五年级奥数-列方程解应用题讲解学习
小学五年级奥数方程练习题应用题100道及答案解析
小学五年级奥数方程练习题应用题100道及答案解析题目1:商店有苹果和梨共320 千克,其中苹果是梨的 3 倍,求苹果和梨各有多少千克?设梨有x 千克,则苹果有3x 千克。
x + 3x = 3204x = 320x = 80苹果:3x = 240 千克答案:梨80 千克,苹果240 千克。
题目2:小明买了5 支铅笔和8 本笔记本,一共花了25 元,已知铅笔每支1 元,求笔记本每本多少钱?设笔记本每本x 元。
5×1 + 8x = 255 + 8x = 258x = 20x = 2.5答案:笔记本每本2.5 元。
题目3:学校图书馆的科技书比故事书多120 本,科技书是故事书的 3 倍,两种书各有多少本?设故事书有x 本,则科技书有3x 本。
3x - x = 1202x = 120x = 60科技书:3x = 180 本答案:故事书60 本,科技书180 本。
题目4:果园里桃树和梨树一共有180 棵,桃树的棵数是梨树的 2 倍,桃树和梨树各有多少棵?设梨树有x 棵,则桃树有2x 棵。
x + 2x = 1803x = 180x = 60桃树:2x = 120 棵答案:梨树60 棵,桃树120 棵。
题目5:甲、乙两人年龄之和为35 岁,甲比乙大5 岁,求甲、乙各多少岁?设乙的年龄为x 岁,则甲的年龄为x + 5 岁。
x + (x + 5) = 352x + 5 = 352x = 30x = 15甲:x + 5 = 20 岁答案:甲20 岁,乙15 岁。
题目6:一辆汽车从甲地开往乙地,每小时行60 千米,5 小时到达,如果要4 小时到达,每小时需行多少千米?设每小时需行x 千米。
4x = 60×54x = 300x = 75答案:每小时需行75 千米。
题目7:学校买来一批图书,分给五年级120 本,比六年级少分20 本,六年级分了多少本?设六年级分了x 本。
x - 120 = 20x = 140答案:六年级分了140 本。
【优质文档】五年级奥数知识讲解列方程解应用题
是硫磺粉的重量除以 2,也就是 2 克。等量关系式表示为:
学习必备
欢迎下载
水+硫磺粉+石灰=农药重量
1 x
解: 设硫磺粉的重量是 x 克,那么,水的重量是( 6x 25)克,石灰重量是 2 克。根据题意列方
程,解。
1 6x 25 x x 700
2 1 7 x 700 25 2 7.5 x 675
4. 同学们到郊区野炊。一个同学到老师那里去领碗,老师问他领多少,他说领
55 个。又问“多少人吃
饭”,他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗。 ”算一算,有多少人吃饭。
【练习答案】
二 . 尝试体验,合作交流。
阅读下面各题,根据题中的分析,找出题中的等量关系,并解答出来。
1. 李红看一本小说,上午看了
乙两仓原来各存粮多少万千克? 2. 用 5 千克含盐 20%的盐水,如果把它稀释为含盐 15%的盐水,需要加水多少千克? 3. 有甲、乙两筐苹果,如果从甲筐取 10 千克放入乙筐,则两筐相等;如果从两筐中各取出
10 千克,这
3
1
时甲筐余下的 10 比乙筐余下的 3 多 5 千克。求两筐苹果原来各多少千克?
x 208 是原方程的解。
答: 五年级植树 208 棵。
例 2. 一瓶农药 700 克,其中水比硫磺粉的 6 倍还多 25 克,含硫磺粉的重量是石灰的 2 倍,这瓶农药里, 水、硫磺粉和石灰粉各多少克?
