大学物理电磁学
大学物理电磁学
大学物理电磁学引言电磁学是物理学的一个重要分支,研究电荷之间相互作用的原理和电磁波的特性。
在大学物理学中,电磁学是必学的一门课程,它涵盖了电荷、电场、电势、电流、电磁感应、电磁波等基本概念和原理。
本文将介绍大学物理电磁学的基本原理和相关内容。
一、电荷和电场电荷是电磁学的基本物理量之一,分为正电荷和负电荷。
正电荷和负电荷相互吸引,相同电荷相互排斥。
电场是电荷在周围产生的一种力场,用于描述电荷对其他电荷的作用力。
电场强度是衡量电场强弱的物理量,它的定义是单位正电荷所受的力。
二、电场的产生和性质电荷在空间中形成的电场是由电荷成对产生的。
当有多个电荷时,它们各自产生的电场可以叠加。
电场的性质包括电场的线性性质、电场的无旋性和电场的势能。
三、电势和电势能电势是描述电场对单位正电荷做的功的物理量。
电势是标量,它对应于电场的能量分布。
电势能是电荷在电场中具有的能量,它是由电势引起的。
四、电容和电容器电容是描述电场在电荷分布上的储存能力的物理量。
电容器是用来储存电荷和能量的装置,由两个导体之间的介质隔开,形成电场。
常见的电容器包括电容器、平行板电容器和球形电容器。
五、电流和电阻电流是电荷随时间变化的物理量,是单位时间内流过某个横截面的电荷量。
电阻是导体对电流流动的阻碍,它符合欧姆定律。
电流在电路中的运动受到欧姆定律和基尔霍夫定律的约束。
六、磁场和磁感应磁场是由带电粒子的运动产生的物理现象,描述了磁力的作用。
磁感应是描述磁场强度的物理量。
电流在导线中产生磁场,被称为安培环路定律。
七、电磁感应和法拉第定律电磁感应是通过磁场的变化产生电场的现象。
法拉第定律描述了导体中感应电动势与磁通量变化的关系。
法拉第定律是电磁感应定律的基础,它是电磁感应现象的定量描述。
八、电磁波和光学电磁波是由电场和磁场相互作用而产生的一种波动现象。
电磁波具有电磁场的传播性质,包括光学、无线电波等各种波动现象。
结论大学物理电磁学是电磁学的基本课程,涵盖了电荷、电场、电势、电流、电磁感应、电磁波等内容。
大学物理电磁学
大学物理电磁学是物理学的一个重要分支,主要研究电磁现象的规律和本质。
电磁学在科学技术、工业生产和日常生活中都有着广泛的应用。
本文将从电磁学的基本概念、基本定律和电磁波的传播等方面对大学物理电磁学进行介绍。
一、基本概念1.电荷:电荷是物质的一种属性,分为正电荷和负电荷。
电荷间的相互作用规律是:同种电荷相互排斥,异种电荷相互吸引。
2.电场:电场是电荷及变化磁场周围空间里存在的一种特殊物质,它对放入其中的电荷有作用力。
电场的强度用电场强度E表示,单位是牛/库仑。
3.磁场:磁场是磁体周围空间里存在的一种特殊物质,它对放入其中的磁体有作用力。
磁场的强度用磁感应强度B表示,单位是特斯拉。
4.电磁波:电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量。
电磁波在真空传播速度与光速一样,速度为30万千米/秒。
二、基本定律1.库仑定律:库仑定律是描述电荷之间相互作用的定律,其内容为:真空中两点电荷间的作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力在它们的连线上。
2.安培定律:安培定律是描述电流和电流激发磁场的定律,其内容为:电流I1通过一条无限长直导线时,在距离导线r处产生的磁场强度H1与I1成正比,与r成反比,即H1与I1r成反比。
磁场方向垂直于电流方向和通过点的平面。
3.法拉第电磁感应定律:法拉第电磁感应定律是描述磁场变化引起电场变化的定律,其内容为:穿过电路的磁通量发生变化时,产生感应电动势。
感应电动势的大小与磁通量变化率成正比,与电路的匝数成正比。
4.麦克斯韦方程组:麦克斯韦方程组是描述电磁场分布和电磁波传播的四个偏微分方程,包括库仑定律、法拉第电磁感应定律、安培定律和位移电流定律。
三、电磁波的传播1.电磁波的发射:电磁波的产生通常是通过振荡电路实现的。
当振荡电路中的电场和磁场相互垂直且同相振荡时,电磁波便会产生并向外传播。
大学物理《电磁学》PPT课件
欧姆定律
描述导体中电流、电压和电阻之间关系的 定律。
电场强度
描述电场强弱的物理量,其大小与试探电 荷所受电场力成正比,与试探电荷的电荷 量成反比。
恒定电流
电流大小和方向均不随时间变化的电流。
电势与电势差
电势是描述电场中某点电势能的物理量, 电势差则是两点间电势的差值,反映了电 场在这两点间的做功能力。
电介质的极化现象
1 2
电介质的定义 电介质是指在外电场作用下能发生极化的物质。 极化是指电介质内部正负电荷中心发生相对位移, 形成电偶极子的现象。
极化类型 电介质的极化类型包括电子极化、原子极化和取 向极化等。
3
极化强度
极化强度是描述电介质极化程度的物理量,用矢 量P表示。极化强度与电场强度成正比,比例系 数称为电介质的电极化率。
磁场对载流线圈的作用
