(完整版)反比例函数题型专项练习
反比例函数题型专项练习试题
反比例函数题型专项(一)专题一、反比例函数的图像1.如图,反比例函数的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1 B.x≥2 C.x<0或0<x≤1 D.x<0或x≥22.在同一直角坐标系中,函数y=kx+1与y﹦(k≠0)的图象大致是()A.B.C.D.3.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.4.若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.65.在同一平面直角坐标系中,画正比例函数y=kx和反比例函数y=(k<0)的图象,大致是()A.B.C.D.6.函数y=,当y=a时,对应的x有两个不相等的值,则a的取值范围()A.a≥1 B.a>0 C.0<a≤2 D.0<a<27.已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.8.函数y=与y=kx﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.9.在同一坐标系中,表示函数y=ax+b和y=(a≠0,b≠0)图象正确的是()A.B.C. D.10.函数y=的图象在()A.第一,三象限 B.第一,二象限 C.第二,四象限 D.第三,四象限11.如果k<0,那么函数y1=kx﹣k,的图象可能是()A.B.C.D.12.如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()A.x<﹣1 B.x>2 C.﹣1<x<0,或x>2 D.x<﹣1,或0<x<212题图 13题图13.如图,反比例函数y1=,y2=,y3=的图象的一部分如图所示,则k1,k2,k3的大小关系是()A.k1<k2<k3 B.k2<k3<k1 C.k3<k2<k1 D.k1<k3<k2类型二、反比例函数图象的对称性1.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是()A.(2,3) B.(3,2) C.(﹣2,3)D.(﹣2,﹣3)2.如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()A.π B.2π C.4π D.条件不足,无法求2题图 3题图 4题图 5题图 6题图3.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是()A.π B.π C.4π D.条件不足,无法求4.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y= B.y= C.y= D.y=5.如图,直线y=kx(k>0)与双曲线y=交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为()A.﹣8 B.4 C.﹣4 D.06.如图,过原点的一条直线与反比例函数y=(k≠0)的图象分别交于A,B两点.若A点的坐标为(a,b),则B点的坐标为()A.(a,b) B.(b,a) C.(﹣b,﹣a) D.(﹣a,﹣b)7.已知正比例函数y=kx的图象与反比例函数的图象的一个交点坐标是(1,3),则另一个交点的坐标是()A.(﹣1,﹣3)B.(﹣3,﹣1)C.(﹣1,﹣2) D.(﹣2,﹣3)类型三、反比例函数的性质8.反比例函数y=的图象如图所示,以下结论正确的是()①常数m<1;②y随x的增大而减小;③若A为x轴上一点,B为反比例函数上一点,则S△ABC=;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.A.①②③ B.①③④ C.①②③④ D.①④9.己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>610.已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1011.关于函数有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,y的取值范围为y≥﹣1.其中正确的有()个.A.1 B.2 C.3 D.412.下列函数中,y随x增大而增大的是()①;②;③y=2x﹣1;④;⑤.A.①②③⑤ B.②③④ C.③④ D.③④⑤13.已知函数,有下列结论:①两函数图象交点的坐标为(4,4);②当x>4时,y2>y1;③当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的个数是()A.0个B.1个 C.2个 D.3个14.已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值.15.我们已经知道函数y=与y=﹣的两个图象之间的联系与区别,那你知道函数y=的图象与上述两个函数图象之间又有怎样的关系吗?(1)试用描点法画出图象加以探究;(2)如果利用y=与y=或y=﹣的图象之间的关系,可怎样画y=﹣的图象?类型四、反比例函数K 的几何意义1.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为()A.6 B.8 C.10 D.121题图 2题图 3题图 4题图2.如图Rt△ABC在平面坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线y=经过C点及AB的三等点D(BD=2AD),S△BCD=6,则k的值为()A.3 B.6 C.﹣3 D.﹣63.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.134.如图,直线x=t(t>0)与反比例函数y=(x>0)、y=(x>0)的图象分别交于B、C两点,A为y轴上任意一点,△ABC的面积为3,则k的值为()A.2 B.3 C.4 D.55.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变 B.先增大后减小 C.先减小后增大 D.先增大后不变6.(2015秋•长清区期末)反比例函数的图象上有两点M,N,那么图中阴影部分面积最大的是()A.B.C.D.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C. D.8.如图,点A、B在反比例函数y=的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB 交x轴于点C,若OM=MN=NC,且△AOC的面积为9,则k的值为()A.9 B.3 C.6 D.8题图 9题图 10题图 11题图9.如图,已知反比例函数y=(k<0)的图象经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣4,2),则△AOC的面积为()A.4 B.2.5 C.3 D.210.如图,过反比例函数y=(x>0)图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2 B.S1<S2 C.S1=S2 D.S1、S2的大小关系不能确定11.如图是一个反比例函数(x>0)的图象,点A(2,4)在图象上,AC⊥x轴于C,当点A运动到图象上的点B(4,2)处,BD⊥x轴于D,△AOC与△BOD重叠部分的面积为()A.1 B.2 C. D.12.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(k≠0)的图象上,则点E的坐标为()A. B.()C.()D.()13.如图,在的图象上有A、B、C三点,边OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积为S1、S2、S3,则有()A.S1>S2>S3B.S1<S2<S3C.S1=S2=S3D.S1>S3>S2课后作业1.(1999•哈尔滨)下列各图中,能表示函数y=k(1﹣x)和y=(k≠0)在同一平面直角坐标系中的图象大致是()A.B. C. D.2.如图:三个函数,,,由此观察k1,k2,k3的大小关系是.3.函数y1=x (x≥0),如图所示,请你根据图象写出3个不同的结论:①;②;③.4.请你写出一个反比例函数的解析式使它的图象在第一、三象限.5.对于函数y=,当x>2时,y的取值范围是<y<.6.已知函数y=与y=k2x图象的交点是(﹣2,5),则它们的另一交点是.7.如图,直线y=﹣2x与双曲线的一个交点坐标为(﹣2,4),则它们的另一个交点坐标为.7题图 9题图 10题图 14题图8.已知函数y=2x与的图象的一个交点坐标是(1,2),则它们的图象的另一个交点的坐标是.9.已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B为圆心的圆与x轴相切,则图中两个阴影部分面积的和为.10.如图,有反比例函数y=,y=﹣的图象和一个以原点为圆心,2为半径的圆,则S阴影= .11.若k<,则双曲线的图象经过第象限.12.函数①y=、②y=﹣、③y=(x>0)、④y=(x<0)、⑤y=﹣x+1中,y随x的增大而减小的有.13.已知反比例函数的图象在第二、四象限,其解析式为.14.如图,l1是反比例函数y=在第一象限内的图象,且过点(2,1),l2与l1关于y轴对称,那么图象l2的函数表达式为(x<0).三.解答题(共4小题)15.若函数y=(2m﹣9)x|m|﹣7是反比例函数,且它的图象分别位于第一象限和第三象限内,求m的值.16.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,求k的值。
反比例函数大题(二大题型)—2024年中考数学压轴题专项训练(全国通用)解析版
反比例函数大题(二大题型)通用的解题思路:题型一.反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y =k 1x 和反比例函数y =在同一直角坐标系中的交点个数可总结为:①当k 1与k 2同号时,正比例函数y =k 1x 和反比例函数y =在同一直角坐标系中有2个交点;②当k 1与k 2异号时,正比例函数y =k 1x 和反比例函数y =在同一直角坐标系中有0个交点. 题型二.反比例函数综合题(1)应用类综合题能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能待定系数法和其他学科中的知识.(2)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.题型一.反比例函数与一次函数的交点问题(共25小题)1.(2024•新北区校级模拟)如图,双曲线1k y x =与直线232y x =交于A ,B 两点.点(2,)A a 和点(,3)B b −在双曲线上,点C 为x 轴正半轴上的一点.(1)求双曲线1k y x =的表达式和a ,b 的值; (2)请直接写出使得12y y >的x 的取值范围;(3)若ABC ∆的面积为12,求此时C 点的坐标.【分析】(1)把点(2,)A a 和点(,3)B b −代入232y x =,求出a 与b 的值,再将A 点坐标代入1k y x=,即可求出反比例函数解析式;(2)根据A 与B 横坐标,利用图象求出反比例函数值大于一次函数值时x 的范围即可;(3)根据12ABC AOC BOC S S S ∆∆∆=+=,求出OC 的长,进而得到此时C 点的坐标.【解答】解:(1)直线232y x =过点(2,)A a 和点(,3)B b −, 3232a ∴=⨯=,332b =−, 2b ∴=−. 双曲线1k y x=过点(2,3)A , 236k ∴=⨯=,∴双曲线1k y x =的表达式为16y x=;(2)观察图象,可得当2x <−或02x <<时,反比例函数值大于一次函数值,即使得12y y >的x 的取值范围是2x <−或02x <<;(3)(2,3)A ,(2,3)B −−,12ABC AOC BOC S S S ∆∆∆=+=, ∴11331222OC OC ⨯+⨯=, 4OC ∴=,∴此时C 点的坐标为(4,0).【点评】此题考查了待定系数法求反比例函数解析式,一次函数与反比例函数的交点问题,函数图象上点的坐标特征,三角形的面积,利用了数形结合的思想,正确求出反比例函数解析式是解本题的关键.2.(2023•苏州)如图,一次函数2y x =的图象与反比例函数(0)k y x x=>的图象交于点(4,)A n .