数学物理方法第2章复变函数积分-2016

合集下载

02复变函数微积分

02复变函数微积分
(1)曲线积分法 (2)凑全微分法 (3)不定积分法
数学物理方法
应用
v( x, y ) dv
2 2 u ( x , y ) x y 例2.5 已知解析函数f(z)的实部
且f(0)=0,试求出虚部和f(z) 。 解: v u 2 y x y
v u 2x y x
数学物理方法
2 xy C
(2)凑全微分显示法
dv( x, y) 2 ydx 2 xdy d (2 xy C )
v( x, y) 2 xy C
(3)不定积分法
v u 2x y x
v u 2y x y
v 2 y ( x) x
l l
l1 l 2
f ( z )dz f ( z )dz f ( z )dz
l1 l2
l

l
f ( z )dz f ( z )dz , 其中 l 是l的逆向
l
f ( z )dz
l
f ( z ) dz
f ( z)dz
l l
f ( z ) ds
那么有
u v v u , x y x y
上式称为柯西-黎曼条件。简称(C-R条件)
数学物理方法
证明:
1)若 y 0, x 0
f ( z z ) f ( z ) u ( x x, y ) iv( x x, y ) u ( x, y ) iv( x, y ) lim z 0 z 0 z x u ( x x, y ) u ( x, y ) v( x x, y ) v( x, y ) lim i lim z 0 z 0 x x u ( x, y ) v( x, y ) i x x lim

数学物理方法第二章复变函数的积分

数学物理方法第二章复变函数的积分

d z b ln b ln a ln i Arg b Arg a az a
b
ln z ln(| z |e )
Arg z
此积分与路径有关系!因z = 0 是1/z的一个奇点。 如被积函数有奇点,则由不定积分给出的函数可能是 多值的。被积函数的奇点,可能是该函数的支点。
x d y y d x d d f ( z ) d z u v d t i u v d t l t d t t d t d t d t A A
t B t B
几个重要性质 1.常数因子可以移到积分号之外
c f ( z ) d z c f ( z ) d z
推广:若 f (z)在单连通域B上解析,在闭单连通 域 B 上连续,则沿 B 上任一分段光滑闭合曲 线 l (也可以是 B 的边界),有

l
f (z)d z 0
(二)复连通域情形 如果区域内存在: (1)奇点 ;(2)不连续线段;(3)无定义区 为了把这些奇异部分排除在外,需要作适当的 围道 l1、l2、 l3 把它们分隔开来,形成带孔的区 域—复连通区域。
C 2
只要起点和终点固定不变,当积分路径连续变形时 (不跳过“孔”)时,函数的路积分值不变。
§2.3 不定积分(原函数)
根据 Cauchy 定理,若函数 f (z) 在单连通
区域B上解析, 则沿B上任一分段光滑曲线 l
的积分

l
f ( z) dz 只与起点和终点有关,而与
路径无关。因此如果固定起点 z0 而变化终点 z, 这个不定积分便定义了一个单值函数 F(z):

l
f (z)d z 0
George Green

数学物理方法课后答案 (2)

数学物理方法课后答案 (2)
若?x在无穷远点的无心邻域在大圆弧czreirr上limz?zk一致成立则lim?zdzik?12rrcr21解上第一式表明任给0存在与argz无关的m0使当zrm时dz有z?z?k利用i?复变函数性质5及上式可证c21rz?adzdzlim?zdz?ikzzkzzk2???max???rcr1crzcrz21?由于可任意小21为常量故上式可任意地小
2
2+ 4 i
1+i
[( x 2 − y 2 ) + 2ixy ](dx + idy )
86 − 6i 3
= ∫ [ x 2 − (3 x − 2) 2 + 2ix(3 x − 2)](1 + 3i ) dx = −
(3)沿1 + i 到 2 + i ,再到 2 + 4i 的折线。
I =∫
2 1
2+ 4 i
L
∫ ∫
L
f (ξ )[
f (ξ ) Δ z ∫ L (ξ − z ) 2 (ξ − z − Δ z ) d ξ
ξ − z ( ξ − z − Δz )
2
d ξ , 现 在 讨 论 能 否 找 到 δ ( ε ), 使 当 Δ z < δ 时 d ,同 时 将 2
上 式 成 立 。 因 本 题 是 讨 论 Δ z → 0时 的 积 分 极 限 , 不 妨 令 Δ z < min z − ξ = d 代 入 有 Δ I ≤ δ
4 4 1 1 0 0
I3 = ∫ {[2(t2 + 3) + (2t)2 ]2dt + [3(2t)-(t2 + 3)]2tdt} = ∫ (24t 2 + 12 − 2t 3 − 6t )dt =

数学物理方法第2章复变函数积分-2016方案

数学物理方法第2章复变函数积分-2016方案

(2.1.3)
(2) 化为参数积分计算.设积分曲线L的参数方程为z(t),
将z(t)及dz(t)=z'(t)dt代入式(2.1.4),可得
3
【例2.1.1】计算积分I=
其中曲线L是
(1)沿1+ i 到2+4 i 的直线,见图2.2(a);
(2)沿1+ i 到2+i,再到2+4 i 的折线,见图2.2(b);
§2.2.1 单通区域的柯西定理
定理 若函数f(z)在单通区域D 内解析,则f(z)在D内沿任意 闭曲线的积分为零
∮l f(z)dz = 0 (2.2.1)
证明 这个定理的严格证明比较复 杂, 为简单起见, 我们在“f(z)在D 内连续” 附加条件下证明这个定 理.
先将复变积分化为两个实变积 分的线性叠加
29
这就是解析函数的定积分公式,它与实变 函数中的牛顿-莱布尼茨公式具有相同的形 式。
通常把f(z)的原函数的集合
称f(z)的不定积分,式中C为复常数。
30
(2.2.8)
31
§2.2.3 复通区域的柯西定理
定理 若f(z)在闭复通区域 解析,则f(z)沿所
有内、外边界线(L=L0+ 之和为零
37
【2.2.2】试计算 其中积分回路分别(图2.11) (1) |z-i|=2;(2) |z+i|=2;(3) |z|=3.
38
解 首先,将被积函数分解为部分分式(利用通 分可以凑出来)
≠0
=0
39
40
【例2.2.3】若f(z)=1/(z-a) 在z=a的无心邻域内 连续,积分回路是以a点为圆心的圆弧
由于a点在D内随意变动时,柯西公式依然成立, 有时分别用z和x代替式 (2.3.1)的a和z。将柯西公 式改写为

