自动控制系统1讲解

合集下载

(1讲)自动控制、西门子DCS系统、操作方式概述

(1讲)自动控制、西门子DCS系统、操作方式概述

补水电磁阀根据液 位联锁进行“自动 模式”开关
两台上水泵“自 动模式”循环启 动
排污设备“自动模式” 下根据排污步骤排污
对于报警的处理步骤
DCS系统报警分类: 1:系统报警:操作站,控制站,网络,等设备进行实时检测; 2:过程报警:按照工艺指标对生产过程数据的异常发出的报警; 组显示 显示带有报警源的图片。组显示应当使操作员能够直接从总视图 跳到所有层次级别都组合在一起的显示中。也应当使操作员能够 直接从总视图跳到发生警报的显示中。组显示中各个不同的图标 代表不同的含义,具体如下: A(红底白字),过程值报警。 W(黄底黑字),过程值警告。 S(黑底黄字),系统错误。 O(紫底白字),操作员提示信息。 X(灰底白字),禁用消息。
五、S7-400H硬件冗余
S7-400H是西门子提供的冗余系统,为双机架 硬件级热备产品,主从两个机架,两套完整独 立的系统。两套机架上的热备单元通过光纤通 讯。可能通过它的冗余功能,实现减少因故障 或错误而导致的生产损失。
冗余系统的目的:停车成本越高,越值得采用冗余系统。 SIMATIC H系统的优点:处理贵重原料,停车或不合格产品成 本昂贵,系统瘫痪导致重新开车费用高,无需操作人员的场合
有毒有害气体报警仪报警处置方法
目的: 在发生有毒有害气体泄露报警及时进行处置,增强职工应对处 置能力,确保人身安全,保护厂区的财产安全。 •岗位工接到有毒有害气体报警器报警后,及时通知煤防站以及班 长安全管理人员。 •煤防站、电仪车间、当班班长及安全管理人员当接到有毒有害气 体报警器报警的信息后,应尽快赶到现场进行处理。 •岗位工配合煤防站确定是否该区域内有泄露现象,并上报安全管 理人员。 •遇到有毒有害气体事发工段时开启防爆排风扇。同时,要谨慎行 事,必须携带相关的防护器具,在事发现场不得使用电话,进入 泄露区必须关闭手机,禁止携带明火。 •岗位工煤防站对泄露位置进行查找,并配合电仪现场人员进行检 查维修处理。 •如有发现不适者,应小心妥善处理,等待救护人员抵达现场。 •泄露要查明原因,并进行记录和存档。

第一章 自动控制系统概述

第一章 自动控制系统概述

回章首
回节首
11
举例说明开环控制与闭环控制
图1-2是直流电动机转速开环控制示意图。
V+ 电动机 负载
电 位 器
功率
放大器
图1-2 直流电动机转速开环控制
电动机的转速可由调节电位器来给定。但当电动机 受到负载变化影响时,电动机的转速是要发生变化的。 开环控制系统不能做到自动调节,控制的精度是比 较低的。
自动控制系统的基本结构如图1-4所示。
输入量 r
+ -
偏差
控制器Gc
控制量 u
扰动量 n
受控对象Go
输出量 c
反馈量b
反馈环节H
图1-4 自动控制系统的基本结构
回章首
16
1. 控制系统的一些常用术语
受控对象
是指被控制的装置或者设备(如电动机、车床等),有 时也指受控的物理量。
受控过程
受控物理量的变化过程称为受控过程。例如化学反应 过程、水泥窑炉的生产过程等。
在此,对于系统的性能要求可以简要概括为: 响应动作要快 动态过程平稳 跟踪值要准确 上述三条自动控制系统的基本要求如图1-8所示。
回章首 回节首
30
c(t) 给定值 响应缓慢 响应快速 t
c(t) 变化剧烈
c(t)
跟踪误差
响应平稳
t
t
(a)响应快速性
(b)动态平稳性
(c)跟踪准确性
图1-8 控制系统的基本要求
回章首
回节首
3
自动控制理论的发展与应用
可以改善劳动条件,把人类从繁重的劳动中解放出来; 由于自动控制系统能以某种最佳方式运行,可以提高劳
动生产率,提高产品质量,节约能源,降低成本。

第1章+自动控制系统绪论

第1章+自动控制系统绪论


21
1.2 自控概述
丼例:包装盒检测问题 某工厂需要对已装入香皂的纸质包装盒进行检测,把 未装入香皂的包装盒从传送带上剔除,该问题需要采用何 种控制方法?
22
1.2 自控概述
4. 直接控制不间接控制
一般情冴下为直接控制,当控制量丌能直接测量或把 控时采用间接控制。实际意义上一般控制均为间接控制 。
7
2. 自劢控制理论的建立
几位理论奠基人: 拉普拉斯(Pierre-Simon Laplace,1749- 1827),法国分析学家、概率论学家和物理学家,
1.1 发展历史
法国科学院院士。以天文力学研究为重点,研究方法 为数学、控制等多领域所引用,1812年发表了重要 的《概率分析理论》一书,在该书中总结了当时整个 概率论的研究,导入「拉普拉斯变换」等;
、流量、液面或PH值等类似变量(此类控制系统的控制 过程主要为以顺序排布为主的流程控制,比如化工工业产 品生产过程),此类系统称为过程控制系统。过程控制主 要应用于化工、工业制造等生产流程中。
16
1.2 自控概述
• 输入量:指作用于被控制对象或系统输入端的物理量、
信息或信号。 信息或信号。
• 输出量:指表现于被控制对象或系统输出端的物理量、
5. 适应式控制系统
系统本身能够随着环境条件或结构的丌可预计的变化
,自行调整或修改系统参量。
6. 学习控制系统
以人的分析和学习能力为目标,使机器能够自行对系
统变化做出反应的控制方法,以智能控制理论为基础。 23
1.2 自控概述
1.2.3 控制系统的结构和设计原则
• 1.控制系统的基本结构
对一个设施或过程的控制任务在于:使测量环节测得的 被控量y(t)丌受外部干扰z(t)的影响,即保持在一个恒定的 给定值w(t)=const上,或y(t)跟踪一个变化的给定值w(t) ≠const。