将点A 沿x 轴正方向平移m 个单位长度得到点B ,D 为x 轴正半轴上的点,点B 的横坐标大于点D 的横坐标,连接BD ,BD 的中点C 在反比例函数(0)k y x x=>的图象上. (1)求n ,k 的值;(2)当m 为何值时,AB OD ⋅的值最大?最大值是多少?【分析】(1)首先将点(4,)A n 代入2y x =可求出n ,再将点A 的坐标代入/y k x =即可求出k ;(2)过点C 作直线EF x ⊥轴于F AB 于E ,先证ECB ∆和FCD ∆全等,得BE DF =,4CE CF ==,进而可求出点(8,4)C ,根据平移的性质得点(4,8)B m +,则4BE DF m ==−,12OD m =−,据此可得出(12)AB DD m m ⋅=−,最后求出这个二次函数的最大值即可.【解答】解:(1)将点(4,)A n 代入2y x =,得:8n =,∴点A 的坐标为(4,8),将点(4,8)A 代入k y x=,得:32k =. (2)点B 的横坐标大于点D 的横坐标,∴点B 在点D 的右侧.过点C 作直线EF x ⊥轴于F ,交AB 于E ,由平移的性质得://AB x 轴,AB m =,B CDF ∴∠=∠,点C 为BD 的中点,BC DC ∴=,在ECB ∆和FCD ∆中,B CDF BC DC BCE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ECB FCD ASA ∴∆≅∆,BE DF ∴=,CE CF =.//AB x 轴,点A 的坐标为(4,8),8EF ∴=,4CE CF ∴==,∴点C 的纵坐标为4,由(1)知:反比例函数的解析式为:32y x=, ∴当4y =时,8x =,∴点C 的坐标为(8,4), ∴点E 的坐标为(8,8),点F 的坐标为(8,0),点(4,8)A ,AB m =,//AB x 轴,∴点B 的坐标为(4,8)m +,484BE m m ∴=+−=−,4DF BE m ∴==−,8(4)12OD m m ∴=−−=−2(12)(6)36AB OD m m m ⋅=−=−−+∴当6m =时,AB OD ⋅取得最大值,最大值为36.【点评】此题主要考查了反比例函数的图象、二次函数的图象和性质,点的坐标平移等,解答此题的关键是熟练掌握待定系数法求函数的解析式,理解点的坐标的平移,难点是在解答(2)时,构造二次函数求最值.3.(2024•常州模拟)如图,反比例函数1k y x =的图象与一次函数2y k x b =+的图象交于点(1,2)A −,1(4,)2B −. (1)求函数1k y x=和2y k x b =+的表达式; (2)若在x 轴上有一动点C ,当2ABC AOB S S ∆∆=时,求点C 的坐标.【分析】(1)将点(1,2)A −,1(4,)2B −分别代入反比例函数1k y x =和一次函数2y k x b =+的解析式,求解即可;(2)设AB 与y 轴交于点D 作//CE y 轴交AB 于点E ,利用三角形的面积公式,列出方程,求解即可.【解答】解:(1)将点(1,2)A −,1(4,)2B −分别代入反比例函数1k y x =和一次函数2y k x b =+的解析式, 1122k ∴=−⨯=−,222142k b k b −+=⎧⎪⎨+=−⎪⎩, 12k ∴=,21232k b ⎧=−⎪⎪⎨⎪=⎪⎩. ∴反比例函数的解析式为:2y x =,一次函数的解析式为:1322y x =−+. (2)如图,设AB 与y 轴交于点D ,过点C 作//CE y 轴交AB 于点E ,设(,0)C m ,13(,)22E m m ∴−+.13||22CE m ∴=−+.令0x =,则32y =, 3(0,)2D ∴, 32OD ∴=, 11315()[4(1)]2224AOB B A S OD x x ∆∴=⋅−=⨯⨯−−=. 1522ABC AOB S S ∆∆∴==. ∴115()22B A CE x x ⋅−=,即11315||52222m ⋅−+⋅=. 解得3m =−或9m =,∴点C 的坐标为(3,0)−或(9,0).【点评】本题考查了反比例函数与一次函数的交点问题,求三角形的面积,求函数的解析式,正确掌握反比例函数的性质是解题的关键.4.(2024•常州模拟)如图,一次函数1(0)y kx b k =+≠与函数为2(0)m y x x =>的图象交于1(4,1),(,)2A B a 两点.(1)求这两个函数的解析式;(2)根据图象,直接写出满足120y y −>时x 的取值范围;(3)点P 在线段AB 上,过点P 作x 轴的垂线,垂足为M ,交函数2y 的图象于点Q ,若POQ ∆的面积为3,求点P 的坐标.【分析】(1)将A 点坐标代入即可得出反比例函数2(0)m y x x=>,求得函数的解析式,进而求得B 的坐标,再将A 、B 两点坐标分别代入1y kx b =+,可用待定系数法确定一次函数的解析式;(2)由题意即求12y y >的x 的取值范围,由函数的图象即可得出反比例函数的值小于一次函数值的x 的取值范围;(3)由题意,设(,29)P p p −+且142p ……,则4(,)Q p p ,求得429PQ p p=−+−,根据三角形面积公式得到14(29)32POQ S p p p∆=−+−⋅=,解得即可. 【解答】解:(1)反比例函数2(0)m y x x=>的图象经过点(4,1)A , 14m ∴=. 4m ∴=.∴反比例函数解析式为24(0)y x x=>. 把1(2B ,)a 代入24(0)y x x=>,得8a =. ∴点B 坐标为1(2,8), 一次函数解析式1y kx b =+图象经过(4,1)A ,1(2B ,8), ∴41182k b k b +=⎧⎪⎨+=⎪⎩.解得29k b =−⎧⎨=⎩. 故一次函数解析式为:129y x =−+.(2)由120y y −>,12y y ∴>,即反比例函数值小于一次函数值. 由图象可得,142x <<.(3)由题意,设(,29)P p p −+且142p ……, 4(,)Q p p∴. 429PQ p p∴=−+−. 14(29)32POQ S p p p∆∴=−+−⋅=. 解得152p =,22p =. 5(2P ∴,4)或(2,5). 【点评】本题主要考查一次函数与反比例函数交点问题,熟练掌握待定系数法求函数解析式是解题的关键.5.(2024•沭阳县模拟)如图,反比例函数k y x=的图象与一次函数y mx n =+的图象相交于(,1)A a −,(1,3)B −两点.(1)求反比例函数和一次函数的解析式;(2)设直线AB 交y 轴于点C ,点(,0)N t 是x 轴正半轴上的一个动点,过点N 作NM x ⊥轴交反比例函数k y x =的图象于点M ,连接CN ,OM .若3COMN S >四边形,求t 的取值范围.【分析】(1)将点B ,点A 坐标代入反比例函数的解析式,可求a 和k 的值,利用待定系数法可求一次函数解析式;(2)先求出点C 坐标,由面积关系可求解.【解答】解:(1)反比例函数k y x=的图象与一次函数y mx n =+的图象相交于(,1)A a −,(1,3)B −两点, 13(1)k a ∴=−⨯=⨯−,3k ∴=−,3a =,∴点(3,1)A −,反比例函数的解析式为3y x−=,由题意可得:313m n m n =−+⎧⎨−=+⎩,解得:12m n =−⎧⎨=⎩, ∴一次函数解析式为2y x =−+;(2)直线AB 交y 轴于点C ,∴点(0,2)C ,31222OMN OCN COMN S S S t ∆∆∴=+=+⨯⨯四边形, 3COMN S >四边形, ∴312322t +⨯⨯>, 32t ∴>. 【点评】本题考查了反比例函数与一次函数的交点问题,考查了利用待定系数法求解析式,反比例函数的性质等知识,求出两个解析式是解题的关键.6.(2024•宿迁二模)已知函数1y x=的图象与函数(0)y kx k =≠的图象交于点(,)P m n (1)若2m n =,求k 的值和点P 的坐标.(2)当||||m n …时,结合函数图象,直接写出实数k 的取值范围.【分析】(1)由(0)y kx k =≠得n k m =,然后由2m n =可得到k 的值,设(2,)P n n ,将点P 的坐标代入反比例函数解析式可求得n 的值;(2)由(0)y kx k =≠得n k m =,然后结合条件||||m n …可得k 的取值范围. 【解答】解:(1)(0)y kx k =≠, 122y n n k x m n ∴====.2m n =,(2,)P n n ∴,21n n ∴=,解得:2n =±.m ∴=P ∴或(.(2)y kx =, y n k x m ∴==,||||m n …,1k ∴….【点评】本题主要考查的是反比例函数和一次函数的交点问题,掌握待定系数法求函数解析式的方法是解题的关键.7.(2024•泉山区校级模拟)如图,在平面直角坐标系xOy 中,一次函数152y x =+和2y x =−的图象相交于点A ,反比例函数k y x =的图象经过点A . (1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数k y x=的图象的另一个交点为B ,连接OB ,求ABO ∆的面积.【分析】(1)联立方程求得A 的坐标,然后根据待定系数法即可求得;(2)联立方程求得交点B 的坐标,进而求得直线与x 轴的交点,然后利用三角形面积公式求得即可.【解答】解:(1)由1522y x y x ⎧=+⎪⎨⎪=−⎩得24x y =−⎧⎨=⎩,(2,4)A ∴−, 反比例函数ky x =的图象经过点A ,248k ∴=−⨯=−,∴反比例函数的表达式是8y x =−; (2)解8152y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩得24x y =−⎧⎨=⎩或81x y =−⎧⎨=⎩,(8,1)B ∴−,由直线AB 的解析式为152y x =+得到直线与x 轴的交点为(10,0)−,111041011522AOB S ∆∴=⨯⨯−⨯⨯=. 【点评】本题考查了一次函数和反比例函数的交点问题,通过方程组求得交点坐标是解题的关键.8.(2023•常州)在平面直角坐标系中,一次函数y kx b =+的图象与反比例函数m y x=的图象相交于点(2,4)A 、(4,)B n .C 是y 轴上的一点,连接CA 、CB .(1)求一次函数、反比例函数的表达式;(2)若ABC ∆的面积是6,求点C 的坐标.【分析】(1)利用待定系数法求得即可;(2)先求得(0,6)D ,再根据ABC BCDACD S S S ∆∆∆=−得1(42)62CD ⨯⋅−=,进而得出6CD =,据此可得点C 的坐标.【解答】解:(1)点(2,4)A 在反比例函数m y x =的图象上, 248m ∴=⨯=,∴反比例函数解析式为8y x =; 又点(4,)B n 在8y x =上,2n ∴=, ∴点B 的坐标为(4,2),把(2,4)A 和(4,2)B 两点的坐标代入一次函数y kx b =+得2442k b k b +=⎧⎨+=⎩,解得16k b =−⎧⎨=⎩,∴一次函数的解析为6y x =−+.(2)对于一次函数6y x =−+,令0x =,则6y =,即(0,6)D , 根据题意得:1(42)62ABC BCD ACD S S S CD ∆∆∆=−=⨯⋅−=, 解得:6CD =,0OC ∴=或12,(0,0)C ∴或(0,12).【点评】本题主要考查了一次函数与反比例函数交点问题,解题时注意:一次函数与反比例函数交点坐标同时满足一次函数与反比例函数解析式.9.(2024•姜堰区一模)如图,一次函数12y x a =−+的图象与反比例函数2(0)k y k x=>的图象在第一象限相交于点(,)A m n ,(2,3)B m n −.(1)求a 、k 的值;(2)当120y y >>时,直接写出x 的取值范围.【分析】(1)根据反比例函数图象上点的坐标特征,得到3m =,代入A 、B 点的坐标再代入一次函数解析式组成方程组求出n 和a ,最后求出k 值即可;(2)根据函数图象直接写出当120y y >>时自变量取值范围即可.【解答】解:(1)点(,)A m n ,(2,3)B m n −都在反比例函数图象上,3(2)mn n m ∴=⨯−,整理得:2(3)0n m −=,0m ≠,0n ≠,30m ∴−=,解得3m =.(3,)A n ,(1,3)B n 在直线12y x a =−+的图象上,∴623a n a n −+=⎧⎨−+=⎩,解得28n a =⎧⎨=⎩,(3,2)A ∴,(3,2)A 在反比例函数图象上,6k ∴=.8a ∴=,6k =.(2)由(1)可知:(3,2)A ,(1,6)B ,根据函数图象可知,120y y >>时,x 的取值范围为:13x <<.【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式是关键.10.