对于载流线圈,其受力可分解为沿线圈平面的法向力和切线方 向的力,分别用公式Fn=μ0I²S/2πa和Ft=μ0I²a/2π计算。
05
电磁感应原理及技 术应用
法拉第电磁感应定律
法拉第电磁感应定律的内容
01
变化的磁场会产生感应电动势,感应电动势的大小与磁通量的
变化率成正比。
法拉第电磁感应定律的数学表达式
安培环路定理及其推广形式
安培环路定理
磁场中B沿任何闭合路径L的线积分, 等于穿过这路径所围面积的电流代数 和的μ0倍,即∮B·dl=μ0∑I。
推广形式
对于非稳恒电流产生的磁场,安培环路 定理可推广为 ∮B·dl=μ0∑I+ε0μ0∂/∂t∮E·dl。
磁场对载流导线作用力计算
载流导线在磁场中受力
当载流导线与磁场方向不平行时,会受到安培力的作用,其大 小F=BILsinθ,方向用左手定则判断。
大学物理《电磁学》PPT课件
电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势
大学物理电磁学公式
大学物理电磁学公式大学物理电磁学是物理学中的一个重要分支,研究电场和磁场以及它们之间的相互作用。
在学习和研究电磁学的过程中,我们经常会接触到一系列重要的公式。
以下是一些常见的大学物理电磁学公式的详细介绍。
1. 库仑定律(Coulomb's Law):库仑定律描述了两个点电荷之间相互作用力的大小和方向。
它的数学表达式为:F = k * |q1 * q2| / r²其中,F为两个电荷所受的力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
2. 电场强度(Electric Field Intensity):电场强度描述了电荷在某一点周围的电场的强弱。
对于一个点电荷,其电场强度的数学表达式为:E = k * |q| / r²其中,E为电场强度,k为库仑常数,q为电荷的大小,r为点电荷到被测点之间的距离。
3. 电势能(Electric Potential Energy):电势能描述了电荷由于存在于电场中而具有的能量。
对于一个点电荷,其电势能的数学表达式为:U = k * |q1 * q2| / r其中,U为电势能,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
4. 电势差(Electric Potential Difference):电势差描述了电场中两个点之间的电势能的差异。
对于两个点电荷之间的电势差,其数学表达式为:ΔV = V2 - V1 = -∫(E · dl)其中,ΔV为电势差,V1和V2分别为两个点的电势,E为电场强度,dl为路径元素。
5. 电场线(Electric Field Lines):电场线用于可视化电场的分布情况。
电场线从正电荷流向负电荷,并且密集的电场线表示电场强度较大,稀疏的电场线表示电场强度较小。
6. 电场的高斯定律(Gauss's Law for Electric Fields):电场的高斯定律描述了电场通过一个闭合曲面的总通量与该闭合曲面内的电荷量之间的关系。
大学物理电磁学公式总结(精选2024)
05
交流电路中的电磁学公式应用
正弦交流电三要素及有效值概念
要点一
正弦交流电的三要素
要点二
有效值概念
最大值(峰值)、角频率(或频率、周期)和初相位。
正弦交流电的有效值等于其最大值的√2/2倍,用于描述交 流电做功能力的大小。
复数表示法及相量图解法在交流电路中应用
复数表示法
用复数表示正弦交流电,实部表示有效值,虚部表示 电导线在磁场中所受的力,公式为F = BIL,其中B为磁感应强度,I为电 流,L为导线长度。
麦克斯韦方程组
高斯定理
表示电场中电通量与电荷量的关系,公式 为∮E·dS = Q/ε0,其中E为电场强度,dS 为面积元,Q为电荷量,ε0为真空介电常
数。
法拉第电磁感应定律
表示磁场变化时产生的感应电动势,公式 为ε = -dΦ/dt,其中ε为感应电动势,Φ为
电磁辐射的相对论效应
高速运动电荷产生的电磁辐射在频率、方向等方面会发生变化。
统一场论思想及其发展
01
爱因斯坦的统一场论思想
试图将引力场和电磁场统一在一个理论框架内,尽管未能实现,但为后
世研究提供了重要启示。
02
弦理论与M理论
现代物理理论试图通过更高维度的空间和时间来实现场论的统一,弦理
论和M理论是其中的代表。
库仑定律
描述两个点电荷之间的相互作用力,公式为$F = kfrac{q_1q_2}{r^2}$,其中$k$为库仑常数,$q_1$和 $q_2$为两个点电荷的电荷量,$r$为它们之间的距离。
电场强度
描述电场中某点的电场力作用效果,公式为$E = frac{F}{q}$,其中$F$为试探电荷所受的电场力,$q$为试 探电荷的电荷量。
大学物理电磁学总结(精华)ppt课件(2024)
34
创新实验设计思路分享
组合实验法
将多个相关实验进行组合设计,以提高实验 效率和准确性。
对比实验法
通过对比不同条件下的实验结果,探究物理 现象的本质和规律。