思路分析: 这是道比较复杂的“和倍应用题” ,硫磺粉和水有直接关系,硫磺粉和石灰也有直接关系, 因此应设未知数硫磺粉为 x 克。水的重量是硫磺的 6 倍还多 25 克,也就是( 6x+ 25)克,石灰的重量就
(二)用字母表示未知数; (通常用“ x”表示)
五年级奥数知识讲解 列方程解应用题(一)
五年级奥数知识讲解列方程解应用题(一)千克,根据题意,第二袋剩下的是(x-25)千克,而且第一袋剩下的是第二袋剩下的2倍,因此可以列出等量关系式:2(x-25) = x-18解:根据等量关系式,解方XXX:2x - 50 = x - 18x = 32因此,两袋大米原来各有32千克。
验算:把x=32代入原方程2(x-25) = x-182(32-25) = 32-1814 = 14左边等于右边,因此x=32是原方程的解。
答:两袋大米原来各有32千克。
1.甲乙两个粮仓共有粮食55万千克,甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等。
求甲、乙两仓原来各存粮多少万千克?思路分析:根据题意,甲、乙两仓原来各存粮设为x和55-x万千克。
由于甲仓运出5万千克,乙仓运出6万千克后,甲、乙两仓存粮相等,因此可以列出方程:x-5=55-x-6.解得x=28,因此甲仓原来存粮28万千克,XXX原来存粮27万千克。
2.用5千克含盐20%的盐水,如果要稀释成含盐15%的盐水,需要加多少千克水?思路分析:设需要加的水量为x千克,则原来盐水中盐的重量为5×0.2=1千克,稀释后盐水中盐的重量为5×0.15=0.75千克。
因此,可以列出方程1/(x+5)=0.75/5,解得x=1.67,因此需要加入1.67千克水。
3.有甲、乙两筐苹果,如果从甲筐取10千克放入乙筐,则两筐相等;如果从两筐中各取出10千克,这时甲筐比乙筐少了原来总重量的1/5.求甲、乙两筐原来各有多少千克苹果?思路分析:设甲、乙两筐原来各有x和y千克苹果。
根据题意,可以列出方程y+10=x-10和4/5(x+y)=x+y-20.解得x=100,y=80,因此甲筐原来有100千克苹果,乙筐原来有80千克苹果。
1.假设乙筐中苹果重x千克,那么时甲筐中苹果重(x+5)千克。
由于时甲筐比乙筐多余下10-3=7千克,因此有(x+5)-(x)=(7),解得x=2,时甲筐中苹果重7千克,乙筐中苹果重2千克。
完整版)五年级奥数:列方程解应用题
完整版)五年级奥数:列方程解应用题XXX教育:列方程解应用题(一)列方程解应用题是小学数学的一项重要内容,它是一种新的解题方法,不同于传统的算术方法。
算术方法要求通过四则运算,逐步求出未知量,而列方程解应用题则是用字母来代替未知数,根据等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。
这样做的优点是可以使未知数直接参加运算。
列方程解应用题的关键在于能够正确地设立未知数,找出等量关系,从而建立方程。
而找出等量关系,又在于熟练运用数量之间的各种已知条件。
掌握了这两点,就能正确地列出方程。
列方程解应用题的一般步骤如下:1.确定未知数及其表示方法;2.找出应用题中数量之间的相等关系,列方程;3.解方程;4.检验,写出答案。
下面是几个例题及其解法:例1.一个数的5倍加上10等于它的7倍减去6,求这个数。
解:设这个数为x,则方程为5x+10=7x-6,解得x=8.例2.两块地一共100公顷,第一块地的4们比第二块地的3倍多120公顷。
这两块地各有多少公顷?解:设第一块地为x公顷,则第二块地为(100-x)公顷。
由已知条件可得:4x=3(100-x)+120,解得x=60,第一块地为60公顷,第二块地为40公顷。
例3.琅琊路小学少年数学爱好者俱乐部五年级有三个班,一班人数是三班人数的1.12倍,二班比三班少3人,三个班共有153人。
三个班各有多少人?解:设三个班的人数分别为x、y、z,则由已知条件可得:x=1.12zy=z-3x+y+z=153代入第三个式子得:1.12z+z-3+1.12z+z-3=153,解得z=50,y=47,x=56.例4.被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍。
求原来的被除数和除数。
解:设除数为x,则被除数为98-x。