(2024•昆山市模拟)如图,一次函数11(0)y k x b k =+≠的图象与反比例函数22(0)k y k x=≠的图象相交于A ,B 两点,其中点A 的坐标为(2,1)−,点B 的坐标为(1,)n .(1)求这两个函数的表达式;(2)根据图象,直接写出满足21k k x b x+>的取值范围; (3)求ABO ∆的面积.【分析】(1)待定系数法求出两个函数解析式即可;(2)根据图像直接写出不等式的解集即可;(3)根据AOB AOC BOC S S S ∆∆∆=+代入数据计算即可.【解答】解:(1)(2,1)A −,(1,)B n 在反比例函数图象上,221k n ∴=−⨯=,22k n ∴==−,∴反比例函数解析式为:2y x =−, (2,1)A −,(1,2)B −在一次函数图象上,∴11212k b k b +−=⎧⎨+=−⎩,解得111k b =−⎧⎨=−⎩,∴一次函数解析式为:1y x =−−.(2)根据两个函数图象及交点坐标,不等式21k k x b x +>的解集为:2x <−或01x <<. (3)设直线AB 与y 轴的交点为C ,则(0,1)C −即1OC =,1131211222AOB AOC BOC S S S ∆∆∆∴=+=⨯⨯+⨯⨯=.【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式.11.(2024•兴化市一模)已知函数1(k y k x =是常数,0)k ≠,函数2392y x =−+. (1)若函数1y 和函数2y 的图象交于点(2,6)A ,点(4,2)B n −.①求k ,n 的值.②当12y y >时,直接写出x 的取值范围.(2)若点(8,)C m 在函数1y 的图象上,点C 先向下平移1个单位,再向左平移3个单位,得点D ,点D 恰好落在函数1y 的图象上,求m 的值.【分析】(1)①根据反比例函数图象上点的坐标特征进行解答即可;②根据图形分布和解答横坐标直接写出不等式解集即可;(2)先根据平移条件得到(5,1)D m −,再根据反比例函数图象上点的坐标特征求出m 值即可.【解答】解:(1)①函数1y 和函数2y 的图象交于点(2,6)A ,点(4,2)B n −,264(2)k n ∴=⨯=⨯−,解得:12k =,5n =. ②由①可知,反比例函数解析式为12y x =,图象分布在第一、三象限,(2,6)A ,(4,3)B 12y y ∴>时,x 的取值范围为:02x <<或4x >.(2)点(8,)C m 在函数1y 的图象上,点C 先向下平移1个单位,再向左平移3个单位,得点D , (5,1)D m ∴−, D 恰好落在函数1ky x =图象上, 5(1)8m m ∴−=,解得53m =−. 【点评】本题考查了反比例函数与一次函数的交点问题,交点坐标满足两个函数解析式是关键.12.(2024•南通模拟)如图,直线AB 交双曲线k y x=于A 、B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若6OAC S ∆=.求k 的值.【分析】设出点B 的坐标,进而可以表示出点A 和点C 的坐标,再根据OAC ∆的面积即可解决问题.【解答】解:设点B 坐标为(,)k a a ,点B 为线段AC 的中点, ∴22A B ky y a ==, 则点A 的坐标为2(,)2a k a , ∴2A C x x a +=, ∴32C x a =,则点C 坐标为3(,0)2a .又AOC ∆的面积为6, ∴132622k a a ⋅⋅=,解得4k =,故k 的值为4.【点评】本题考查反比例函数与一次函数的交点问题,熟知反比例函数及一次函数的图象和性质是解题的关键.13.(2024•亭湖区模拟)如图,等腰三角形OAB 中,AO AB =,点B 坐标为(4,0)顶点A 在反比例函数k y x=的图象上,且OAB ∆的面积为12.(1)k = .(2)过B 点直线对应的解析式为y x b =+与双曲线k y x =在第一,三象限交点分别为点M ,N . ①求点M ,N 的坐标.②直接写出不等式0k x b x −−…的解集.【分析】(1)过点A 作AC OB ⊥于点C ,利用三角形面积求得AC 即可求得点A 的坐标是(2,6),将点A 的坐标代入反比例函数表达式,即可求解;(2)①求得一次函数的解析式,与反比例函数解析式联立,解方程组即可求解;②根据图象即可求得.【解答】解:(1)过点A 作AC OB ⊥于点C ,等腰三角形OAB 中,AO AB =,点B 坐标为(4,0),4OB ∴=,OAB ∆的面积为12, ∴1122OB AC ⋅=,6AC ∴=,(2,6)A ∴,顶点A 在反比例函数k y x =的图象上,解得:2612k =⨯=,故答案为:12;(2)①把B 点的坐标代入y x b =+得:40b +=,4b ∴=−,∴过B 点直线解析式为4y x =−, 联立412y x y x =−⎧⎪⎨=⎪⎩,解得62x y =⎧⎨=⎩或26x y =−⎧⎨=−⎩,(6,2)M ∴,(2,6)N −−; ②观察图象,不等式0k x b x −−…的解集是06x <…或2x −….【点评】本题是反比例函数与一次函数的交点问题,考查了等腰三角形的性质,三角形的面积,待定系数法求反比例函数的解析式,一次函数与反比例函数的交点的求法,函数与不等式的关系,求得A 点的坐标以及数形结合是解题的关键.14.(2024•常熟市模拟)如图,一次函数112y x =−的图象与y 轴相交于B 点,与反比例函数(0,0)k y k x x =≠>图象相交于点(,2)A m .(1)求反比例函数的表达式;(2)点C 在点A 的左侧,过点C 作y 轴平行线,交反比例函数的图象于点D ,连接BD .设点C 的横坐标为a ,求当a 为何值时,BCD ∆的面积最大,这个最大值是多少?【分析】(1)根据待定系数法求出反比例函数解析式即可;(2)根据三角形面积公式列出关于a 的代数式,利用二次函数的最值求法求出最大面积即可.【解答】解:(1)点(,2)A m 在一次函数112y x =−的图象上, ∴1122m −=,解得6m =, (6,2)A ∴,点(6,2)A 在反比例函数图象上,6212k ∴=⨯=,∴反比例函数解析式为:12y x =;(2)在一次函数112y x =−中,令0x =,则1y =−,(0,1)B ∴−,点C 的横坐标为a ,点C 的纵坐标为112a −,12(,)D a a ∴,12112CD a a ∴=−+, 1121(1)22BCD S a a a ∆=⨯−+⨯211642a a =−++2125(1)44a =−−+, 104−<,BCD S ∆∴有最大值,当1a =时,最大值254BCD S ∆=.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握交点坐标满足两个函数关系式是关键.15.(2024•东海县一模)一次函数5y x =−+与反比例函数k y x=的图象在第一象限交于A ,B 两点,其中(1,)A a .(1)求反比例函数表达式;(2)结合图象,直接写出5x−+…时,x 的取值范围; (3)若把一次函数5y x =−+的图象向下平移b 个单位,使之与反比例函数k y x =的图象只有一个交点,请直接写出b 的值.【分析】(1)待定系数法求出k 值即可;(2)根据图像和两个函数的交点坐标,直线写出不等式的解集即可;(3)把一次函数5y x =−+的图象向下平移b 个单位得到新的解析式为:5y x b =−+−,联立方程组得到2(5)40x b x −−+=,利用判别式等于0,解出b 值即可.【解答】解:(1)(1,)A a 在一次函数图象上,154a ∴=−+=,即(1,4)A ,(1,4)A 在反比例函数图象上,144k ∴=⨯=,∴反比例函数解析式为:4y x =; (2)联立方程组45y x y x ⎧=⎪⎨⎪=−+⎩,解得14x y =⎧⎨=⎩或41x y =⎧⎨=⎩,(1,4)A ∴,(4,1)B , 根据两个函数图象可知:不等式5kx x −+…的解集为:01x <…或4x …; (3)把一次函数5y x =−+的图象向下平移b 个单位得到新的解析式为:5y x b =−+−, 联立方程组54y x b y x =−+−⎧⎪⎨=⎪⎩,消掉得:45x b x −+−=, 整理得:2(5)40x b x −−+=,△2(5)160b =−−=, 54b ∴−=±,9b ∴=或1.【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式.16.(2024•钟楼区校级模拟)如图,已知反比例函数k y x=的图象与一次函数y ax b =+的图象相交于点(2,3)A 和点(,2)B n −.(1)求反比例函数与一次函数的解析式;(2)直接写出不等式k ax b x >+的解集;(3)若点P 是x 轴上一点,且满足PAB ∆的面积是10,请求出点P 的坐标.【分析】(1)将点A 坐标代入反比例函数解析式求出k ,从而求出点B 坐标,再通过待定系数法求一次函数解析式;(2)通过观察图象交点求解;(3)设点P 坐标为(,0)m ,通过三角形PAB 的面积为10及三角形面积公式求解.【解答】解:(1)将(2,3)代入k y x =得32k=,解得6k =,∴反比例函数解析式为6y x =.26n ∴−=,解得3n =−,所以点B 坐标为(3,2)−−,把(3,2)−−,(2,3)代入y ax b =+得:2332a b a b −=−+⎧⎨=+⎩,解得11a b =⎧⎨=⎩,∴一次函数解析式为1y x =+;(2)由图象可得当3x <−或02x <<时式kax b x >+;(3)设点P 坐标为(,0)m ,一次函数与x 轴交点为E ,把0y =代入1y x =+得01x =+,解得1x =−,∴点E 坐标为(1,0)−.11532222PAB PAE PBE S S S PE PE PE ∆∆∆∴=+=⨯+⨯=, ∴5102PE =,即5|1|102m +=,解得3m =或5m =−.∴点P 坐标为(3,0)或(5,0)−.【点评】本题考查一次函数与反比例函数的结合,解题关键是掌握待定系数法求函数解析式,掌握函数与不等式的关系.17.(2024•姑苏区校级模拟)如图,以x 轴上长为1的线段AB 为宽作矩形ABCD ,矩形长AD 、BC 交直线3y x =−+于点F 、E ,反比例函数(0)k y x x=>的图象正好经过点F 、E . (1)线段EF 长为 ;(2)求k 值.【分析】(1)表示出E 、F 的坐标,然后利用勾股定理即可求得EF 的长度;(2)根据反比例函数图象上点的坐标特征得到(3)(1)(2)k m m m m =−+=+−+,解得即可.【解答】解:(1)点F 、E 在直线3y x =−+图象上,∴设(,3)F m m −+,则(1E m +,(1)3)m −++,即(1,2)m m +−+EF ∴.故答案为:(2)反比例函数(0)k y x x=>的图象正好经过点F 、E , (3)(1)(2)k m m m m ∴=−+=+−+,解得1m =,(3)122k m m ∴=−+=⨯=.【点评】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,求线段的长度,正确表示出点的坐标是解题的关键.18.(2024•昆山市一模)如图,在平面直角坐标系xOy 中,一次函数11(y k x b k =+,b 为常数,且10)k ≠与反比例函数22(k y k x=为常数,且20)k ≠的图象交于点(,6)A m ,(4,3)B −. (1)求反比例函数和一次函数的表达式;(2)当210k k x b x>+>时,直接写出自变量x 的取值范围; (3)已知一次函数1y k x b =+的图象与x 轴交于点C ,点P 在x 轴上,若PAC ∆的面积为9;求点P 的坐标.【分析】(1(2)根据函数图象,写出反比例函数图象在一次函数上方时且在x 轴上方时,自变量的取值范围,即可求解;(3)先求得点C 的坐标,进而根据三角形的面积公式,即可求解.【解答】解:(1)将(4,3)B −代入2k y x=, 解得:212k =−,∴反比例函数表达式为12y x =−, 将(,6)A m 代入12y x=−, 解得:2m =−, (2,6)A ∴−,将(2,6)A −,(4,3)B −代入1y k x b =+,得112643k b k b −+=⎧⎨+=−⎩,解得:1323k b ⎧=−⎪⎨⎪=⎩, ∴一次函数的表达式为:332y x =−+; (2)(2,6)A −,(4,3)B −, 根据函数图象可得:当210k k x b x >+>时,20x −<<; (3)332y x =−+,令0y =, 解得:2x =,(2,0)C ∴,设(,0)P p ,则|2|PC p =−,PAC ∆的面积为9, ∴1|2|692p ⨯−⨯=, 解得:5p =或1−,(5,0)P ∴或(1,0)P −.