仿真模拟法
利用计算机仿真技术模拟实验过程,以降低 成本和提高安全性。
2024/1/28
改进测量方法
针对传统测量方法的不足之处进行改进和创 新,提高测量精度和效率。
2024/1/28
23
自感和互感现象分析
自感现象是指一个线圈中的电 流发生变化时,在线圈自身中 产生感应电动势的现象。
互感现象是指两个相邻的线圈 中,一个线圈中的电流发生变 化时,在另一个线圈中产生感 应电动势的现象。
2024/1/28
自感和互感现象的产生都与磁 场的变化有关,它们是电磁感
应现象的重要组成部分。
麦克斯韦方程组可以推导出电磁波的存在和传播,是无线通信的理论基础 。
18
电磁波产生条件与传播方式
01
02
03
电磁波产生的条件是变 化的电场或磁场,即振 荡电路中的电荷或电流
。
电磁波的传播方式是横 波,电场和磁场相互垂 直且与传播方向垂直。
电磁波在真空中的传播 速度等于光速,且在不 同介质中的传播速度不
7
02
静电场与恒定电流
2024/1/28
8
静电场中的导体和电介质
静电场中的导体特性
静电感应现象
静电平衡条件
2024/1/28
9
静电场中的导体和电介质
导体表面电荷分布
电介质极化现象
电偶极子概念
2024/1/28
10
静电场中的导体和电介质
电介质极化机制
大学物理——电磁学
大学物理——电磁学电磁学是物理学中的一门基础学科,研究电荷之间相互作用的规律性和电磁波的产生、传播以及与物质的相互作用。
电磁学的理论和应用范围广泛,是现代通讯、信息技术、能源领域中必不可少的一门科学。
1. 静电学静电学是电磁学的一个分支,主要研究静电场、电荷分布和电势等基本概念及其相互关系。
静电学的基本定理是库仑定律,它描述了电荷之间的相互作用力与其距离的平方成反比。
此外,静电学还研究电荷密度、电场强度、电荷守恒定律、高斯定理等。
2. 恒定电流学恒定电流学是研究静态电荷(即不随时间变化的电荷)所产生的电流和电场。
这一分支的基本定理为安培定律,它描述了电流与导线长度、截面积的乘积和导体电荷密度的乘积成正比。
恒定电流学还研究电阻、电势差、欧姆定律、基尔霍夫定律等。
3. 电磁场电磁场是指在空间中存在的包含电场和磁场的物理场。
电磁场的基本方程是麦克斯韦方程组,它是电磁学研究的核心。
麦克斯韦方程组包括四个方程,其中两个是描述电场的方程,另外两个是描述磁场的方程。
这些方程可以用来描述电磁波的产生、传播和与物质的相互作用等现象。
4. 电磁波电磁波是电场和磁场在空间中传播的波动现象。
电磁波的产生需要电荷在空间中振动,形成变化的电场和磁场,产生一种横波。
电磁波的特点是在真空中传播,速度是光速,而且具有波长和频率等特征。
电磁波的应用极广,包括无线通信、雷达、移动通讯等。
5. 辐射现象辐射现象是指电荷加速时会产生电磁波辐射的现象。
这一现象是电子学的基础,也是实现电子器件中心频率和带宽的重要途径。
辐射现象的基本定理是洛伦兹方程,它描述了电子发射电磁辐射能量的表达式。
强烈的电磁辐射还会带来安全风险,例如核辐射和光辐射等。
总之,电磁学是一门广泛应用的学科,在通讯技术、信息技术、能源等领域中都有着重要的应用。
它不仅具有基础理论的重要性,还承担着促进社会发展和改善人类生活的使命。
6. 电动力学电动力学是电磁学的一个分支,主要研究带电粒子在电场和磁场中的运动规律。
大学物理电磁学总结(精华)课件
一、教学内容1. 库仑定律:描述静电力的大小和方向,公式为F=kq1q2/r^2,其中k为库仑常数,q1和q2分别为两个点电荷的电量,r为它们之间的距离。
2. 电场强度:描述电场对电荷的作用力,公式为E=F/q,其中F为电场对电荷的作用力,q为电荷的电量。
3. 高斯定律:描述电场通过一个闭合曲面的通量与该闭合曲面内部的总电荷之间的关系,公式为Φ=Q/ε0,其中Φ为电通量,Q为闭合曲面内部的总电荷,ε0为真空中的电常数。
4. 磁感应强度:描述磁场对运动电荷的作用力,公式为B=F/IL,其中F为磁场对运动电荷的作用力,I为电流的大小,L为电流所在导线的有效长度。
5. 安培定律:描述电流产生的磁场,公式为B=μ0I/2πr,其中B为磁场的大小,I为电流的大小,r为电流所在导线到被测点的距离,μ0为真空中的磁常数。
6. 法拉第电磁感应定律:描述磁场变化产生的电动势,公式为E=ΔΦ/Δt,其中E为电动势,ΔΦ为磁通量的变化量,Δt为时间的变化量。
二、教学目标1. 掌握大学物理电磁学的基本概念和公式。
2. 能够运用电磁学的知识解决实际问题。
3. 培养学生的科学思维和解决问题的能力。
三、教学难点与重点重点:库仑定律、电场强度、高斯定律、磁感应强度、安培定律、法拉第电磁感应定律。
难点:高斯定律、安培定律、法拉第电磁感应定律的理解和应用。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:教材、笔记本、笔。
五、教学过程1. 实践情景引入:讲解库仑定律时,可以引入两个点电荷之间的相互作用力。