由已知条件可得:98-x-9=x-9,解得x=29,被除数为69,除数为29.练与思考:1.列方程解应用题,有时需要求的未知数有两个或两个以上,此时应视具体情况,设对解题有利的未知数为x,根据数量关系用含有x的式子来表示另一个未知数。
(完整word版)五年级奥数第二讲:列方程解应用题
第二讲列方程解应用题【专题精析】列方程解应用题是运用方程来解决实际问题,很多稍复杂的应用题,特别是需要逆向思维的,运用算术方法解答有一定困难,列方程解答就比较容易。
列方程解应用题的一般步骤是:(1)弄清题意,找出未知数,用x表示(直接设),也可以把一种量用x表示,待求出x的数值后再求出未知数(间接设)(2)找出应用题中数量之间的相等关系,列出方程,对于所设的未知数要当作已知数来用,通过已知与未知的有关数组成两个表示同一个数量的式子,构成一个方程(3)解方程;(4)检验,写出答案。
(也可以用算术解法检验)【我的心得】列方程解应用题通常有两个等量关系,我们可以用第一个等量关系设未知数,用第二个等量关系列方程。
列方程的方法通常可以这样做:1、提炼出题中的等式,抄在纸上。
2、将文字语言转化为数学语言。
3、代入数字解方程。
如这道题:修一条公路,未修长度是已修长度的3倍,如果再修300米,未修的长度就是已修的2倍,这条公路长多少米?(1)提炼:未修长度是已修长度的3倍。
(解:设已修长度为x米,则未修长度是3x米。
)未修的长度就是已修的2倍。
(2)转化:未修的长度=已修×2 (小窍门:将文中的关键字如:是、等于、比、相当于等用“=”代替。
)(3)带入求值。
3x-300=(x+300)×2基础提炼例1一种香梨的价格比橘子的2倍还多0.3元,已知4千克与9千克的价格一样多,每千克香梨和橘子各多少元?例2修一条公路,未修长度是已修长度的3倍,如果再修300米,未修的长度就是已修的2倍,这条公路长多少米?例37年前爸爸的岁数是小华的3倍,7年后是小华的2倍,小华今年多少岁?例4甲、乙两人原来身上的钱分别是丙身上钱的6倍和5倍,后来甲又收入180元,乙又收入30元,甲身上的钱就是乙的1.5倍,原来甲、乙、丙三人钱数之和是多少?例5今年爷爷78岁,三个孙子的年龄分别是27岁,23岁,16岁,经过几年后爷爷的年龄等于三个孙子的年龄和?例6被除数和除数的和是80,如果被除数和除数都减去13,那么被除数除以除数的商是5,求原来的被除数和除数。
五年级奥数第3讲:列方程解应用题教案
第3课列方程解应用题【教学目标】1、知识目标:让学生体会到列方程解应用题和算式方法解应用题的各自优劣性。
并让学生明白列方程才是解应用题的一般方法和常规方法。
2、能力目标:让学生提高分析问题、解决问题的能力。
3、情感目标:用生动的题目吸引学生的兴趣,提高学生对数学问题研究的积极性。
【教学重点与难点】列方程解应用题的分析过程(找等量关系)。
【教学教具】无【教学过程】一、导入上课之前先让学生猜几个谜语如果x=只-吾谜底:品,(八口减五口,三口即成“品”字)如果x=旭÷3谜底:晶(九日除以3得到3日,结合为“晶”字)二、学习例题预备题:1.(原预备题3)简写下面的式子a×13+5=_____13a+5_ a×x-12= __ax—12____3×a+56=_3a+56_____ 6×a+b×4=__6a+4b____(a+b)×2=___2a+2b___ (b+c×3)×a=_ab+ac+3a_____2.用字母表示数填空①甲数是3.5,比乙数多a,乙数是__3.5-a___,甲、乙两数的和是__7-a____。
②一辆汽车每小时行b千米,从甲地到乙地共行6小时,甲、已两地之间的路程是_6b_千米。
3.(原预备题1)根据题目意思将方程补充完整⑴文具店有乒乓球200个,又运来了100个,卖出X个后,还剩50个。
200+100-X=50⑵修路队计划修5000米,已经修了4天,平均每天修X米。
还剩1200米没有修完。
5000-4x=1200例1 某校共有学生560人,其中男生比女生的3倍少40人.这个学校男生多少人?女生多少人?【思路点拨】本题中,一共有两个量不知道,一个是男生人数,一个是女生人数,那么我们在利用方程解应用题的时候,首先第一步就是“设”,一般来说,不知道什么就设什么为X,而这里有两个量都不知道,那到底设那个为X呢,这里,老师告诉你们一个小技巧,在设未知数的时候,我们一般设一份量为X。
五年级上册数学培优奥数讲义-第11讲列方程解决问题2
第11讲列方程解决问题2知识装备在列方程解应用题中,设未知数时,有时可直接设,即求什么设什么,有时直接设难以解决问题,这时就需要间接设。
