第九章1 配位化合物的基本概念[精]
配位化合物的讲义
配位化合物的讲义第一节配位化合物的基本概念(一)配位共价键由一个原子单方面提供l对电子与另一个有空轨道的原子(或离子)共用而形成的共价键,称为配位共价键(coordinate bond),简称配位键.在配位键中,提供电子对的原子称为电子对的给予体;接受电子对的原子称为电子对的接受体.配位键常用"→"表示,箭头指向电子对的接受体.例如,铵离子(NH)可看作是氨NH3分子与H+离子结合形成的.在氨分子中,氮原子的2p轨道上有一对没有与其他原子共用的电子,这对电子称为孤对电子,氢离子上具有1s空轨道.在氨分子与氢离子作用时,氨分子上的孤对电子进入氢离子的空轨道,与氢共用,形成配位键.在铵离子中,虽然1个N→H键和其他3个N-H键的形成过程不同,但一旦形成了铵离子,这4个氮氢键的性质完全相同.配位键是一种特殊的共价键,广泛存在于无机化合物中.凡一方有空轨道,另一方有未共用电子对时,两者就可能形成配位键.例如:HNO3,H2SO4及其盐中均存在着配位键.(二)配位化合物配位化合物简称配合物,是一类组成复杂,发展迅速,应用广泛的化合物.1.配位化合物的概念配位化合物是一类含有配位单元的复杂化合物.通常以酸,碱,盐形式存在,也可以电中性的配位分子形式存在.如[Cu(NH3)4]SO4,K4[Fe(CN)6],[Fe(CO)5]等.配位单元一般是指由金属原子或金属离子与其他分子或离子以配位键结合而形成的复杂离子或化合物.如[Cu(NH3)4]2+,[Fe(CN)6]4-,[Fe(CO)5],[PtCl2(NH3)2]等.离子型配位单元又称为配离子.根据配离子所带电荷的不同,可分为配阳离子和配阴离子,如[Cu(NH3)4]2+,[Fe(CN)6]4-.含有配位单元的化合物称为配位化合物(coordination compound).习惯上把配离子也称为配合物.2.配位化合物的组成配位化合物的核心是配位单元.通常把配位化合物分为内界和外界两个部分.内界是配离子,外界是反离子,内界和外界之间以离子键结合.现以硫酸四氨合铜(Ⅱ)为例来说明配合物的组成.(1)中心原子(或离子) 在配离子(或配位分子)中,接受孤对电子的阳离子或原子统称为中心原子(central atom).中心原子位于配位化合物的中心位置,是配合物的核心部分,也称为配合物的形成体.中心原子必须具有空轨道,可以接受孤对电子.常见的中心原子多为副族的金属离子或原子.如[Cu(NH3)4]2+的中心原子Cu2+,[Fe(CO)5]的中心原子Fe等.(2)配位体和配位原子在配合物中,与中心原子以配位键结合的阴离子或中性分子称为配位体(ligand),简称配体.如[Cu(NH3)4]SO4,K4[Fe(CN)6]和[Fe(CO)5]中的NH3,CN-和CO都是配位体.配位体中能提供孤对电子与中心原子以配位键相结合的原子称为配位原子(ligating atom).如NH3中的N,CN-中的C,CO中的C.常见的配位体有:NH3,H2O,CN-,SCN-,Cl-等.常见的配位原子有:N,O,C,S,Cl等.按配位体中配位原子的多少,配位体可分为单齿配位体和多齿配位体.含有一个配位原子的配位体为单齿配位体(monodentate ligand);含有两个或两个以上配位原子的配位体为多齿配位体(polydentate ligand).如:乙二胺乙二胺四乙酸根离子多齿配位体与中心原子形成的配合物也称为螯合物(chelate).(3)配位数在配合物中,与中心原子结合成键的配位原子的数目称为配位数(coordination number).如K4[Fe(CN)6]中有6个C原子与Fe2+成键,Fe2+的配位数是6.而[Cu(en)2] (OH)2中配位体en是双齿配位体,因此Cu2+的配位数是4而不是2.若配位体有两种(或两种以上),则配位数是配位原子数之和.如[Pt(NO2)2(NH3)4]Cl2中Pt4+的配位数是6.(4)配离子的电荷配离子的电荷数等于中心原子与配位体电荷数的代数和.例如,在[Cu(NH3)4]SO4中,配离子的电荷数为: +2,写作[Cu(NH3)4]2+.在K4[Fe(CN)6]中,配离子的电荷数为:-4,写作[Fe(CN)6]4-.由于配合物是电中性的,因此,外界离子的电荷总数和配离子的电荷总数相等,符号相反,所以配离子的电荷数也可以根据外界离子来确定.3.配合物的命名配合物的命名与一般无机化合物的命名原则相同.(1)配合物的命名顺序阴离子在前,阳离子在后,像一般无机化合物中的二元化合物,酸,碱,盐一样,命名为"某化某","某酸","氢氧化某"和"某酸某".(2)配离子的命名顺序配位体数目(中文数字表示)—配位体名称—合—中心原子名称—中心原子氧化值(罗马数字表示).有的配离子可用简称.(3)配位体命名顺序若配位体不止一种,则先无机配位体,后有机配位体;先阴离子,后中性分子.若均为中性分子或均为阴离子,可按配位原子元素符号英文字母顺序排列.不同配位体之间以圆点"·"分开,复杂的配位体名称写在圆括号中,以免混淆.