§1.8 线性时不变系统的性质
信号与系统第四次课
由线性性质,得:当输入f3(t) =
y3f(t) =
2015-2-7
d f 1 (t ) dt
+2f1(t–1)时,
d y1 ( t ) dt
+ 2y1(t–1) = –3δ(t) + [4–πsin(πt)]ε(t) + 2{–4 + cos[π(t–1)]}ε(t–1)
21
信号与系统的研究方法
t
是不稳定系统;
因为,f(t) =ε(t)有界,
t
( x)d x t (t )
当t →∞时,它也→∞,无界。
18
2015-2-7
1.6
系统的特性举例
例 某LTI因果连续系统,起始状态为x(0–)。已知,当 x(0–) =1,输入因果信号f1(t)时,全响应 y1(t) = e –t + cos(πt),t>0; 当x(0-) =2,输入信号f2(t)=3f1(t)时,全响应 y2(t) = –2e –t +3 cos(πt),t>0; 求输入f3(t) = d f1 (t ) +2f1(t-1)时,系统的零状态响应 dt y3f(t) 。 解 设当x(0–) =1,输入因果信号f1(t)时,系统的零输 入响应和零状态响应分别为y1x(t)、y1f(t)。当x(0-) =2, 输入信号f2(t)=3f1(t)时,系统的零输入响应和零状态 响应分别为y2x(t)、y2f(t)。
2015-2-7 9
(3) yzs(t) = f (– t) 令 g ( t) = f ( t – td) ,
T[{0},g (t) ] = g (– t) = f(– t –td)
而 yzs (t –td) = f [–( t – td)]
系统的时域分析 线性时不变系统的描述及特点 连续时间LTI系统的响应
y x (t ) K1e 2t K 2 e 3t
y(0)=yx(0)=K1+K2=1 y' (0)= y'x(0)= 2K13K2 =3
解得 K1= 6,K2= 5
y x (t ) 6e 2t 5e 3t , t 0
18
[例] 已知某线性时不变系统的动态方程式为: y" (t)+4y ' (t) +4y (t) = 2f ' (t )+3f(t), t>0 系统的初始状态为y(0) = 2,y'(0) = 1, 求系统的零输入响应yx(t)。 解: 系统的特征方程为 系统的特征根为
2t
Be
4t
1 y (0) A B 1 3 解得 A=5/2,B= 11/6 1 y ' (0) 2 A 4 B 2 3
5 2t 11 4t 1 t y(t ) e e e , t 0 2 6 3
12
1 t e 3
系统的几个概念:
9
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et u(t), 求系统的完全响应y(t)。
解:
(1) 求齐次方程y''(t)+6y'(t)+8y(t) = 0的齐次解yh(t)
11
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
第二章 线性时不变系统的时域分析
基本内容: 基本内容: (1) 系统的定义及表示 ) (2) ) 系统的基本性质 (3) ) 线性时不变系统的时域描述 (4) ) 零输入响应和零状态响应 (5) ) 单位冲激响应
重点难点: 重点难点: 零状态响应的求解方法 响应的求解方法; (1) ) 零状态响应的求解方法; 冲激响应的求解方法; (2) ) 冲激响应的求解方法;
4.稳定性 稳定性
有界输入产生有界输出,则这个系统就 是稳定系统。 所谓有界,即输入或输出的最大幅值是 一个有限值。 例系统 y[n]=nx[n] 就是一个不稳定系统, 因为,当输入 x[n] 是有界时,系统的输 出却有界,它将随着 n 值的增加而增加, 直至无穷。
三、线性时不变系统的时域描述
线性时不变系统也简称为LTI系统,其 系统, 线性时不变系统也简称为 系统 分析方法建立在信号分解的基础之上。 分析方法建立在信号分解的基础之上。 线性时不变系统具有的线性和时不变性, 线性时不变系统具有的线性和时不变性, 其响应必然是系统对这些基本信号响应 的组合。 的组合。 连续时间LTI系统用微分方程描述; 系统用微分方程描述; 连续时间 系统用微分方程描述 离散时间LTI系统用差分方程描述。 系统用差分方程描述。 离散时间 系统用差分方程描述
