铸件制造的斜度,是允许的、合理的斜度。
模锻时飞边槽的作用。
飞边槽作用:促使金属充满模膛,增加金属从模膛中流出的阻力,同时容纳多余的金属。