下列是一些配合物的命名实例:[Ag(NH3)2]+ 二氨合银(Ⅰ)配离子 (银氨配离子)[Fe(CN)6]3- 六氰合铁(Ⅲ) 配离子[Fe(CO)5] 五羰基合铁(0)[Pt(NO2)2(NH3)4]2+ 二硝基·四氨合铂(Ⅳ)配离子[Co(NH3)5H2O]3+ 五氨·一水合钴(Ⅲ)配离子[Ag(NH3)2]OH 氢氧化二氨合银(I)[Cu(NH3)4]SO4 硫酸四氨合铜(Ⅱ)K3[Fe(CN)6] 六氰合铁(Ⅲ)酸钾 (铁氰化钾或赤血盐)H2[PtCl6] 六氯合铂(Ⅳ)酸[Pt(NO2)2(NH3)4]Cl2 二氯化二硝基·四氨合铂(Ⅳ)[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(Ⅲ)第二节配合物的稳定性一,配离子的离解平衡将氨水加到硝酸银溶液中,则有[Ag(NH3)2]+配离子生成,反应式为:Ag++2NH3→[Ag(NH3)2]+此反应称为配合反应(也叫络合反应).由于配离子是由中心离子和配位体以配价键结合起来的,因此,在水溶液中比较稳定.但也并不是完全不能离解成简单离子,实质上和弱电解质类似,也有微弱的离解现象.(一)配合物的稳定常数配合物的稳定性,可以用生成配合物的平衡常数来表示,例如:应用化学平衡原理,可得:K值越大,表示形成配离子的倾向越大,此配合物越稳定.所以配离子的生成常数又称为稳定常数(Ks).(二)不稳定常数在水溶液中,[Ag(NH3)2]+是稳定的,不过像其他弱电解质一样也有少数[Ag(NH3)2] +发生离解,可用下式表示:则平衡常数表达式为:K不稳值愈大,表示配离子离解愈多,故称K不稳为配离子的不稳定常数. Ks和K 不稳互成倒数.二,配合平衡的移动金属离子Mn+和配位体A-生成配离子MA x (n-x)+,在水溶液中存在如下平衡:根据平衡移动原理,改变Mn+或A-的浓度,会使上述平衡发生移动.若在上述溶液中加入某种试剂使Mn+生成难溶化合物,或者改变Mn+的氧化状态,都会使平衡向左移动.若改变溶液的酸度使A-生成难离解的弱酸,也可使平衡向左移动.配合平衡同样是一种相对的平衡状态,它同溶液的pH值,沉淀反应,氧化还原反应等都有密切的关系.(一)与酸度的关系根据酸碱质子理论,所有的配位体都可以看作是一种碱.因此,在增加溶液中的H+浓度时,由于配位体同H+结合成弱酸面使配合平衡向右移动,配离子平衡遭到破坏,这种现象称为酸效应,例如:配位体的碱性愈强,溶液的pH值愈小,配离子愈易被破坏.金属离子在水中,都会有不同程度的水解作用.溶液的pH值愈大,愈有利于水解的进行.例如:Fe3+在碱性介质中容易发生水解反应,溶液的碱性愈强,水解愈彻底(生成Fe(OH)3沉淀).因此,在碱性介质中,由于Fe3+水解成难溶的Fe(OH)3沉淀而使平衡向右移动,因而[FeF6]3-遭到破坏,这种现象称为金属离子的水解效应.(二)与沉淀反应的关系当向含有氯化银沉淀的溶液中加入氨水时,沉淀即溶解.当在上述溶液中加入溴化钠溶液时,又有淡黄色的沉淀生成.由于AgBr的溶解度比AgCl的溶解度小得多,因而Br-争夺Ag+的能力比Cl-的大,所以能产生AgBr沉淀而不能产生AgCl沉淀.沉淀剂与金属离子生成沉淀的溶解度愈小,愈能使配离子破坏而生成沉淀.(三)与氧化还原反应的关系配合反应的发生可以改变金属离子的氧化能力.例如:当PbO2(Pt+)与盐酸反应时,其产物不是PbCl4,而是PbCl2和Cl2.但是当它形成[PbCl6]2-配离子后,Pb就能保持它的+4氧化态.配合反应影响氧化还原反应的方向.例如,Fe3+可以把I-氧化成I2:在加入F-后,由于生成[FeF6]3-,减少了Fe3+的浓度,使平衡向左移动.当我们考查配合反应对氧化还原反应的影响时,不仅要注意配离子的形成,而且还要注意配离子的稳定性.第三节螯合物(内络合物)一,螯合物的概念螯合物又称内络合物,是螯合物形成体(中心离子)和某些合乎一定条件的螯合剂(配位体)配合而成具有环状结构的配合物."螯合"即成环的意思,犹如螃蟹的两个螯把形成体(中心离子)钳住似的,故叫螯合物.形成螯合物的第一个条件是螯合剂必须有两个或两个以上都能给出电子对的配位原子(主要是N,O,S等原子).第二个条件是每两个能给出电子对的配位原子,必须隔着两个或三个其他原子,因为只有这样,才可以形成稳定的五原子环或六原子环.例如,在氨基乙酸根离子(H2N-CH2-COO-)中,给出电子的羟基氧和氨基氮之间,隔着两个碳原子,因此它可以形成稳定的具有五原子环的化合物.四原子环在螯合物中是不常见的,六原子以上的环也是比较少的.中心离子有一定的电荷数,同时也有一定的配位数.Cu(Ⅱ)带有二个正电荷,它的配位数为4.氨基乙酸根离子(H2N-CH2-COO-)既有氨基氮,都能给出电子对;氨基氮能满足中心离子的配位数,羟基氧则能使配位数和电荷数同时得到满足,因此Cu 2+和两个(H2N-C H2-COO-)螯合后,得到的是中性分子二氨基乙酸合铜(Ⅱ)(简称氨基乙酸酮)[Cu(H 2N-CH2-COO)2]由于羟基氧带有负电荷,故它与Cu 2+形成的配键通常用"-"表示. 