这个常系数线性微分方程, 这个常系数线性微分方程,其完全解由 齐次解和特解两部分组成 。 齐次解是微分方程在输入为0时的齐次 齐次解是微分方程在输入为 时的齐次 方程的解( 方程的解(式2.111) ) 而特解则是在输入的作用下满足微分方 程式(2.109) 的解。 的解。 程式
对于式(2.109)的微分方程,相应的齐次 方程为
如果系统的起始状态y(0-)≠0,则系统的 输出 y(t) 和系统的输入 x(t) 之间就不满 足线性和时不变性。然而,只要 y(0-)=0, y(t) 和 x(t) 之间就能够满足 线性和时不变的关系。
线性系统的性质
三、因果系统与非因果系统
因果系统:在激励信号作用之前系统不产生响应。 否则为非因果系统。 见图2。
图2
➢ 阅读与思考
2-5
第2讲 线性系统的性质
一、线性系统与非线性系统
若f1( t ) y1( t ),f2( t ) y2( t ) 则对于任意常数a1和a2,有 a1 f1( t ) + a2 f2( t ) a1 y1( t ) + a2 y2( t ) 则为线性系统。
非线性系统不满足上述齐次性和可加性。
二、时不变系统与时变系统
时不变系统:系统的元件参数不随时间变化; 或系统的方程为常系数的。 否则为时变系统。
时不变性:
若f(t)y(t) 则 f ( t t0 ) y ( t t0 )
见图1。
2-3
图1 时不变特性示意图
线性时不变系统(LTI): 系统既是线性的,又是时不变的; 或系统的方程为线性常系数微分方程。
2-1
线性系统的特性:
• 微分特性:若f ( t ) y( t ),则 f (t) y(t)
•
积分特性:若f (
t
)
y( t ),则
t
0
f ( )d
t
0 y( )d
• 频率保持性:信号通过线性系统后不会产生新的
频率分量。 尽管各频率分量的
线性时不变系统及其特性.ppt
e ( t ) rt ( ) 1 1 e ( t ) et ( ) rt ( ) rt ( ) 1 2 1 2 et ( ) rt ( ) 2 2
e1 (t)
H H
H
r1 ( t )
r2 ( t )
r1 (t) r2 (t)
e2 (t)
e1 (t) e2 (t)
d A r ( t ) 1 0 A r ( t )5 A e ( t ) d t 原方程两端乘A:
d r ( t ) A 1 0 r ( t )5 A e ( t ) d t
(1),(2)两式矛盾。故此系统不满足均匀性
t 0( 1 )
t 0( 2 )
t 0
r ( 0 ) e ( 0 ) e (2 )
现在的响应=现在的激励+以前的激励
所以该系统为因果系统。
例: 微分方程 r 所代表的系统是否是因果系统 ( t ) e ( t ) e ( t 2 ) 解:
t 0
r ( 0 ) e ( 0 ) e (2 )
e( t )
r (t )
O
T
t
O
t
e( t t 0 )
r (t t 0 )
O t0
t0 T
t
O
t0
t
二.时变系统与时不变系统
判断方法 先时移,再经系统=先经系统,再时移
f (t )
H
H f (t )
DE
y (t )
f (t )
y (t )
f (t )
若 则
未来的激励
所以该系统为非因果系统。
定义 一个系统,在零初始条件下,其输出响应与输入信号施加于系 统的时间起点无关,称为非时变系统,否则称为时变系统。 分析: 电路分析上看:元件的参数值是否随时间而变 从方程看:系数是否随时间而变 从输入输出关系看:
信号与系统复习提纲
复习提纲 第一章一、需要掌握的内容 1、信号的分类。
2、指数信号、正弦信号、复指数信号、Sa(t)信号的表达式及响应波形。
3、信号的运算。
4、斜变信号、阶跃信号、冲激信号的表达式及它们之间的关系。
5、冲激信号的性质。
6、能够用系统仿真框图来表示系统微分方程。
7、线性时不变系统的性质:线性特性、时不变特性、微分特性、因果特性。
第二章一、需要掌握的内容1、系统全响应的划分方法: (1)自由响应与强迫响应 (2)零输入响应与零状态响应 (3)瞬态响应与稳态响应掌握这几种划分方法的定义、以及它们的概念。
2、掌握零输入响应与零状态响应的求解方法。
会用冲击函数匹配法求解边界条件。
3、冲击响应与阶跃响应的定义,以及它们两者之间的关系。
4、卷积的概念与性质。
注意)()()(t h t e t r zs *=的意义及求解方法。
二、练习题1、将函数)2(t f -之图形向右平移52可得函数 之图形。
2、⎰∞∞----dt t t t e t j )]()([0δδω= 。