自动控制系统名词

自动控制系统名词

自动控制系统名词
自动控制系统是一种能够自动调节和控制设备、过程或系统的机制。

它使用各种传感器、控制器和执行器来实现对被控对象的监测、分析和操作。

在自动控制系统中,传感器用于检测被控对象的状态或参数,如温度、压力、流量等,并将其转换为电信号或数字信号。

控制器接收这些信号,并使用预定的控制算法进行处理,以确定所需的控制动作。

执行器则根据控制器的指令,对被控对象进行实际的操作,如调节阀门开度、改变电机转速等。

自动控制系统的目标是实现被控对象的稳定运行、精确控制和优化性能。

它可以应用于各种领域,如工业生产、航空航天、交通运输、能源管理、环境保护等。

常见的自动控制系统包括反馈控制系统、前馈控制系统、比例积分微分(PID)控制系统等。

它们的设计和实现需要考虑到被控对象的特性、控制要求、传感器和执行器的性能以及控制算法的选择。

自动控制系统的优点包括提高生产效率、降低劳动强度、提高产品质量、增强安全性和可靠性等。

它的发展和应用对于现代工业和社会的进步起到了重要的推动作用。

孙炳达版 《自动控制原理》第1章 自动控制系统的基本概念-1

孙炳达版 《自动控制原理》第1章 自动控制系统的基本概念-1

1.1 自动控制的基本方式
3、复合控制方式 开环控制+闭环控制 两种结构:按输入信号补偿 按扰动信号补偿
1.1 自动控制的基本方式
4、控制方式比较 (1) 从系统组成结构看,开环控制方式简单,复 合控制方式复杂,闭环控制方式介于两者间; (2) 从性能看,开环控制方式较差,闭环控制方 式较好;复合控制方式最好;
+ 5 ΔU -5 功 率 放 大 器
1.1 自动控制的基本方式
方法一:人工控制 眼(观察) 脑(判断) 手(操作) 目的:减少或消除Δh
1.1 自动控制的基本方式
方法二:自动控制 受控对象:水池; 输出量:实际水位(h实); 输入量:要求水位(h要); 浮子——检测装置; 控制电源——检测Δh,转变为电信号; 电动机——执行机构; 干扰输入量:对系统输出起反作用的输入量, 例如功率放大器信号的飘移。
开环调速结构基础上引入一台测速发电机,作为检测系统 输出量即电动机转速并转换为电压。 反馈电压与给定电压比较 (相减)后,产生一偏差电压, 经电压和功率放大器放大后去控制电动机的转速。 当系统处于稳定运行状态时,电动机就以电位器滑动 端给出的电压值所对应的希望转速运行。 当系统受到某种干扰时(例如负载变大),电动机的转速 会发生变化(下降),测速反馈电压跟着变化(变小),由于 给定电压值未变,偏差电压值发生变化(变大),经放大后 使电动机电枢电压变化(提高),从而电动机转速也变化(上 升),以减小或消除由于干扰引起的转速偏差。
1.1 自动控制的基本方式
基本名词:
1 控制器:实现控制功能的装置; 2 被控对象:被控制的设备或机械; 3 被控量(输出量):被控对象内要求自动控 制的物理量; 4 输入量:影响系统输出量的外界输入,包括 给定输入量和扰动输入量。

自动控制原理 第1章_自动控制系统的基础知识

自动控制原理 第1章_自动控制系统的基础知识
实际 系统 物理 模型 数学 模型 方法(系统组成 分析、设计)
第1章 自动控制系统的基础知识
教学重点
了解自动控制系统的基本结构和特点及其 工作原理; 了解闭环控制系统的组成和基本环节; 掌握反馈控制系统的基本要求-稳定性、 动态和稳态性能指标; 学会自动控制系统的类型及本质特征。

1.2 自动控制系统的基本原理
1.自动控制系统的基本概念
自动控制:没有人的直接干预,利用控制装置使被控对 象(如生产设备)的工作状态或被控制量按照预定的规 律运行。 ● 自动控制系统:实现上述自动控制的目的,由相互联系 和制约的各部件组成的具有特定功能的整体称为自动控 制系统。

2.自动控制系统的组成
教学难点
自动控制系统的基本工作原理,自动控制 系统的结构及特点、组成和基本环节,自 动控制系统的性能指标,自动控制系统的 类型。
概述:在人类社会走向信息化的今天,计算机、 通信、信息处理技术的发展对社会经济以及人类 生活产生了巨大影响。其中,自动控制作为一种 技术手段已经广泛地应用于工业、农业、国防以 及日常生活和社会科学的各个领域。 自控理论:自动控制理论就是研究自动控制共同 规律的科学技术,自动控制原理仅是工程控制论 中的一个分支,是研究控制系统分析和设计的一 般理论。 本章内容:本章是自动控制技术及应用的基础, 主要介绍自动控制的基本原理和概念,自动控制 系统的组成和分类,以及自动控制系统的性能指 标等。

2.现代控制理论

● ●
研究对象:多输入-多输出系统(线性定常或非 线性时变) 研究方法:状态空间方法 代表人物:庞特里亚金(极大值原理)、贝尔曼 (动态规划原理)、卡尔曼(卡尔曼滤波)等
3.大系统理论和智能控制