数学物理方法 第二章 复变函数的积分

数学物理方法 第二章 复变函数的积分
wuxia@
证明: 1 dz 1 f (α )dz (1)已知f (α ) = f (α ) ⋅ ∫l z − α = 2πi ∫l z − α 2πi 1 f ( z )dz 1 f ( z ) − f (α ) 与f (α ) = 比较,只需证明 ∫l z − α ∫l z − α dz = 0即可. 2πi 2πi f ( z ) − f (α ) (2)因为z = α为 的奇点,因此,以α为圆心,取任意小 z −α f ( z ) − f (α ) ε为半径做小圆Cε , 这样在l及Cε 所围复通区域上 单值解析。 z −α f ( z ) − f (α ) 1 f ( z ) − f (α ) 1 根据柯西定理, ∫ dz = ∫Cε z − α dz l 2πi z −α 2πi 对于Cε 上的z有:z − α = εe iϕ , dz = iεeiϕ dϕ 于是, 有: 1 f ( z ) − f (α ) 1 2π f ( z ) − f (α ) iϕ 1 iεe dϕ = iϕ ∫l z − α dz = 2πi ∫0 εe 2πi 2π
wuxia@


0
[ f ( z ) − f (α )]dϕ
(3)现在需要对上式右端做估计 因为f ( z )连续,一定可以找到∆ > 0,当 | z − α |≤ ∆时, | f ( z ) − f (α ) |≤ ε ′ 因而有: 1 2π 1 2π 1 ∫0 [ f ( z ) − f (α )]dϕ ≤ 2π ∫0 | f ( z ) − f (α ) |⋅ | dϕ |< 2π 2π =ε 1 f ( z ) − f (α ) 1 f ( z) ∴ dz = 0, f (α ) = ∫l z − α ∫l z − α dz 2πi 2πi

数学物理方法课件-2 复变积分

数学物理方法课件-2 复变积分

其中,M (R) max f (z) , n 1,2, z R
证:
f (n) ( )

n!
2i

(
f ( ) )n1
d

n!
2

M (R) R n 1
2R

n!M (R) Rn

f
(n) ( )

n!M R
(
n
R)
,得证.
整函数: 在整个复平面上解析的函数称为整函数.
49

1
0 1
z100 k 1 z 2k
98!!
§2.5 解析函数的高阶导数
1.高阶导数
2. 柯西不等式与刘维尔定理
柯西不等式:设f (z)在区域B上解析,为B内一点,以
为圆心作圆周: R,只要及其所包含区域均含于
B, 则有
f
(n) ( )

n!M (R) Rn
0 2i 2i 0 0

C
1 z2
z
dz

0
§2.3 不定积分
证:
B
§2.4 柯西公式
1.有界区域柯西公式
( )

证: 如图,根据复连通区域柯西定理有
1 f (z)
1 f (z)
dz
dz
2i C z
2i Cr z
欲证原式,即证
第二章 复变积分
§2.1 复变积分
性质:
例:
补:简单曲线 光滑曲线
1. 简单曲线
设曲线C的参数方程为 x x(t), y y(t), z z(t) (a t b)
其中,x(t), y(t), z(t)在[a, b]连续,当t1 t2 (a t1, t2 b)时, (x(t1), y(t1), z(t1)) (x(t2 ), y(t2 ), z(t2 ))

第02章 复变函数的积分

第02章 复变函数的积分

第二章复变函数的积分基本要求:1.正确理解复变数函数路积分的概念;2.深刻理解柯西定理及孤立奇点的定义;3.理解并会熟练运用柯西公式。

教学内容:§2.1 复数函数的积分,路积分及其与实变函数曲线积分的联系。

§2.2 柯西定理。

柯西定理的内容和应用,孤立奇点,单连通区域,复连通区域,回路积分。

§2.3 不定积分*。

原函数。

§2.4 柯西公式。

柯西公式的导出,高阶导数的积分表达式。

(模数原理及刘维定理不作要求)本章重点:柯西定理,柯西公式和孤立奇点。

§2.1 复变函数的积分(一)复变函数的积分(简称复积分)1.复积分的定义曲线l 是分段光滑曲线(起点0()A z ,终点()n B z );()f z 在l 上连续;(光滑曲线:曲线上每一点都有切线)。

把曲线l 分成n 小段,1k k z z -→是第k 小段,在1[]k k z z --上任取一点k ζ,求和111()()=()nnkk k k k k k f z z f z ζζ-==-∆∑∑,当n →∞而且每个k z ∆都趋于零时,如果这个和的极限存在,而且其值与各个k ζ的选取无关,则这个和的极限称为函数()f z 沿曲线l 从A ,终点B 的路积分,记作()lf z dz ⎰,即max 01()lim()k nkk lz k f z dz f z ζ∆→==∆∑⎰(2.1.1)2. 复积分的计算方法复变函数积分可以分解为两个实积分来计算。

即:()(,)(,)f z u x y iv x y =+,dz dx idy =+(,)(,)(()[(,),(,)]())(,)llllu x y dx v x y d f z dz u x y iv x y dx idy i y v x y dx u x y dy-+=++=+⎰⎰⎰⎰3. 复积分的性质复变函数的路积分可以归结为两个实变函数的线积分,因而实变函数线积分的许多性质也对路积分成立,如(1)常数因子可以移到积分号之外;()d ()d llcf z z c f z z =⎰⎰(2)函数和的积分等于各个函数的积分和;[]1212()()......()()().......()nnll l l f z f z f z dz f z dz f z dz f z dz +++=+++⎰⎰⎰⎰(3)反转积分路径,积分变号;()()l lf z dz f z dz +-=-⎰⎰(4)全路径上的积分等于各段上的积分和。