2. 例题讲解:讲解电场强度时,可以举例一个正点电荷对周围电荷的作用力。
3. 随堂练习:让学生计算一个负点电荷对周围电荷的作用力。
4. 讲解高斯定律:讲解高斯定律时,可以举例一个闭合曲面内部的电荷对曲面外的电场的影响。
5. 讲解磁感应强度:讲解磁感应强度时,可以举例磁场对运动电荷的作用力。
6. 讲解安培定律:讲解安培定律时,可以举例电流产生的磁场对周围导线的影响。
大学物理电磁学公式总结精选2024(2024)
并联交流电路特点
各支路电压相等且等于总电压;各支路电流之和等于总 电流;电路的总阻抗的倒数等于各支路阻抗倒数之和。
2024/1/29
26
变压器原理以及应用举例
变压器原理
利用电磁感应原理工作的电气设备。当一次绕组通以交流电时,在铁芯中产生交变磁通,磁通的变化在二次绕组 中感应出电动势,从而产生感应电流。
计算方法
自感和互感的计算都涉及到线圈 的匝数、磁通量的变化率以及线 圈之间的相对位置等因素,需要 根据具体情况进行分析和计算。
2024/1/29
21
电磁感应在日常生活和科技领域应用
日常生活应用
电磁炉、无线充电等。
科技领域应用
电机、发电机、变压器、传感器等。电磁感应在电力 、电子、通信等领域都有广泛的应用,是现代科技发 展的重要基础之一。
VS
噪声干扰公式
$SNR = frac{P_{signal}}{P_{noise}}$, 其中$SNR$是信噪比,$P_{signal}$是信 号功率,$P_{noise}$是噪声功率。信噪 比描述了接收到的信号中有效信息与噪声 的比例。
2024/1/29
31
无线通信系统组成以及工作原理简述
无线通信系统主要由发射机、信道和接收机三部分组成。发射机负责将信息调制为电磁波并发射出去;信道是电磁波传播的 媒介;接收机负责接收并解调电磁波以获取信息。
相位差
两个同频率正弦量相位之差,用Δφ表示,单位为度(°)或 弧度(rad)。
功率因数
有功功率与视在功率的比值,用cosφ表示。功率因数的大 小与电路的负荷性质有关, 如白炽灯泡、电阻炉等电阻负 荷的功率因数为1。
25
串联和并联交流电路特点比较
大学物理电磁学总结
添加标题
电磁学在日常生活、工业生 产和科技领域中有着广泛的 应用,如电力、电子、通信、 材料科学等。
添加标题
大学物理中的电磁学部分主要涉 及静电场、恒定磁场、电磁感应 和交流电等内容。
学习目标
理解电磁场的性质、变化和运动 规律,能够分析解决相关问题。
电势
电势差
电场中两点间的电势之差。
等势面
电势相等的点构成的面。
电势梯度
沿等势面方向上单位距离的电势差。
电 流 与 电 路
电流与电动势
电流
电荷的定向移动形成电流,单位时间内通过导体横截面的电荷量即为电流的大 小。
电动势
电动势是电源内部的一种力,它使得正电荷在电源内部从负极移到正极,负电 荷则从正极移到负极。电动势的单位是伏特(V)。
随着学科交叉的深入,电磁学将与化学、生 物学、地球科学等学科进行更紧密的结合, 推动相关领域的发展。
理论和实验的结合
复杂系统的研究
未来电磁学的发展需要更加注重理论和实验 的结合,推动理论预测和实验验证的相互印 证。
随着计算机技术的发展,复杂系统的研究将 更加深入,电磁学将在这个领域发挥更大的 作用。
安培环路定律的数学表达式为:∮B·dl = μ₀I,其中B表示磁场强度,dl表示微小线段, I表示穿过某一闭合曲线的电流。
安培环路定律是描述磁场与电流之间关系的定 律,指出磁场与电流之间的关系是线性的。
法拉第电磁感应定 律
法拉第电磁感应定律是描述磁场变化与 感应电动势之间关系的定律。
法拉第电磁感应定律的数学表达式为: E=-dΦ/dt,其中E表示感应电动势, Φ表示磁通量。
大学物理电磁学总结-PPT
U 0点
Ua E dl a
(3)电势差 Uab Ua Ub ab E dl
b
• 静电场力的功 Aab a q0E dl q0Uab q0Ua q01U0 b
(4)电势的计算 令 U 0
①点电荷的电势
q
U P 4 π0r
②点电系的电势
UP
i
U Pi
i
qi
4 π 0ri
Idl
dF
Idl
dF
B
B
不规则的平 面载 流导线在均匀磁场中所受的力
F Fy BIlj
y
dF
B
结论 任意平面载流导线在均匀磁
场中所受的力 , 与其始点和终点相同 I
的载流直导线所受的磁场力相同.
o
Idl
L
Px
23
三、稳恒磁场的基本性质
1、磁场中的高斯定理: m B dS 0
Ei
n i 1
1
4 0
qi ri3
ri
qi qn
ri rn
q0
E E q0
E3 E2
P
E3 1
2)电荷连续分布的带电体
dE
4
1
π 0
dq r3
r
1 dq
qdq
r
P
dE
E dE 4 π0 r3 r
体电荷分布: dq dV
面电荷分布:dq ds 线电荷分布:dq dl
计算步骤: ①建坐标;②取电荷元 dq ;
电体且选无限远处为电势零点.)