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求反比例函数的解析式,一次函数19.(2024•盐城模拟)如图,已知一次函数11y k x b =+的图象与反比例函数22k y x=,分别交于点A 和点B ,且A 、B 两点的坐标分别是(1,2)A −−和(2B .)m ,连接OA 、OB .(1)求一次函数11y k x b =+与反比例函数22k y x =的函数表达式; (2)求AOB ∆的面积.【分析】(1)用待定系数法求出反比例函数解析式,用AB 两点坐标求出直线解析式即可;(2)求出直线AB 与x 轴的交点M 的坐标,利用AOB BMO AMO S S S ∆∆∆=+代入数据计算即可.【解答】解:(1)点(1,2)A −−在反比例函数图象上,2k ∴=,反比例函数解析式为:2y x=; (2B .)m 在反比例函数图象上,1m ∴=,即(2,1)B ,点AB 在一次函数11y k x b =+的图象上,∴11221k b k b −+=−⎧⎨+=⎩,解得:111k b =⎧⎨=−⎩, 一次函数解析式为:1y x =−,(2)设直线AB 交x 轴于点M ,当0y =,1x =,(1,0)M ,1OM =. 所以1131112222AOB BMO AMO S S S ∆∆∆=+=⨯⨯+⨯⨯=.小的分界点.20.(2024•天宁区校级模拟)如图,在平面直角坐标系xOy 中,一次函数2y x b =+的图象与x 轴交于点(1,0)A −,与y 轴交于点B ,与反比例函数(0)k y x x=>的图象交于点C ,且AB BC =.点D 是x 轴正半轴上一点,连接CD ,45ODC ∠=︒.(1)求b 和k 的值;(2)求ACD ∆的面积.【分析】(1)将点A 坐标代入一次函数解析式,求出b 的值,再利用平行线分线段成比例的性质得出1OH OA ==,24CH OB ==,求出C 点坐标,即可求出k 的值;(2)根据45ODC ∠=︒得到DCH ∆是等腰直角三角形,求出AD ,再求ACD ∆的面积即可.【解答】解:(1)将点(1,0)A −代入一次函数2y x b =+,得20b −+=,解得2b =,(0,2)B ∴,2OB ∴=,在22y x =+中,令0y =,则1x =−,(1,0)A ∴−,1OA ∴=,过点C 作CH x ⊥轴于点H ,则//OB , ∴OA OB AB AH CH AC==, AB BC =, ∴1212AH CH ==, 2AH ∴=,4CH =,1OH OA ∴==,(1,4)C ∴, 反比例函数(0)k y x x=>的图象过点C , 144k ∴=⨯=; (2)45ODC ∠=︒,CH x ⊥轴于点H ,45DCH ∴∠=︒,DCH ∴∆是等腰直角三角形,4DH CH ∴==,1146AD ∴=++=,ACD ∴∆的面积为:11641222AD CH ⋅=⨯⨯=.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,平行线分线段成比例定理,等腰直角三角形的性质,求出点C 坐标是解决本题的关键.21.(2024•姑苏区校级一模)如图,一次函数1y kx b =+的图象与反比例函数2(0)m y x x=>的图象交于点(4,1)A 和点(2,)B n .(1)求一次函数和反比例函数解析式;(2)过点B 作BC y ⊥轴于点C ,连接OA ,求四边形OABC 的面积;(3)根据图象直接写出使kx b+<x 的取值范围.【分析】(1)采用待定系数法求函数解析式.先将点A 的坐标代入反比例函数解析式,求出m 值,再将点B 代入反比例函数解析式求出nn 值,然后将A 、B 点坐标代入一次函数解析数即可.(2)四边形OABC 的面积可由一次函数与坐标轴围成的三角形减去两个小三角形的面积得到,求出一次函数与坐标轴的交点即可求出面积.(3)结合图象确定x 的取值范围即可.【解答】解:(1)将点(4,1)A 代入2(0)m y x x =>中, 得14m =,解得4m =, 故24y x =; 将点(2,)B n 代入24y x =,可得422n ==,将(4,1)A ,(2,2)B 代入1y kx b =+,得1422k b k b =+⎧⎨=+⎩,解得123k b ⎧=−⎪⎨⎪=⎩, 故1132y x =−+;(2)如图所示,对于一次函数1132y x =−+,令0x =,则13y =,即(0,3)E令10y =,则6x =,即(6,0)D ,6OD ∴=,3OE =,(2,2)B ,BC y ⊥轴,2BC ∴=,321CE =−=,设AOD ∆的高为h ,由(4,1)A 可知1h =,DOE BOE AODOABC S S S S ∆∆∆=−−四边形 111222OD OE BC CE OD h =⨯⨯−⨯⨯−⨯⨯111632161222=⨯⨯−⨯⨯−⨯⨯5=;(3)结合图象可知,当mkx b x +<时, x 的取值范围为02x <<或4x >.【点评】本题主要考查反比例函数和一次函数的图象性质、待定系数法等综合知识,解决本题的关键是求得正确的点的坐标,将四边形OABC 放在大三角形中求解面积.22.(2024•新北区一模)如图,反比例函数(0)k y x x=>与一次函数2y x m =+的图象交于点(1,4)A ,BC y ⊥轴于点D ,分别交反比例函数与一次函数的图象于点B 、C .(1)求反比例函数和一次函数的表达式;(2)连接AB ,若1OD =,求ABC ∆的面积.【分析】(1)将点A 坐标分别代入两个解析式得到k 、m 值即可;(2)将1y =分别代入两个解析式求出点B 、C 坐标,根据三角形面积公式计算即可.【解答】解:(1)点(1,4)A 在反比例函数图象上,144k ∴=⨯=,∴反比例函数解析式为:4y x=, 2y x m =+的图象过点(1,4)A ,421m ∴=⨯+.解得2m =,∴一次函数解析式为:22y x =+.(2)将1y =代入4y x=得4x =, (4,1)B ∴,将1y =代入22y x =+得12x =−,1(2C ∴−,1), 194()22BC ∴=−−=, 1927(41)224ABC S ∆∴=⨯⨯−=. 【点评】本题考查了一次函数与反比例函数的交点问题,交点坐标满足两个函数解析式.23.(2024•武进区校级模拟)如图,直线3y x =−+与y 轴交于点A ,与x 轴交于点D ,与反比例函数(0)k y k x=≠的图象交于点C ,过点C 作CB x ⊥轴于点B ,3AD AC =. (1)求点A 的坐标及反比例函数的解析式;(2)若点E 是直线3y x =−+与反比例函数(0)k y k x=≠图象的另一个交点,求COE ∆的面积.【分析】(1)求出点A 、点D 的坐标,然后表示出AO 、DO 的长度,再根据//CB y 轴得出DA DO AC OB =,由3AD AC =得出3OD BO =,求出点的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式;(2)联立两个函数解析式求出点E 坐标,再根据三角形的面积公式求面积即可.【解答】解:(1)直线3y x =−+与y 轴交于点A ,与x 轴交于点D ,(0,3)A ∴,(3,0)D ,即3OA =,3OD =,CB x ⊥轴,//CB y ∴轴, ∴DA DO AC OB=, 3AD AC =,3OD OB ∴=,1OB ∴=,∴点C 的横坐标为1−,点C 在直线3y x =−+上, ∴点(1,4)C −,144k ∴=−⨯=−,∴反比例函数的解析式为4y x=−; (2)联立方程组34y x y x =−+⎧⎪⎨=−⎪⎩,解得14x y =−⎧⎨=⎩或41x y =⎧⎨=−⎩, ∴直线与反比例函数图象的另一个交点E 的坐标为(4,1)−,111115||||313422222COE AOC AOD C D S S S OA x OA x ∆∆∆∴=+=⋅+⋅=⨯⨯+⨯⨯=. 【点评】本题考查了一次函数与坐标轴的交点,一次函数与反比例函数的交点,待定系数法求函数解析式,求出反比例函数解析式是解答本题的关键.24.(2024•东海县一模)如图1,在平面直角坐标系中,一次函数y x b =+的图象经过点(2,0)A −,与反比例函数ky x=的图象交于(,4)B a ,C 两点. (1)求一次函数和反比例函数的表达式;(2)点M 是反比例函数图象在第一象限上的点,且4MAB S ∆=,请求出点M 的坐标;(3)反比例函数具有对称性,适当平移就可发现许多神奇的现象.将该双曲线在第一象限的一支沿射线BC 方向平移,使其经过点C ,再将双曲线在第三象限的一支沿射线CB 方向平移,使其经过点B ,平移后的两条曲线相交于P ,Q 两点,如图2,此时平移后的两条曲线围成了一只美丽的“眸”, PQ 为这只“眸”的“眸径”,请求出“眸径” PQ 的长.【分析】(1)用待定系数法分别求一次函数和反比例函数的表达式;(2)由4MAB S ∆=,得点M 满足在与2y x =+M 在y x =或4y x =+上,列方程组求出交点,即可求出点M ;(3)将反比例函数平移后组成方程组求出交点,再求出PQ 长即可. 【解答】解:(1)把(2,0)A −代入y x b =+,得02b =−+, 2b ∴=,2y x ∴=+,把(,4)B a 代入2y x =+,得42a =+, 2a ∴=, 248k ∴=⨯=, 8y x∴=, ∴一次函数和反比例函数的表达式分别为:2y x =+,8y x=; (2)令2y x =+中0y =,得2x =−, ∴点(2,0)A −,AB ∴=142MAB S h ∆==⨯,h ∴=M 满足在与2y x =+∴点M 在y x =或4y x =+上,由8y x y x =⎧⎪⎨=⎪⎩,得11x y ⎧=⎪⎨=⎪⎩22x y ⎧=−⎪⎨=−⎪⎩点M 在第一象限, ∴点M坐标为,由48y x y x =+⎧⎪⎨=⎪⎩,得1122x y ⎧=−+⎪⎨=+⎪⎩2222x y ⎧=−−⎪⎨=−⎪⎩ 点M 在第一象限,∴点M坐标为(2−+2+,综上点M坐标为或(2−+2+; (3)平移之后的曲线为:866y x =−+和866y x =+−, 由866866y x y x ⎧=+⎪⎪−⎨⎪=−⎪+⎩,得11x y ⎧=⎪⎨=−⎪⎩22x y ⎧=−⎪⎨=⎪⎩,∴点(P −点Q,−,PQ ∴=【点评】本题考查了一次函数及反比例函数的性质的应用,待定系数法的应用及交点的求法是解题关键. 25.(2024•泗阳县校级二模)如图,已知(4,)A n −,(2,4)B −是一次函数y kx b =+的图象和反比例函数my x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及AOB ∆的面积; (3)直接写出一次函数的值小于反比例函数值的x 的取值范围.【分析】(1)先把B 点坐标代入代入my x =,求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;。
反比例函数的性质专项练习60题(有答案)ok