间接设时,一定要找准所设未知量,这样才能简化问题,列出方程。
初级挑战1爸爸现在50岁,儿子现在14岁,问几年前爸爸的年龄是儿子年龄的5倍?思路引领:根据题意,设年前爸爸的年龄是儿子年龄的5倍,找出等量关系式为: ,再列方程求解。
答案:解:设x年前爸爸的年龄是儿子的5倍。
5×(14-x)=50-x70-5x=50-x70-5x+5x=50-x+5x4x+50=704x=20x=5答:5年前爸爸的年龄是儿子年龄的5倍。
能力探索1女儿今年6岁,母亲今年38岁。
几年后母亲的年龄是女儿的3倍?答案:解:设x年后母亲的年龄是女儿的3倍。
3(6+x)=38+x18+3x=38+x18+3x-18=38+x-183x=20+x3x-x=20+x-x2x=20x=10答:10年后母亲的年龄是女儿的3倍。
初级挑战2王冬有存款500元,张华有存款300元。
王冬每月存50元,张华每月存90元。
张华要赶上王冬,需要几个月的时间?思路引领:本题难点在于找等量关系式。
根据“张华要赶上王东”可知,若干个月之后,张华的存款要等于王东的存款,这就是我们要找的等量关系式。
答案:解:设需要x个月,张华的存款能赶上王东的存款。
500+50x=300+90x500+50x-50x=300+90x-50x40x+300=50040x=200x=5答:需要5个月时间。
能力探索2有两堆煤,甲堆煤有4.5吨,乙堆煤有6吨,每天从甲堆煤中运0.2吨给乙堆煤,问几天后乙堆煤的吨数是甲堆煤吨数的2倍?答案:解:设x天后乙堆煤的吨数是甲堆煤吨数的2倍。
6+0.2x=2×(4.5-0.2x)6+0.2x=9-0.4x6+0.2x+0.4x=9-0.4x+0.4x6+0.6x=90.6x=3x=5答:5天后乙堆煤的吨数是甲堆煤吨数的2倍。
五年级列方程解应用题奥数知识列方程解应用题
五年级列方程解应用题奥数知识(列方程解应用题)同学们在解答数学问题时;经常遇到一些数量关系较复杂的;或较隐蔽的逆向问题。
用算术方法解答比较困难;如果用方程解就简便得多。
它可以进一步培养我们分析问题和解决问题的能力;抽象思维能力洌方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“ X”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。
11 _例1•金台小学学生参加申奥植树活动;六年级共植树252棵;比五年级植树总数的4倍少8棵;五年级植树多少棵?1丄』4倍少8棵;就是六年级的4倍的数少8;等于六年级植树的思路分析:六年级比五年级植树总数的总数。
等量关系是:五年级的4倍-8=六年级的植树总数。
解:设五年级植树x棵;根据题意列方程;得11 —x -8 =252411-x =252 8411 — x = 26041x 二260 "1 -4x =208验算:把x=208代入原方程1=1—208 -8 =252左边4右边=252左边=右边x =208是原方程的解。
答:五年级植树208棵。
例2. 一瓶农药700克;其中水比硫磺粉的6倍还多25克;含硫磺粉的重量是石灰的2倍;这瓶农药里;水、硫磺粉和石灰粉各多少克?思路分析:这是道比较复杂的“和倍应用题”;硫磺粉和水有直接关系;硫磺粉和石灰也有直接关系;因此应设未知数硫磺粉为x克。
水的重量是硫磺的6倍还多25克;也就是(6x+ 25)克;石灰的重量就是硫磺1x粉的重量除以2;也就是2 克。
等量关系式表示为:水+硫磺粉+石灰=农药重量1X解:设硫磺粉的重量是 X 克;那么;水的重量是(6x 25)克;石灰重量是2 克。
根据题意列方程;解。
16x 25 x x = 7002 17 —x =700 -25 275x 二 675 x = 90验算:把x =90代入原方程1=6><90 +25 + 90 +— x 90 = 700 左边 2右边=700 左边=右边x = 90是原方程的解。
【奥数思维拓展】精编人教版小学数学五年级上册列方程解应用题(试题)含答案与解析
奥数思维拓展:列方程解应用题1.由于教育水平的差异,新学期开学,相邻的甲、乙两校入学新生人数相差较大。
甲校人数比乙校人数的3倍多30人,而乙校的人数比甲校的3倍少730人。
甲校有新生多少人?2.李同学计划用35元买每支2元、3元、4元三种不同价格的圆珠笔,每种至少买1支。
她最多能买多少支,最少能买多少支?3.国庆期间,山西的特大暴雨,牵动了全国人民的心。