②已知场强的分布,利用电势与场强的积分关系, 即电势的定义式计算电势。
U 0点
U P P E dl
12
六、静电场中的导体
大学物理《电磁学》
以波动形式传播的电磁场,包括无线电波、可见光、不可 见光(紫外线和红外线)、X射线和伽马射线等。
电磁学的发展历程
17世纪
牛顿的力学体系建立,为电磁学的发展奠定了基 础。
18世纪
库仑定律和安培定律的发现,揭示了电荷和电流 之间的相互作用规律。
19世纪
法拉第和麦克斯韦的贡献,提出了电磁感应理论 和麦克斯韦方程组,统一了电学和磁学的规律。
掌握常用的数据处理方法,如平均值、 中位数、标准差等统计量的计算,以 及数据的线性回归分析、曲线拟合等。
06 电磁学的应用案例分析
高压输电线路的设计与优化
高压输电线路的设计
在高压输电线路的设计过程中,需要考虑电磁场的分布、线路的电阻、电感等参数,以及线路的机械强度和稳定 性。
优化设计
通过优化设计,可以降低线路的损耗、提高输电效率,同时减少对周围环境的电磁干扰。
电磁学在生活和科技中的应用
01ห้องสมุดไป่ตู้
02
03
04
无线通信
无线电波用于长距离通信,包 括广播、电视和移动通信等。
电力传输
利用磁场和电场的相互作用, 实现电能的远距离传输。
医疗成像
如X射线和磁共振成像技术, 利用电磁波探测人体内部结构
。
新能源
太阳能电池利用光电效应将光 能转化为电能,风力发电利用 风能驱动发电机产生电能。
法拉第电磁感应定律
感应电动势的大小与磁通量变化率成正比。
楞次定律
感应电流产生的磁场总是阻碍原磁场的变化。
麦克斯韦方程组的推导与解释
推导过程
基于安培环路定律、法拉第电磁感应 定律等基本原理,通过数学推导得到 麦克斯韦方程组。
解释
大学物理电磁学
有功功率、无功功率和视在功率 的概念及其计算。
04
磁场性质及其描述
Chapter
磁感线及磁通量概念
磁感线
描述磁场分布的曲线,其切线方向表示 磁场方向,疏密程度表示磁场强度。
VS
磁通量
通过某一面积的磁感线条数,反映磁场在 该区域的分布情况。
安培环路定理及应用
安培环路定理
磁场中沿任意闭合路径的线积分等于穿过该 路径所包围面积的电流代数和的常数倍。
大学物理电磁学
目录
• 电磁学基本概念与原理 • 静电场性质及其描述 • 稳恒电流与电路分析 • 磁场性质及其描述 • 电磁感应与暂态过程分析 • 麦克斯韦方程组与电磁波传播
01
电磁学基本概念与原理
Chapter
电场与磁场定义
电场
由电荷产生的特殊物理场,描述 电荷间的相互作用。
磁场
由电流或磁体产生的特殊物理场 ,描述磁极间的相互作用。
光子概念
光子是量子力学中的基本粒子,构成光和其 他电磁辐射的量子。光子的能量与电磁波的
频率成正比。
黑体辐射和普朗克公式
黑体辐射
黑体是一个理想化的物体,能完全吸收外来的电磁辐射 ,不会有任何的反射与透射。黑体辐射是指黑体发出的 电磁辐射。
普朗克公式
描述黑体辐射的强度和频率的关系,是量子力学的基石 之一。普朗克公式揭示了黑体辐射的能量是不连续的, 以一份份的能量子(即光子)的形式发射或吸收。
感应电动势的大小与磁通量的变化率成正比,即e=dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
法拉第电磁感应定律是电磁感应现象的基础,也是电机 、变压器等电气设备的工作原理。
自感和互感现象
自感现象是指一个线圈中的电流发生变化时, 在线圈自身中产生感应电动势的现象。
大学物理电磁学基础知识点汇总
大学物理电磁学基础知识点汇总一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为库仑常量,$q_1$和$q_2$为两个点电荷的电荷量,$r$为它们之间的距离。
2、电场强度电场强度是描述电场力的性质的物理量,定义为单位正电荷在电场中所受到的力。
其表达式为:$E =\frac{F}{q}$。
对于点电荷产生的电场,其电场强度的表达式为:$E = k\frac{q}{r^2}$,方向沿径向向外(正电荷)或向内(负电荷)。
3、电场线电场线是用来形象地描述电场的一种工具。
电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。
静电场的电场线不闭合,始于正电荷或无穷远,终于负电荷或无穷远。
4、电通量电通量是通过某一面积的电场线条数。
对于匀强电场,通过平面的电通量为:$\Phi = ES\cos\theta$,其中$E$为电场强度,$S$为平面面积,$\theta$为电场强度与平面法线的夹角。
5、高斯定理高斯定理表明,通过闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\epsilon_0$。
即:$\oint_S E\cdot dS =\frac{1}{\epsilon_0}\sum q$。
高斯定理是求解具有对称性电场分布的重要工具。
二、电势1、电势电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中某点移动到参考点(通常取无穷远处)时电场力所做的功。
某点的电势等于该点到参考点的电势差。
点电荷产生的电场中某点的电势为:$V = k\frac{q}{r}$。