螯合物的特殊稳定性是环形结构带给它们的特征之一.环愈多使螯合物愈稳定.通常所说的"螯合反应"就是指由于螯合而使化合物具有特殊的稳定性.由于螯合物的特殊稳定性,已很少能反映金属离子在未螯合前的性质.金属离子在形成螯合物后,在颜色,氧化还原稳定性,溶解度及晶形等性质发生了巨大的变化.很多金属螯合物具有特征性的颜色,而且这些螯合物可以溶解于有机溶剂中.利用这些特点,可以进行沉淀,溶剂萃取分离,比色定量等分析分离工作.二,螯合剂常用的螯合剂是氨螯合剂,是一类似以氨基二乙酸[HN(CH2COOH)2]为基体的螯合剂,它以N,O为螯合原子,与金属离子螯合时形成环状的螯合物.最常用的氨羧螯合剂是EDTA(乙二胺四乙酸或其二钠盐的统称).它的结构是:乙二胺四乙酸是四元酸,如果用Y表示它的酸根,则乙二胺四乙酸可以简写成H4Y. 由于乙二胺四乙酸在水中的溶解度比较小,而其二钠盐在水中的溶解度却比较大.因些在实际应用中人们常采用EDTA二钠盐.EDTA二钠盐含有2分子结晶水,用简式Na2H2Y·2H2O表示它.EDTA是四元酸,它在水中是分步离解.除碱金属离子外,EDTA几乎能与所有的金属离子形成稳定的金属螯合物.并且,在一般情况下,不论金属离子是几价,1个金属离子都能与1个EDTA酸根(Y4-)形成可溶性的稳定螯合物.例如:式中M表示金属离子,右上角的数字和符号表示离子的离子价.虽然,除碱金属离子外,各金属离子大多数能与EDTA形成螯合物,但它们的稳定性差别很大.EDTA是应用最广的一种氨羧螯合剂,用EDTA标准液可以滴定几十种金属离子,这个方法就称EDTA滴定法.目前所谓螯合滴定法主要是指EDTA滴定.三,螯合物在医学上的应用螯合物在自然界存在得比较广泛,并且对生命现象有着重要的作用.例如,血红素就是一种含铁的螯合物,它在人体内起着送氧的作用.维生素B12是含钴的螯合物,对恶性贫血有防治作用.胰岛素是含锌的螯合物,对调节体内的物质代谢(尤其是糖类代谢)有重要作用.有些螯合剂可用作重金属(Pb2+, Pt2+,Cd2+,Hg2+)中毒的解毒剂.如二巯基丙醇或EDTA二钠盐等可治疗金属中毒.因为它们能和有毒金属离子形成稳定的螯合物,水溶性螯合物可以从肾脏排出. 有些药物本身就是螯合物.例如,有些用于治疗疾病的某些金属离子,因其毒性,刺激性,难吸收性等不适合临床应用,将它们变成螯合物后就可以降低其毒性和刺激性,帮助吸收.另外在生化检验,药物分析,环境监测等方面也经常用到螯合物.。
《配位化合物》课件
负离子
非金属元素形成的阴离子在配合物中带有负 电荷。
稀土金属配离子
稀土金属作为特殊的金属离子在配合物中具 有重要的应用价值。
配合物的合成方法
直接溶液法
通过将金属离子和配体直接 溶解在溶剂中形成配位化合 物。
配体置换法
通过将原有配体置换为新的 配体来合成具有不同结构和 性质的配位化合物。
3 重要性
配位化合物广泛应用于医药、化妆品、催化剂等众多领域。
配位基概述
配体定义
配体是指能够通过一个或多 个配位键与金属离子结合的 化学物质。
配位键
配位键是指配体与金属离子 之间共享的电子对。
配位数
配位数指配位中心金属离子 周围配位体的个数。
金属配离子概述
正离子
金属离子在配合物中带有正电荷。
零价配离子
气相法
通过在气相中使金属原子与 配体反应生成配位化合物。
配合物的分类
1 单核配合物
配位中心金属离子与多 个配体结合形成。
3 簇合物
多个金属离子通过配位 键相互连接形成。
配位数与配位几何
1
配位几何
2
配位几何是指配合物中配体排列的空
间结构。
3
六配体
4
六配体通常呈现八面体或六面体配位 几何。
《配位化合物》PPT课件
本课件旨在介绍配位化合物的基本概念和性质,以及其在不同领域的应用。 通过清晰的内容和生动的图像,希望您能对配位化合物有一个全面而深入的 了解。
初识配位化合物
1 定义
配位化合物是指通过配位键将中心金属离子与一个或多个配体结合形成的化合物。
2 历史
配位化合物的研究始于18世纪,为现代配位化学的奠基。
配位化合物.pptx
为一类具有特征化学结构的化合物,由中心原子(或离子,统称中 心原子)和围绕它的分子或离子(称为配位体/配体)完全或部分 通过配位键结合而形成。
包含由中心原子或离子与几个配体分子或离子以配位键相结合 而形成的复杂分子或离子,通常称为配位单元。凡是含有配位单 元的化合物都称作配位化合物。研究配合物的化学分支称为配位 化学。
配合物是化合物中较大的一个子类别,广泛应用于日常生活、 工业生产及生命科学中,近些年来的发展尤其迅速。它不仅与无 机化合物、有机金属化合物相关连,并且与现今化学前沿的原子 簇化学、配位催化及分子生物学都有很大的重叠
一、配位化合物的概念
配位化合物,简称配合物。是无机化学研究的 主要对象之一,它是一类复杂、特点多样、应 用广泛的化合物。 它与医学有密切关系,生物体内的金属离子大 多以配合物的形式存在,在生命活动中起着极 其重要的作用。
二、配位化合物的组成
• 1.内界和外界 • 配合物一般由内界和外界两部分组成。 • 内界:即配位单元,是配合物的特征部分 • 外界:除内界以外的部分 • 以硫酸四氨合铜(II)为例说明内界和外界