第一章 自动控制系统的基本概念(修改) (2)

第一章  自动控制系统的基本概念(修改) (2)

上篇自动控制原理第一章自动控制系统概述本章要点本章简要介绍有关自动控制的基本概念、开环控制和闭环控制的特点、自动控制系统的基本组成和分类以及对自动控制系统的基本要求。

第一节自动控制的基本概念自动控制是指在没有人的直接干预下,利用物理装置对生产设备和工艺过程进行合理的控制,使被控制的物理量保持恒定,或者按照一定的规律变化。

自动控制系统则是为实现某一控制目标所需要的所有物理部件的有机组合体。

在自动控制系统中,被控制的设备或过程称为被控对象或对象;被控制的物理量称为被控量或输出量;决定被控量的物理量称为控制量或给定量;妨碍控制量对被控量进行正常控制的所有因素称为扰动量。

扰动量按其来源可分为内部扰动和外部扰动。

给定量和扰动量都是自动控制系统的输入量。

通常情况下,系统有两种外作用信号:一是有效输入信号(以下简称输入信号),二是有害干扰信号(以下简称干扰信号)。

输入信号决定系统被控量的变化规律或代表期望值,并作用于系统的输入端。

干扰信号是系统所不希望而又不可避免的外作用信号,它不但可以作用于系统的任何部位,而且可能不止一个。

由于它会影响输入信号对系统被控量的有效控制,严重时必须加以抑制或补偿。

第二节开环控制和闭环控制自动控制有两种基本的控制方式:开环控制和闭环控制。

与这两种控制方式对应的系统分别称之为开环控制系统和闭环控制系统。

一、开环控制系统开环控制系统是指系统的输出端和输入端不存在反馈关系,系统的输出量对控制作用不发生影响的系统。

这种系统既不需要对输出量进行测量,也不需要将输出量反馈到输入端与输入量进行比较,控制装置与被控对象之间只有顺向作用,没有反向联系。

电加热系统的控制目标是,通过改变自耦变压器滑动端的位置,来改变电阻炉的温度,并使其恒定不变。

因为被控制的设备是电阻炉,被控量是电阻炉的温度,所以该系统可称为温度控制系统,如图1-1所示。

开环控制系统的优点是系统结构和控制过程简单,稳定性好,调试方便,成本低。

第1章 自动控制系统的基本概念

第1章 自动控制系统的基本概念

第1章 自动控制系统的基本概念1-1 水位控制装置如图1-12所示。

试分析它的控制原理,指出它是开环控制还是闭环控制系统?说出它的被控量及扰动输入量是什么?绘制出其系统框图。

在该液位控制系统中,水箱的进水量来自进水阀门,出水量由用户阀门确定。

该系统能在用户用水量随意变化的情况下,保持水箱水位在希望的高度上不变。

工作原理:当水箱水位低于设定值H 2时,浮子下移,通过杠杆使阀门开合度增大,从而加大进水量,使水箱水位提高;反之,当水箱水位高于设定值H 2时,浮子上移,通过杠杆使阀门开合度减小,从而减小进水量,使水箱水位降低。

最终调节液位在一个相对稳定的高度。

控制任务:保持水位H 1在设定值;被控制量:实际水位H 1;扰动量:出水量;被控对象:水箱;测量元件:浮子;执行元件:进水阀门。

根据上析分析,给出系统的原理方框图如图1-13所示。

1-2某生产机械的恒速控制系统原理图如图1-14所示。

系统中除了速度反馈外,还设置了电流正反馈以补偿负载变化的影响。

试标出速度负反馈、电流正反馈的信号的正、负号并画出框图。

被控对象:电动机;被控量:电动机转速n ;给定量:电位器的电压u 1;扰动量:负载力矩的变化。

工作原理:电位器电压u 1与转速设定值相对应。

当转速n 低于设定值时,测速发电机输出电压u 2减小,电压偏差信号 增大,电压放大器1的输出电压提高,经功率放大器放大后加到电机电枢两端电压u 4提高,从而使电动机的转速提高。