2、等势面等势面是电势相等的点构成的面。
等势面与电场线垂直,沿电场线方向电势降低。
3、电势差电场中两点之间的电势之差称为电势差,也称为电压。
其表达式为:$U_{AB} = V_A V_B$。
【2024版】大学物理电磁学课件PPT
N•
俯视图
力偶矩
df
dM= —0—4I1—I2 cot(—2 )d
2Rsin(
)
=
—0—I1—I2
cos2—2
d
df
M
0I1I2R cos2 d
0
2
= —0—I21—I2R—
+ =/2 I S= pm
d•
l1 I
B
M=B pmsin 矢量式: M pm B (6-42)
fab
f
pm
BI l sin
(2) N 匝矩形线圈
pm
pm
f cd
INI fNf 但合力矩增为N倍
合Байду номын сангаас仍为0,
稳定 平衡
l1
I
非稳定平• 衡
适用于任意M形=MN状(B的IpS平msin面B线) =圈B在pm匀si强n磁场中的情况。fab
3
由对称性分析可知: f2=f3
I1
d l2
f1
I2 I2dl2 I2 dl1
l1
b
a
f3
c
f2
y
x
O
fy= f3y f2y =0
f= fx= 2f2xf1 =2f2cos60 f1 = < 0 方向指向I1 。
三.磁场对载流线圈 的作用
1.匀强磁场中的载流线圈 (1) 单匝矩形线圈
fad d B
df
Idl
d f 的大小:d f BI dlsin
方向: 由 I d l B 决定
B
一.安培定律
矢量式
d f Idl B
df
Idl
d f 的大小: d f BI dl sin
大学物理电磁学ppt完整版
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
大学物理电磁学重点内容
大学物理电磁学重点内容
大学物理电磁学是物理学专业最重要的课程之一,下面介绍一些该课程的重点内容。
静电学
静电学研究静止电荷以及电荷间的相互作用。
其中,库仑定律是重要的基础定律,用于计算两点之间的电力大小。
高斯定理则是计算电场强度分布的一种方便方法。
电场
电场是指存在于空间中的电力作用的物理量。
而电场强度是描述电场大小和方向的物理量。
图像法和叠加法是常用的计算电场强度的方法。
电势
电势是描述电场所贮存能量和电荷状态的物理量,是描述电场强度的衡量标准。
由于电势是标量,因此可以直接使用加减乘除法进行计算。
电容
电容是指电储存电荷的能力。
其中,平行板电是最常见的一种电。
电流
电流是指电荷流动的物理量,单位为安培。
欧姆定律描述了电流和电势差之间的关系。
磁场
磁场是指任何由电荷运动所产生的磁力作用的物理现象。
安培环路定律和法拉第定律是计算磁场强度和产生电场的方法。
电磁感应
电磁感应是电磁学中的基本过程之一,根据法拉第电磁感应定律,当磁场变化时就会在电路中产生电动势。
电磁波
电磁波是指沿电场和磁场传播的一种能量传输方式。
麦克斯韦
方程是描述电磁波传播的方程组。
以上是大学物理电磁学的一些重点内容。
希望对读者有所帮助。
大学物理电磁学课件
大学物理电磁学课件一、引言电磁学是物理学的一个重要分支,主要研究电磁现象及其规律。
电磁学的研究对象包括电荷、电场、磁场、电磁波等,这些现象在日常生活和科技领域具有广泛的应用。
本课件旨在介绍大学物理电磁学的基本概念、基本理论和基本方法,帮助学生建立电磁学的知识体系,提高解决实际问题的能力。
二、电荷与电场1.电荷电荷是物质的一种属性,分为正电荷和负电荷。
自然界中存在两种电荷,分别是电子和质子。
电子带负电,质子带正电。
电荷的量称为电荷量,单位是库仑(C)。
2.电场电场是描述电荷之间相互作用的物理量。
电场强度是电场的一种表现形式,表示单位正电荷所受到的电场力。
电场强度的单位是牛顿/库仑(N/C)。
电场线是一种用来表示电场分布的工具,从正电荷出发,指向负电荷。
3.电势与电势差电势是描述电场中某一点电荷势能的物理量。
电势差是指两点间电势的差值。
电势差的单位是伏特(V)。
电场力做功与电势差之间存在关系:W=qΔV,其中W表示电场力做的功,q表示电荷量,ΔV 表示电势差。
三、电流与磁场1.电流电流是电荷流动的现象。
电流的方向规定为正电荷的流动方向。
电流的强弱用电流强度表示,单位是安培(A)。
2.磁场磁场是描述磁体之间相互作用的物理量。
磁感应强度是磁场的一种表现形式,表示单位长度电流所受到的磁场力。
磁感应强度的单位是特斯拉(T)。
磁场线是一种用来表示磁场分布的工具,从磁南极指向磁北极。
3.电磁感应电磁感应是指磁场变化引起电场的变化,从而导致电流的产生。
法拉第电磁感应定律描述了电磁感应现象:ΔΦ/Δt=-E,其中ΔΦ表示磁通量的变化,Δt表示时间的变化,E表示感应电动势。
四、电磁波1.电磁波的产生电磁波是由电场和磁场交替变化而产生的一种波动现象。
当电荷加速运动时,会产生变化的电场和磁场,从而形成电磁波。
2.电磁波的传播电磁波在真空中的传播速度为光速,即c=3×10^8m/s。
电磁波的传播方向垂直于电场和磁场构成的平面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题:以上结论是否与牛顿第三定律矛盾?结果合理 吗?