数学物理方法第二章

数学物理方法第二章

证明:对 [ f (z)]n 应用柯西公式
[ f (z)]n 1 [ f ( )]n d
2 i l z
若 |f(z)| 在l上极大值为M,|z| 的极小值为,l的长为s
f (z) n M n s
2
1
f
(z)
M
s
2
n
n
f (z) M
21
Liouville定理:如 f(z) 在全平面上解析,并且是有界 的,即 |f(z)| N,则 f(z) 必为常数。
f (z)dz f (z)dz f (z)dz f (z)dz
l
l1
l2
ln
13
柯西定理总结 1. 闭单通区域上的解析函数沿境界线的积分为零。
2. 闭复通区域上的解析函数沿所有内外境界线正方向 的积分和为零。
3. 闭复通区域上的解析函数沿外境界线逆时针方向的 积分等于沿所有内境ቤተ መጻሕፍቲ ባይዱ线逆时针方向的积分的和。
P Q y x
由于复变函数的积分可转化为两个实变线积分
z2
z2
z2
f (z)dz udx vdy i vdx udy
z1
z1
z1
因此可得到复变函数的积分与路径无关的充要条件
7
单连通区域柯西定理: 如果函数f (z)在闭单连通域B上解析,则沿B上任
一分段光滑闭曲线l(也可以是B的边界),有
f (z) f ()dz
max f (z) f ()
2 0
C z
18
如果l是圆周z= +reiθ,
f () 1 2 f ( rei )d 2 0
这就是说,一个解析函数在圆心处的值等于它
在圆周的平均值。

第02章_复变函数的积分

第02章_复变函数的积分

Re zdz
l
y
i
A
O
l
(2) (1)
B (1, i)
1
分别沿路径(1)和(2),如图 解:
1 (1) I1 xdx ixdy i 0 0 2
1 1
1 1
Re zdz xd(x iy) xdx ixdy
l l
x
1 (2) I 2 0 id y x d x 0 0 2
k 1
n
k
x
当 n 而且每一个 z k 0时, 若该和的极限存在,并且其值与 各 k的选取无关,则该和的极限 称为 f ( z )沿曲线 l从 A到 B的路积分
z0
O
记作 l f ( z )dz ,即:

l
f ( z )d z
max z k 0
lim
f (
k 1
l l
复变函数的路积分可以归结为两个实变函数的线积分, 它 们分别是路积分的实部和虚部。 因此, 实变函数线积分的许多性质对复变函数的路积分也 成立。复变函数的路积分满足如下6条性质: 1. 常数因子可以移到积分号之外; 2. 函数的和的积分等于各个函数的积分之和; 3. 反转积分路径,积分变号; 4. 全路径上的积分等于各段上积分之和; 5. 积分不等式1:
l1
B' A'
f (z)dz f (z)dz
CD
l2
f ( z)dz
l1
D 'C '
f ( z)dz 0
其中沿同一割线两边缘上的积分值相互抵消,于是有
f (z)dz
l
l
f ( z )dz f ( z )dz 0

数学物理2

数学物理2

例2. 试计算积分 上例相同
2
z dz 其中路径 l与
2 l
f ( z) z ( x yi) =x y 2xyi
2 2 2
u=x y , v 2xy
2 2
udx i vdx vdy i udy
0 0 0 0
1
1
1
1
x dx i 0dx 2 ydy i (1 y )dy
闭复连通区域上的解析函数沿外边界线逆时针积分等于 沿所有内边界线逆时针积分之和
公式:
f ( z)dz
l i
li
f ( z )dz
柯西定理
1.闭单通区域上的解析函数沿境界线的积分为零。
2.闭复通区域上的解析函数沿所有内外境界线正方向 的积分和为零。
3.闭复通区域上的解析函数沿外境界线逆时钟方向的 积分等于沿所有内境界线逆时针方向的积分的和。


L1
f ( z )dz f ( z )dz
L2
证明(略,详见教材)
f ( z )dz 0
l
f ( z )dz f ( z )dz ) 0
L1 L2

推广
规律 若f(z)在闭复通区域 B 中解析, 则f(z)沿所有边界线正方向积分 之和为零。

证明(略): 提示:把复通区域做割线,得单通区域,根据单 通区域的柯西定理 正方向:沿边界线的正方向环绕时, 保持在左边。
这是一个很重要的结果,由它可以导出一系列重要结论。
2.4 柯西公式
公式:
若f(z)在闭单连通区域 B 上解析,l为 B 的境 B B 界线,a为域内的任一点,有 柯西公式(也称柯

《数学物理方法》电子教案:第二章 复变函数的积分

《数学物理方法》电子教案:第二章 复变函数的积分

dz d (t it 2 ) (1 i 2 t ) dt
24i
2
2
2
z2dz (t it2 )2 (1 i2t)dt [(t2 t4 ) 4t4 ]dt i [2t3 2t(t2 t4 )]dt
1i
1
1
1
2.
1和y 3t 2
二、 复通区域的柯西定理 定理4. 若f(z)在闭复通区域D 中解析,则f(z)沿所有边界线正
方向积分之和为零。 正方向:沿边界线的正方向环绕时,D 保持在左边。
证明:作割线将闭复通区域变成闭单通区域。闭单通区域
的边界线L由 L1, L', L2 和 L'' 组成,则
L f (z)dz 0

D
内的偏导数
P y

Q x
连续,并且
P y
Q x
由于复变函数的积分可转化为两个实变线积分:
z2
z2
z2
f (z)dz (udx vdy) i vdx udy)
z1
z1
z1
因此可得到复变函数的积分与路径无关的充要条件。
一、单通区域的柯西定理
定理 1. 若 f(z)在单通区域 D 内解析,则 f(z)在 D 内 的积分与路径无关。
w=f(z)在 L 上有定义;
(2)将 L 任意分成n 段,k 为第k 段[zk 1, zk ]上的任意一点;
(3)当 n ,且 max zk 0时,若和式的极限
n
lim f (k)zk
max zk 0 k 1
存在,并且极限值与 zk 和 k 的选取方式无关,则称它 为 f(z)沿 L 从 A 到 B 的积分,记作:
F’(z)=f(z)

数学物理方法 charpt2 (周明儒)