反比例函数的性质专项练习60题(有答案)1.已知正比例函数y=kx(k为常数,k≠0),y随x的增大而增大,则反比例函数图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限2.已知函数:①y=2x;②y=2+5x;③y=(x>0);④y=;⑤y=,其中y随着x的增大而增大的有()A.1个B.2个C.3个D.4个3.小明正在研究函数y=的性质,下面他的几种说法中错误的是()A.无论x取何值,xy总是一个定值B.在自变量取值范围内的每一象限,y随着x的增大而减小C.函数y=的图象关于y=﹣x对称D.函数y=的图象与y=x的图象有两个交点4.已知反比例函数(k≠0),当x>0时,y随x的增大而增大,那么该函数的图象经过()A.第一象限;B.第四象限;C.第一、三象限D.第二、四象限5.已知双曲线y=(k≠0)在第二,四象限,则直线y=kx+k一定不经过第()象限.A.一B.二C.三D.四6.已知函数y=的图象经过点(2,3),则下列说法正确的是()A.点(﹣2,﹣3)一定在此函数的图象上B.此函数的图象只在第一象限C.y随x增大而增大D.此函数与x轴的交点的纵坐标为07.已知反比例函数y=(k为常数)的图象在第一、三象限,那么k的取值范围是()A.k>B.k<C.k>D.k<8.已知反比例函数y=的图象经过点(3,﹣4),下列说法正确的是()A.当x<0时,y>0 B.函数的图象只在第四象限C.y随着x的增大而增大D.点(4,3)在此函数的图象上9.下列关于反比例函数y=,y=,y=的共同点的叙述错误的是()C.图象都不与坐标轴相交D.图象在每一个象限内,y随x的增大而减小10.在直角坐标系中,若一点的横坐标与纵坐标互为倒数,则该点一定在()A.直线y=﹣x上B.双曲线y=﹣上C.直线y=x上D.双曲线y=上11.关于函数有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,y的取值范围为y≥﹣1.其中正确的有()个.A.1B.2C.3D.412.若反比例函数y=m的图象在它所在的象限内,y随x的增大而增大,则m的值是()A.﹣2 B. 2 C.±2 D.以上结论都不对13.若函数y=﹣(m﹣)是反比例函数,且图象在第一,三象限,那么m的值是()A.±1 B.﹣1 C.1D.214.在反比例函数y=图象的每一条曲线上,y随x的增大而减小,则k的取值范围_________ .15.若反比例函数y=(m﹣2)的图象在第一、三象限内,则m= _________ .16.若反比例函数y=(2k﹣1)的图象在二、四象限,则k= _________ .17.若反比例函数y=(1﹣2m)的图象在第一、三象限,则m= _________ .18.已知函数y=的图象的两个分支在第一,三象限内,则m的取值范围是_________ .19.反比例函数y=(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是_________ .20.若函数y=的图象过点(3,﹣7),那么这个反比例函数值在每一个象限内y随x的增大而_________ .21.已知双曲线过点(﹣1,﹣3),则双曲线的两个分支在第_________ 象限.22.如果反比例函数图象经过点(2,1),那么这个反比例函数的图象在第_________ 象限和第_________ 象限.23.若函数y=的图象,当x>0时,y随着x的增大而减小,则m _________ .24.是y关于x的反比例函数,且图象在第二、四象限,则m的值为_________ .25.反比例函数y=(3m﹣1)的图象在它所在的象限内,y随x的增大而增大,则m= _________ .26.若函数是反比例函数,且它的图象在第一、三象限,则m= _________ .27.直线y=kx+b过一、二、三象限,则反比例函数的图象在第_________ 象限内.28.已知关于x的函数满足下列条件:①当x>0时,函数值y随x值的增大而减小;②当x=1时,函数值y=2.请写一个符合条件函数的解析式:_________ .(答案不唯一)29.反比例函数y=,当x>0时,其图象位于第一象限,则m的取值范围是_________ ,此时y随x的增大而_________ .30.一般地,函数y=(k是常数,k≠0)是反比例函数,其图象是_________ ,当k<0时,图象两支在第_________ 象限内.31.已知反比例函数y=的图象过点(6,﹣),则函数的图象在第_________ 象限.32.反比例函数(k为常数,k≠0)的图象位于第_________ 象限.33.若函数是反比例函数,且图象在第二、四象限内,则m的值是_________ .34.若y=的图象在第二、四象限,则k的值可以是_________ (填上一个满足条件的k值).35.已知点(﹣3,﹣5)在反比例函数y=的图象上,当x<0时,它的图象在第_________ 象限.36.反比例函数y=(2k+1)在每个象限内y随x的增大而增大,则k= _________ .37.如图,在平面直角坐标系中,过A(0,2)作x轴的平行线,交函数(x<0)的图象于B,交函数(x >0)的图象于C,则线段AB与线段AC的长度之比为_________ .38.已知函数y=﹣,当x<0时,y _________ 0,此时,其图象的相应部分在第_________ 象限.39.若反比例函数y=的图象在第一、三象限内,则m _________ .40.已知y=kx﹣3的值随x的增大而增大,则函数的图象在_________ 象限.41.已知关于x的函数是反比例函数,则m= _________ ,x>0时,y随x的增大而_________ .42.反比例函数y=(k为常数,且k≠0)的图象是_________ ,该图象分布在第_________ 象限.43.对于反比例函数,下列说法:①点(﹣3,﹣5)在它的图象上;②它的图象在第二、四象限;③当x>0时,y随x的增大而减小;④当x<0时,y随x的增大而增大.⑤它的图象不可能与坐标轴相交.上述说法中,正确的结论是_________ .(填上所有你认为正确的序号,答案格式如:“①②③④⑤”).44.如果反比例函数y=的图象位于第二、四象限,则n的取值范围是_________ ;如果图象在每个象限内,y随x的增大而减小,则n的取值范围是_________ .45.函数y=的图象在第_________ 象限内,在每一个象限内,y随x的增大而_________ ;函数y=﹣的图象在第_________ 象限内,在每一个象限内,y随x的增大而_________ .46.李老师给出了一个函数,甲、乙两学生分别指出这个函数的一个特征.甲:它的图象经过第二、四象限;乙:在每个象限内函数值y随x的增大而增大.在你学过的函数中,写出一个满足上述特征的函数解析式_________ .47.点(2,1)在反比例函数的图象上,则当x<0时,y的值随着x的值增大而_________ .48.已知图中的曲线是反比例函数y=(m为常数,m≠5)图象的一支.(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当49.在反比例函数的图象的每一条曲线上,y都随x的增大而减小.(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为6,求k的值.50.如图所示是反比例函数的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数n的取值范围是什么?(2)若函数图象经过点(3,1),求n的值;(3)在这个函数图象的某一支上任取点A(a1,b1)和]点B(a2,b2),如果a1<a2,试比较b1和b2的大小.51.已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.52.设函数y=(m﹣2),当m取何值时,它是反比例函数?它的图象位于哪些象限?求当≤x≤2时函数值y的变化范围.53.已知是反比例函数,且y随x值的增大而增大,求k的值.54.如图是三个反比例函数,,在x轴上方的图象,由此观察得到k1,k2,k3的大小关系,并写出比较过程.55.在反比例函数y=图象的每一条曲线上,y随x的增大而减小,求k的取值范围.56.已知反比例函数的图象如图所示(1)则k的值是_________ ;(2)你认为点B(﹣2,4)在这个函数的图象上吗?答:_________ ;(3)在第二象限内,y随x的增大而_________ .(填“增大”或“减小)57.已知反比例函数y=,分别根据下列条件求k的取值范围,并画出草图.(1)函数图象位于第一、三象限;(2)函数图象的一个分支向右上方延伸.58.已知反比例函数,(1)若在此反比例函数图象的每一条曲线上,y都随着x的增大而减小,求m的取值范围值;(2)若点A(2,3)在此反比例函数图象上,求其解析式.59.已知反比例函数的图象在每个象限内y随x的增大而减小,求a的取值范围.60.若函数y=(2m﹣9)x|m|﹣7是反比例函数,且它的图象分别位于第一象限和第三象限内,求m的值.参考答案:1.∵正比例函数y=kx(k为常数,k≠0),y随x的增大而增大,∴k>0,∴反比例函数y=图象位于第一、三象限.故选B2.①y=2x,k=2,y随着x的增大而增大,正确;②y=2+5x是一次函数,k>0,y随着x的增大而增大,正确;③y=(x>0),y随着x的增大而增大,正确;④y=,k=5>0,在每个象限内,y随x的增大而减小,错误;⑤y=,k2+2>0,在每个象限内,y随x的增大而减小,错误.故选C.3.A、无论x取何值,xy总是一个定值,由于x≠0,错误;B、在自变量取值范围内的每一象限,y随着x的增大而减小,正确;C、函数y=的图象关于y=﹣x对称,正确;D、函数y=的图象与y=x的图象有两个交点,正确;故选A4.∵当x>0时,y随x的增大而增大,∴k<0∴其函数图象应经过二、四象限故选D.5.∵双曲线y=(k≠0)在第二,四象限.∴k<0,则直线y=kx+k一定经过二、三、四象限,不经过第一象限.故选A.6.由题意得:k=6,则反比例函数y=;A、点(﹣2,﹣3)一定在此函数的图象上,正确;B、此函数的图象只在第一象限,错误,在一三象限;C、y随x增大而增大,错误,在每一象限,y随x增大而减小;D、此函数与x轴的交点的纵坐标为0,错误,与x轴无交点.故选A.7.∵y=(k为常数)的图象在第一、三象限,∴2﹣3k>0,解得k<.故选B.8.把点(3,﹣4)代入反比例函数y=得,k=﹣12<0,A、因为xy=﹣12<0,故x、y异号,故选项正确;B、函数的图象在第二、四象限,故选项错误;C、在每个象限内,y随着x的增大而增大,故选项错误;D、4,3两数同号,根据A的结论,(4,3)不在函数图象上,故9.A、图象都位于第一三象限,正确;B、自变量的取值范围都是不等于0的实数,而不是全体实数,故本选项错误;C、反比例函数图象都不与坐标轴相交,正确;D、图象在每一个象限内,y随x的增大而减小,正确.故选B②正确,因为此函数中k=6>0,所以函数图象在第一、三象限;③错误,因为反比例函数的增减性必须强调在每个象限内或在双曲线的每一支上;④错误,应为﹣1≤y<0.所以,①②两个正确;故选B.12.根据题意得:,解得m=﹣2.故选A.13.∵y=﹣(m﹣)是反比例函数,∴,解之得m=±1,又∵图象在第一,三象限,∴﹣(m﹣)>0,即m,故m的值是﹣1.故选B.14.∵反比例函数y=图象的每一条曲线上,y随x的增大而减小,∴2k﹣2008>0,解得k>1004.故答案为:k>1004.15.∵y=(m﹣2)是反比例函数,且图象在第一、三象限,∴,解得m=±3且m>2,∴m=3.故答案为:3.16.根据题意,3k2﹣2k﹣1=﹣1,2k﹣1<0,解得k=0或k=且k<,∴k=0.故答案为:017.根据题意m2﹣2=﹣1,解得m=±1,又∵函数的图象在第一、三象限∴1﹣2m>0,m<.所以m=﹣1.故答案为:﹣118.∵反比例函数的图象在一、三象限,∴2m﹣1>0,∴m>.故答案为:m>.19.∵反比例函数y随x的增大而增大,∴1﹣2m<0,∴m>.故答案为:m>.20.将点(3,﹣7)代入解析式可得k=﹣21<0,∴反比例函数值在每一个象限内y随x的增大而增大.故答案为:增大.21.设y=,图象过(﹣1,﹣3),所以k=3>0,故函数图象位于第一、三象限.22.设y=,∵图象过(2,1),23.∵当x>0时,y随着x的增大而减小∴m﹣1>0,则m>1.故答案为:>124.∵是y关于x的反比例函数,∴m2﹣m﹣7=﹣1,解得m=﹣2或3,∵图象在第二、四象限,∴m2﹣5<0,解得:m=﹣2.故答案为:﹣225.由于反比例函数y=(3m﹣1)的图象在它所在的象限内,y随x的增大而增大,则m需满足:m2﹣2=﹣1且3m﹣1<0,则m=﹣1.26.∵是反比例函数,且它的图象在第一、三象限,∴,解得:m=2.故答案为:227.∵直线y=kx+b过一、二、三象限,∴k>0,b>0,∴kb>0,∴反比例函数y=的图象在一、三象限.故答案为:一、三.28.根据反比例函数的性质关于x的函数当x>0时,函数值y随x值的增大而减小,则函数关系式为y=(k>0),把当x=1时,函数值y=2,代入上式得k=2,符合条件函数的解析式为y=(答案不唯一).29.∵当x>0时,其图象位于第一象限,∴m﹣5>0,则m>5,此时y随x的增大而减小.故答案为:m>5、减小30.函数y=(k是常数,k≠0)是反比例函数,其图象是双曲线,当k<0时,图象两支在第二,四象限内.31.由题意知k=6×(﹣)=﹣2<0,∴函数的图象在第二、四象限.32.∵k≠0,∴k2>0,∴﹣k2<0,∴函数图象位于第二、四象限.故答案为:二、四.33.∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣234.∵若y=的图象在第二、四象限,根据反比例函数的性质k<0,k的值可以是﹣1(答案不唯一).35.根据题意得:﹣5=﹣,解得:k=﹣15,∴函数解析式为y=﹣,因此当x<0时,它的图象在第二象限.故答案为:二36.由于反比例函数y=(2k+1)在每个象限内y随x的增大而增大,37.根据题意,点B、C的纵坐标为2,∴﹣=2,解得x=﹣1,∴AB=|﹣1|=1,=2,解得x=3,∴AC=3,故线段AB与线段AC的长度之比为1:3.故答案为:1:338.∵函数y=﹣,k=﹣<0,∴函数图象位于第二、四象限,∴当x<0时,y>0,其图象的相应部分在第二象限.故答案为:>、二.39.由于反比例函数y=的图象在第一、三象限内,则m﹣1>0,解得:m>1.