⎰∞∞--++dtt t e t )2()(δ= 。
3、有一线性时不变系统,已知阶跃响应)()(t u et g at-=,则该系统的冲激响应=)(t h 。
4、单位冲激函数是_______的导数。
5、某一连续线性时不变系统对任一输入信号)(t f 的零状态响应为0,)(00>-t t t f ,则该系统的冲激响应h(t)= ____________。
6、)()(21t t t t f -*-δ= 。
7、已知系统的微分方程)(3)()(2)(3)(22t e t e dt dt r t r dt d t r dt d +=++,2)0(,1)0(='=--r r ,求零输入响应。
8、题图所示系统是由几个子系统组成,各子系统的冲激响应分别为:)()(),1()(),()(321t t h t t h t u t h δδ-=-==,求总的系统的冲激响应)(t h 。
线性时不变系统的因果和稳定性
线性移不变系统的因果性和稳定性
稳定系统
稳定系统是指有界输入产生有界输出(BIBO)的系统。 若: x(n) ≤ M < ∞
则: y(n) ≤ P < ∞
LSI系统是稳定系统的充分必要条件:
n =−∞
∑
∞
h( n) = P < ∞
结论:因果稳定的LSI系统的单位抽样响应是因果的(单边的) 且是绝对可和的。
则:T[ax1 (n)]=aT[x1 (n)]=ay1 (n)
线性移不变系统的因果性和稳定性
例:证明y(n)=ax(n)+b(a、b为常数)所代表的系统 不是线性系统。
证:设T[x1(n)]=ax1(n)+b T[x2(n)]=ax2(n)+b
则:T[x1(n)+x2(n)]=a[x1(n)+x2(n)]+b
N M
∑ a y (n − k ) = ∑ b
k =0 k m=0
m
x ( n − m)
阶差:为未知序列(指输出序列y(n))变量序号的最高值 与最低值之差。
线性:各y(n-k)及各x(n-m)项都只有一次幂且不存在它们的 相乘项;否则时非线性的。
差分方程
线性常系数差分方程的求解
手工迭代 迭代法 序列域求解法 计算机软件(MATLAB) 经典解法 变换域求解法
∞ m=-∞
∞
m =−∞
⇐ 满足比例性和可加性 ⇐ 满足移不变性
= ∑ x(m)h(n-m)
线性移不变系统的因果性和稳定性 结论:
y ( n) = x ( n) * h( n)
x(n) LSI系 统 系 h(n) y(n)=x(n)*h(n)
线性移不变系统
在图像处理中,线性移不变系统可以用于图像的滤波、锐化和增强等操作,改善图像质量 ,提取图像特征。
THANKS FOR WATCHING
感谢您的观看
最终得到最优控制输入。
状态观测器设计
状态观测器
通过设计一个观测器来估计系统的状态变量,即使某些状态变量 无法直接测量。
滤波器
通过设计一个滤波器来估计系统的状态变量,以减小噪声对估计 结果的影响。
状态重构
通过将观测器的输出与系统输出的差值作为误差信号,调整观测 器的增益,使得误差信号逐渐减小至零。
05 线性移不变系统的应用实 例
方法
通过分析系统的稳定性条件,如劳斯 判据、赫尔维茨判据等,可以判断系 统的稳定性。
04 线性移不变系统的设计方 法
线性反馈控制设计
状态反馈控制
通过测量系统的状态变量,将所 得信息反馈到控制器中,调整系 统的输入,以实现期望的性能指
标。
输出反馈控制
通过测量系统的输出变量,将所得 信息反馈到控制器中,调整系统的 输入,以实现期望的性能指标。
在控制系统中的应用
01 02
控制稳定性
线性移不变系统在控制系统中用于提高系统的稳定性。通过设计合适的 线性移不变系统,可以减小系统受到外部干扰的影响,提高系统的鲁棒 性。
最优控制
在最优控制问题中,线性移不变系统可以作为被控对象,通过最优控制 算法实现系统的最优控制。
03
自适应控制
在自适应控制中,线性移不变系统用于描述被控对象的动态特性,通过
线性性质
输入和输出关系是线性的,即输出是 输入的线性组合。
线性系统对输入信号的线性组合和信 号的线性变换具有不变性。
移不变性质
第2章 线性时不变系统
0 t
2.4 LTI系统的性质
举例:累加系统(accumulator)
y[n]
k
x[k ]
n
它是LTI系统,其单位脉冲响应为
h[n] u[n]
h[n] k [n] Memory h[n] 0, n 0 Causal
2.4 LTI系统的性质