数学物理方法 charpt2 (周明儒)

l3 l2 l1
B
l

(2)证明
由单通区域 的Cauchy定理,得
A
'
A
B
B'
l1 l2
D'
l
B
D
C
C'
思路:做切割线连接外境界线与所有内境界线,复通区域变成单通区域。

l
f ( z )dz + ∫ f ( z )dz + ∫ l f ( z )dz + ∫ f ( z )dz + ∫ f ( z )dz + ∫ l f ( z )dz 2
A
'
A
B
B'
l1 l2
D'

l
l
B
D C
C'
式中 l 为外境界线,诸 l i 为内境界线,积分均沿境界线的正 方向进行。 说明:


l
f ( z )dz = − ∑ ∫ f ( z )dz
i =1 li
n

l
f ( z )dz = ∑ ∫ f ( z )dz
i =1 li
n
即沿内外境界线逆时针方向积分相等
I=

l
( z − a )n dz = 0
a R C
(2)若回路 l 不包含点 a ,如图。 当 n ≥ 0 , ( z − a )n 在 l 上是解析的
I=
现不管 n ≥

l
( z − a )n dz = 0
当 n < 0 ,( z − a )n 在 l 上是有一奇点。
0或 n < 0 ,总可以将 l 变形为一以点 a 为圆心,

数学物理方法第二章

数学物理方法第二章
积分 Cf(z)dz一定.存在
证 设光滑曲 C由线参数方程给出
zz(t)x(t)i y(t), t
正方向为参数增加的方向,
参数 及 对应A 于 及起 终 B , 点 点
数学物理方法第二章
6
并 z ( t) 且 0 , t,
如f(果 z) u (x ,y) iv(x ,y)在 D 内处 , 处 那u 么 (x,y)和 v(x,y)在 D内均为连 , 续函
n
n
f(k)zk [u(k,k)xkv(k,k)yk]
k1
k1
n
i[v(k,k)xku(k,k)yk]
k1
C f(z)dz CudxvdyiCvdxudy
数学物理方法第二章
9
公式 C f(z)dz CudxvdyiCvdxudy
在形式上可以看成是
f(z)uiv与 dzdxidy相乘后求 : 积
f(z)dzf ( z ) d z f ( z ) d z f ( z ) d z .
C
C 1
C 2
C n
在今后讨论的积分中, 总假定被积函数是连续的, 曲线 C 是按段光滑的.
数学物理方法第二章
12
性质:
设L是简单逐段光滑曲线,f,g在L上连续,则
(1)f(z)dz f(z)d;z反转积分路径,积分反号
z2
z2
f(z)dzudxvdyivdxudy
z1
z1
z1
因此可得到复变函数的积分与路径无关的充要条件
数学物理方法第二章
24
单连通区域柯西定理:
如果函数f (z)在闭单连通域B 上解析,则沿B上任一分段光滑 闭曲线l(也可以是B的边界), 有
f (z)dz 0

复变函数的积分

复变函数的积分

f (z)eimzdz f (Rei )eimR(cos isin ) R ei id
CR
0
f (Rei ) e Rd mRsin max f (Rei ) R e d mRsin
0
0
数学物理方法
e d mRsin 0
e d e d 2 mR sin 0
mR sin
阶连续偏导数,则曲线积分 L Pdx Qdy 与路径无关的
充要条件是
Q P ( x, y) D
x y
l zdz l xdx ydy il ydx xdy
数学物理方法
3 用极坐标计算
例4 计算 l z dz, 其中 l 为: 圆周 z 2.
解 积分路径的参数方程为
z 2ei (0 2π), dz 2iei d
2
y
y1
2
1
y2 sin
e d e d ( ) 2 mR sin 0
0 mR sin( )
O
2
2
e d e d 2 e d 2 e d 2 mR sin
2 mR sin
2 mR sin
2mR
2
0
0
0
0
2mR 2
2
e 2mR
0
(1 emR )
L f (z)dz 0
数学物理方法
推论2
若f (z)在单连通区域D内解析,则l f (z)dz与路径无关
l
l1
A
D
B
l2
f (z)dz f (z)dz f (z)dz f (z)dz f (z)dz 0
l
lAB
lBA
l1 AB
l2 AB
f (z)dz f (z)dz

(完整word版)数学物理方法总结(改)(word文档良心出品)

(完整word版)数学物理方法总结(改)(word文档良心出品)