故答案为:m>1.40.∵y=kx﹣3的值随x的增大而增大,∴k>0,根据反比例函数的性质函数:的图象在二,四象限41.∵关于x的函数是反比例函数,∴,解得m=﹣2.∵m=﹣2,∴m﹣2=﹣2﹣2=﹣4<0,∴此函数的图象在二、四象限,当x>0时,y随x的增大而增大.故答案为:﹣2、增大.42.根据反比例函数的性质,反比例函数y=(k为常数,且k≠0)的图象是双曲线,无论k为何值|k|>0,该图象分布在第一,三象限.43.①把点(﹣3,﹣5)代入上反比例函数中在它的图象上﹣5=﹣成立,正确;②它的图象在第一、三象限,错误;③当x>0时,y随x的增大而减小,正确;④当x<0时,y随x的增大而减小,错误;⑤∵x≠0,∴它的图象不可能与坐标轴相交,正确.故正确的结论是①③⑤.44.反比例函数y=的图象位于第二、四象限,所以有4﹣n<0,即n>4.又函数图象在每个象限内,y随x的增大而减小,可知4﹣n>0,得n<4.故答案为:n>4、n<445.(1)函数y=中,k=10>0,根据反比例函数的性质,在第一,三象限内,在每一个象限内,y随x的增大而减小;(2)函数y=﹣中,k=﹣10<0,根据反比例函数的性质,在第二,四象限内,在每一个象限内,y随x的增大而增大46.由甲乙同学给出的信息可以判断出该函数为在二四象限的反比例函数,系数k<0,写出符合题意的一个函数解析式,如:y=.47.∵点(2,1)在反比例函数的图象上,∴k=2×1=2,∴函数的解析式为y=,∴函数的图象在一、三象限,∴当x<0时,y的值随着x的值增大而减小.故答案为:减小.48.(Ⅰ)这个反比例函数图象的另一支在第三象限.∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(Ⅱ)如图,由第一象限内的点A在正比例函数y=2x的图象上,设点A的横坐标为a,∵点A在y=2x上,∴点A的纵坐标为2a,而AB⊥x轴,则点B的坐标为(a,0)∵S△OAB=4,∴a•2a=4,解得a=2或﹣2(负值舍去)∴点A的坐标为(2,4).又∵点A在反比例函数y=的图象上,∴4=,即m﹣5=8.∴反比例函数的解析式为y=.49.(1)∵y的值随x的增大而减小,∴k>0.(2)由于点A在双曲线上,则S=|k|=6,而k>0,所以k=6.50.(1)图象的另一支在第三象限.由图象可知,2n﹣4>0,解得:n>2(2)将点(3,1)代入得:,解得:n=;(3)∵2n﹣4>0,∴在这个函数图象的任一支上,y随x增大而减小,∴当a1<a2时,b1>b2.51.∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.52.依题意可得:;解得:m=3∴当m=3时,函数y=(m﹣2)是反比例函数;当m=3时,代入函数式可得:;∵k=1>0,∴它的图象位于第一、第三象限.由可得,∵≤x≤2;∴;解得:.53.∵是反比例函数,∴,解之得k=±1.又∵反比例函数的解析式(k≠0)中,k<0时,y随x值的增大而增大,∴k+<0,即k<﹣,∴k=﹣1.54.由反比例函数的图象和性质可估算k1<0,k2>0,k3>0,在x轴上任取一值x0且x0>0,x0为定值,则有,且y1<y2,∴k3>k2,∴k3>k2>k155.∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴2k﹣2008>0,k>1004.56.(1)∵A(,﹣4)在反比例函数y=的图象上,∴k=×(﹣4)=﹣2;(2)∵由(1)可知k=﹣2,点B(﹣2,4)中,(﹣2)×4=﹣8≠﹣2,∴点B不在这个函数的图象上;(3)∵k=﹣2,∴此反比例函数的解析式为y=﹣,∴此函数的图象在二、四象限,在第二象限内y随x的增大而增大.故答案为:﹣2、不在、增大57.(1)根据题意,4﹣k>0,k<4;(2)根据题意,4﹣k<0,k>4.58.(1)∵在此反比例函数图象的每一条曲线上,y都随着x的增大而减小,∴m﹣5>0,解得:m>5;(2)∵点A(2,3)在此反比例函数图象上,∴2×3=m﹣5,解得:m=11,故反比例函数解析式为y=59.∵反比例函数的图象在每个象限内y随x的增大而减小,∴5﹣a<0,解得a>5.60.根据题意,得解得m=6,故m的值为:6。
完整版)反比例函数经典习题及答案
完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。
y = 1/xB。
y = -1/xC。
y = 2/xD。
y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。
第一、二象限B。
第一、三象限C。
第二、四象限D。
第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。
k。
2B。
k ≥ 2C。
k ≤ 2D。
k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。
2B。
-2C。
4D。
-45.对于反比例函数y = 2/x,下列说法不正确的是()A。
点(-2.-1)在它的图象上B。
它的图象在第一、三象限C。
当x。
0时,y随x的增大而增大D。
当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。
0时,y随x 的增大而增大,则m的值是()A。
±1B。
小于1的实数C。
-1D。
1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。
A。
S1 < S2 < S3B。
S2 < S1 < S3C。
S3 < S1 < S2D。
S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。
3B。
2C。
1D。
09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。
反比例函数测试题及答案
反比例函数测试题及答案一、选择题1. 反比例函数y= \frac{k}{x}(k≠0)的图象是双曲线,下列说法正确的是()A. 函数图象在一、三象限内,k>0B. 函数图象在二、四象限内,k<0C. 函数图象在一、三象限内,k<0D. 函数图象在二、四象限内,k>0答案:A2. 若点(2,3)在反比例函数y= \frac{k}{x}(k≠0)的图象上,则k的值是()A. 6B. -6C. 2D. -2答案:A二、填空题3. 反比例函数y= \frac{k}{x}(k≠0)的图象经过点(1,-2),则k的值为______。
答案:-24. 反比例函数y= \frac{k}{x}(k≠0)的图象是中心对称图形,若点(a,b)在函数图象上,则点(-a,-b)也在函数图象上,且k=ab,若点(2,-1)在函数图象上,则点(-2,1)也在函数图象上,且k=______。
答案:-2三、解答题5. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(3,-1),求k的值,并判断图象在哪个象限。
解:将点(3,-1)代入反比例函数y= \frac{k}{x}得,-1=\frac{k}{3},解得k=-3。
因为k=-3<0,所以图象在第二、四象限。
6. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(2,3),求k的值,并写出函数的表达式。
解:将点(2,3)代入反比例函数y= \frac{k}{x}得,3=\frac{k}{2},解得k=6。
因此,函数的表达式为y= \frac{6}{x}。
结束语:通过以上题目的练习,可以检验你对反比例函数性质和图象特征的掌握程度,希望同学们能够通过这些题目加深对反比例函数的理解。
反比例函数》测试题(含答案)
反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。
0B。
1C。
2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。
4,12B。
4,6C。
8,12D。
8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。
二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。
猜想06反比例函数(易错必刷30题6种题型专项训练)(原卷版)
猜想06反比例函数(易错必刷30题6种题型专项训练)➢ 一.反比例函数的性质 ➢ 三.反比例函数图象上点的坐标特征 ➢ 五.反比例函数与一次函数的交点问题➢ 二.反比例函数系数k 的几何意义 ➢ 四.待定系数法求反比例函数解析式 ➢ 六.反比例函数的应用一.反比例函数的性质(共2小题)1.(2023•安阳二模)下列函数中,其图象一定不经过第三象限的是( ) A .y =x 2+2x ﹣3B .y =2xC .y =﹣x +2D .2.(2023•和平区模拟)已知反比例函数y =经过平移后可以得到函数y =﹣1,关于新函数y =﹣1,下列结论正确的是( )A .当x >0时,y 随x 的增大而增大B .该函数的图象与y 轴有交点C .该函数图象与x 轴的交点为(1,0)D .当0<x ≤时,y 的取值范围是0<y ≤1 二.反比例函数系数k 的几何意义(共7小题)3.(2023秋•来宾期中)如图所示,过反比例函数y =(k >0)在第一象限内的图象上任意两点A ,B ,分别作x 轴的垂线,垂足分别为C ,D ,连接OA ,OB ,设△AOC 与△BOD 的面积为S 1,S 2,那么它们的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .不能确定4.(2023•西安三模)如图,菱形OABC 的边OA 在x 轴正半轴上,顶点B 、C 分别在反比例函数y =与y =的图象上,若四边形OABC 的面积为4,则k= .5.(2022秋•二道区校级期末)如图,已知矩形ABCD的对角线BD中点E与点B都经过反比例函数的图象,且S矩形ABCD=8,则k的值为()A.2B.4C.6D.86.(2022秋•九龙坡区校级期末)如图,在平面直角坐标系中,平行四边形ABCD与y轴分别交于E、F两点,对角线BD在x轴上,反比例函数的图象过点A并交AD于点G,连接DF.若BE:AE=1:2,AG:GD=3:2,且△FCD的面积为,则k的值是()A.B.3C.D.57.(2023•宿城区一模)如图,点A是反比例函数y=(x<0)的图象上的一点,点B在x轴的负半轴上且AO=AB,若△ABO的面积为4,则k的值为.8.(2023秋•高新区校级期中)如图,已知点A,点C在反比例函数y=(k>0,x>0),AB⊥x轴,若CD =3OD,则△BDC与△ADO的面积比为.9.(2023•惠东县校级三模)如图,在平面直角坐标系xOy中,第一象限内的点P(x,y)与点A(2,2)在同一个反比例函数的图象上,PC⊥y轴于点C,PD⊥x轴于点D,那么矩形ODPC的面积等于.三.反比例函数图象上点的坐标特征(共3小题)10.(2023•南开区一模)点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y311.(2023•陕西)若点A(﹣1,2),B(1,m),C(4,n)都在同一个反比例函数的图象上,则m,n的大小关系是m n.(填“>”“=”或“<”)12.(2023春•巴东县期中)在平面直角坐标系xOy中,已知A(4,0),B(0,2),四边形ABCD为正方形,双曲线y=(k≠0)经过边BC的中点E.(1)求k的值;(2)求(1)中双曲线与边AD的交点F的坐标.四.待定系数法求反比例函数解析式(共5小题)13.(2023•双柏县模拟)反比例函数y=经过点(﹣1,﹣4),则反比例函数的解析式为()A.y=﹣4x B.y=C.y=﹣D.y=4x14.(2023•兴隆台区二模)如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y轴上,CE⊥y轴,若反比例函数的图象过点C.(1)求反比例函数的解析式;(2)点F在反比例函数图象上,当△ECF面积为12时,求点F坐标.15.(2023•兴宁市校级一模)如图,在平面直角坐标系中,四边形ABCD是平行四边形,B,C两点的坐标分别为(﹣4,0),(﹣1,0).点D的纵坐标为4,CD边与y轴交于点F.反比例函数y=(x>0)的图象经过点D,反比例函数y=(x<0)的图象经过点A,且与AB交于点E.(1)求反比例函数y=(x<0)的表达式;(2)连接EF,猜想四边形AEFD是什么特殊四边形,并加以证明.16.