§1.8 线性时不变系统的性质
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 H C1 f1 t C2 f 2 t C1 H f1 t C2 H f 2 t
则系统 H 是线性系统,否则是非线性系统。 注意:外加激励与系统非零状态单独处理。
X
ຫໍສະໝຸດ Baidu
第
二.时变系统与时不变系统
1.定义
一个系统,在零初始条件下,其输出响应与输入信号 施加于系统的时间起点无关,称为非时变系统,否则 称为时变系统。
现输出(响应)的系统。也就是说,因果系统的输出
第 9 页
(响应)不会出现在输入信号激励系统以前的时刻。
系统的这种特性称为因果特性。 符合因果性的系统称为因果系统(非超前系统)。
2.判断方法
输出不超前于输入
X
第
3.实际的物理可实现系统均为因果系统
非因果系统的概念与特性也有实际的意义,如信 号的压缩、扩展,语音信号处理等。 若信号的自变量不是时间,如位移、距离、亮度 等为变量的物理系统中研究因果性显得不很重要。
1r1 t 2 r2 t
1 e1 (t ) 2 e2 (t ) 1 r 1 (t ) 2 r 2 (t )
X
第
2. 判断方法
先线性运算,再经系统=先经系统,再线性运算
f 1 t
C1
4 页
C 1 f 1 t
f 2 t
f 1 t
C2
H
C 2 f 2 t
H f 1 t
C 1 H f 1 t
H
H C 1 f 1 t C 2 f 2 t
C1
f 2 t
H
H f 2 t
C2
C 2 H f 2 t
C 1 H f 1 t C 2 H f 2 t
叠加性:
e1 ( t ) r1 ( t ) e1 ( t ) e2 ( t ) r1 ( t ) r2 ( t ) e2 ( t ) r2 ( t )
X
第
线性特性
e1 ( t ) e2 t
1e1 t 2e2 t
H
3 页
H H
r1 t
r2 t
X
三.线性时不变系统的微分特性
线性时不变系统满足微分特性、积分特性
et
de t dt
第 8 页
系统
系统
r t
dr t dt
t
e t dt
r t dt
t
系统
利用线性证明,可推广至高阶。
X
四.因果系统与非因果系统
1. 定义
因果系统是指当且仅当输入信号激励系统时,才会出
t
O
t0
t
X
第
2. 判断方法
先时移,再经系统=先经系统,再时移
f t
H
7 页
H f t
y t
DE
y t
f t
DE
f t
H
H f t
若 H f t yt 则系统 H 是非时变系统,否则是时变系统。
§1.8 线性时不变系统的性质
•线性系统与非线性系统 •时变系统与时不变系统 •线性时不变系统的微分特性 •因果系统与非因果系统
中北大学信息与通信工程学院
第
一.线性系统与非线性系统
1.定义
线性系统: 指具有线性特性的系统。 线性:指均匀性,叠加性。 均匀性(齐次性):
2 页
et r t ket kr t
5 页
认识:
•电路分析上看:元件的参数值是否随时间而变 • 从方程看:系数是否随时间而变 •从输入输出关系看:
X
第
时不变性
e(t ) e( t t 0 )
e(t )
6 页
H
r (t ) r ( t t0 )
r (t )
O
T
t
O
t
e( t t 0 )
r (t t 0 )
O t0
t0 T
10 页
4.因果信号
t = 0接入系统的信号称为因果信号。
表示为:
e( t ) e( t )u( t ) 相当于t 0, e(t ) 0
X