数学物理方法总结第一章 复变函数复数的代数式:z=x+iy复数的三角式和指数式:(cos sin )z ρϕϕ=+和i z e ϕρ=欧拉公式:{1sin ()21cos ()2iz iz iz izz e e iz e e --=-=+柯西-黎曼方程(或称为柯西-黎曼条件):{u u x yv v x y∂∂=∂∂∂∂=-∂∂ (其中f(z)=u+iv)函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数.解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C ==(12,C C 为常数)是B 上的两组正交曲线族.2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即22220u vx y∂∂+=∂∂ 例题: 已知某解析函数f(z)的实部22(,)u x y x y =-,求虚部和这个解析函数.解答: 由于22ux∂∂=2;22v y ∂∂=-2;则22220u v x y ∂∂+=∂∂曲线积分法u x ∂∂=2x;u y ∂∂=-2y.根据C-R 条件有:v x∂∂=2y;v y ∂∂=2x.于是 22dv ydx xdy =+;(,0)(,)(0,0)(,0)(,)(,)(,0)(22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy Cxdy C xy C=++=++++=+=+⎰⎰⎰⎰凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+不定积分法 上面已有v x∂∂=2y;v y ∂∂=2x则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ϕϕ=+=+⎰. 上式对x 求导有2'()vy x xϕ∂=+∂,而由C-R 条件可知 '()0x ϕ=, 从而 ()x C ϕ=.故 v=2xy+C.222()(2)f z x y i x y C z i C=-++=+第二章 复变函数的积分单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段光滑闭合闭合曲线l(也可以是B 的边界),有()0lf z dz =⎰.复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则1()()0inll i f z dz f z dz =+=∑⎰⎰.式中l 为区域外边界线,诸i l 为区域内边界线,积分均沿边界线的正方向进行.即1()()inll i f z dz f z dz ==∑⎰⎰.柯西公式 1()()2lf z f dz iz απα=-⎰n 次求导后的柯西公式 ()1!()()2()n n l n f fz d i z ζζπζ+=-⎰第三章 幂级数展开幂级数200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-++-+∑其中0a ,1a ,2a ,3a ,……都是复常数. 比值判别法(达朗贝尔判别法) 1.若有110100limlim1k k k kk k kk a z z a z z a a z z +++→∞→∞-=-<- 则 2010200............kk a a z z a z z a z z +-+-++-+收敛,200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.若极限1lim /k k k a a +→∞存在,则可引入记号R,1limkk k a R a →∞+=,于是,若0z z R -<,则 200102000()()()......()......kk kk k a z z a a z z a z z a z z ∞=-=+-+-+-+∑绝对收敛.2.若0z z R ->,则后项与前项的模之比的极限11010l i m l i m 1k k k k k k kk a z z aR a a z z +++→∞→∞->=-,即说明20102000()()()......()......k k k k k a z za a z z a z z a z z ∞=-=+-+-+-+∑发散.例题: 求幂级数2461.....z z z -+-+的收敛圆,z 为复变数. 解答: 由题意可得 1l i m1kk k a R a →∞+== 故 246211......1z z z z -+-+=+ (1z <). 泰勒级数展开 设f(z)在以0z 为圆心的圆R C 内解析,则对圆内的任意z 点,f(z)可展为幂级数,0()()kkk f z a z z ∞==-∑,其中1()010()1()2()!R n k k C f z f a d iz k ζζπζ+==-⎰,1R C 为圆R C 内包含z 且与R C 同心的圆.例题: 在00z =的领域上将()zf z e =展开 解答: 函数()zf z e =的各阶导数()()n z fz e =,而()()0()(0)1k k f z f ==.则ze 在00z =的领域上的泰勒展开23401............1!2!3!4!!!k kzk z z z z z z e k k ∞==++++++=∑. 双边幂级数212010010220......()()()()......a z z a z z a a z z a z z ----+-+-++-+-+洛朗级数展开 设f(z)在环形区域201R z z R <-<的内部单值解析,则对环域上的任一点z,f(z)可展为幂级数0()()kkk f z a z z ∞=-∞=-∑.其中101()2()k k Cf a d iz ζζπζ+=-⎰, 积分路径C 为位于环域内按逆时针方向绕内圆一周的任一闭合曲线.例题1: 在1z <<∞的环域上将2()1/(1)f z z =-展为洛朗级数.解答: 22222460211111111......111kk z z zz z z z z ∞=⎛⎫===+++ ⎪-⎝⎭-∑ 例题2: 在01z =的领域上将2()1/(1)f z z =-展为洛朗级数. 解答: 由题意得21111()()1211f z z z z ==---+ 则有z-1的-1次项,而0111111(1)()111222212kk k z z z z ∞=-===--+-++∑ (12z -<) 故 01111()(1)()2142k kk z f z z ∞=-=---∑.第四章 留数定理留数定理 设函数f(z)在回路l 所围区域B 上除有限个孤立奇点1b ,2b ,……,n b 解析,在闭区域B 上除1b ,2b ,……, n b 外连续,则11()2R e ()2nj lj f z d z i s f b i aππ-===∑⎰. 其中,1111Re ()lim{[()()]}(1)!j m m j j m z b d a sf b z b f z m dz---→==--. 推论1: 单极点的留数为000Re ()lim[()()]z z sf z z z f z →=-.推论2: 若f(z)可以表示为P(z)/Q(z)的特殊形式,其中P(z)和Q(z)都在0z 点解析,0z 是Q(z)的一阶零点(0()0Q z =).0()0P z ≠,则000000()()'()()()Re ()lim()lim ()'()'()z z z z P z z z P z P z P z sf z z z Q z Q z Q z →→+-=-==. 上式最后一步应用了罗毕达法则.留数定理的应用 类型一20(cos ,sin )R x x dx π⎰.作自变量代换 ix z e =.则式子变为111(,)22z z z z z dzI R iz--=+-=⎰.例题: 计算 202cos dxI xπ=+⎰.解答: 21201122cos 41(2)2z z dxdz dzI i i z z xz zz π-====-=-+++++⎰⎰⎰,Z的单极点为1,22z ==- 则221Re (22241z s i z z z π→--=+=++, 由于2-1z =内.故 I =. 类型二()f x dx ∞-∞⎰.积分区间是(,)-∞∞;复变函数f(z)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,zf(z)一致地0→.则式子可以变为()2I f x d x i π∞-∞==⎰{f(z)在上半平面所有奇点的留数之和}.例题: 计算21dx x ∞-∞+⎰. 解答: 21dzI z ∞-∞=+⎰的单极点为1,2z i =±.21Re ()2lim()1z i sf i i z i z ππ→=-=+,故21dxx π∞-∞=+⎰.类型三()cos F x mxdx ∞⎰,0()sin G x mxdx ∞⎰,积分区间是[0,]+∞;偶函数F(x)和奇函数G(x)在实轴上没有奇点,在上半平面除了有限个奇点外是解析的;当z 在上半平面或实轴上→∞,F(z)及G(z)一致地0→.则式子可以变为0()c o s {()}i m xF x m x d x i F x e π∞=⎰在上半平面所有奇点的留数之和;()s i n {()}i m x G x m x d x G x e π∞=⎰在上半平面所有奇点的留数之和. 若类型二,类型三的实轴上有有限个奇点,则有()2Re ()Re ()f x dx isf z isf z ππ∞-∞=+∑∑⎰在上平面实轴上.其中,在类型三中f(x)应理解为()imzF x e或()imxG x e.第五章 Fourier 变换傅里叶级数 周期为2l 的函数f(x)可以展开为级数01()(c o s s i n )k kk k x k x f x a a b llππ∞==++∑. 其中,{1()cos1()sin lk lk lk l k a f d l lk b f d l lπξξξδπξξξ--==⎰⎰, k δ={2(0)1(0)k k =≠.注: 积分上下限只要满足 上-下=2l 即可. 复数形式的傅里叶级数 ()k xilkk f x c eπ∞=-∞=∑其中 *1()[]2k x i l lk l c f e d lπξξ-=⎰. 