山西暴雨引发省内37条河流几乎同时发生洪水,接踵而至的是山体滑坡、路面冲毁、屋舍农田被淹。
解放军某部紧急调派四支队伍参加救灾,从第一队抽调一半人支援第二队,抽调35人支援第三队,又抽调剩下的一半支援第四队,后来又调进8人,这时第一队还有30人,第一队原来有多少人?4.小春读一本小说,如果每天读35页,则读完全书比规定日期迟到一天;如果他每天读39页,最后一天要读多少页才能按日期读完?5.两条公路成十字交叉,甲从十字路口南1200米处向北直行,乙从十字路口处向东直行.甲、乙同时出发10分后,两人与十字路口的距离相等,出发后100分,两人与十字路口的距离再次相等,此时他们距十字路口多少米?6.甲、乙两堆煤共重180千克,甲堆比乙堆的4倍少20千克,甲、乙两堆煤各重多少千克?7.有面值分别为拾元、伍元、贰元的车票27 张,共108 元,拾元的张数比伍元的张数少7 张,那么,三种面值的车票各有多少张?8.甲、乙两组加工一批零件,甲组每天比乙组多加工100 个,中途乙组因事停工了5 天,20 天后,甲加工的零件个数正好是乙加工的2 倍,这时,两组各加工零件多少个?9.学生共植杉树苗与杨树苗100 棵,每小组分杉树苗6 棵,杨树苗8 棵,最后杉树苗正好分完,杨树苗还剩下 2 棵。
原来杉树苗与杨树苗各有多少棵?10.修一条公路,未修的长度是已修长度的4 倍。
如果再修200m,未修的长度就是已修长度的2 倍。
这条公路长多少米?11.箱子里有红、白两种玻璃球,红球数是白球数的3 倍多2 个。
奥数——列方程解应用题(二)(讲义)-2023-2024学年五年级上册数学人教版
列方程解应用题(二)【精典例题1】某人星期天外出旅行,到达目的地后原路返回,来回共用了10小时,已知去时每小时走9千米,回来时每小时走6千米,这个人来回共行了多少千米?思路导航:有条件可以列出下列等量关系式去时用的时间+回来用的时间=10小时去时速度×去时用的时间=回来时的速度×回来时用的时间解:设去时用了X小时,则回来时用了 10-X 小时 9X=6(10-X) 9X=60-6X150=6XX=4这个人来回共行:9×4×2=72(千米)答:这个来回共行了72千米。
【小试身手】1.小华骑自行车从家去学校,来回共用了15分钟,去时每分钟行320米,回来时每分钟行280米,小华家到学校的路程是多少米?2.兰兰和强强都从学校去文化宫,小强每分钟行32米,兰兰每分钟行56米,两个人共用了11分钟,学校到文化馆的路程是多少米?3、一辆汽车往返于甲、乙两地之间,来回共用8小时,去时每小时行70千米,回来时每小时行42千米,甲、乙两地间的路程是多少千米?【精典例题2】小芳课外书的本书是小强的3倍,现在小芳借给小强10本书,小强书的本书是小芳的3倍。
小芳,小强现在各有课外书多少本?思路导航:有已知条件,可以列出下列等量关系:原来:小芳课外书的本书=小强课外书的本书×3小芳给小强10本课外书后小强课外书的本书=小芳课外书的本书×3如果设原来小强有课外书X本,那么小芳就有3X本,再根据关系式可以列出方程。
解:设原来小强有课外书X本,那么小芳就有3X本X+10=3(3X-10)X+10=9X-308X=40X=5小芳原有课外书 3×5=15(本)小强现在有课外书 5+15=20(本)小芳现在有课外书 15-10=5(本)答:小强现在有课外书15本,小芳现在有课外书5本。
【小试身手】1、红红和兰兰都收集邮票,红红收集的邮票是兰兰的4倍,红红给了兰兰18张,兰兰现在的邮票就是红红的4倍,红红和兰兰现在各有邮票多少张?2、工地上有两堆沙子,甲堆的质量是乙堆的5倍,从甲堆运80吨到乙堆,这时乙堆沙子的质量就是甲堆得5倍,现在两堆沙子的质量分别是多少吨?3、甲、乙两人共同步行,如果同时同地同向而行,经过8分钟,甲比乙多行40米;如果同时同地背向而行,5分钟后相距175米,两人每分钟各行多少米?【精典例题3】王叔叔看一本小说,未看页数是已看页数的4倍,如果再看50页,未看页数就是已看页数的2倍,这本书共多少页?思路导航:读题,可以列出下列等量关系:未看页数=已看页数×4 (1)未看页数-50页=(已看页数+50页)×2 (2)根据(1)式,如果设已看页数是x页,那么未看页数就是4x页,可以根据(2)式列方程,求出了已看页数和未看页数,就可以求出总页数了。
五年级上册奥数(课件)第4讲:列方程解应用题
学有20人,每人搬砖25块。女同学有30人,每人搬砖
多少块?