从以上推导得出以下结论: DT LTI 系统的单位阶跃响应是其单位脉冲响应的求和函数; DT LTI 系统的单位脉冲响应是其单位阶跃响应的一次差分 同理,对于CT LTI 系统: 单位阶跃响应是其单位冲激响应的积分函数
s(t ) h( )d
t
单位冲激响应是其单位阶跃响应的一阶导数
2.7小结
2.1概述
(1)线性与时不变性(Linearity and Time-Invariance): 很多物理过程都具有这两个性质 这些物理过程能用LTI系统表征 可以对LTI系统进行详细的分析:
能够将LTI系统的输入用一组基本信号的线性组合表示 根据该系统对基本信号的响应,利用叠加性质求得整个系统的输出
2.4 LTI系统的性质
离散时间LTI系统用 卷积和表示
连续时间LTI系统用 卷积积分表示
LTI系统的特性可以 完全由其单位冲激响 应决定
2.4 LTI系统的性质
卷积的交换律性质 The Commutative Property of Convolution
2.4 LTI系统的性质
卷积的三个代数性质:交换律、结合律、分配律 Three algebraic properties of convolution
线性时不变电路的性质
目录
• 线性时不变电路概述 • 线性时不变电路的基本性质 • 线性时不变电路的分析方法 • 线性时不变电路的频率响应 • 线性时不变电路的稳定性分析 • 线性时不变电路的实验与仿真
线性时不变电路概述
01
定义与特点
定义
线性时不变电路是指电路中的元件参 数不随时间变化,且电路满足叠加性 和均匀性原理的电路。
电路的稳定性分析
稳定性定义
如果一个线性时不变电路在受 到扰动后能够恢复到原始状态
,则称该电路是稳定的。
劳斯判据
通过计算劳斯表格中的系数来 判断系统的稳定性。
赫尔维茨判据
通过计算系统的特征根来判断 系统的稳定性。
奈奎斯特判据
通过分析系统的频率响应来判 断系统的稳定性。
线性时不变电路的频
04
率响应
频率响应的定义与特点
仿真应用
通过设定不同的电路参数和激励,可以模拟电路在不同情况下的响应,从而更好地理解电路的工作原 理和特性。
实验与仿真的比较与评估
比较
实验和仿真各有优缺点,实验能够真实地反映电路的实际运行情况,但受限于设备和环境因素;仿真能够模拟各 种极端情况和参数下的电路行为,但结果的准确性依赖于模型的精确性。
特点
线性时不变电路具有线性特性,即输 出与输入成正比,且不随时间变化。 同时,电路的行为由系统的传递函数 描述,具有稳定性和可靠性。
线性时不变电路的重要性
理论价值
线性时不变电路是电路理论的基 础,其性质和行为的研究对于理 解电路的工作原理和设计具有重 要意义。
工程应用
在实际工程中,许多电子设备和 系统都是由线性时不变电路构成 的,如通信系统、控制系统、音 频处理系统等。
信号与线性系统分析课件
04 线性系统的响应
系统的冲激响应
冲激响应定义
01
冲激响应是线性系统对单位冲激函数的响应,反映了系统对瞬
时作用的响应特性。
冲激响应计算
02
通过求解线性系统的微分方程或差分方程,可以得到系统的冲
激响应。
冲激响应的物理意义
03
冲激响应可以理解为系统内部能量的传播和分布,是分析系统
动态特性的重要手段。
卷积积分定义
卷积积分是信号处理中常用的一种运算,用于描述两个函数的相互作用。在线性系统中 ,卷积积分用于描述系统的输出与输入之间的关系。
卷积积分的计算
卷积积分的计算涉及到函数乘积的积分,常用的计算方法包括离散卷积和离散化卷积等 。
卷积积分的物理意义
卷积积分可以理解为系统对输入信号的处理和转换能力,是分析系统动态特性的重要手 段。在信号处理中,卷积积分常用于信号滤波、预测和控制系统设计等领域。
03 信号的傅里叶分析
傅里叶级数
傅里叶级数定义
将周期信号表示为无穷多个正弦和余弦函数 的线性组合。
复指数形式
使用复指数函数来表示周期信号。
三角函数形式
使用正弦和余弦函数来表示周期信号。
傅里叶级数的应用
用于分析信号的频率成分和幅度变化。
傅里叶变换
01
02
03
傅里叶变换定义
将时域信号转换为频域信 号,表示信号的频率分布 。
傅里叶变换的性质
线性、时移、频移、共轭 、对称等性质。
傅里叶变换的应用
用于信号处理、图像处理 、通信等领域。
频域分析
频域分析定义
通过分析信号的频率成分 来理解信号的特征和性质 。
频域分析的应用
用于信号滤波、调制解调 、频谱分析等领域。
机械工程测试技术基础知识点总结
机械⼯程测试技术基础知识点总结《机械⼯程测试技术基础》知识点总结1. 测试是测量与试验的概括,是⼈们借助于⼀定的装置,获取被测对象有相关信息的过程。