(一)内界 1.中心离子 2.配体和配位数 3.配离子 (二)外界
三、配离子和配合物的命名
1.配离子的命名顺序 配位数目(用一、二、三、四等 +配体+合=中心离子+ 化合价(用罗马数字表示)+离子 如:书P33 2.配合物的命名 原则:阴离子在前,阳离子在后 如:书P33-34
配位化合物知识总结
VS
磁性配合物在磁学、磁记录、信息存 储和分子基磁体等领域有广泛的应用 前景。
Part
04
配位化合物的应用
在化学反应中的作用
催化反应
配位化合物可以作为催化剂,通 过与反应物结合,改变反应途径,
降低反应活化能,从而加速化学 反应的进行。
分离和提纯
利用配位化合物的独特性质,如选 择性络合、稳定性差异等,可以实 现化学物质的分离和提纯。
配位化合物的稳定性取决于多个因素 ,包括中心离子的性质、配位体的类 型和数量、以及配位环境等。
稳定性规律
一般来说,中心离子的电荷数越高、 半径越小,配位化合物的稳定性越强 ;配位体的电子给予能力越强、数目 越多,稳定性也越高。
配位化合物的合成方法
有机合成
通过有机合成方法,可以制备出结构复杂、功能多样的配 位化合物。常见的合成方法包括重氮化反应、氧化还原反 应等。
配位化合物的分类
按中心原子分类
根据中心原子的种类,可以将配位化合物分为金属配位化合物和非金属配位化合物。金属配位化合物是指中心原 子为金属元素的配位化合物,如铜、钴、铁等;非金属配位化合物是指中心原子为非金属元素的配位化合物,如 硫、氮、磷等。
按配位数分类
根据配位数的大小,可以将配位化合物分为低配位数(2-4)和高配位数(≥6)的配位化合物。低配位数配位化 合物是指中心原子周围参与配位的配位体数目较少的配位化合物;高配位数配位化合物是指中心原子周围参与配 位的配位体数目较多的配位化合物。
02
动态配位化合物
03
超分子配位化合物
具有可逆的结构变化和反应性, 可用于传感器、分子机器等领域。
由多个分子或离子通过非共价相 互作用形成的复杂结构,具有独 特的物理和化学性质。
第9章 配位化合物
第9章配位化合物
配位化合物简称配合物,又叫络合物。
研究配位化合物的化学称为配位化合物化学,简称配位化学。
9.1 基本概念
9.1.1 配位化合物的定义
定义:
配位化合物(简称配合物)是由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子)按一定的组成和空间构型所形成的化合物。
理解:
中心原子和配体按一定比例通过配位键结合、形成有特定空间构型的结构单元,称为配位单元。
其中
有空位(空轨道)的原子或离子作中心,叫中心原子
有孤对电子或不定域电子的离子或分子在中心原子周围,叫配体配位单元:
离子: 如[Cu(NH3)4]2+,[PtCl4]2-,[Fe(CN)6]3-等,叫配离子;
8。
配位化合物与配位滴定法精品PPT课件
二、 配合物的组成 1. 内界和外界
配合物一般由内界和外界两部分组成。 内界:即配位单元,是配合物的特征部分; 外界:除内界以外的部分。 若所含配位单元是电中性的配合物,则只有内
界没有外界 ,如[Ni(CO)4]、[Pt(NH3)2Cl2]
注意:配合物内界与外界之间是静电作用,在 水中易解离;内界的中心原子与配体之间是配
17
配体数: 配合物中含有配体的数目,如: Ni(CO)4中为4,[Fe(C2O4)3]3-中是3。
配位数与配体数是有区别的:
(1)简单配合物中,配位数等于配体数,如 [Ag(CN)2]-中配位数和配体数均为2。
(2)在螯合物中,配位数等于配体的数目与其 基数的乘积。如[Cu(en)2]2+中配体数是2,其配 位数则为4; [Fe(C2O4)3]3-中配体数是3,其配 位数却为6。
4
一、 配合物的定义
《无机化学命名原则》中定义:配位化合 物(简称配合物)是由可以给出孤对电子或 多个不定域电子的一定数目的离子或分子 (称为配体)和具有接受孤对电子或多个不 定域电子的空位的原子或离子(统称中心原 子)按一定的组成和空间构型所形成的化合 物。
5
一般将中心原子(或离子)与它周围按一定 几何构型围绕着的阴离子或中性分子配体以配位 键结合的复杂分子或离子,称为配位单元。
14
双基配体:草酸根 1
C
2O
2 4
O O 2– CC
OO
••
••
六基配体:乙二胺四乙酸根(简称 EDTA)
••
O OC H2C
• • 4–
CH2 CO O
•• ••
N CH2 CH2 N
O OC H2C
••
高中化学——配位化合物的基本概念
第一节配位化合物的基本概念一.知识储备1.配合物的定义1.定义由中心体(原子或离子)和配位体(阴离子或分子)以配位键的形式结合而形成的具有特定组成和形状的分子,称为配位化合物,简称配合物。
[Ag(NH3)2]Cl、[Cu(NH3)4]SO4、[Ni(CO)4]等皆为配合物,其中[Ag(NH3)2]+、[Cu(NH3)4]2+称为配离子,[Ni(CO)4]称为配分子。