男同学搬砖数量+女同学搬砖数量=1100
解: 设女同学每人搬砖x块。 20×25+30 x=1100
20×25 + 30 x
30 x=1100-500 30 x=600
x=20
答:女同学每人搬砖20块。
练习二
客车和货车从相距600千米的甲、乙两地同时出发, 相向而行,6小时后相遇。客车每小时行驶40千米,货 车每小时行驶多少千米?
练习三
食堂买了8千克黄瓜,付出20元,找回4元,每千 克黄瓜是多少钱?
解: 设每千克黄瓜 x元。
20-8 x=4
8 x=16 x=2
答:每千克黄瓜2元。
付出的钱-买黄瓜的钱=找回的钱
例题四
芭啦啦综合教育学校五年级(1)班学生采集标本。 采集昆虫标本的有25人,采集植物标本的有19人,两种 标本都采集的有8人。全班学生共有40人,没有采集标本 的有多少人?
练习一
一块地种玉米可收入2500元,比种土豆收入的3倍 还多100元。这块地种土豆可收入多少元?
解: 设种土豆可收入 x元,则种玉米可收入(3 x+100)元。 3 x+100=2500 3 x=2400 x=800
答:这块地种土豆可收入800元。
例题二
五(2)班同学到工地去搬砖,共搬砖1100块。男同
解: 设货车每小时行驶 x千米。
客车行驶的路程加上 货车行驶的路程就是 甲、乙两地的距离。
40×6 + 6 x=600
6 x=600-240 6 x=360
x=60
答:货车每小时行驶60千米。
小结
列方程解应用题的步骤:
1. 弄清题意,确定未知数并用 x表示;
小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案18列方程解应用题 (二)
年 级五年级 学 科 奥数 版 本 通用版 课程标题 列方程解应用题 (二)列方程解决实际问题,难度往往不在“解”,而在“列”。
练习的时候应着重思考如何列好方程。
一般来讲,问什么就设什么。
有的时候打破这个常规,可能得到更美观的方程。
有的题目设好了未知数,会发现无论如何也求不出未知数是多少。
这可能是因为无论未知数是多少,题目所问的数量总是不变的。
合理设置未知数:“甲、乙两班人数之比为12:13”,设未知数可以设甲班12x 人,乙班13x 人。
这样x 是一个整数。
如果设甲班x 人,乙班1312x 人,就产生了“x 是12的倍数”这个奇怪的条件,不利于解题,还有可能出现求不出未知数的情形。
“某人去学校时速4公里,回家时速3公里,求平均速度。
”设路程为x 公里,224/743x x x ===+总路程平均速度公里小时总时间这个未知数x 是求不出来的。
例1 兄弟两人每月收入之比为4:3,支出钱数之比为18:13,他们每月都结余360元,求兄弟两人月收入分别为多少?分析与解:设兄弟两人支出钱数分别为18,13x x 。
(18360):(13360)4:3180x x x ++== 兄弟两人月收入分别为3600元、2700元。
例2 某工厂生产一种产品,只要成本下降6.4%,利润率就会提高8个百分点,求原利润率。
分析与解:前后售价没变,设一开始利润率为x ,则之后利润率变成0.08x +。
原成本100元,现成本93.6元。
100(1)93.6(1.08)x x ⨯+=⨯+0.17x =原利润率为百分之十七。
例3 一位牧羊人赶着一群羊去放牧,跑掉一只公羊后,他数了数羊的只数,发现剩下的羊中,公羊与母羊的只数比是9:7;过了一会儿跑走的公羊又回到羊群,却又跑掉了一只母羊,牧羊人又数了数羊的只数,发现公羊与母羊的只数比是7:5。
这群羊原来有多少只?分析与解:设跑掉一只公羊时,公羊与母羊分别为9x 只,7x 只。
第二次数羊的时候公羊与母羊分别为(9x +1)只,(7x -1)只。
五年级上册数学培优奥数讲义-第10讲 列方程解决问题1
第10讲列方程解决问题1知识与方法列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值。
列方程解应用题的一般步骤如下:1、弄清题意,找出已知条件和所求问题;2、根据题意确定等量关系,设未知数x;3、根据等量关系列出方程;4、解方程;5、检验,作答。
初级挑战1甲乙两站之间铁路长460公里,一列客车从甲站开往乙站,同时一列货车从乙站开往甲站,经过4小时两列火车相遇。
已知客车每小时行60公里,货车每小时行多少公里?思路引领:根据题意,可设货车每小时行x公里,然后找出等量关系式为:再列方程解答。
答案:解:设货车每小时行x公里。
(60+x)×4=460240+4x=460240+4x-240=460-2404x=220x=55答:货车每小时行55公里。
能力探索1两地相距330公里,甲车每小时行32公里,乙车每小时行34公里,两车同时从两地出发相向开出,几小时后两车相距66公里?答案:解:设x小时后两车相距66公里。