测试⼯作的⽬的是为了最⼤限度地不失真获取关于被测对象的有⽤信息。
分为:静态测试,被测量(参数)不随时间变化或随时间缓慢变化。
动态测试,被测量(参数)随时间(快速)变化。
2. 基本的测试系统由传感器、信号调理装置、显⽰记录装置三部分组成。
传感器:感受被测量的变化并将其转换成为某种易于处理的形式,通常为电量(电压、电流、电荷)或电参数(电阻、电感、电容)。
信号调理装置:对传感器的输出做进⼀步处理(转换、放⼤、调制与解调、滤波、⾮线性校正等),以便于显⽰、记录、分析与处理等。
显⽰记录装置对传感器获取并经过各种调理后的测试信号进⾏显⽰、记录、存储,某些显⽰记录装置还可对信号进⾏分析、处理、数据通讯等。
3. 测试技术的主要应⽤:1. 产品的质量检测 2.作为闭环测控系统的核⼼ 3. 过程与设备的⼯况监测4. ⼯程实验分析。
4. 测试技术是信息技术的重要组成部分,它所研究的内容是信息的提取与处理的理论、⽅法和技术。
现代科学技术的三⼤⽀柱:能源技术材料技术信息技术。
信息技术的三个⽅⾯:计算机技术、传感技术、通信技术。
5. 测试技术的发展趋势: (1) 1. 传感技术的迅速发展智能化、可移动化、微型化、集成化、多样化。
(2)测试电路设计与制造技术的改进(3)计算机辅助测试技术应⽤的普及(4)极端条件下测试技术的研究。
6. 信息:既不是物质也不具有能量,存在于某种形式的载体上。
事物运动状态和运动⽅式的反映。
信号:通常是物理、可测的(如电信号、光信号等),通过对信号进⾏测试、分析,可从信号中提取出有⽤的信息。
信息的载体。
噪声:由测试装置本⾝内部产⽣的⽆⽤部分称为噪声,信号中除有⽤信息之外的部分。
(1)信息和⼲扰是相对的。
(2)同⼀信号可以反映不同的信息,同⼀信息可以通过不同的信号来承载。
第2章__线性时不变系统
g (t ) u(t ) h(t ) h()d
求系统零状态响应举例:如图所示系统, hD (t ) (t 1 ) hG (t ) u(t ) u(t 3) , ,输入 x(t ) u(t ) u (t 1),求零状态响应y(t)
k
h[k ]x[n k ]
2、分配律
x[n] (h1[n] h2 [n]) x[n] h1[n] x[n] h2 [n]
x(t ) (h1 (t ) h2 (t )) x(t ) h1 (t ) x(t ) h2 (t )
物理意义: (1)LTI系统对两个输入的和的响应等于对 单个输入响应的和
y[n]
k
x[k ]h [n]
k
• 若该线性系统又是时不变的 ,则有
hk [n] h[n k ]
其中h[n]是系统输入为δ[n]时的零状态响应, 称为单位脉冲(样本)(序列)响应 y[n] x[k ]h[n k ] 所以对LTI系统,有 : k 对照卷积的定义,有: y[n] x[n] h[n] 称为卷积和
通信中的编码器都是可逆的 例: y(t ) 2 x(t ) w(t ) 1 y(t )
2
y[n]
k
x[k ]
n
w[n] y[n] y[n 1]
不可逆:
y[n] c
y(t ) x (t )
2
2.2.3 因果性
因果系统 :系统在任何时刻的输出只决定于现在 的输入以及过去的输入
y (t )
因此当 h(t ) dt 时,输出为有界-充分性 亦可证必要性 h(t ) dt 连续时间LTI系统的稳定性 离散时间LTI系统的稳定性 h[n]
信号与系统-第二章线性时不变系统
n
1
k
f1 (k )
f2 (0
k)
3,
k
f1 (k )
f2 (1 k)
3,
n0 n 1
k
f1 (k )
f2(2 k)
1,
0,
n2 n14 3
三. 卷积和的计算:(3)列表法
分析卷积和的过程,可以发现有如下特点:
① x(n与) 的h(所n)有各点都要遍乘一次;
② 在遍乘后,各点相加时,根据 x(k)h(n k), k
x (t) x(t)
20
x(t) x (t)
x(k)
t
0
k (k 1)
引用 (t,) 即:
(t)
1
/ 0
0t otherwise
则有:
(t
)
1 0
0t otherwise
21
第 个k 矩形可表示为: x(k) (t k)
这些矩形叠加起来就成为阶梯形信号 x,(t)
即: x (t) x(k) (t k) k 当 时0 , k d
un 4 ak
an3
1un 4
k 0
a 1
9
例4: x(n) nu(n) 0 1 h(n) u(n)
x(k) ku(k)
1
0
k ...