另一方面,当负载转矩增大时,电枢回路中的电流增大,电压放大器2的输出电压u 3增大,经功率放大器后加到电机上的电压u 4也提高,起到了扰动补偿作用。

由此可见,当转速低于设定值时,可通过反馈回路和扰动补偿两方面的共同作用使转速提高,从而达到了复合控制转速的目的。

反之亦然。

根据题意,可得系统原理方框图如图1-15所示。

21u u u -=∆1-3图1-16所示为一温度控制系统的原理图。

指出系统的输入量、被控量和控制原理,并画出系统框图。

自控原理课件 第1章-自动控制系统概

自控原理课件 第1章-自动控制系统概

2
第1章 自动控制系统概述
第1章 自动控制系统概述
1.1自动控制系统基础知识
3
第1章 自动控制系统概述
4
第1章 自动控制系统概述
开环控制系统是一种最简单的控制系统。下面举例 说明其结构特点和工作原理。 图1.1所示是一个电阻炉温度控制系统,希望电阻炉 的温度T c保持在允许范围内。在该系统中,可以通过调 整自耦变压器滑动端的位置来改变电阻炉的温度,并使 其保持在允许范围内。因而被控对象就是电阻炉,被控 量就是电阻炉的温度。自耦变压器滑动端的位置对应了 一个电压值uc,也就对应了一个电阻炉的温度Tc,改变 M c也就改变了T”在这个控制系统中,没有对电阻炉的实 际温度进行测量,就是说,实际温度Tc是多少不得而知 。当系统中出现外部扰动(如炉门开关频繁变化)或内部 扰动(如电源电压波动)时,了c将偏离“c所对应的数值, 5 结果温度可能比希望值偏高或偏低。
25
第1章 自动控制系统概述
而放大器的输入电压为给定电压与反馈电压比 较后的偏差电压ΔU=Ug-Ufn, 其中Ug是由给定电 位器给定的,Ufn是由测速发电机TG输出电压 经电位器分压获得的。 Ufn的大小取决于转速 的高低。因此,测速发电机和电位器构成检测元 件和反馈单元;由于Ug和Ufn极性相反,所以构 成负反馈。
第1章 自动控制系统概述
6.检测元件 该装置用来检测被控制量,并将其转换成与 给定量相同的物理量。检测元件的精度和特性逐 渐影响控制系统的控制品质,它是构成自动控制 系统的关键部件。在此系统中是热电耦。
20
第1章 自动控制系统概述
由图1.6可见.系统中作用量的被控制量如
下: 给定量:又称为控制量或参考输入量。它通 常由给定信号电压构成,或通过检测元件将非电 量转换成电压信号。如图1.6中的给定电压UsT。 输出量:又称为被控制量。它是控制对象的 输出,是自动控制的目标。如图1.6中的炉温T 。 反馈量:是通过检测元件将输出量转换成与 给定量性质相同且数量级相同的信号。图1.6中 的反馈量是由热电偶将炉温转换来的信号电压 UfT。

自动控制原理第一讲_拉氏变换

自动控制原理第一讲_拉氏变换

第一讲 拉普拉斯变换及其应用1.1基本要求1,熟悉拉氏变换的基本法则2,熟练掌握典型函数的拉氏变换式。

3,掌握用拉氏变换求解微分方程初值问题的思路。

4,熟练掌握求有理分式函数拉氏反变换的方法 1.2.重点讲解1, 对于学习本课程而言,广义积分式(拉氏变换的定义)的收敛性以及复变量主值积分式(反变换定义式)的计算,与正确地熟练地运用拉氏变换的基本法则相比不是主要的,因为在工程计算中可以用查表的方式来完成拉氏变换和拉氏反变换的计算。

而拉氏变换的基本法则的运用则直接关系到是否真正掌握这种变换的工具。

2,拉氏变换的线性性质源自定积分的线性性质,这说明作为一种变换关系,拉氏变换是线性变换。

应当指出线性关系并非所有变换都具有的性质,例如以十为底的对数可以看成正半数轴到数轴的变换关系,但关系式g()g g l a b l a l b +≠+说明取对数的运算显然不满足线性关系。

3, 为了保证拉氏变换的一一对应关系,总假定拉氏变换的定义式中的原函数()f t 在t 时为零。

即原函数应写成0<()1()f t t ⋅,根据单位阶跃函数1(t)的定义,这里()1()f t ⋅t 为()0()1()00f t t f t t t > ⋅=<下面给出()f t 、()1()f t t ⋅、、0()1()f t t t ⋅−00()1(f t t t t )−⋅−、0(f t t )−的函数关系,以说明通常所说“将()f t 延迟t ” 的正确表示。

显然应当是图1-1中的(d) ,不是(c)或(e) 0()1()f t t ⋅0()1()f t t t ⋅−00()1()f t t t t −⋅− (d)(c)(b) (a) (e)图1-1 将()f t 延迟t基于上述认识,就能正确表达图形和用延迟定理求出某些图形的拉氏变换式。

例题1-2图1-2 波形图求图1-2中的波形的拉氏变换。

解 图1-2中的波形可以看成、()1()t t ⋅001(t t t t )−⋅−、t t 01()t 0⋅−这三个信号的代数和,读者可画出这三个信号的波形图以验证下式的正确性。

第1章 自动控制系统概述

第1章  自动控制系统概述

(1)开环控制系统结构简单、稳定性好,但不能自 动补偿扰动对输出量的影响。当系统扰动量产生 的偏差可以预先进行补偿或影响不大时,采用开 环控制是有利的。
(2)闭环控制系统具有反馈环节,它能依靠负反馈 环节进行自动调节,以补偿扰动对系统产生的影 响。闭环控制极大地提高了系统的精度。但闭环 系统使系统稳定性变差,需要重视并加以解决。

本章作业
P15: 1-7 1-8

我国古代的自动控制技术
东汉时期张衡制造了浑天仪和地动仪
三国时期的马钧、南朝时的祖冲之创造和复制 了指南车。
产业革命时期,自动控制技术取得了巨大的发展
1748年瓦特发明的蒸汽机中的离心调节器

1868年麦克斯韦利用描述系统的微分方 程解释了这种现象,并提出了判别低阶 系统稳定性的判据 1877年和1895年劳斯[英]和数学家胡尔 维茨[瑞士]提出了可以判别高阶线性系统 的稳定性的判据


(3)自动控制系统通常由给定元件、检测元件、比较 环节、放大元件、执行元件、控制对象和反馈环节 等部件组成。系统的作用量和被控制量有:输入量、 反馈量、扰动量、输出量和各中间变量。 框图可直观地表达系统各环节(或各部件)间的因果关 系,可以表达各种作用量和中间变量的作用点和传 递情况以及它们对输出量的影响。
特点:无反馈环节 优点:结构简单,系统稳定性好,成本也低 缺点:当控制过程受到各种扰动因素影响时,将会直接影 响输出量,而系统不能自动进行补偿。特别是当无法预计的 扰动因素使输出量产生的偏差超过允许的限度时 ,开环控制 系统便无法满足技术要求
适用场合:在输出量和输入量之间的关系固定,且内部参 数或外部负载等扰动因素不大,或这些扰动因素产生的误差 可以预计确定并能进行补偿,应尽量采用开环控制系统。