2.配合物特征(1)含有配位键(中心体与配位体间以配位键相结合);(2)配离子或配分子是不可分割的整体(存在于固体或溶液中)。
2.配合物的组成[Ni(CO)4]——只有内界1.中心体(离子或原子):大多数是带正电的阳离子,也有中性原子,甚至是金属阴离子,其必备的条件是具有空轨道。
(1)多数为副族金属离子:(2)中性原子:如Ni(CO)4、Fe(CO)5等中的Ni、Fe原子。
(3)金属阴离子:如Fe(CO)42-中的Fe2-。
(4)高氧化态的金属(主族金属元素)和非金属元素的离子:如[AlF6]3-中的Al3+,[SiF6]2-中的Si(Ⅳ),PF6-中的P(Ⅴ)等。
碱金属和碱土金属的离子作为中心体的能力要比副族金属离子弱得多。
2.配位体(简称配体):含有孤对电子或π键电子对以及多个不定域电子的分子或离子。
如:阴离子X-、OH-、SCN-、CN-等和中性分子H2O、NH3、CO、醇、胺、醚等都含有至少一对孤电子,它们都可作为配体;乙烯C2H4、苯C6H6、环戊二烯C5H5等都含有π键电子对或多个不定域电子,它们也可以作为配体,称为π配体。
(1)配位原子:配体中直接同中心离子(或原子)配合的原子。
例如:NH3中的N原子、CO和CN-中的C原子等。
常见的配位原子是位于周期表中p区的非金属元素的原子——ⅣA、ⅤA、ⅥA、ⅦA,如C、N、P、O、S、F、Cl、Br、I等。
(2)配体的类型:①单齿配体:只含有一个配位原子的配体,如:NH3、H2O、X-、CO等。
化学中的配位化合物知识点
化学中的配位化合物知识点配位化合物是指由一个或多个配体与一个中心金属离子或原子形成的化合物。
配位化合物在化学中具有重要的地位,广泛应用于催化剂、药物、化妆品、材料等领域。
本文将介绍配位化合物的定义、配体、配位数、结构和性质等方面的知识点。
一、定义配位化合物是由一个或多个配体与一个中心金属离子或原子通过配位键相连而形成的化合物。
配位键是指配体上的一个或多个原子通过共用电子对与中心金属离子或原子形成的化学键。
二、配体配体是指能够通过配位键与中心金属离子或原子形成化学键的化合物或离子。
配体可以是简单的阴离子、分子或配合物,常见的配体有水分子(H2O)、氨分子(NH3)、氯化物离子(Cl-)等。
三、配位数配位数是指中心金属离子或原子周围配体的个数。
配位数决定了配合物的结构和性质。
一般情况下,配位数为2或4的配合物呈平面结构,配位数为6的配合物呈八面体结构。
四、结构配位化合物的结构多样,常见的几何构型有线性、正方形、八面体等。
配合物的结构与配位数、中心金属离子的价态、配体的性质等因素有关。
五、配合物的性质配合物具有许多特殊的性质,包括颜色、磁性、溶解度等。
其中,颜色是由于配合物的电子结构所引起的。
许多过渡金属离子在配位化合物中呈现出丰富多彩的颜色。
六、常见的配位化合物1. 水合物:即配位化合物中的水分子,常见于许多金属离子的溶液中,如CuSO4·5H2O(硫酸铜五水合物);2. 氨合物:即配位化合物中的氨分子,常见于许多过渡金属离子的配合物中,如[Co(NH3)6]Cl3(六氨合三氯钴);3. 配位聚合物:由多个配位单元组成的大分子化合物,如蓝色胆矾[Cu(NH3)4][Fe(CN)6](铜铁氰合物);4. 配位聚合物:由两个或多个中心金属离子和对应的配体组成的化合物,如[Fe2(CN)6]4-(四氰合二铁)。
综上所述,配位化合物是化学中的重要概念,对于理解化学反应、催化剂、材料科学等领域具有重要意义。
配位化合物的基本概念
如: Pt2+ + 2Cl + 2NH3 [Pt [Co(NH3)3(H2O)3] ③、定义配合物 配合分子和含有配离子的化合物统称配合物。 配合分子和含有配离子的化合物统称配合物。 如:[Cu( NH3)4]SO4、K2[HgI4]……
4
二、配合物的组成: 配合物的组成:
K2[HgI4]
返回3 返回3
15
例2: :
阴离子配体 ①按所带电荷分: 按所带电荷分: 配体分类: 配体分类: 单基( 单基(齿) ②按所能提供配位原子数目分: 按所能提供配位原子数目分: 多基(齿) 多基( 中性分子配体
返回6 返回6
16
11
[Cr(OH)3(H2O)(en )] 三羟基· 乙二胺合铬(III) 三羟基·水·乙二胺合铬(III) [CoCl 2•H2O• (NH3) 3]Cl 氯化二氯• 一水•三氨合钴( 氯化二氯• 一水•三氨合钴(Ⅲ) K[FeCl 2(C2O4)(en)] 二氯•草酸根•乙二胺合铁( 二氯•草酸根•乙二胺合铁(Ⅲ)酸钾 写出下列配合物的化学式 氯化一氯•硝基一水• 一氨• 胺合钴( ①、氯化一氯•硝基一水• 一氨•乙二 胺合钴(Ⅲ) 六氟合铝( 酸二氨合银( ②、六氟合铝(Ⅲ)酸二氨合银(Ⅰ) 答案: 答案:[CoCl •NO2•H2O•NH3•(en) ]Cl [Ag(NH3)2]3•[AlF6]
2
9-1 配位化合物的基本概念
一、配合物的定义和组成 1、定义:(又称为络合物) 定义: 又称为络合物)
[实验 : 实验]: 实验