h(n k) u(n k)
1
k
0
n
y(n) x(n) h(n)
x(k)h(n k) ku(k)u(n k)
k
k
u(n) n k 1 n1 u(n)
例2 :
1 x(t) 0
h( )
2T
0t T otherwise
信号与系统概论第一章
2)冲激函数定义 (多种方式演变) ①单位冲激函数(狄拉克函数)
( ※ 0时刻取不定值,面积为1。为广义函数)
1.5 奇异信号及其基本特性(续)
◆ t=t0时刻的单位冲激函数:
②矩形脉冲定义的单位冲激函数
( ※ 面积为冲激强度,强度为1时为单位冲激)
1.5 奇异信号及其基本特性(续)
※ 对于冲激偶函数可继续二次求导。(如双边指数脉冲等)
冲激函数
冲激偶函数
强度无穷大
(单向面积:1/τ)
1.5 奇异信号及其基本特性(续)
2)冲激偶函数的性质 ①
推导:
0
性质
1.5 奇异信号及其基本特性(续)
②面积为零:
③冲激偶函数与普通函数乘积的性质: (证:两边取积分)
-f’(0)
0
-f’(0)
1.4 信号的基本运算及波形变换(续)
② 若以变量 at+b 代替 t,可得沿时间轴伸缩平移的 新信号 f(at+b)。 a>0时:信号沿时间轴伸缩、平移。
(a>1, a<1)
a<0时:信号沿时间轴伸缩、平移、反褶。(a>-1,a<-1) ◆特点:
所有运算都是自变量t的变换,且变换前后端点函数值不变。
③其他函数形式定义的单位冲激函数
1.5 奇异信号及其基本特性(续)
1.5 奇异信号及其基本特性(续)
3)冲激函数的性质 ①抽样性质(筛选特性)
1.5 奇异信号及其基本特性(续)
冲激函数与普通函数乘积的积分可将普通 函数在冲激出现时刻的函数值抽取出来!
1.5 奇异信号及其基本特性(续)
②偶函数性质: ③与阶跃函数的关系: ◆冲激函数的积分是阶跃函数: δ(t) = δ(-t)
数字信号处理试题(1)班
1.设h(n)是一个线性非移变系统的单位取样响应,若系统又是因果的,则h(n)应该满足当n<0时,h(n)=0;若该系统又是稳定的,则h(n)应该满足∑|h(n)|<∞。
2设x(n)是一实序列,X(k)=DFT[x(n)],则X(k)的模是周期性偶序列,X(k)的幅度是周期性奇序列。
3用脉冲响应不变法设计IIR数字滤波器,S平面的S=jπ/T点映射为Z平面的z=-1点。
4.线性非时变因果系统是稳定系统的充分必要条件是其系统函数H(z)的所有极点都在z平面的单位圆内。
5.FIR数字滤波器的单位取样响应为h(n),0≤n≤N-1,则其系统函数H(z)的极点在z=0,是N-1阶的。
6.线性相位FIR滤波器的单位取样响应h(n)是偶对称或奇对称的。
设h(n)之长度为N(0≤n≤N-1),则当N为奇数时,对称中心位于N+1/2;当N为偶数时,对称中心位于N-1/2.7.已知序列:x(n),0≤n≤15;g(n),0≤n≤19,X(k)、G(k)分别是它们的32点DFT,令y(n)=IDFT[X(k)G(k)],0≤n≤31,则y(n)中相等于x(n)与g(n)线性卷积中的点有29点,其序号是从3到31.8.DFT是利用W N mk的对称性、可约性和周期性三个固有特性来实现FFT快速运算的。
9.IIR数字滤波器设计指标一般由Wp、Ws、Ap、As等四项组成。
10.IIR数字滤波器有窗函数法和频率抽样设计法两种设计方法,其结构有直接型、级联型和并联型三种基本结构。
11.两个有限长序列x1(n),0≤n≤33和x2(n),0≤n≤36,做线性卷积后结果的长度是70,若对这两个序列做64点圆周卷积,则圆周卷积结果中有n=6至63为线性卷积结果。
12.请写出三种常用低通原型模拟滤波器:巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器。
13.用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=W/T。
第四章 线性时不变离散时间系统
4.1 线性时不变(LTI)系统的性质