▲两个静止点电荷间的作用力满足牛顿第三定律, 但静止点电荷与运动点电荷间的作用力不满足牛顿 第三定律
▲在讨论两个点电荷的相互作用时,构成封闭系统的 成员除两点电荷外,还有第三者——电场介入其中, 必须考虑
▲当两点电荷都静止时,虽然第三者——电场依然存 在,但其动量不变,故作用力对等;当两点电荷一静 一动时,伴随电荷的运动,相应电场的动量会有所变 化,于是作用力不对等。若是将场包含进去,可以证 明,依然满足牛顿第三定律
★电荷间的相互作用 同种电荷互相排斥;异种电荷互相吸引。这也是早 期通过力效应定义电荷的依据。
★电荷是带电体的一种属性
宏观物体所带电荷种类的不同,来源于组成物质的微 观粒子所带电荷种类的不同。电子带负电,质子带正电, 二者数值上严格相等,而中子不带电。通常原子呈电中 性,故由原子组成的宏观物体不带电。但在外因的作用 下,只要破坏物体的电中性就能使物体带电。
★实验表明:一个电荷的电量与它的运动状态无关。
例如:比较氢分子和氦原子电中性的实验
H2和He的两个核外电子运动状态差别不大,但He 中质子的动量约为H2中质子的动量的100万倍(可由 测不准关系来估算),因而两者运动状态大不一样。 若电量与运动状态有关,则H2中质子的电量应该和 He中质子的电量不同,因而H2和He不可能都是电中 性的。
1 q2 Fe 4πε0 r 2 14 N 而它们之间的万有引力为:
Fg
m2 G r2
1.16 1035
N
两者相比:
Fe Fg
1.20 1036
思考:虽然万有引力和库仑力相差悬殊,但在日常 生活中引力的效应却更易于被人感知,为什么呢?
★库仑定律的成立条件
条件?: 静止 真空 点电荷
●静止条件原指点电荷相对静止,且点电荷相对于观 察者也静止
都与电磁力有关,其中主要部分涉及库仑力
●静电场的基本性质
f r -2
若δ≠ 0,后果?
▲静电场的基本定理——高斯定理将不成立
这动摇了电磁理论的实验基础 ●电力平方反比律与光子的静止质量是否为零密切相关
▲ m 是有限的非零值?还是一个零?二者有本质的区别
▲现有理论以m = 0 为前提,若m 0 ,后果严重! 电动力学的规范不变性被破坏 电荷守恒定律不再成立 光子的偏振态要产生变化 黑体辐射公式要修改 会出现真空色散,即不同频率的光波在真空中的传播 速度不再相同,光速不变原理失效
q1q2 r2
rrˆ
f r -2
f r f
q1q2 r
Pr
注意:
实验结果
类比于引力,定义了电量 对称性的结果(特征是径 向性,球对称性)
上述公式并非都是大量实验的单纯结果,而是在事实 基础上理性思维的结果!
▲单位制
当q1、q2为 1 C(库仑),r = 1m 时: k 8.99 109 N m2 /C 2
也可表述为,单位时间流入流出系统边界的净电荷 等于系统内电荷的变化率。
问题:力学指出,系统的对称性将导致守恒律,与电荷 守恒律相联系的对称性是什么呢?
回答:电磁场具有规范不变性,系统的对称群是U1,正 是这个对称性导致了电荷守恒。
●电荷的相对论不变性 ★实验表明:质子和电子所带电荷严格等量异号,测量 精度高达10-20e。(否则,原子的电中性将不复存在,自 然界就会面目全非!) ★电荷电量由库仑定律来定义,库仑定律只适用于静止 电荷,当电荷运动时其电量是否不变?
以电荷的变化是不连续的!这就是电荷的量子化。
注:宏观电荷实质上也可表示为ne,不过n非常大,其
变化也以e为单位,但e与ne 相比非常小,故从实际测 量来看可认为是连续变化的。
★20世纪60年代物理学家提出了强子的夸克模型:
构成物质的基本砖块是夸克和轻子,夸克有6种,分别 带有e/3和2e/3的电量。
●在Franklin的建议下,Priestley做了实验(1766年)
★猜测答案
●现象与万有引力有相同规律
●由牛顿力学知球壳对放置在壳外的物体有引力,而 放置在球壳内任何位置的物体所受引力为零。类比, 电力与距离的平方成反比,即
Fg
1 r2
~
1 Fe r 2
★设计实验并测量
● 1769年Robinson首先用直接测量方法确定电力定律, 得到两个同号电荷的斥力
●真空条件的作用在于去除其它电荷的影响,使两个 点电荷只受对方作用
▲ 真空条件破坏时,除了这两个点电荷外,还可能 有其它电荷存在,但这两个点电荷之间的作用力仍遵 循库仑定律,并不因其它电荷存在而受影响,这正是 叠加原理的结果。因此真空条件并非必要
●点电荷条件
▲点电荷就是忽略了带电体形状、大小以及电荷分布 的电荷。它是一个理想化的模型 ▲点电荷也是一个相对的概念,当一个带电体的线度 比所研究问题中涉及的距离小很多时,该带电体的形 状与电荷在其上的分布均无关紧要,此带电体就可看 作是点电荷(类似于质点) ▲究竟带电体的线度比距离小多少才可看成是点电荷, 却没有一个绝对的标准,它取决于讨论问题时所要求 的精度
r r q1 rrˆ12
q2 f12
当q1 当q1
、、qqrr22ˆ1同 异2 为号 号q时 时1指,,向ff11q222与与的单rrrrˆˆ1122位同反矢向向量,,。表表现现为为斥 引力 力; 。
●讨论:
▲ f r-2 ?