(2022•易县三模)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直x轴于点B,反比例函数的图象经过AO的中点C,与边AB相交于点D,若D的坐标为(4,m),AD=3.(1)反比例函数的解析式是;(2)设点E是线段CD上的动点,过点E且平行y轴的直线与反比例函数的图象交于点F,则△OEF面积的最大值是.17.(2022•西宁)如图,正比例函数y=4x与反比例函数y=(x>0)的图象交于点A(a,4),点B在反比例函数图象上,连接AB,过点B作BC⊥x轴于点C(2,0).(1)求反比例函数解析式;(2)点D在第一象限,且以A,B,C,D为顶点的四边形是平行四边形,请直接写出点D的坐标.五.反比例函数与一次函数的交点问题(共9小题)18.(2023•立山区一模)如图,直线y=kx(k>0)与双曲线y=交于A,B两点,若A(2,m),则点B 的坐标为()A.(2,2)B.(﹣2,﹣1)C.(﹣2,﹣2)D.(﹣1,﹣4)19.(2023•思明区校级模拟)在平面直角坐标系中,O是坐标原点,直线y=x+m(m<0)与双曲线相交于点A,B,点A在第一象限,延长AO与已知双曲线交于点C,连接BC,若OA=1,直线AC与x轴所夹的锐角为15°,则△ABC的面积为()A.1B.2C.D.20.(2023•南关区校级模拟)如图,矩形ABCD的对角线AC、BD相交于点E,DB⊥x轴于点B,AC所在直线交x轴于点F,点A、E同时在反比例函数y=(x<0)的图象上,已知直线AC的解析式为y=x+b,矩形ABCD的面积为120,则k的值是()A.﹣20B.C.﹣40D.21.(2023秋•锦江区校级期中)如图,直线的图象与y轴交于点A,直线y=kx+k(k>0)与x轴交于点B,与的图象交于点M,与的图象交于点C.当S△ABM:S△AMC=5:3时,k=.22.(2023•荆州)如图,点A(2,2)在双曲线y=(x>0)上,将直线OA向上平移若干个单位长度交y 轴于点B,交双曲线于点C.若BC=2,则点C的坐标是.23.(2023•碑林区校级模拟)若一次函数y=2x﹣1的图象与反比例函数的图象相交于点(a,3),则k=.24.(2023•凤凰县模拟)如图,反比例函数y=的图象与正比例函数y=k2x的图象交于A(a,1)、B两点.点M(a﹣3,a)在反比例函数图象上,连接OM,BM交y轴于点N.(1)求反比例函数的解析式.(2)求△BOM的面积.25.(2023•晋中模拟)已知直线y1=k1x+b与反比例函数的图象交于A(2,6),B(m,﹣2)两点,(1)求反比例函数的解析式及点B的坐标;(2)当y1>y2时,则x的取值范围是;(3)连接BO并延长与第一象限的双曲线交于点C,连接OA、AC,请直接写出△ABC的面积与△OAC 的面积之间的数量关系.26.(2023•镇平县模拟)如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为,k的值为;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y≥﹣3时,请直接写出自变量x的取值范围.六.反比例函数的应用(共4小题)27.(2023•海淀区校级三模)植物研究者在研究某种植物1~5年内的植株高度时,将得到的数据用如图直观表示.现要根据这些数据选用函数模型来描述这种植物在1~5年内的生长规律.若选择y=ax2+bx+c,则a______0,b______0;若选择函数y=,则a______0,b______0.依次填入的不等号为()A.<,>,<,>B.<,>,>,<C.>,<,<,>D.>,>,<,<28.(2023•厦门模拟)某医药企业几年前研制并上市一种新的特效药,销售部门根据该药品过去几年的销售数据、同类特效药的销售数据以及对市场的分析、预估,绘制了该药品年销售量y(单位:万盒)随价格x(单位:元/盒)变化的大致图象(图象由部分双曲线AB与线段BC组成),如图所示.该药品2021年价格为60元/盒,经国家医保局与该医药企业谈判,将该药纳人医保,2022年价格下调至30元/盒.但在制药成本不变的情况下,当年销售该药品的利润还是与2021年相同.根据已知信息解决下列问题:(1)求2022年该药品的年销售量;(2)该企业2023年将使用新研发的制药技术,使制药成本降低40%.为惠及更多患者,该企业计划在2023年继续下调该药品的价格,并希望当年销售该药品的利润比2022年至少增加2500万元用于制药技术的研发.请你为该企业设定该药品价格的范围,并说明理由.29.(2023•阳泉模拟)阅读与思考下面是小宇同学的一篇数学日记,请仔细阅读并完成相应的任务.今天是2023年5月8日(星期一),在下午数学活动课上,我们“腾飞”小组的同学,参加了一次“探索输出功率P与电阻R函数关系的数学活动”.第一步,我们根据物理知识P=UI,(U表示电压为定值6V,I表示电流),通过测量电路中的电流计算电功率.第二步,通过换用不同定值电阻,使电路中的总电阻成整数倍的变化.第三步,计算收集数据如下:R/Ω…510152025…P/W…7.2 3.6 2.4 1.8 1.6…第四步,数据分析,以R的数值为横坐标,P的数值为纵坐标建立平面直角坐标系,在该坐标系中描出以表中数对为坐标的各点,并用光滑的曲线顺次连接这些点.数据分析中,我发现一组数据可能有明显错误,重新实验,证明了我的猜想正确,并对数据进行了修改.实验结束后,大家有很多收获,每人都撰写了数学日记.任务:(1)上面日记中,数据分析过程,主要运用的数学思想是;A.数形结合B.类比思想C.分类讨论D.方程思想(2)你认为表中哪组数据是明显错误的,并直接写出P关于R的函数表达式;(3)在下面平面直角坐标系中,画出此函数的图象.(4)请直接写出:若想P大于30W,R的取值范围.30.(2023•宁江区三模)小丽家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y(℃)与开机时间x(分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y(℃)与开机时间x(分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小丽在通电开机后即外出散步,请你预测小丽散步70分钟回到家时,饮水机内的温度约为多少℃?。
完整版)反比例函数练习题含答案
完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
中考数学《反比例函数》专项练习题(附带答案)
中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。
题型七 函数的基本性质 类型二 反比例函数(专题训练)(原卷版)
题型七 函数的基本性质 类型二 反比例函数(专题训练)1.对于反比例函数y =﹣5x,下列说法错误的是( )A .图象经过点(1,﹣5) B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大2.若点()13,A y -,()21,B y -,()32,C y 都在反比例函数()0ky k x=<的图象上,则1y ,2y ,3y 的大小关系是( )A .312y y y <<B .213y y y <<C .123y y y <<D .321y y y <<3.若点A (x 1,﹣5),B (x 2,2),C (x 3,5)都在反比例函数y =10x的图象上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 3<x 1<x 24.如图是反比例函数y=1x的图象,点A(x ,y)是反比例函数图象上任意一点,过点A 作AB⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .12C .2D .325.已知点()()1122,,,A x y B x y 在反比例函数12y x=-的图象上.若120x x <<,则( )A .120y y <<B .210y y <<C .120y y <<D .210y y <<6.若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是( )A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<7.已知三个点()11,x y ,()22,x y ,()33,x y 在反比例函数2y x=的图象上,其中1230x x x <<<,下列结论中正确的是()A .2130y y y <<<B .1230y y y <<<C .3210y y y <<<D .3120y y y <<<8.若点A (a ﹣1,y 1),B (a+1,y 2)在反比例函数y =kx (k <0)的图象上,且y 1>y 2,则a 的取值范围是( )A .a <﹣1B .﹣1<a <1C .a >1D .a <﹣1或a >19.如图,直线AB 交x 轴于点C ,交反比例函数y =1a x-(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A .8B .9C .10D .1110.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF V 的面积为1,则k 的值为( )A .125B .32C .2D .311.如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x ^轴于点C ,BD x ^轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k 的值为()A .2BC .94D .12.如图,在直角坐标系中,ABC V 的顶点C 与原点O 重合,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B 的坐标为(4,3),AB 与y 轴平行,若AB BC =,则k =_____.13.如图,一次函数y =12x+1的图象与反比例函数y =kx 的图象相交于A (2,m )和B 两点.(1)求反比例函数的解析式;(2)求点B 的坐标.14.在平面直角坐标系xOy 中,反比例函数y =mx (x >0)的图象经过点A (3,4),过点A 的直线y =kx+b 与x 轴、y 轴分别交于B ,C 两点.(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.15.如图,点A 在第一象限,AC x ^轴,垂足为C ,OA =,1tan 2A =,反比例函数ky x=的图像经过OA 的中点B ,与AC 交于点D .(1)求k 值;(2)求OBD V 的面积.16.如图,一次函数()1y kx b k 0=+¹的图象与反比例函数()2my m 0x=¹的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.17.如图,一次函数()20y kx k =+¹的图像与反比例函数()0,0my m x x=¹>的图像交于点()2,A n ,与y 轴交于点B ,与x 轴交于点()4,0C -.(1)求k 与m 的值;(2)(),0P a 为x 轴上的一动点,当△APB 的面积为72时,求a 的值.18.一次函数y=kx+b (k≠0)的图像与反比例函数my x=的图象相交于A(2,3),B(6,n)两点(1)求一次函数的解析式(2)将直线AB 沿y 轴向下平移8个单位后得到直线l ,l 与两坐标轴分别相交于M ,N ,与反比例函数的图象相交于点P ,Q ,求PQMN的值19.如图,AOB V 中,90Ð=°ABO ,边OB 在x 轴上,反比例函数(0)ky x x=>的图象经过斜边OA 的中点M ,与AB 相交于点N ,912,2AOB S AN ==V .(1)求k 的值;(2)求直线MN 的解析式.20.如图所示,一次函数y =kx+b 的图象与反比例函数y =mx 的图象交于A (3,4),B (n ,﹣1).(1)求反比例函数和一次函数的解析式;(2)在x轴上存在一点C,使△AOC为等腰三角形,求此时点C的坐标;(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.。
(完整版)反比例函数练习题及答案
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
(完整版)反比例函数专题训练(含答案)-,推荐文档
4
参考答案
动脑动手
1.k1=3,k2=2,所求函数为 y 3 2x 2 . x
2. y 12 (3≤x≤5). x
3. y 20 (x 1,2,3,4,5) . x
4.(1)求 A,B 两点坐标问题转化为解方程组
y 8 , x y x 2.