傅里叶积分 0()()cos ()sin f x A xd B xd ωωωωωω∞∞=+⎰⎰傅里叶变换式 {1()()cos 1()()sin A f d B f d ωξωξξπωξωξξπ∞-∞∞-∞==⎰⎰复数形式的傅里叶积分{*()()()()[]i xi x f x F e d F f x e dx ωωωωω∞-∞∞-∞==傅里叶变换的性质(1) 导数定理 F [f ’(x)]=iwF(w)(2) 积分定理 F [()()x f d ξξ⎰]=1()F w iw(3) 相似性定理 F [f(ax)]=1()wF a a(4) 延迟定理 F [0()f x x -]=0()iwx e F w -(5) 位移定理 F [0()iw xef x ]=0()f w w -(6) 卷积定理 若F [1()f x ]=1()F w ,F [2()f x ]=2()F w ,则 F [1()f x *2()f x ]=122()()F w F w π. 其中1212()*()()()f x f x f f x d ξξξ∞-∞=-⎰称为1()f x 和2()f x 的卷积.δ函数()x δ={0(0)(0)x x ≠∞=.()bax dx δ=⎰{0(,0,0)1(a<0<b)a b <>都或都.δ函数的一些性质1. ()x δ是偶函数.()()'()'()x x x x δδδδ-=-=-2. ()()xH x t dt δ-∞==⎰{0(0)1(0)x x <>.3.00()()()f t d f t τδττ∞-∞-=⎰.第六章 Laplace 变换拉普拉斯变换 0()()ptf p f t e dt ∞-=⎰拉普拉斯变换的一些性质 (1) 线性定理 若11()()f t f p ,22()()f t f p ,则 1121122()()()()c f t c f t c f pc fp ++. (2) 导数定理 '()()(0)f t p f p f -.(3) 积分定理1()td p ϕττ⎰L [()p ϕ]. (4) 相似性定理 1()()p f at f p a . (5) 位移定理 ()()te f t f p λλ-+.(6) 延迟定理 00()()pt f t t e f p --. (7) 卷积定理 若11()()f t f p ,22()()f t f p ,则1212()*()()()f t f t f p f p , 其中12120()*()()()tf t f t f f t d τττ=-⎰称为1()f t 和2()f t 的卷积.第七章 数学物理定解问题(1) 均匀弦的微小振动,均匀杆的纵振动,传输线方程,均匀薄膜的微小横振动,流体力学与声学方程,电磁波方程的形式为20tt xx u a u -=或220tt u a u -∆=或230tt u a u -∆=.(2) 扩散方程,热传导方程的形式为20t xx u a u -=或20t u a u -∆=.(3) 稳定浓度分布,稳定温度分布,静电场,稳定电流场方程的形式为(拉普拉斯方程)0u ∆=.(4) 以上方程中x u 意为ux∂∂,xx u 意为22u x ∂∂.若以上各方程均为有源,则方程为 各方程=f(x,y,z,t).定解条件初始条件 初始”位移” 0(,,,)(,,)t u x y z t x y z ϕ==, 初始”速度” 0(,,,)(,,)t t u x y z t x y z ψ==. 边界条件 第一类边界条件 (,)(,)u r t f M t ∑=第二类边界条件(,)u f M t n∑∂=∂第三类边界条件 ()(,)uu Hf M t n ∑∂+=∂ 衔接条件 00(0,)(0,)u x t u x t -=+00(0,)(0,)()x x Tu x t Tu x t F t +--=-.(T 为张力) 达朗贝尔公式 定界问题 达朗贝尔公式 11(,)[()()]()22x at x at u x t x at x at d aϕϕψξξ+-=++-+⎰. 其中0()t u x ϕ==,0()tt u x ψ==.()x -∞<<∞第八章 分离变数法泛定方程 20tt xx u a u -=(若该方程可以使用分离变量法,则可以化成2''()''()()()T t X x a T t X x λ==-). ''()()0X x X x λ+=在不同的边界条件下解不同.边界条件(1) {(0)0()0X X l == , X(x)的解为 {2()()sinn n n ln X x C x lπλπ== 其中 n=1,2,3……(2) {'(0)0()0X X l ==, X(x)的解为 {21()2[]1()2()cosn n k lk X x C x lπλπ+=+= 其中 k=0,1,2……(3) {(0)0'()0X X l ==, X(x)的解为 {21()2[]1()2()sinn n k l k X x C x lπλπ+=+= 其中 k=0,1,2…… (4) {'(0)0'()0X X l ==, X(x)的解为 {2()()cosn n n ln X x C x lπλπ== 其中 n=0,1,2……T(t)的方程在有n 且n=0时的解为 ()T t At B =+; 在0n ≠时的解为()sincos n a n aT t A t B t l lππ=+; 在有k 的情况下为(21)(21)()sincos 22k a k aT t A t B t l lππ++=+. 初始条件 将u(x,t)=T(t)X(x)带入初始条件,确定u(x,t)中的常数项.欧拉型常微分方程 22220d R dRm R d d ρρρρ+-=. 解法为做代换t e ρ=.第九章 二阶常微分方程级数解法 本征值问题拉普拉斯方程 0u ∆=(1) 球坐标系下 2222222111()(sin )0sin sin u u ur r r r r r θθθθθϕ∂∂∂∂∂++=∂∂∂∂∂. 分解为 2222(1)0R R r r l l R r r ∂∂+-+=∂∂ 其解为 11()ll R r Cr D r+=+. 和22211(sin )(1)0sin sin Y Y l l θθθθθϕ∂∂∂+++=∂∂∂(球方程,(,)()()Y θϕθϕ=ΘΦ) 球方程又可以分离为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为 {2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2……和 22222(1)2[(1)]01d d m x x l l dx dx x ΘΘ--++-Θ=- (连带勒让德方程).(2) 柱坐标系下 2222211()0u u u z ρρρρρϕ∂∂∂∂++=∂∂∂∂.分解为 ''()()0ϕλϕΦ+Φ= 其中有 ()(2)ϕϕπΦ=Φ+,其方程解为{2()cos sin m A m B m λϕϕϕ=Φ=+ 其中 m=0,1,2…… 和 ''0Z Z μ-=和 22221()0d R dR m R d d μρρρρ++-=. 当0μ=时,Z=C+Dz,()R ρ={ln (0)/(1,2,3......)m m E F m E F m ρρρ+=+=; 当0μ>时,()Z z De =+,方程R 转换为 22222()0d R dR x x x m R dx dx++-=(x =,m 阶贝塞尔方程). 当0μ<时,()Z z C D =+,方程R 转换为22222()0d R dR x x x m R dx dx +-+=(x =,m 阶虚宗量贝塞尔方程). 亥姆霍兹方程 20v k v ∆+=.在00x =的领域上l 阶勒让德方程的解为 0011()y x a y a y =+ 其中 2402()(1)(2)()(1)(3)1...2!4!(22)(24)...()(1)(3)...(21)......(2)!k l l l l l l y x x k l k l l l l l k x k -+--++=+++-----+++-++ 35121(1)(2)(3)(1)(2)(4)...3!5!(21)(23)...(1)(2)(4)...(2)......(21)!k l l l l l l y x x x k l k l l l l l k x k +-+--++=+++-----++++++第十章 球函数高次项l x 的系数 2(2)!2(!)l l l a l = (在乘以适当的常数之后),用递推公式改写后为2(2)(1)()(1)k k k k a a k l k l +++=-++,则 22(22)!(1)!2()!(2)!l n l l n a n l n l n --=---.则勒让德多项式为 [/2]20(22)!()(1)!2()!(2)!l kl k l l k l k P x x k l k l k -=-=---∑.[/2]l ={/2()(1)/2()l l l l -为偶数为奇数. ()1o P x =1()cos P x x θ==2211()(31)(3cos 21)24P x x θ=-=+ 3311()(53)(5cos33cos )28P x x x θθ=-=+ 42411()(35303)(35cos 420cos 29)864P x x x θθ=-+=++…… 勒让德多项式是正交的例题1: 以勒让德多项式为基,在区间[-1,1]上把f(x)=3234x x ++展开为广义傅里叶级数.解答: 3234x x ++=00112233()()()()f P x f P x f P x f P x +++ = 23012311(31)(53)22f f x f x f x x ++-+- 则有 02142f f -=, 13332f f -=, 2302f =, 3522f =. 故有3234x x ++=0132144()()()55P x P x P x ++. 例题2: 在半径0r r =的球的内部求解拉普拉斯方程使满足边界条件02cos r r u θ==. 解答: 边界条件与ϕ无关,故选择球坐标,则有10(,)()(c o s )l l l l l l B u r A r P r θθ∞+==+∑. 又有自然边界条件 0r u =有限故0l B =.则有(,)(c o s )ll ll u r A r P θθ∞==∑. 而02202012cos (cos )()()33l l lr r l u A r P x P x P x θθ∞======+∑,则 22200121(,)(c o s )(c o s )33l l l l u r A r P r P r θθθ∞===+∑.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