自控知识点1

自控知识点1

1、反馈控制系统的基本组成:测量元件、给定元件、比较元件、放大元件、执行元件、校正元件。

2、自动控制系统基本控制方式:反馈控制方式,开环控制方式,复合控制方式。

3、对自动控制系统的基本要求:稳定性,快速性,准确性。

4、线性自动控制系统的稳定性是由系统结构和参数决定的,与外界因素无关。

第二章1、传递函数的定义:线性定常系统的传递函数定义为零,初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比。

2、系统结构图的组成,包含四个基本单元:信号线、引出点(或测量点)、比较点(或综合点)、方框(或环节)。

第三章1、在典型输入信号作用下,任何一个控制系统的时间响应都由动态过程和稳态过程两部分组成。

动态性能:动态性能指标:上升时间、峰值时间、调节时间、超调量。

稳态性能:稳态误差是描述系统稳态性能的一种性能指标,通常在阶跃函数,斜坡函数或加速度函数作用下进行测定或计算,若时间去无穷时,系统的输出量不等于输入量或输入量的确定函数,则系统存在稳态误差。

稳态误差是系统控制精度或抗扰动能力的一种度量。

2、线性系统的稳定性概念:所谓稳定性,是指系统在扰动消失后,由初始偏差状态恢复到原平衡状态的性能。

3、线性系统稳定的充分必要条件:闭环系统特征方程的所有根均具有负数实部或者说闭环传递函数的极点均位于s左半平面。

1、线性系统的校正方式可分为串联校正、反馈校正、前馈校正和复合校正。

2、基本控制规律:比例、微分、积分等控制规律。

3、在工业过程控制系统中,广泛使用pid控制器,pid控制器各部分参数的选择,在系统现场调试中最后确定。

通常,应使I部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使D部分发生在系统频率特性的中频段,以改善系统的动态性能。

第七章1、线性定常离散系统稳定的充分必要条件:当且仅当离散系统特征方程的全部特征跟均分布在z平面上的单位圆内,或者所有特征根的模均小于1,即|Zi|<1(i=1,2,…,n),相应的线性定常离散系统是稳定的。

第1章 自动控制系统简介

第1章 自动控制系统简介

微积分(含微分方程)
课程学习要面临

数学基础宽而深 控制原理抽象 计算复杂且繁琐 绘图困难
ax bx c d
2
计算机数学语言 MATLAB 数值解/解析解(数学运算)
控制理论的内容
二十世纪三项科学革命:控制论、量子论、相对论 控制论:
经典控制理论 现代控制理论(智能控制理论)
1.1.2 自动控制系统举例
一个自动运行的系统,就是指它的运行不需要人为的干预。


令人的体温保持在37℃的自动温控系统 心跳控制系统 眼球聚焦系统 温控系统 汽车自动导航控制系统 电梯调度系统自动发送电梯搭载乘客
空调—自动调节房间温度:
以取暖为例,空调通过温度传 感器检测房间的温度高低,空调控 制器将检测的温度与设定值进行比 较,若温度低于设定值的下限,则 使压缩机运行,温度上升,温度上 升到设定值的上限时则停止运行。 空调运行基于反馈信息(温度 测量值),属于 “反馈控制”,最 为常见。
• 由于当时还没有自控理论,所以不能从理论上解 释这一现象。为了解决这个问题,盲目探索了大 约一个世纪之久。
自动控制理论的开端
• 1868年英国麦克斯韦尔的“论调速器”论文指出: • 不应单独研究飞球调节器,必须从整个系统分析控 制的不稳定。 • 建立系统微分方程,分析微分方程解的稳定性,从 而分析实际系统是否会出现不稳定现象。这样,控 制系统稳定性的分析,变成了判别微分方程的特征 根的实部的正、负号问题。
1.2.3 闭环控制系统(核心)

把输出量直接或间接地反馈到系统的输入端,形成 闭环,参与控制,称为闭环控制系统。
前/正向通道
反/负向通道
闭环控制系统的优缺点

自动控制原理基本知识点

自动控制原理基本知识点

自动控制原理基本知识点1.控制系统的基本组成和结构:自动控制系统一般由被控对象、传感器、控制器和执行器组成。

被控对象是需要控制的物理系统,传感器用于采集被控对象的参数信息,控制器根据采集到的参数信息进行计算和控制命令的输出,执行器负责根据控制命令对被控对象进行操作。

2.控制器的种类和工作原理:常见的控制器有比例控制器、积分控制器、微分控制器和PID控制器等。

比例控制器的输出与被控对象的参数成比例,用于消除静差;积分控制器的输出与被控对象参数的积分值成正比,用于消除稳态误差;微分控制器的输出与被控对象参数的变化率成正比,用于提高系统的动态响应速度;PID控制器是由比例、积分和微分控制器组成的综合控制器,可以在一定程度上综合利用比例、积分和微分控制器的优点。

3.系统的稳定性和稳定裕度:在自动控制系统中,稳定性是一个重要的性能指标。

系统稳定性的判据是该系统在无限时间内的响应能否在有限范围内振荡或逐渐衰减趋于平衡态。

稳定裕度是指系统实际稳定边界与临界稳定边界之间的差值,用于评估系统稳定性的好坏。

较大的稳定裕度意味着系统对参数变化和负载干扰具有较强的抵抗能力。

4.控制系统的性能指标:自动控制系统的性能指标包括稳态误差、动态响应和抗干扰能力等。

稳态误差是指系统在稳定工作状态下与期望值之间的差别,可以通过选择合适的控制器和调节参数来降低;动态响应是指系统在受到扰动或控制命令改变时,恢复到新的稳定状态所需的时间和过程,可以通过调节控制器的参数来提高;抗干扰能力是指系统对于外部干扰的响应能力,可以通过增加控制器的增益和改进控制策略来改善。