(32+34)×x=330-6666x=264x=4答:4小时后两车相距66公里。
初级挑战2一个长方形的周长是240米,长是宽的1.4倍,求长方形的面积。
思路点拨:设宽为x米,那么长为( )米。
再根据“周长是240米”找出等量关系列方程求解。
答案:解:设宽为x米,那么长为( )米。
(1.4x+x)×2=2402.4x×2=2404.8x=240x=50长方形的面积:(50×1.4)×50=3500(平方米)答:长方形的面积是3500平方米。
能力探索21、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?答案:解:设小强的年龄是x岁,那么妈妈的年龄是4x岁。
4x-x=273x=27x=9妈妈:9×4=36(岁)答:设小强的年龄是9岁,那么妈妈的年龄是36岁。
五年级奥数知识讲解列方程组解应用题二
五年级奥数知识讲解列方程组解应用题二Revised final draft November 26, 2020★小学五年级奥数专题讲解之“列方程组解应用题(二)”(一)阅读思考,学会方法。
例1. 松鼠妈妈彩松籽。
晴天每天可以采20个,雨天每天只能采12个。
它一连几天共采了112个松籽,平均每天采14个。
这几天当中有几天是雨天 思路分析:根据题意,可以设两个未知数列方程组来求解。
如果雨天有x 天,晴天有y 天,那么根据题意,就可以列出下面的两个方程,组成一个方程组: x y x y +=+=+=+=⎧⎨⎪⎩⎪112141220112()()雨天晴天采松籽的天数雨天采松籽个数晴天采松籽个数采松籽总数 今天我们为同学们介绍二元一次方程常用的方法,代入消元法。
例1. 解方程组:y x x y =+=⎧⎨⎩3143132()()分析与解答:如果这两个方程有公共解,那么两个方程中同一个未知数就应当取相同的值。
因此,第二个方程中的y 可以用第一个方程中表y 的代数式3x 来代替。
y xx y =↓+=3143132()()把(1)代入(2)得43313x x +=(),这样就消去了未知数y ,得到一个关于x 的一元一次方程,解这个方程可以求出x 的值。
4913x x +=1313x =x =1把x =1代入方程(1),得 y =3∴==⎧⎨⎩x y 13再把这对未知数的值代入原方程中的每一个方程进行检验。
检验:把x y ==13,代入方程(1),得左边=3,右边=3左边=右边再代入方程(2),得左边=⨯+⨯=413313,右边=13左边=右边∴==⎧⎨⎩x y 13是原方程的解。
?例2. 解方程组: x y x y +=+=⎧⎨⎪⎩⎪112141220112分析与解答:为了明显地表示出x 与y 的关系,先把方程(1)变形,用含有y 的代数式表示x ,然后再解。
由(1)得 x y=-83()把(3)代入(2),得12820112()-+=y y961220112-+=y y816y =y =2把y =2代入(3)x =-=826∴==⎧⎨⎩x y 62 检验略。
五年级奥数基础教程-列方程解应用题小学
列方程解应用题有些数量关系比较复杂的应用题,用算术方法求解比较困难。
此时,如果能恰当地假设一个未知量为x(或其它字母),并能用两种方式表示同一个量,其中至少有一种方式含有未知数x,那么就得到一个含有未知数x的等式,即方程。
利用列方程求解应用题,数量关系清晰、解法简洁,应当熟练掌握。
例1商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元。
问:胶鞋有多少双?分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。
设胶鞋有x双,则布鞋有(46-x)双。
胶鞋销售收入为7.5x元,布鞋销售收入为5.9(46-x)元,根据胶鞋比布鞋多收入10元可列出方程。
解:设有胶鞋x双,则有布鞋(46-x)双。
7.5x-5.9(46-x)=10,7.5x-271.4+5.9x=10,13.4x=281.4,x=21。
答:胶鞋有21双。
分析:因为题目条件中黄球、蓝球个数都是与红球个数进行比较,所以答:袋中共有74个球。
在例1中,求胶鞋有多少双,我们设胶鞋有x双;在例2中,求袋中共有多少个球,我们设红球有x 个,求出红球个数后,再求共有多少个球。
像例1那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例2那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法。
具体采用哪种方法,要看哪种方法简便。
在小学阶段,大多数题目可以使用直接设元法。
例3某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。
若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。