(2)S△AOB=S△AOC+S△BOC,因 A,B 两点坐标已求出,面积可求.
即 12 12 3 . a2 a
强是 200Pa,翻过来放,对桌面的压强是多少?
28.设函数 y (m 2)m2 5m5 ,当 m 取何值时,它是反比例函数?它的图象位于哪些
象限内? (1)在每一个象限内,当 x 的值增大时,对应的 y 值是随着增大,还是随着减小? (2)画出函数图象.
(3)利用图象求当-3≤x≤ 1 时,函数值 y 的变化范围. 2
y=y1-y2,
∴
y
k1 x
k2 x2
.
x 1
把
y
5;
x
y
1, 1.
分别代入得
5 1
k1
k1 k
2,
k
2
,
解得
k1=3;k2=2.
∴y 与 x 的函数解析式为 y 3 2x 2 . x
26.解:将 V=5 时,ρ=1.98 代入 m 得 V
m=1.98×5=9.9.
∴ρ 与 V 的函数关系式为 ρ 9.9 . V
C. y x 1 2
D. y x 2 1 2
13.函数 y m 的图象过(2,-2),那么函数的图象在( ) x
A.第一、三象限
B.第一、四象限
C.第二、三象限
(完整版)反比例函数练习题集锦(含答案)
反比例函数练习题集锦(含答案)一、选择题1. 反比例函数y=1/x的图像在()A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第一、四象限2. 反比例函数y=1/x的图像是()A. 一条直线B. 一条曲线C. 一条抛物线D. 一条双曲线3. 反比例函数y=1/x的图像经过()A. 原点B. x轴C. y轴4. 反比例函数y=1/x的图像与x轴、y轴的交点坐标分别是()A. (0,0),(0,0)B. (1,0),(0,1)C. (0,1),(1,0)D. (0,0),(1,1)5. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 06. 反比例函数y=1/x的图像在第二象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 07. 反比例函数y=1/x的图像在第三象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 08. 反比例函数y=1/x的图像在第四象限的每一点,其横坐标与纵坐标的乘积是()A. 1B. 1C. 09. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的比值是()A. 1B. 1C. 0纵坐标的比值是()A. 1B. 1C. 0答案:1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.A 9.C 10.B反比例函数练习题集锦(含答案)二、填空题11. 反比例函数y=1/x的图像在第一、三象限,因为当x>0时,y<0,当x<0时,y>0,所以图像在第一、三象限。
12. 反比例函数y=1/x的图像是一条双曲线,因为它的图像是由两条互相渐近的曲线组成的。
13. 反比例函数y=1/x的图像与x轴、y轴的交点坐标分别是(0,0),(0,0),因为当x=0时,y=0,当y=0时,x=0。
14. 反比例函数y=1/x的图像在第一象限的每一点,其横坐标与纵坐标的乘积是1,因为y=1/x,所以xy=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数题型专项(一)专题一、反比例函数的图像1.如图,反比例函数的图象经过点A(2,1),若y≤1,则x的范围为()A.x≥1 B.x≥2 C.x<0或0<x≤1 D.x<0或x≥22.在同一直角坐标系中,函数y=kx+1与y﹦(k≠0)的图象大致是()A.B.C.D.3.若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.4.若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.65.在同一平面直角坐标系中,画正比例函数y=kx和反比例函数y=(k<0)的图象,大致是()A.B.C. D.6.函数y=,当y=a时,对应的x有两个不相等的值,则a的取值范围()A.a≥1 B.a>0 C.0<a≤2 D.0<a<27.已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A.B.C.D.8.函数y=与y=kx﹣k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.9.在同一坐标系中,表示函数y=ax+b和y=(a≠0,b≠0)图象正确的是()A.B.C.D.10.函数y=的图象在()A.第一,三象限B.第一,二象限C.第二,四象限D.第三,四象限11.如果k<0,那么函数y1=kx﹣k,的图象可能是()A.B.C.D.12.如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是()A.x<﹣1 B.x>2 C.﹣1<x<0,或x>2 D.x<﹣1,或0<x<212题图13题图13.如图,反比例函数y1=,y2=,y3=的图象的一部分如图所示,则k1,k2,k3的大小关系是()A.k1<k2<k3B.k2<k3<k1C.k3<k2<k1D.k1<k3<k2类型二、反比例函数图象的对称性1.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是()A.(2,3)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)2.如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()A.πB.2πC.4πD.条件不足,无法求2题图3题图4题图5题图6题图3.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是()A.πB.πC.4πD.条件不足,无法求4.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=5.如图,直线y=kx(k>0)与双曲线y=交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B (x2,y2),则x1y2+x2y1的值为()A.﹣8 B.4 C.﹣4 D.06.如图,过原点的一条直线与反比例函数y=(k≠0)的图象分别交于A,B两点.若A点的坐标为(a,b),则B点的坐标为()A.(a,b)B.(b,a)C.(﹣b,﹣a)D.(﹣a,﹣b)7.已知正比例函数y=kx的图象与反比例函数的图象的一个交点坐标是(1,3),则另一个交点的坐标是()A.(﹣1,﹣3)B.(﹣3,﹣1)C.(﹣1,﹣2)D.(﹣2,﹣3)类型三、反比例函数的性质8.反比例函数y=的图象如图所示,以下结论正确的是()①常数m<1;②y随x的增大而减小;③若A为x轴上一点,B为反比例函数上一点,则S△ABC=;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.A.①②③B.①③④C.①②③④D.①④9.己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>610.已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1011.关于函数有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,y的取值范围为y≥﹣1.其中正确的有()个.A.1 B.2 C.3 D.412.下列函数中,y随x增大而增大的是()①;②;③y=2x﹣1;④;⑤.A.①②③⑤B.②③④C.③④D.③④⑤13.已知函数,有下列结论:①两函数图象交点的坐标为(4,4);②当x>4时,y2>y1;③当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的个数是()A.0个B.1个C.2个D.3个14.已知函数y=﹣,当自变量的取值为﹣1<x<0或x≥2,函数值y的取值.15.我们已经知道函数y=与y=﹣的两个图象之间的联系与区别,那你知道函数y=的图象与上述两个函数图象之间又有怎样的关系吗?(1)试用描点法画出图象加以探究;(2)如果利用y=与y=或y=﹣的图象之间的关系,可怎样画y=﹣的图象?类型四、反比例函数K 的几何意义1.如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A、B两点,则四边形MAOB的面积为()A.6 B.8 C.10 D.121题图2题图3题图4题图2.如图Rt△ABC在平面坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线y=经过C点及AB的三等点D(BD=2AD),S△BCD=6,则k的值为()A.3 B.6 C.﹣3 D.﹣63.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.134.如图,直线x=t(t>0)与反比例函数y=(x>0)、y=(x>0)的图象分别交于B、C两点,A为y轴上任意一点,△ABC的面积为3,则k的值为()A.2 B.3 C.4 D.55.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大 D.先增大后不变6.(2015秋•长清区期末)反比例函数的图象上有两点M,N,那么图中阴影部分面积最大的是()A.B.C.D.7.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB交于点中点E,若△OBD的面积为10,则k的值是()A.10 B.5 C.D.8.如图,点A、B在反比例函数y=的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,且△AOC的面积为9,则k的值为()A.9 B.3 C.6 D.8题图9题图10题图11题图9.如图,已知反比例函数y=(k<0)的图象经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣4,2),则△AOC的面积为()A.4 B.2.5 C.3 D.210.如图,过反比例函数y=(x>0)图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1<S2C.S1=S2D.S1、S2的大小关系不能确定11.如图是一个反比例函数(x>0)的图象,点A(2,4)在图象上,AC⊥x轴于C,当点A运动到图象上的点B(4,2)处,BD⊥x轴于D,△AOC与△BOD重叠部分的面积为()A.1 B.2 C.D.12.如图,若正方形OABC的顶点B和正方形ADEF的顶点E都在函数y=(k≠0)的图象上,则点E 的坐标为()A.B.()C.()D.()13.如图,在的图象上有A、B、C三点,边OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积为S1、S2、S3,则有()A.S1>S2>S3B.S1<S2<S3C.S1=S2=S3D.S1>S3>S2课后作业1.(1999•哈尔滨)下列各图中,能表示函数y=k(1﹣x)和y=(k≠0)在同一平面直角坐标系中的图象大致是()A.B. C. D.2.如图:三个函数,,,由此观察k1,k2,k3的大小关系是.3.函数y1=x (x≥0),如图所示,请你根据图象写出3个不同的结论:①;②;③.4.请你写出一个反比例函数的解析式使它的图象在第一、三象限.5.对于函数y=,当x>2时,y的取值范围是<y<.6.已知函数y=与y=k2x图象的交点是(﹣2,5),则它们的另一交点是.7.如图,直线y=﹣2x与双曲线的一个交点坐标为(﹣2,4),则它们的另一个交点坐标为.7题图9题图10题图14题图8.已知函数y=2x与的图象的一个交点坐标是(1,2),则它们的图象的另一个交点的坐标是.9.已知,如图,正比例函数与反比例函数的图象相交于A、B两点,A点坐标为(2,1),分别以A、B 为圆心的圆与x轴相切,则图中两个阴影部分面积的和为.10.如图,有反比例函数y=,y=﹣的图象和一个以原点为圆心,2为半径的圆,则S阴影=.11.若k<,则双曲线的图象经过第象限.12.函数①y=、②y=﹣、③y=(x>0)、④y=(x<0)、⑤y=﹣x+1中,y随x的增大而减小的有.13.已知反比例函数的图象在第二、四象限,其解析式为.14.如图,l1是反比例函数y=在第一象限内的图象,且过点(2,1),l2与l1关于y轴对称,那么图象l2的函数表达式为(x<0).三.解答题(共4小题)15.若函数y=(2m﹣9)x|m|﹣7是反比例函数,且它的图象分别位于第一象限和第三象限内,求m的值.16.如图,双曲线y=(k>0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,求k的值。
17.如图,反比例函数y=(x>0)的图象经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)求△OAB的面积.。