5.开环控制和闭环控制:自动控制系统可以分为开环控制和闭环控制两种模式。

开环控制是指输出量不通过传感器进行反馈,仅根据期望输入和系统模型进行控制。

闭环控制是指输出量通过传感器进行反馈,并与期望输入进行比较后进行控制。

闭环控制可以实现对系统的实时监测和修正,具有较好的稳定性和鲁棒性。

自动控制原理第一章绪论控制系统的一般概念

自动控制原理第一章绪论控制系统的一般概念

模糊控制 神经网络
智能控制理论
遗传算法
温度计
炉子 电热丝
调压器 220
自动控制
炉子 热电偶 _ 电热丝 +
给定信号 _+
u
ub
ur
电压 放大器
电动机
功率 +
放大器 _E
减速器 调压器
220
二.自动控制要解决的基本问题
自动控制是使一个或一些被控制 的物理量按照另一个物理量即控制量 的变化而变化或保持恒定,一般地说 如何使控制量按照给定量的变化规律 变化,就是一个控制系统要解决的基 本问题。
缺点:被控量可能出现振荡,甚至发散。
适用场合:系统元件参数变化和扰动无法预计的场合。
§3 反馈控制系统的组成
校正元件:基于偏差信号按一定函数规律产生供执行元件执行的 控制命令对系统进行校正以改善系统的动态和静态性能
如:由放大器、电阻、电容组成的具有预定传递函数的电路。 执行元件:也称执行器。用来执行校正元件产生的控制命令,以便
• 闭环控制(closed-loop control)
闭环控制工作原理: 外部作用:
给定量:使 c跟踪r 干扰量:使 c偏离r
控制目的:排除干扰因素、影响、使被控量随给定量变化。
1)、有反馈,能够成闭回路 是按偏差控制的、
2)、偏差信号起控制作用
具有负反馈的闭环系统
优点:具有自动修正被控制量出现偏离的能力,可以修 正元件参数变化以及外界扰动引起的误差,控制精 度高。
• 被控变量:简称被控量,指被控对象输出需按控制要 求变化的物理量,在单输出系统中,也就是系统得输 出量。
• 控制通道:控制变量通过被控对象(被控过程)到控 制系统输出的通道。

第1章 自动控制系统概述

第1章 自动控制系统概述

第1章 自动控制系统概述
智能控制系统是指具有某些仿人智能的工程控制 与信息处理系统, 其中最典型的就是智能机器人。 对自动控制理论的具体描述可表示为图1-1。
第1章 自动控制系统概述
图1-1 对自动控制理论的具体描述
第1章 自动控制系统概述
1.2 开环控制和闭环控制
1. 开环控制系统(Openloop Control System) 若系统的输出量不被引回来对系统的控制部分产 生影响, 则这样的系统称为开环控制系统。
减转器
调电器
电炉
过电热
图 1 - 5 电炉箱自动控制方框图
第1章 自动控制系统概述
T
UfT
∆U=(UsT -UfT ) (>0)
Ua (>0)
电机电转
UR
T
自自自自,直直=给定定, =0时时 T ∆U
图 1 - 6 炉温自动调节过程
第1章 自动控制系统概述
1.3 自动控制系统的组成
现以图 1 - 4 和图 1 - 5 所示的恒温控制系统来说 明自动控制系统的组成和有关术语。
要分析一个实际的自动控制系统, 首先要了解它 的工作原理, 然后画出组成系统的方框图。 在画方框 图之前, 必须明确以下问题: (1) 哪个是控制对象?被控量是什么?影响被控量 的主扰动量是什么? (2) 哪个是执行元件?
第1章 自动控制系统概述
(3) 测量被控量的元件有哪些? 有哪些反馈环节? (4) 输入量由哪个元件给定? 反馈量与给定量如何 进行比较? (5) 此外还有哪些元件(环节)? 它们在系统中处 于什么地位? 起什么作用?
第1章 自动控制系统概述
(5) 执行元件(Executive Element): 驱动被控制 对象的环节。 (6) 控制对象(Controlled Plant): 亦称被调对象。 (7) 反馈环节(Feedback Element): 由它将输出 量引出, 再回送到控制部分。

自动控制原理 第一章 自动控制系统的基本概念(2011-1)

自动控制原理 第一章 自动控制系统的基本概念(2011-1)