问:计划修建住宅多少座?分析与解一:用直接设元法。
设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。
根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,80x-40=60x+80,20x=120,x=6(座)。
五年级列方程解应用题讲义
★小学五年级奥数专题讲解之“列方程解应用题(一)”同学们在解答数学问题时,经常遇到一些数量关系较复杂的,或较隐蔽的逆向问题。
用算术方法解答比较困难,如果用方程解就简便得多。
它可以进一步培养我们分析问题和解决问题的能力,抽象思维能力,列方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“x”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。
一、译式法将题目中的关键性语句翻译成等量关系。
(一)从关键语句中寻找等量关系。
1、关键句是“求和”句型的.例:水果店运来苹果和梨共570千克,其中苹果是270。
运来的梨有多少千克?理解:720千克由两部分组成:一部分是苹果,一部分是梨子。
苹果+梨=570270+x=5702、关键句是“相差关系”句型。
关键词:比一个数多几,比一个数少几,例:小张买苹果用去7.4元,比买橘子多用0.6元,每千克橘子多少元?理解:苹果与橘子相比较,多用了0.6元。
(推荐)直译法列式:从“比”字后面开始列:橘子+0.6=苹果x+0.6=7.4比较法列式:较大数-较小数=相差数:苹果-橘子=0.6元7.4-x=0.63、关键句是“倍数关系”句型。
关键词:XXX是XXX的几倍饲养场共养800只母鸡,母鸡只数是公鸡只数的2倍,公鸡养了多少只?(推荐)列乘法式:(从“是”字后面开始列)公鸡×2=母鸡x×2=800列除法式:母鸡÷公鸡=2倍800÷x=24、有两个关键句,既有“倍数”关系,又有“求和”或者“相差”关系。
(必考考点)一般把“和差”关系作为全题的等量关系式,倍数关系作为两个未知量之间的关系,用来设未知量。
(1倍数设为x,几倍数设为几x。
)如果只有和差关系的话,一般把求和关系作为全题的等量关系式,相差关系作为两个未知量之间的关系。
(把较小数设为x,则较大数为x+a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列方程解应用题
姓名:
一、
(1)女儿今年12岁,母亲今年30岁。
几年以前母亲年龄是女儿的4倍?
(2)今年妈妈的岁数是小丽的4倍,5年后是小丽的3倍。
小丽今年多少岁?
(3)父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。
父亲今年多少岁?
二、
(1)五(1)班的同学去划船,他们租了一些船,如果每船坐8人,则余1人,;如果每船坐9人,则船上还有5个空位。
五(1)班级共有学生多少人?
(2)水果店用筐装苹果,若每筐装50个还差1只筐;若每筐装55个,又则空1只筐。
水果店有多少只筐和多少个苹果?
(3)某班学生合买一件纪念品,如果每人出6元则多48元,如果每人出5元则少3元。
计算这个班级共有学生多少人?
三、
(1)一个三位数,十位数是百位数的2倍,百位数又是个位数的2倍,三个数位上的数字和是14。
这个三位数是多少?
(2)三个数的和是112,甲数是乙数的5倍,丙数比甲数多35,这三个数各是多少?
(3)一个两位数,十位数上的数字是个位上数字的1.5倍,如果调换十位与个位上的数字,则新数比原数小18,计算原来的数是多少?
四、
(1)有一堆树苗,松树苗的棵树是杨树苗的2倍,从这堆树苗中每次拿出5棵松树、4棵杨树。
取多少次后杨树苗取尽,而松树苗还剩下21棵?
(2)甲仓库的冰箱台数是乙仓库的2倍,每天从甲仓库运出冰箱3台,从乙仓库运出冰箱2台,运出几天后,乙仓库的冰箱正好运完,而甲仓库还剩下25台。
原来乙仓库有冰箱多少台?
五、
(1)赵云以分期付款的方式买一台手提电脑,有两种付款方式,一种是第一个月付款850元,以后每月付款250元;另一种付款方式是前一半时间每月付400元,后一半时间每月付200元。
两种付款方式总款数及时间都相同。
计算这台电脑的价钱?
(2)妈妈去买水果,所带的钱正好能买18千克苹果或25千克梨。
已知每千克梨比每千克苹果便宜0.7元,妈妈一共带了多少钱?
(3)两辆汽车运送每包价值相同的货物过收税处,押送人没有带足够的税款,就用部分货物充当税款。
第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交出了5包货后收到退还款80元,这样正好付清税金。
请问每包货的销售价是多少元?(已知:销售价=每包价值+每包税收额)。