49
50
【例2.3.2】试计算积分,
积分回路L为x2 + y2=2x 解 (1) 积分回路的形状: (x-1)2+y2=1
(2)被积函数的奇点.

方程z4+1=0有四个根:z=exp[i (p+2kp)/4], k=0,1,2,3,因此,被积函数有四个奇点,但仅有 z1与z4位于积分回路之内
51
2. 复通区域的柯西公式

设f (z)在闭复通区域D中解析,a为D的内点, 则 式中积分沿D的内外边界线的正方向.
32

证明 为了应用单通区域的柯西定理,作割线把外边界线 L0与内边界线连接起来,将闭复通区域变成闭单通区域。
33
推论3 在f(z)的解析区域中,积分回路连 续变形时,其积分值不变.

证明 取变形前后的积分回路 作为复通区域 的内外边界 线,如图2.9所示.由式 (2.2.21a) 可得
移项后,改变l2的积分方向,即有

复变积分性质(5)及式(2.2.34),可证
43
由于e可任意地小,(q2-q1)为常量,式
(2.2.35)表明
可任意地小根据极限的定义,可得
44
2. 大圆弧引理

若j(z)在无穷远点的无心邻域内连续,在大 圆弧CR(z=Reiq, R→∞,q1<q<q2 )上

这两个引理为计算沿圆弧的积分带来方便. 2.3节将分别用来证明单通区域及无界区域的 柯西公式.
(3)按复通区域的柯西定理及柯西公式计算以小圆周c1 和c2分别包围奇点z1和z4 ,则被积函数在外边界线l 与内边界线c1 , c2 所围的复通区域解析。按复通区 域的柯西定理,沿l的积分等于沿C1与C2积分之和, 后两个积分可按柯西公式算出,即
已将z1 、 z2 、z3和 z4 的值代入。
52
12
根据复变积分性质(5)及式(2.1.15),易得
13
【2.1.3】试证明 若当(Jordan)不等式



证明 分别作出 y1=2q/p 及 y2 = sinq 的函数 曲线图(图2.4). 易见在开区间 (0,p/2)中,有 sinq >2q/p ; 而在闭区间[0,p/2 ]的端点,有sinq = 2q/p。
≠0
=0
39
40
【例2.2.3】若f(z)=1/(z-a) 在z=a的无心邻域内 连续,积分回路是以a点为圆心的圆弧
41
§2.2.4 小圆弧引理与大圆弧引理
1. 小圆弧引理 若j(z)在z=a的无心邻域内连续,在小圆弧

一致成立,则
42

证明 根据极限的定义,式(2.2.32)表明,任给 e>0,存在与arg(z- a)无关的d (e)>0,使当 |z- a|=r<d 时,有 |(z- a)j (z)- k|<e (2.2.34)
10
(6)若在曲线 l 上, max|f(z)|=M, 曲线 l 的长度为 l ,则
11
【2.1.2】试证明,若z在上半平面及实轴上趋 于∞时, zf(z)一致地趋于零(与辐角无关),即 则f(z)沿图2.3中无穷大半圆周CR的积分