现代控制理论
•以状态空间为基础; 研究多输入-多输出、 时变、非线性一类控 制系统的分析与设计 问题。 •具有高精度和高效能 的特点。
1.2 自动控制系统基本概念
自动控制 控制对象 控制量 给定 扰动 自动控制系统 反馈 反馈控制系统 随动系统 过程控制系统
○自动控制 在没有人直接参与的情况下,通过控制器 使被控对象的某些物理量自动地按照预定 规律进行。 控制器 控制对象 控制量
控制系统动态过程曲线
如上图,系统在外作用作用下,输出逐渐与期望值一 致,则系统稳定的,如曲线1所示; 反之,输出如曲线2所示,则系统是不稳定的。
快速性: 对过渡过程的形式和快慢提出要求,一般 称为动态性能。 □形式 □快慢
◆快速性即动态过程进行的时间的长短。过程时间越短,说明
系统快速性越好,反之说明系统响应迟钝。如曲线2所示。
○随动系统 □ 随动系统是一种反馈控制系统,在这种系统中,
输出量是机械位移、速度或者加速度。
□ 随动系统这个术语,与位置(速度或加速度)控
制系统是同义语。
□ 在现代工业中,广泛采用着随动系统。
○过程控制
在工业生产过程中,对诸如压力、温度、湿度、流 量、频率以及原料、燃料成分比例等方面的控制, 称为过程控制。
自动控制原理
Automatic Control Principle
Version 2011
中国矿业大学(北京)
自动控制原理
第一章 自动控制系统的基本概念
第一章 自动控制系统的基本概念
1.1 引言 1.2 自动控制系统的基本概念 1.3 闭环控制和开环控制 1.4 自动控制系统的分类 1.5 对自动控制系统的基本要求
◆稳和快反映了系统过渡过程的性能的好坏。既快又稳,表明
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中北大学课程设计说明书学生姓名:xxx 学号:学院:中北大学专业:自动化题目:直流电机位置随动系统设计(第六组)职称: 副教授 2013 年 12 月 9 日中北大学信息商务学院课程设计任务书2013-2014 学年第一学期学院:xxx专业:自动化学生姓名:xxx 学号:课程设计题目:直流电机位置随动系统设计(第六组)起迄日期:12月9 日~12月20日课程设计地点:德怀楼七层实验室指导教师:姚舜才下达任务书日期: 2013年 12月 9日课程设计任务书课程设计任务书一、实验目的设计一个位置随动系统,使用工程设计方法,使其达到相应的技术指标要求二、实验设计要求1、计算并选择电动机型号及调节器的结构参数;2、画出系统的电气原理图(标明各环节参数,计算机制图,推荐使用Protell软件);3、画出系统的动态结构图(标明各环节参数);4、利用MATLAB软件对所设计的系统进行验证,给出仿真结果;5、利用Bode图近似画法,绘制系统的对数频域渐近特性;6、对比(4)、(5)的图形并说明其异同;7、提交设计说明书。

三、位置随动系统的概念位置随动系统也称伺服系统,是输出量对于给定输入量的跟踪系统,它实现的是执行机构对于位置指令的准确跟踪。

位置随动系统的被控量(输出量)是负载机械空间位置的线位移和角位移,当位置给定量(输入量)作任意变化时,该系统的主要任务是使输出量快速而准确地复现给定量的变化,所以位置随动系统必定是一个反馈控制系统。

位置随动系统是应用非常广泛的一类工程控制系统。

它属于自动控制系统中的一类反馈闭环控制系统。

随着科学技术的发展,在实际中位置随动系统的应用领域非常广泛。

例如,数控机床的定位控制和加工轨迹控制,船舵的自动操纵,火炮方位的自动跟踪,宇航设备的自动驾驶,机器人的动作控制等等。

随着机电一体化技术的发展,位置随动系统已成为现代工业、国防和高科技领域中不可缺少的设备,是电力拖动自动控制系统的一个重要分支。

二.位置随动系统的基本组成1.电位器式位置随动系统的组成下面通过一个简单的例子说明位置随动系统的基本组成,其原理图如图1-1所示。

这是一个电位器式的小功率位置随动系统,有以下五个部分组成:图1-1 电位器式位置随动系统原理图(1)位置传感器 由电位器1RP 和2RP 组成位置传感器。

1RP 是给定位置传感器,其转轴与操纵轮连接,发出转角给定信号*m θ;2RP 是反馈位置传感器,其转轴通过传动机构与负载的转轴相连,得到转角反馈信号m θ。

两个电位器由同一个直流电源s U 供电,使电位器输出电压*U 和U ,直接将位置信号转换成电压量。

误差电压U U U -=∆*反映了给定与反馈的转角误差m mθθθ-=∆*,通过放大器等环节拖动负载,最终消灭误差。

(2)电压比较放大器(A ) 两个电位器输出的电压信号*U 和U 在放大器A 中进行比较与放大,发出控制信号c U 。

由于U ∆是可正可负的,放大器必须具有鉴别电压极性的能力。

输出的控制电压c U 也是可逆的。

(3)电力电子变换器(UPE ) 它主要起功率放大的作用(同时也放大了电压),而且必须是可逆的。

在小功率直流随动系统中多用P-MOSFET 或IGBT 桥式PWM 变换器。

对于大功率位置随动系统,会用到可逆的脉宽调制式PWM 变换器。

(4)伺服电机(SM ) 在小功率直流随动系统中多用永磁式直流伺服电机,在不同情况下也可采用其它直流或交流伺服电机。

大功率随动系统中也可采用永磁式直流伺服电机,由伺服电机和电力电子变换器构成可逆拖动系统是位置随动系统的执行机构。

(5)减速器与负载 在一般情况下负载的转速是很低的,在电机与负载之间必须设有传动比为i 的减速器。

在现代机器人、汽车电子机械等大功率设备中,为了减少机械装置,倾向于采用低速电机直接传动,可以取消减速器。

以上五个部分是各种位置随动系统都有的,在不同情况下,由于具体条件和性能要求的不同,所采用的具体元件、装置和控制方案可能有较大的差异。

四、三环随动系统的基本组成1.三环随动系统的基本组成:系统可分为以下八个部分:1.位置环我们只分析它的数学模型,不会把它作具体介绍。

可以近似为一阶惯性环节,传递函数为=)(s W j 1+s T K j j2.位置传感器模拟随动系统的位置传感器如前所述,大体可以分为两种,电位器和基于电磁感应原理的位置传感器。