①、定义配离子:由一个简单正离子与一定数 定义配离子: 目的中性分子或( 目的中性分子或(和)负离子以配位键键合而 成的复杂离子称为配离子。 成的复杂离子称为配离子。 ②、定义配合分子:由一个简单正离子(或原 定义配合分子:由一个简单正离子( 与一定数目的中性分子或( 负离子, 子)与一定数目的中性分子或(和)负离子, 以配位键结合形成的电中性的复杂分子称为配 3 合分子。 合分子。
配位化合物概念及命名
形成体 特征配位数
某些形成体的特征配位数
Ag+, Cu+, Au+
Cu2+,Zn2+, Hg2+,Pt2+
2
4
Fe2+,Fe3+,Co3+, Co2+,Ni2+,Pt4+,Cr
3+
6
配离子电荷:形成体和配体电荷的代数和。 • 由外界电荷确定 • 中心离子和配体电荷的代数和
2. 配合物的化学式及命名
例1:
选择配合物的化学式书写正确的一个。 A. [Pt(Cl)2 (NH3)2 (H2O)2]SO4 B. [Pt(Cl)2 (H2O)2(NH3)2]SO4 C. [Pt (NH3)2 (Cl)2 (H2O)2]SO4
例2:
给下列配合物命名:
[Co(NH3)6]Cl3
三氯化六氨合钴(Ⅲ)
[CoCl2(NH3)3(H2O)]Cl
配位化合物的基本概念
定义 配合物是以金属正离子(或中性原子)作为中心,有 若干个负离子或中性分子按一定的空间位置排列在 其周围形成的复杂化合物。
英语中称做:Coordination Compound,或 Complex Compound,意为“协同化合物”或 “复杂化合物”。译成“配合物”或“络合物”。
氯化二氯·三氨·水合钴(Ⅲ)
K[PtCl3(NH3)3]
三氯·三氨·合铂(Ⅳ)酸钾
配合物的化学式书写规则
•阳离子在前,阴离子在后;如氯化…,硫酸…等,…酸 钾,…酸等 •内界命名顺序:配位体个数——配位体名称——合—— 中心离子(氧化值);配位体前用汉字标明其个数,中心 离子后面的括号中用罗马数字标明其氧化值。 • 配体有多种时,不同配体之间用圆点(·)隔开,并按 照以下顺序:
配位化合物的基本概念
K [ PtCl3(NH3)]三氯·氨合铂( II )酸钾
3°同类配体中,按配位原子的元素符号在英文字母表中的
次序分出先后。
[Co(NH3)5H2O ] Cl3三氯化五氨·水合钴( III )
4°配位原子相同,配体中原子个数少的在前。
[ Pt(Py)( NH3)(NO2)(NH2OH)] Cl
互为旋光异构体的两种物质,使偏振光偏转的方向不同。按一系列的规定,定义为左旋、右旋。不同的旋光异构体在生物体内的作用不同。
配位化合物的基本概念
一.配位化合物
1定义
由中心原子(或离子)和几个配体分子(或离子)以配位键相结合而形成的复杂分子或离子,通常称为配位单元。凡是含有配位单元的化合物都称做配位化合物,简称配合物,也叫络合物。
, Ni(CO)4都是配位单元,分别称作配阳离子、配阴离子、配分子。
[ Co(NH3)6]Cl3, K3[Cr(CN)6], Ni(CO)4都是配位化合物。[Co(NH3)6] [Cr(CN)6]也是配位化合物。判断的关键在于是否含有配位单元。
2构成
内界是配位单元,外界是简单离子。
又如K3[Cr(CN)6]之中,内界 ,外界是K+。可以无外界,如Ni(CO)4。但不能没有内界。内外界之间是完全电离的。
内界配位单元又由中心和配体构成。中心:又称为配合物的形成体,多为金属离子,尤其是过渡金属离子。配体:经常是阴离子或分子。
3配位原子和配位数
配体中给出孤对电子与中心直接形成配位Байду номын сангаас的原子,叫配位原子。配位单元中,中心周围与中心直接成键的配位原子的个数,叫配位数。
氯化硝基·氨·羟氨·吡啶合钴( II )
什么是配位化合物
什么是配位化合物配位化合物是由一个或多个中心金属离子与周围的配体离子或分子通过配位键相互结合而形成的化合物。
在配位化合物中,中心金属离子通过与配体的共价键或均衡配位键形成稳定的结构。
配位化合物具有独特的性质和应用,在无机化学和生物化学等领域中具有重要的地位。
1. 配位键的形成配位键是指中心金属离子与配体之间通过共享电子形成的键。
配体可以是阴离子、中性分子或阳离子,它们通过与金属离子的配位键相互吸引而与金属离子结合。
配位键的形成对于配位化合物的稳定性和性质具有重要的影响。
2. 配位数和配位几何配位数是指一个中心金属离子周围配体的数目,它代表了中心金属离子与配体之间的配位键数量。
根据不同的配位数,配位化合物可以分为八配位、六配位、四配位等不同的配位数。
配位几何是指配位化合物中中心金属离子与配体之间形成的空间排列方式,如八面体配位几何、四面体配位几何等。
3. 配位化合物的命名配位化合物的命名通常遵循一定的规则。
一般情况下,首先确定中心金属离子的名称和价态,然后按照配体的名称和配位数进行命名。
在命名过程中,需要注意配体的名称要加上适当的前缀来表示其数量和性质。
4. 配位化合物的性质和应用配位化合物具有多种多样的性质和应用。
其一,配位化合物具有独特的光学性质,一些配位化合物可以吸收和放射特定波长的光,被广泛应用于光催化和光伏等领域。