证明 式(2.1.16)中的 积分是一个复数,只 要证明,当R→∞时这 个复数的模为零,则 式(2.1.16)得证.
14
【2.1.4】试证明 若当引理:若z在上半平 面及实轴上趋于∞时,f(z)一致地趋于零 (与辐角无关),则
式中m>0,CR是以原点 为圆心、R为半径的上 半圆周,参看图2.3.
15
证明 当z 在CR上时,z=Reiq,由复变积 分性质(5)可得

将积分(2.1.19)分为两项: 0由p/2的积分与由p/2 到p的积分.第二项先作变换 q = p-j,再用q 表示j,两项合并后利用若当不等式,即有
45
§2.3 解析函数的柯西公式
从柯西定理和大、小圆弧引理出发证明解 析函数的柯西公式; 证明建立在柯西公式 基础上的高阶导数公式、柯西不等式、平 均值定理、最大模定理及刘维尔(Liouville) 定理; 最后,介绍“柯西型积分”并证明 其解析.
§2.3.1 柯西公式
1.单通区域的柯西公式 设f(z)在单通区域 解 析,a为 的内点,则
4
解 (1) 直线方程为
先将 z=x+iy 代入被积表达式, 随后将 y=3x-2 代入,即有
5
(2) 在1+i到2+i段 有 y=1,dy=o; 在2+i到2+4i段 有 x=2,dx=0, 因而
6
(3) 将z=x+iy=t(1+it)及dz=(1+i2t)dt 代入,即有
x=t, y=t2
(2.3.1)
式中L为 的边界线,见图2.12. 证明 利用柯西定理的推论3,将积分回路连 续变形为以a为心,r为半径的小圆周Cr,如 图2.12.由于积分的结果与r的大小无关(保证 Cr在 内),故可取r→0的积分值表示之,令
47


易见j(z)在a的无心邻域内连续,将式(2.3.2) 代入的式(2.2.32)便有 (2.3.3)
36

(3)当n <-1,a点仍为f(z)的奇点.仿上可得

综合以上三式,即有

这个公式在计算洛朗系数(3.4节)及证明留数定理 (4.2节)时均要用到.
37
【2.2.2】试计算
其中积分回路分别(图2.11)

(1) |z-i|=2;(2) |z+i|=2;(3) |z|=3.
38
解 首先,将被积函数分解为部分分式(利用通 分可以凑出来)
34
【例2.2.1】试证明
(n是整数)

式中a点在积分回路 l 之内, dnm为克罗内克 (Kronecker)符号(简称d符号),其定义为

证明 (1)当n≥0时,被积函数(z-a)n为解析函数, 故 0 n≥0
35
(2)当n=-1,则a点为f(z)的奇点

根据柯西定理的推论3, 积分回路可连续变形为 以a点为圆心的单位圆 C(图2.10).在单位圆C上 有

通常把f(z)的原函数的集合
称f(z)的不定积分,式中C为复常数。
30
(2.2.8)
31
§2.2.3 复通区域的柯西定理

定理 若f(z)在闭复通区域 解析,则f(z)沿所 有内、外边界线(L=L0+ )正方向积分 之和为零 (2.2.18)

“正方向”:当沿内、外边 界线环行时,D保持在左 边.换句话说,外边界线 取逆时针方向,内边界线 取顺时针方向.

将k=f(a)及q1-q2=2p代入小圆弧引理,得

式(2.3.4)就是单通区域的柯西公式.
48



单通区域的柯西公式表明,解析函数f(z)在边界 L上的取值完全确定f(z)在D内各点的取值,进一 步显示了解析函数取值的关联性. 应用柯西公式要注意两点:一是f(z)在以L为边 界的闭区域解析;二是a点在L的内部. 由于a点在D内随意变动时,柯西公式依然成立, 有时分别用z和x代替式 (2.3.1)的a和z。将柯西公 式改写为
(2.1.3)
(2) 化为参数积分计算.设积分曲线L的参数方程为z(t), 将z(t)及dz(t)=z'(t)dt代入式(2.1.4),可得
3
【例2.1.1】计算积分I=

其中曲线L是
(1)沿1+ i 到2+4 i 的直线,见图2.2(a); (2)沿1+ i 到2+i,再到2+4 i 的折线,见图2.2(b); (3)沿抛物线x=t, y=t2,其中1≤ t ≤2,见图 2.2(c).
∮l f(z)dz = 0

(2.2.1)
证明 这个定理的严格证明比较复 杂, 为简单起见, 我们在“f(z)在D 内连续” 附加条件下证明这个定 理.

先将复变积分化为两个实变积 分的线性叠加
(2.2.2)
20
其次, 考查上述两个实变积分在什么条件下为零?
设l为D内任一闭曲线(图2.5), 若函数P(x,y), Q(x,y) 以及 在D内连续,则格林公式 成立
16
17
综合式(2.1.20)和式(2.1.19)式,并利用题设条件
(2.1.21)


由复变积分性质(5)导出的例2.1.2和例2.1.4这 两个结论,将会启发我们怎样用留数定理计 算实变积分,见4.2节. 对于解析函数的积分,还具有一些特有的性 质,由2.2节、2.3节介绍的柯西定理、柯西公 式、最大模定理等反映.
第二章 复变函数的积分
2.1. 复变积分的定义、性质 2.2. 柯西定理、原函数与定积分公式 2.3. 柯西公式 复变函数的积分是研究解析函数的重要 工具解析函数特有的积分性质: 柯西定理、柯西公式、高阶导数公式、 最大模定理等, 它们是今后解决许多理论与实际问题的 重要基础.
1
§2.1.1 复变函数积分的定义
25

由于解析函数的积分与路径无 关,不妨取z到z+Dz的积分路 径为直线(图2.7).考虑到解析 函数必连续,因而任给e>0, 必存在d>0,使当|x-z|<d,有 |f(x)-f(z)|<e (2.2.11)
利用式(2.2.10)和式(2.2.11),以及复变积分 的性质(5),可得

26
27
22
推论2 若f(z)在单通区域D内解析,则 ∫l f(z)dz 与路径无关。


证明 设A、B分别为两积分 曲线的起点和终点,如图2.6 所示. 因为l1,与l2- (l2- 与l2重合但反 向)构成闭曲线l,由柯西定 理可得
相关文档
最新文档