基于电磁感应原理的位置传感器有自整角机、旋转变压器、感应同步器等,是应用比较广泛的模拟式位置传感器,可靠性和精度都比较高。

本次设计采用的位置传感器是自整角机。

自整角机是角位移传感器,在随动系统中总是成对应用的。

与指令轴相联的自整角机称为发送机,与执行轴相联的称作接收机。

按用途不同,自整角机可分为力矩式自整角机和控制式自整角机两类。

力矩式自整角机可以不经中间放大环节,直接传递转角信息,一般用于微功率同步旋转系统。

对功率较大的负载,力矩式自整角机带动不了,可采用控制式自整角机,将自整角接收机接成变压器状态,其输出电压通过中间放大环节带动负载,组成自整角机随动系统。

下面简单分析本次设计使用的控制式自整角机的工作原理和使用。

先看单相自整角机的结构和工作原理。

它具有—个单相励磁绕组和一个三相整步绕组,单相励磁绕组安置在转子上,通过两个滑环引入交流励磁电流,励磁磁极通常做成隐极式。

这样可使输入阻抗不随转子位置而变化。

整步绕组是三相绕组,一般为分布绕组,安置在定子上,它们被此在空间相隔o 120,并接成Y 形。

BST 为自整角发送机,BSR 为自整角接收机。

本次模型中采用的自整角机的放大系数)(25.1o bs V K =。

自整角机本身的检测误差o d e 5.0=。

传递函数为式(4-2),是简单的线性函数在数学模型将不会出现,但在计算稳态误差时将会用到自整角机的参数。

自整角机还包括相敏整流器URP ,可以把它当作自整角机的一部分,相当于一个电压放大器,并反映m θ∆的极性,放大系数=rp K 2,当然它在数学模型中也不会出现。

3.电压比较放大器(A )这是位置随动系统所必须有的装置。

它的作用是发出控制信号c U ,由于U ∆可正可负。

放大器必须具有鉴别电压极性的能力,输出的控制的电压c U 也是可逆的。

放大系数5=a K ,函数关系U K U a c ∆=。

这个简单的函数关系也不会在数学模型中出现。

4.电力电子变换器(UPE )起功率放大作用,而且是可逆的。

PWM 变换器有可逆和不可逆两类,可逆变换器又有双极式、单极式和受限单极式等。

在本次大功率随动系统中选取双极式控制的桥式可逆PWM 变换器,因为是大功率系统变换器采用可关断晶闸管。

采用PWM 的调速系统发展越来越成熟,用途也很广,与单纯的晶闸管调速系统相比有很多优点1)主电路线路简单,需用的功率器件少;2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小; 3)低速性能好,稳速精度高,调速范围宽,可达1:10000左右;4)若与快速响应的电机配合,则系统频带宽,动态响应快,动态抗扰能力强;5)功率开关器件工作在开关状态,导通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率较高;6)直流电源采用不控整流时,电网功率因数比相控整流器高。

桥式可逆PWM 变换器的原理图本次设计采用的PWM 变换器的开关频率f =2500Hz ,即失控时间s T =0.4ms ,失控时间已经非常小,大大提高了系统的快速性,所以时间常数这么小的滞后环节可以近似看成是一个一阶惯性环节(其中s T =1T ),传递函数为1)(111+=s T K s W 5.电流调节器(ACR )按工程设计法选择典型I 型系统,PI 调节器。

传递函数为s T s T K s W i i piACR 1)(+= 6.转速调节器(ASR ) 按工程设计法选择典型I 型系统,选用PI 调节器。

传递函数为s T s T K s W n n pnASR 1)(+= 7.位置调节器(AWR )按工程设计法和位置系统的校正,典型II 型系统,选用PID 调节器。

传递函数为 11)(21++=s T s T K s W w w pwAWR8.伺服电机(SM )基于本次设计的大功率随动系统选择永磁式直流伺服电机,即直流他励电动机,型号为Z2-21,铭牌参数,W P n 400=,v U n 110=,A I n 59.5=,min 1000r n N =。

伺服电机可视为一个二阶系统,分为两个传递函数,,一部分为电机电枢近似成一阶惯性环节,传递函数为()122+=s T K s K l 一部分为传动装置近似为积分环节,传递函数为sT K s K m 33)(=9.负载负载就不做具体介绍,它也是系统是整个系统的被控位置对象,我们主要研究它的数学模型。

传递函数近似为积分环节s P s W i 602)(⨯= 随动系统功率大,采用低转速的直流伺服电机,所以本设计取消减速器。

五、三环随动系统的数学模型的建立三环随动系统结构图六、三环随动系统的稳态参数计算已知直流他励电动机,型号为Z2-21,铭牌参数,W P n 400=,v U n 110=,A I n 59.5=,min 1000r n N =。

电力电子变换器的增益201==K K s ,电压放大器的增益5=a K ,相敏整流器的放大系数由计算决定。

自整角机的放大系数)(50o bs v K =。

计算过程如下:电动机的额定效率为65.059.5110400=⨯==N N N N I U P η 电动机的电枢电阻为Ω=-⨯=-=4.359.5110)65.01(5.0)1(21N N N a I U R η 电动机的电动势系数为1min 091.010004.359.5110-⋅=⨯-=-=r v n R I U C N a N N e 电动机的转矩系数为A m N C C e m ⋅=⨯==87.0091.055.930π位置随动系统的静态结构框图(未考虑校正装置)七、三环随动系统电流调节器的设计1.电流环结构图的简化在图4-4中,在一般情况下,系统的电磁时间常数a T 远小于机电时间常数m T ,因此转速的变化往往比电流变化慢的多,对电流环来说,反电动势是一个变化较慢的的扰动,在电流的瞬变过程中,可以认为反电动势基本不变,即0≈∆E 。

这样在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,也就是说,可以暂且把反电动势的作用去掉,得到电流环的近似结构框图,可以证明,忽略反电动势对电流作用的近似条件是la ci T T 13≥ω 式中ci ω——电流环开环频率特性的截止频率。

由于1T 比m T 小的多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为 1T T i =∑电流环简化的近似条件为s ci T 131≤ω2.电流调节器的结构选择首先考虑应把电流环校正成哪一类典型系统。

相关文档
最新文档