x(n)和 y(n) 分别表示输入和输出序列,则系统的输入输出
关系可记为:
y(n) T[x(n)]
其中,T 表示将输入信号转换为输出信号,系统的一般
输入输出关系图为:
x(n)
y(n)
h(n)
系统的输入输出关系图
4.1 线性时不变(LTI)系统的性质
系统的举例
线性
线性系统基本特征就是满足叠加原理。假设系统的输 入分别为 x1(n) 和 x2 (n) ,相应的输出分别为 y1(n) 和 y2 (n) , 即:
y1(n) T [x1(n)]
y2(n) T[x2(n)]
则当且仅当
T[ x1(n) x2(n)] T[x1(n)] T[x2(n)]
y1(n) y2(n)
s (n)
1 M
M 1
x(n
l 0
l)
1 M
M
1
x
(n
l0
l)
x(n
M)
x(n
M
)
1 M
M l1
x(n
l)
x(n)
x(n
M )
1 M
M
1
x(n
l0
1 l)
x(n)
x(n
M )
M 1 s (n 1) 1 x(n) x(n M )
M
M
4.1 线性时不变(LTI)系统的性质
假设输入信号经过m 步移位得到 x(n m) ,送入同一系
统,若系统的输出为 y(n m) ,用公式表示就是:
时,系统为线性系统,其中, 为任意常数。
4.1 线性时不变(LTI)系统的性质
举例
信号与系统分析PPT全套课件 (3)可修改全文
f (2t)
倒相
f (t)
f (t)
1.3 信号时域变换
例1-8
1.4 信号时域运算
相加
f1(t)
f2 (t)
fn (t)
相乘 f1(t)
f2 (t)
y(t) f1(t) f2 (t) fn (t) y(t) f1(t) f2 (t)
1.4 信号时域运算
数乘
f (t)
a
y(t) af (t)
y
(
k
)
(0
)
y (k) (0 )
y y
(0
(k)
) (0
)
y zi
(0
y
(k zi
)
) (0
y )
zs (0
y
(k zs
) ) (0
)
在零输入条件下,且系统的内部结构和参数 不发生变化时,有:
y(0 y (k )
) (0
)
yzi (0
y
(k zi
)
) (0
)
3.初始状态和初始值的确定
A1 y1(t) A2 y2 (t)
y(t)
y(t t0 )
1.7 线性时不变系统的性质
微分性
f (t)
df (t) dt
积分性
f (t)
t
f ( )d
系统 系统
y(t)
dy(t) dt
y(t)
t
y( )d
1.8 信号与系统分析概述
1.8.1 基本内容与方法
确定信号和线性时不变系统
建立与求解系统的数学模型
2.2.2 零输入响应与零状态响应
1.零输入响应 2.零状态响应
信号与系统知识点总结
信号与系统知识点总结在现代科学和工程领域中,信号与系统是重要的基础理论。
它涉及到从电子通信、音频处理到图像识别等许多领域的技术和应用。
本文将对信号与系统的若干关键概念和知识点进行总结与概括。
一、信号的分类和性质信号可以被分为连续时间信号和离散时间信号两类。
连续时间信号是在定义域上连续存在的信号,它可以用连续的函数描述。
离散时间信号是在定义域上只取有限或无限多个离散点的信号,它可以用序列来表示。
信号还可以根据其能量和功率来分类。
能量信号是其能量有限的信号,如脉冲信号;功率信号是其功率有限的信号,如正弦信号。
这个概念对于信号在通信中的传输和处理具有重要意义。
二、线性时不变系统线性时不变系统(简称LTI系统)是信号与系统领域中最为重要的概念之一。
它的特点是输出与输入之间存在线性关系且不随时间发生变化。
LTI系统的性质可以由其冲激响应来描述。
冲激响应是当输入信号为单位冲激函数时,LTI系统的输出。
通过对冲激响应进行线性叠加和时间平移,可以得到系统对任意输入信号的响应。
三、卷积运算卷积运算是在信号与系统中常用的一种数学运算方法。
它可以将两个信号进行融合和混合,得到新的信号。
连续时间信号的卷积可以通过函数乘积和积分运算得到。
离散时间信号的卷积可以通过序列元素的加权和得到。
卷积运算在信号的滤波和频域分析中扮演着重要的角色。