r f
=
k
q1q2 r2
rrˆ
k是选取单位制后引入的常数
r f
=
k
本章内容:
§1.1 库仑定律 §1.2 电场 电场强度 §1.3 高斯定理 §1.4 环路定理 电势及其梯度 §1.5 静电场的基本微分方程
§1.1 库 仑 定 律
库仑 (Charles Augustin de Coulomb 1736 ~1806)
1、电荷和电荷守恒
●电荷的量子化 ★实验发现:电荷只有两种。一种与丝绸摩擦过的玻 璃棒(室温下)的电荷相同,称为正电荷;另一种与 毛皮摩擦过的橡胶棒的电荷相同,称为负电荷。
★但实验证实:氢分子和氦原子都精确地是电中性的! 故质子的电量与它的运动状态无关。而电荷的运动状 态又与所取参考系相联系,所以电荷的电量与运动状 态无关也就是,同一带电
粒子在不同参考系看来电
量不变,这称为电荷的
相对论不变性。
H2
He
★物体因带电而彼此吸引或排斥是一个重要的发现! 表明:在非接触物体之间,除了已知的万有引力和 磁力外,又有了电力。
★微观现象:反应前后基本电荷的代数和相等。
例如 β衰变: 10n → 11p + e- + e
轻核聚变: 21D + 31T → 42He + 10n
粒子产生: γ → e- + e+
粒子湮灭: e- + e+ → 2γ or 3γ
★由实验现象可归纳出电荷守恒定律的表述:
在孤立系统中,正负电荷的代数和在任何物理过程 中始终保持不变。
★反粒子;正负电子对的产生和湮灭均由狄拉克在理论 上预言(1931年)。正电子是安德森在高能宇宙线中 发现;正负电子对的产生和湮灭则由赵忠尧最早发现。
●电荷守恒定律
★宏观现象:物体中电荷的代数和在电荷转移前后相
等。 例如 摩擦起电: 0 + 0 = Q + (-Q)
感应起电: 0 = Q + (-Q) 接触带电: Q + 0 = Q1 + Q2
★6种夸克,现在借助大型加速器均以发现,但这并不
破坏电荷的量子性,仅仅是将现在能测量到的最小电 量变得比电子电荷更小而已。
★夸克虽在实验上被发现,但至今没有可靠证据表明它
们以自由状态存在,即它们都禁闭在强子内部,不能 脱离强子自由运动。
★近代高能物理实验证实,对于带电的基本粒子,存在
“电荷对称性”,即对每种基本粒子,必定存在与之 对应、带等量异号电荷的另一基本粒子——反粒子。
▲牛顿第三定律是更普遍的动量守恒定律在特殊条 件下的产物。若两个物体构成封闭系统,且不受外 界作用,则系统动量守恒,其一动量的增减必等于 另一动量的减增,故其间的相互作用力一定大小相 等、方向相反,即满足牛顿第三定律。现在,静止 点电荷与运动点电荷间的作用力不遵循牛顿第三定 律,表明其一动量的增减并不等于另一动量的减增。 原因在于电力是以电场为媒介物传递的,电场是特 殊形式的物质,具有自身的动量
电磁学讲义 (2010.03)
上海交通大学物理系 王欣
第一章 静 电 场
相对于观察者静止的电荷所激发的电场称为 静电场
电学起源于古希腊哲学家塞利斯(Thales 公 元前585年)所记载的一种现象:经摩擦后的 琥珀会吸引草屑。但电学理论建立在“场” 的基础上则是在18世纪以后才开始的
与物体间的引力相互作用一样,电荷之间的 相互作用也不是“超距作用”,而是通过电 场来实现的
f r -2.06
而两个异号电荷的引力比平方反比的方次要小(但研 究结果直到1801年才发表)
● 1772年Cavendish按Priestley的思想设计了实验。如 果实验测定带电的空腔导体的内表面确实没有电荷, 则可断定电力遵从平方反比律,即
f r -2 δ越小,内表面电荷越少
他测出δ不大于0.02(未发表,100年后Maxwell整理他 的大量手稿,才将此结果公诸于世)
▲与万有引力单摆周期类比,得
T = 2π
lr Gm
~
Fe r -2 , 且δ< 10-2
★库仑定律的表述
真空中两个静止的点电荷之间的作用力,与它们所带 电量的乘积成正比;与它们之间距离的平方成反比; 作用力的方向沿它们的连线;同号电荷相斥,异号电 荷相吸。