其二,配位化合物具有良好的催化性能,可以作为催化剂参与化学反应,促进反应速率。
其三,配位化合物具有广泛的生物活性,一些金属配合物被用作抗癌药物、抗菌剂等。
此外,配位化合物还在材料科学、电子学等领域有重要的应用。
总结:配位化合物是通过中心金属离子与配体之间的配位键相互结合形成的化合物。
配位化合物的性质和命名规则多样,其配位数和配位几何对其性质产生重要影响。
配位化合物在光学、催化、药物等领域具有广泛的应用前景。
对配位化合物的深入研究有助于我们更好地理解其性质和应用,并为相关领域的发展提供指导。
无机与分析化学第九章配位化合物与配位滴定法
[Ni(NH3)4]2+ 3d8 NH3↑ ↑ ↑NH3 sp3杂化 正四面体
3、[FeF6]3- 配位数为6 Fe 3d64s2
四、杂化轨道空间构型 见P299表9-4或图片14 五.价键理论的局限性 (1)可以解释[Co(CN)6]4- 易被氧化[Co(CN)6]3-,但无法解释[Cu(NH3)4]2+比[Cu(NH3)4]3+稳定的事实。 (2)对配合物产生高低自旋的解释过于牵强.。 (3) 无法解释配离子的稳定性与中心离子电子构型之间的关系
[FeF6]3– sp3d2杂化, 八面体构型, 外轨型配合物
sp3杂化 正四面体
6个 键
内轨型配合物:中心离子是以(n-1)d,ns,np轨道杂化成键,有内层轨道参与杂化。 【特点】内层电子发生重排,由于内层轨道d电子发生重排,使自旋平行的未成对电子数减少,磁矩变小,甚至为逆磁性;低自旋;又由于中心离子以能量较低的内层轨道参与杂化成键,故稳定性大。 例如: (1) [Fe(CN)6]3-
第九章 配位化合物与配位滴定法 【要点】1、配位化合物结构及命名; 2、价键理论; 3、配位平衡受各类平衡的影响及相关计算; 4、配位滴定曲线; 5、金属指示剂的应用原理(封闭、僵化) 6、各种滴定方式的理解及常见滴定的掌握(控制酸度方法的滴定) §9—1配位化合物的组成及命名 一、组成 1893年维尔纳提出配位理论:认为配合物中有一个金属离子或原子处于配合物的中央,称为中心离子,在它周围按一定几何构型围绕着一些带负电荷的阴离子或中性分子,
O
O
常见的配体见P293 表9-2 螯合物:由多基配位体与同一金属离子形成的具有环状结构的配合物。形成的环为螯环,以五元环和六元环最稳定。 3、配位数:直接同中心离子结合的配位原子的总数,一般为偶数。 目前已知形成体的配位数有1到14,其中最常见的配位数为6和4。 对单基配位体 中心离子的配位数 = 配位体的数目 如:[Cu(NH3)4]2+ 4个 对多基配位体 中心离子的配位数 = 配位体的数目×该配位体的基数(齿数) 如:[Cu(en)2]2+ 2×2=4个 [Co(en)2(N2O)Cl]SCN 2×2+1+1 = 6个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配位数
离
子
特点:1. 内外界之间是离子键,在水中可全部解离;
2. 内界的结合比较紧密,在一定程度上丧失了各自独立存 在时的化学性质。
1. 中心离子或原子:有空轨道,能接受孤对电子
a.过渡金属离子以 硅及 、硼 磷、 非金属离子
+2
+3
+4
[Cu3)(4]N 2 H [Co3)(6]N 3 [H P5 t(C N3l)H ]
+3
+5
Na4[]BF N4H [P6]F
b. 不带电荷的金属原子,如Ni、Fe
0
0
[Ni4(]CO)[Fe5(]CO)
2. 配位体和配位原子:能提供孤对电子
内界中与中心、 离含 子有 结孤 合电子分 对子 的中 或阴离子叫配体 位中 体具 ,有 配孤电接 子与 对中 并心 直 离子以配位键子 结称 合为 的配 原位原子。
H2C C N
C CH2 N
丁二酮肟
OO H
二(丁二酮肟)合镍(II)
常见单齿配体
常见多齿配体
O
C
-O
O
C
O -
N N N N
两可配体
一ONO 亚硝酸根, 一NO2 硝基 一SCN 硫氰酸根, 一NCS 异硫氰酸根
多核配合物
两个或两个以多上核中配心合原子物结合所形成
的配合物。
如
H
5+
O (H3N)5Cr Cr(NH3)5
O2
4+
(NH3)4Co Co(NH3)4
N H2
多核配合物
2-
O
O
C
C
O
O
多S 核配O合物2C
C
S
O
氢化酶晶体结构
3.配位数
与 中 心 离 子 直 接 键以 结配 合位 的 配 位 原 子 称 为 中 心 离 子 的 。配 位 数
影响配位数大小的因素
叶绿素ቤተ መጻሕፍቲ ባይዱ子的骨架
抗癌药--顺式二氯二氨合铂(Ⅱ)
发现配合物的历史及实验现象
第一个配合物:1704年,普鲁士蓝KFe[Fe(CN)6] 由德国柏林的颜料工人戴斯拜许制得。
配位化学的开端:1789年法国化学家塔萨厄尔, 将钴(Ⅱ)盐的氨溶液暴露在空气中,析出橙色 晶体,分析其组成为CoCl3·6NH3,加热至150℃ 也不释放NH3,说明CoCl3与NH3牢固地键合在一 起。各自价饱和,如何结合?