例如,通过卷积可以实现低通滤波和高通滤波,以及信号的快速傅里叶变换。
四、傅里叶变换傅里叶变换是将一个信号从时域变换到频域的数学工具。
它可以将信号表示为一系列复数的和,从而揭示信号的频率分量和功率分布。
连续时间信号的傅里叶变换可以通过积分运算得到,离散时间信号的傅里叶变换可以通过离散的和运算得到。
傅里叶变换在信号压缩、频谱分析和滤波等方面有广泛应用。
例如,通过傅里叶变换可以将音频信号从时域转换为频域,实现音频的压缩和编码。
五、采样定理与信号重构在实际应用中,信号往往是以离散时间形式进行采样和处理的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 页
认识:
•电路分析上看:元件的参数值是否随时间而变 • 从方程看:系数是否随时间而变 •从输入输出关系看:
X
第
时不变性
e(t ) e( t t 0 )
e(t )
6 页
H
r (t ) r ( t t0 )
r (t )ຫໍສະໝຸດ OTtO
t
e( t t 0 )
r (t t 0 )
O t0
t0 T
C2
H
C 2 f 2 t
H f 1 t
C 1 H f 1 t
H
H C 1 f 1 t C 2 f 2 t
C1
f 2 t
H
H f 2 t
C2
C 2 H f 2 t
C 1 H f 1 t C 2 H f 2 t
1r1 t 2 r2 t
1 e1 (t ) 2 e2 (t ) 1 r 1 (t ) 2 r 2 (t )
X
第
2. 判断方法
先线性运算,再经系统=先经系统,再线性运算
f 1 t
C1
4 页
C 1 f 1 t
f 2 t
f 1 t
X
三.线性时不变系统的微分特性
线性时不变系统满足微分特性、积分特性
et
de t dt
第 8 页
系统
系统
r t
dr t dt
t
e t dt
r t dt
t
系统
利用线性证明,可推广至高阶。
X
四.因果系统与非因果系统
1. 定义
因果系统是指当且仅当输入信号激励系统时,才会出
10 页
4.因果信号
t = 0接入系统的信号称为因果信号。
表示为:
e( t ) e( t )u( t ) 相当于t 0, e(t ) 0
X
若 H C1 f1 t C2 f 2 t C1 H f1 t C2 H f 2 t
则系统 H 是线性系统,否则是非线性系统。 注意:外加激励与系统非零状态单独处理。
X
第
二.时变系统与时不变系统
1.定义
一个系统,在零初始条件下,其输出响应与输入信号 施加于系统的时间起点无关,称为非时变系统,否则 称为时变系统。
§1.8 线性时不变系统的性质
•线性系统与非线性系统 •时变系统与时不变系统 •线性时不变系统的微分特性 •因果系统与非因果系统
中北大学信息与通信工程学院
第
一.线性系统与非线性系统
1.定义
线性系统: 指具有线性特性的系统。 线性:指均匀性,叠加性。 均匀性(齐次性):
2 页
et r t ket kr t
叠加性:
e1 ( t ) r1 ( t ) e1 ( t ) e2 ( t ) r1 ( t ) r2 ( t ) e2 ( t ) r2 ( t )
X
第
线性特性
e1 ( t ) e2 t
1e1 t 2e2 t
H
3 页
H H
r1 t
r2 t
现输出(响应)的系统。也就是说,因果系统的输出
第 9 页
(响应)不会出现在输入信号激励系统以前的时刻。
系统的这种特性称为因果特性。 符合因果性的系统称为因果系统(非超前系统)。
2.判断方法
输出不超前于输入
X
第
3.实际的物理可实现系统均为因果系统
非因果系统的概念与特性也有实际的意义,如信 号的压缩、扩展,语音信号处理等。 若信号的自变量不是时间,如位移、距离、亮度 等为变量的物理系统中研究因果性显得不很重要。
t
O
t0
t
X
第
2. 判断方法
先时移,再经系统=先经系统,再时移
f t
H
7 页
H f t
y t
DE
y t
f t
DE
f t
H
H f t
若 H f t yt 则系统 H 是非时变系统,否则是时变系统。