Na[4]BF F是配位 F为 体配 ,位原子 [Co(3)N 6]3H N3 H 是配位 N为 体配 ,位原子 [Pt5(CNl3H ) ] N3 H ,C-是 l 配位 N,C体 -为 l ,配位
配体:根据配体中所含配位原子个数分为单齿 配体和多齿配体.
螯合物:由多齿配体与中心离子结合而成的具有环状 结构的配合物,称螯合物。
① 中心离子 电荷——离子电荷越高,配位数越大。 半径——半径越大,其周围可容纳的配体较 多,配位数大。
离子的电子构型——离子的电子构型不同, 配位数也不同。
中心离子电荷越高,配位数越大。
如 配离子 [PtCl4]2 [PtCl6]2
中心离子 Pt2+
Pt4+
离子电荷 +2 < +4
配位数
4<6
5个五元环; 6个配位原子 (4个O,2个 N)
螯合物的特点
1、含有两个或两个以上能给出孤电子对的 配位原子。 2、配位原子之间应间隔两个或三个其它原 子。
螯合剂——形成螯合物的配合剂
一般为含有 O、S、N、P 等配位原子的有机 化合物。配位原子之间间隔两个或三个其它 原子。
螯合物的稳定性
螯环的大小——一般五原子环
螯合物 稳定性
或六原子环 最稳定
螯环的多少——一个配体与中 心离子形成的 螯环数越多, 越稳定。
螯合物特性——显特征颜色
如 在弱碱性条件下,丁二酮肟与Ni2+形成
鲜红色的螯合物沉淀,用来鉴定Ni2+。
H OO
N OH
CH2 C Ni2++2
CH2 C N OH
N
N
H2C C
Ni
C CH2 +2H+
第九章 配位化合物
第一节 配合物的基本概念 第二节 配合物的结构理论 第三节 配位平衡 第四节 螯合物
第一节 配合物的基本概念
配位化学是在无机化学基础上发展起来的一 门学科,它所研究的对象为配位化合物, (coordination compounds)简称配合物 。
定义
配合物:由可以给出孤对电子的离子或中性分子 (称为配体)和具有接受孤对电子的原子或离子 (统称为中心原子)按一定的组成和空间构型所 形成的化合物。
英语中称做:Coordination Compound,或 Complex Compound,意为“协同化合物”或 “复杂化合物”。译成“配合物”或“络合 物”。
Alfred Werner,
瑞士无机化学家 ,韦 尔纳是配位化学的奠 基人。韦尔纳因创立 配位化学而获得1913 年诺贝尔化学奖。
生命中的配合物--叶绿素分子
多齿配体与螯合物
N
N
HC
2
Cu
CH
2
HC
CH
2N
N
2
H
H
H
H
[Cu(en) ]2+
2
多齿配体与螯合物
CH2 CH2
H 2N
NH2
C u 2+
H 2N
NH2
CH2 CH2
O CO
2-
CO CH2CH2
O Ca
N CH2
O
N CH2
CO CH2
CH2
O CO
[CaY]2– 配离子
螯合物的稳定性很强
EDTA:乙二胺四乙酸根合钙(II)
中心离子半径越大,其周围可容纳的配体 较多,配位数大。
如:配离子 [AlF6]3 [BF4]
中心离子 Al3+
B3+
半径比较
>
配位数 6 > 4
② 配体
电荷—电荷越高,配体间斥力增大, 配位数越小
如 配离子 [Zn(NH3)6]2+ [Zn(OH)4]2
配体
NH3
OH
配位数
6
4
半径—半径越大,中心离子所能容纳配体数减少, 配位数减少。
CuSO4
NaOH 有蓝色的CuOH沉淀
有Cu2+
1.NH3
Cu2+哪里去了
2.NaOH 无沉淀生成
无Cu2+
硅胶吸水后变粉红色,需高温烘干方能回复蓝色, 原因存在粉红色的CoCl2·6H2O。
Cu 4 S 4N O 3[H Cu 3)4] (S N 4 O H
内界(inner sphere) 外界(outer sphere)
[Cu(N 3 )4H ]SO 4
配位数(coordination
中心离子
number)
(central ion)
配位体(ligand)
配合物的组成
内界(配离子)
[ Pt (NH3)4 (NO2) Cl ] CO3
中
配体
心
离
外 界
子 配位原子
内界(配离子)
K4 [ Pt Cl6 ]
外 界
中配 心体